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Abstract

This thesis aims to tackle some of the unanswered questions in the Standard Models of

cosmology and particles. The large-scale homogeneity, isotropy and flatness of the observable

universe, and its small-scale primordial density perturbations that seed structure formation,

can be explained with the addition of an inflationary period preceding the Hot Big Bang.

We study an inflationary model that minimally extends the Standard Model (SM) with a Z2

symmetric potential containing a single scalar field, serving as our inflaton, with a quartic self-

coupling and a non-minimal coupling to gravity. With the addition of an inflaton-SM Higgs

portal coupling, the universe is able to efficiently reheat. We study two variations of the model,

with scale symmetry breaking in the inflaton sector and in both the inflaton and Higgs sectors.

In the model with scale symmetry breaking in just the inflaton sector we find two windows of

inflaton masses that allow for successful reheating: light inflaton with masses (0.16 . mχ . 16)

GeV reheat via two-to-two inflaton-Higgs scattering, and heavy inflaton with masses (250 <

mχ . 7600) GeV reheat via their decay into Higgs particles. Light inflatons are more strongly

coupled to the SM, and their mass is constrained by particle physics experiments to mχ >

1 GeV. Heavy inflaton are very weakly coupled to the SM, and evade direct observational

constraints. In the model with scale symmetry breaking in both sectors, we find that only the

light inflaton window is viable if we assume our universe is metastable. Inflaton masses in the

range O(10−3) GeV ≤ mχ ≤ mh evade all current cosmological, experimental and stability

constraints.

There is a wealth of evidence that supports the existence of dark matter (DM), from

the large scale structure of the universe, astrophysical phenomena and the Cosmic Microwave

Background’s power spectrum. We incorporate sterile neutrino DM into our inflationary model

with the extension of a Neutrino Minimal Standard Model, modified with an inflaton-sterile

neutrino Yukawa coupling. We study DM production via inflaton decay in the early universe,

and find that the DM properties are determined by a complex interplay of constraints from

cosmology and particle physics. Light inflaton produce warm DM and masses in the range

O(10− 100) keV and heavy inflaton produce cold DM with masses O(1− 10) MeV; both DM

windows satisfy the requirements for structure formation. With the addition of two heavier

degenerate sterile neutrinos with masses O(103 − 1010) GeV, the model is able to generate

the baryon asymmetry of the universe via leptogenesis, and the SM neutrino masses via the

see-saw mechanism.
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Chapter 1

Introduction

1.1 The Standard Model of particles

The Standard Model (SM) of particles describes the fundamental forces that govern the

universe: strong, weak and electromagnetic (EM). The model excludes gravity, as we currently

have no quantum description of the force. Gravity is described at low energies by Einstein’s

effective field theory, General Relativity [1], which breaks down at scales above the Planck

mass, MPl = 1.221 × 1019 GeV. The SM has had unprecedented success in predicting and

explaining almost all the results of particle physics experiments. There are, however, still

some questions in particle physics that can not be answered by the SM: how did our universe

become dominated by matter over antimatter; what mechanism generates the SM neutrino

masses; what is dark matter (DM); and what are the mechanisms for SM and DM production?

We observe the universe to be filled with remnant matter leftover from matter-antimatter

annihilation in the early stages of its evolution. The excess of matter is a consequence of sizeable

charge-parity (CP) violating processes [2], which generates a matter-antimatter asymmetry. In

the SM, quark mixing is the only source of CP violation, and has been observed in the decay

of B, K and D mesons [3–7]. However, CP violation in the SM is many orders of magnitude

too small to explain the matter-antimatter asymmetry of the universe [8–10] that produces a

baryon-to-entropy ratio of O(10−10) [11]. We therefore require extensions of the SM to provide

new sources of CP violation.

In the gauge theory of the combined electromagnetic and weak (EW) interactions, explicit

mass terms are impossible to add as they contradict gauge invariance. We can, however,

maintain gauge invariance of the theory and generate the particle masses if the EW symmetry

is spontaneously broken. This is achieved when a complex scalar field, the Higgs field, acquires

a non-zero vacuum expectation value (VEV). The SM fermion masses are then generated

through their Yukawa coupling with the Higgs field, which couples the left- and right- hand

fermionic components. Post spontaneous symmetry breaking, the fermion mass term is then

given by the Higgs VEV multiplied by the Yukawa coupling. As neutrinos have no right-handed
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component, they can not acquire a mass through a Yukawa coupling, and so the SM predicts

them to be massless. However, this is in contradiction to the observed neutrino oscillations,

which was confirmed in 2001 by the Sudbury Neutrino Observatory [12, 13]. We therefore

require a process beyond the SM to generate the SM neutrino masses.

Finally, there is a vast amount of evidence to support the existence of DM from observed

gravitational effects [14–16], the CMB’s power spectrum [17, 18], and structure formation [19,

20]. Although we have not directly observed DM, we have been able to infer that it makes up

over 80% of the total matter density in the universe [21] and it has the following properties:

DM must be weakly coupled (or decoupled) to the SM; it is a massive particle; and it is cool

enough to form structures in the hot radiation-dominated epoch. There are no viable DM

candidates in the SM, and within the bounds of our current knowledge, there are a rich variety

of possible DM models that could extend the SM [22–30].

1.2 The Standard Model of cosmology

The observable universe is almost completely flat, homogeneous and isotropic. We have

been able to deduce that the universe is expanding at an accelerating rate from measuring

the red-shift of Type Ia supernovae [31, 32], which thereby requires the addition of a positive

cosmological constant in Einstein’s field equations [1]. In the Standard Model of cosmology

(SMC) the positive cosmological constant is interpreted as ‘dark energy’, which dominates

the energy density of the universe today. This discovery led to the ‘Hot Big Bang model’,

as cosmologists theorized that the universe expanded and cooled from an initial highly dense

and hot state. Additionally, we know that large scale-structures, such as galaxies and galaxy

clusters, have a dominant dark matter component from observing its gravitational effects [14–

16]. Our best fit cosmological model with dominant components of dark energy and cold

dark matter [33] has very accurately predicted the results of key events in the history of the

universe: the existence and properties of the CMB [34–36]; the abundance of light elements

from Big Bang Nucleosynthesis (BBN) [37–39]; the number of neutrino species in the SM [40];

and the formation of large scale structures [41, 42]. However despite its success, the Hot Big

Bang model is unable to explain the homogeneity, isotropy and flatness of the universe, and

how primordial matter density perturbations that seed large scale structure formation were

generated.

The Hot Big Bang model predicts that the observable universe is made up of many causally

disconnected regions, which we would naturally expect to vary in temperature and density.

However, the CMB revealed that our observable universe is remarkably homogeneous and

isotropic, with small primordial density perturbations [34–36] that the Hot Big Bang model

has no means to generate. Additionally, as curvature grows with the evolution of the universe,
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until its recent dark energy dominated epoch, we require an extremely small initial curvature

to produce a flat universe today. These initial conditions present cosmologists with complex

fine-tuning problems in the Hot Big Bang model. A possible solution to which is ‘inflation’: a

period of positive accelerating expansion prior to the Hot Big Bang.

1.3 Outline

In order to evade spoiling the success of the SM and SMC, it is preferable that solutions for

problems such as inflation, SM and DM production, the generation of the baryon asymmetry

of the universe (BAU) and SM neutrino masses, are provided for by minimal extensions to

the models. The original work of this thesis [43, 44] studies a model of inflation that extends

the SM by just a single scalar inflaton field. The main focus of the study is to constrain the

model from cosmology, for successful inflation and reheating (SM production), and particle

physics. However, the most general model is still very hard to constrain, and so we focus on

two theoretically motivated variants, which we discuss below.

The measurement of particle masses tells us that the universe is not scale symmetric. The

first variation of our inflationary model assumes scale symmetry is only broken in the inflaton

sector by a single massive parameter, and an inflaton-Higgs portal coupling allows for the

transfer of symmetry breaking into the SM sector [43, 45–48]. In the second variation of

our inflationary model, scale symmetry is broken by two massive parameters in the inflaton

and Higgs sectors [44]. The model is then tightly constrained under the assumption that the

universe is metastable, which we motivate as follows. The measurement of the SM Higgs boson

mass revealed that our universe is surprisingly close to the metastability/stability bound [49].

If the universe is stable, then the observation that its energy density is dominated by a positive

cosmological constant [31, 32], known as ‘dark energy’, tells us that the universe will eternally

expand at an accelerating rate. However, Dvali argues that an eternally accelerating universe

would eventually lead to quantum inconsistencies from graviton-graviton scattering [50, 51],

and so we require a mechanism for the universe to end before this moment is reached. We

provide a possible solution to this problem by requiring our model to give rise to a metastable

universe that is sufficiently long-lived.

The next part of original work [43] presented in this thesis incorporates DM in our in-

flationary model by extending the scalar sector with a modified νMSM [43, 45–47, 52]. Our

DM candidate is a sterile neutrino, which is produced in the early universe via inflaton decay.

The DM parameters are constrained by the observed DM abundance and the requirements for

structure formation. Additionally, we find that the mechanisms for generating the BAU via

leptogenesis and the SM neutrino masses studied in the original νMSM [53, 54] are not affected

by our modifications.
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The thesis begins with four theory and literature review chapters, which provide the reader

with the foundational knowledge and experimental constraints that we need to build, analyse

and constrain our cosmological models in the final three chapters.

We begin with the thermal history of the universe in chapter 2. Here we review the SMC,

which accurately describes the large-scale evolution of the universe since the hot radiation-

dominated epoch known as the Hot Big Bang. I define the equations that govern cosmological

expansion and the thermal evolution of the universe, which will be necessary for modelling

the periods of inflation, reheating and DM production in chapters 6−8. I review the key

events in the timeline of the universe’s history: neutrino decoupling, Big Bang Nucleosynthesis

and photon decoupling. The SMC very accurately predicts the results of these events, and

so any extensions to which are significantly constrained. The chapter ends with the best fit

cosmological model we have today, with dominant components of dark energy and dark matter.

We will use the relative abundance of matter and radiative components to determine when the

universe transitioned from radiation to matter-domination, and the relative abundance of DM

to constrain the parameters of our DM model.

Chapter 3 studies the theory of inflation, which aims to provide an explanation for the

large-scale homogeneity, isotropy and flatness of our observable universe, and its small-scale

density inhomogeneities, without the input of finely-tuned initial conditions. A finite period

of positively accelerating expansion, called inflation, flattens curved space and ensures the ob-

servable universe has previously come into causal contact. I then study the conditions that

would lead to inflation for a set of minimal large-field inflationary models, which extend the

SM by a single scalar field. Next, I discuss the generation of scalar and tensor cosmological

perturbations from the inflationary enhancement of quantum fluctuations of the inflaton field.

Scalar perturbations generate density inhomogeneities, which seed the large-scale structure of

the universe, and tensor perturbations generate gravitational waves. The inflationary poten-

tial is constrained by the measurement of the CMB’s amplitude of scalar perturbations, and

the limit on the scalar-to-tensor ratio. These constraints will be implemented in our light

scalar inflaton model in chapter 6. The chapter ends with analysing the growth of density

perturbations that evolve to form large scale structures.

In chapter 4 I review DM. First I discuss a few of the observed gravitational effects that

support the existence of DM. I then analyse two DM production mechanisms, freeze-in and

freeze-out, which provides us with the framework to constrain the DM abundance and the

parameters of our DM model in chapter 7. In the last section I discuss the essential role DM

plays in structure formation, and the constraints on models that produce relativistic DM from

the smallest observed structures in the universe.

In the final theory chapter 5 we study neutrinos. The observation of SM neutrino oscil-
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lations has revealed that the massless SM neutrino sector is incomplete. Here we discuss a

possible solution: the Neutrino Minimal Standard Model (νMSM), which extends the neutrino

sector by a minimum of two right-handed singlet Majorana (sterile) neutrinos, that generate

the SM neutrino masses via the see-saw mechanism. We find that sterile neutrinos can also

serve as a DM candidate. I analyse their production mechanisms via active-sterile neutrino

mixing, and discuss the various astrophysical constraints on sterile neutrino DM models. Addi-

tionally, we analyse the model’s mechanisms for leptogenesis, and bound the sterile neutrinos’

parameter space by requiring they generate enough lepton asymmetry (LA) to generate the

baryon asymmetry of the universe (BAU) via EW sphaleron processes. We will use the anal-

ysis carried out in this chapter to extend our light inflaton model with a modified νMSM in

chapter 7.

In chapter 6 we begin with our basic inflationary model, which extends the SM by a single

scalar inflaton field. The inflaton’s quartic self-coupling is constrained from the measurement

of the CMB’s amplitude of scalar perturbations and upper limit on the tensor-to-scalar ratio.

The addition of a symmetry breaking inflaton mass term and an inflaton-Higgs portal allows

for efficient reheating and the transfer of symmetry breaking into the SM. We establish two

windows in the inflaton parameter space that evade current cosmological and experimental

constraints. First I review the work carried out in [45–48] on the ‘light’ inflaton window, and

then present my original work in [43] on the ‘heavy’ inflaton window.

In chapter 7 we extend our basic inflaton model with a νMSM, modified with an additional

inflaton-sterile neutrino Yukawa coupling. Symmetry breaking in the inflaton sector generates

the sterile neutrino masses, and initiates sterile neutrino DM production via inflaton decay

in the early universe. I review the work carried out in [45–47, 52], which constrains the

DM parameter space in the ‘light’ inflaton window. I then present my original work in [43],

which constrains the DM parameter space in the ‘heavy’ inflaton windows. We find that both

regions of DM parameter space are within the bounds for structure formation. We apply the

analysis and constraints from generating the SM neutrino masses and the BAU via leptogenesis

mechanisms in the standard νMSM in chapter 5, to our modified νMSM.

In chapter 8 I present my work [44] analysing a generic Z2 symmetric inflaton model, which

extends our previous model with a symmetry breaking Higgs mass term. As a result, the

measurement of the Higgs boson mass does not uniquely determine the Higgs quartic self-

coupling and thus the stability of the EW vacuum. I assume the universe is metastable, and

re-constrain the inflaton model in accordance with cosmological and experimental bounds.

I end with conclusions and outlook in chapter 9.
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Chapter 2

Thermal history of the universe

The large-scale evolution of the universe from an initial highly dense and hot state to the

present day is very successfully described by the Hot Big Bang theory [55–57]. The model was

built after discovering that all galaxies are receding from us, which led to the conclusion that

the universe is expanding [58–60]. Prior to this observation, it was assumed the universe was

static and eternal.

In 1915 Einstein formulated a cosmological framework in his theory of General Relativity

[1], in which his field equations describe how matter and energy curve spacetime. He later

added a cosmological constant to his field equations to balance the effects of gravity, thus

ensuring his model universe was static [61]. Meanwhile, de Sitter modelled a universe with no

matter or radiation and dominated by the cosmological constant, which drives an accelerating

rate of expansion [62]. It wasn’t until 1922, when Friedmann proposed an intermediate model

of an expanding universe filled with matter and radiation [63], that we had a good description

of the real universe. From Einstein’s field equations, he derived the Friedmann equations that

relate cosmological expansion to the composition of a homogeneous and isotropic universe [63].

The recession of galaxies was first noted by Slipher in 1912, who observed a Doppler shift

in their spectra [58, 59]. Following this result, Lemâıtre independently derived Friedmann’s

equations in 1927, and suggested the recession of galaxies was due to the expansion of the

universe [64]. This was later confirmed experimentally by Hubble in 1929, who demonstrated

that there was a positive linear relationship between the recession velocities of nearby galaxies

and their distance to the observer [60], as shown in Figure 2.1. This came to be known as the

Hubble-Lemâıtre law [60]:

v = H0d, (2.1)

where v is the recessional velocity of the galaxy, d is the distance to the observer and H0 is

Hubble expansion rate of the universe today. Extrapolating the expansion backwards in time,

the universe must have been denser and hotter, and according to General Relativity, originated

from a singularity [65].
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Figure 2.1: Radial velocity against distance of extra-galactic nebulae

Hubble’s experimental results, plot taken from [60].

Following Hubble’s results, Einstein’s cosmological constant was abandoned and the uni-

verse was thought to only contain matter and radiation. As a result, cosmologists expected

to find that the expansion rate was decelerating due to gravity, however the spectra of dis-

tant Type Ia supernovae, observed by The High-Z Supernova Search Team and the Supernova

Cosmology Project in the late 1990s, revealed that the universe is in fact accelerating [31, 32].

The cosmological constant was thus reinstated as positive vacuum energy, which dominates

the energy density of the universe today.

Whilst the Hot Big Bang theory is successful in its description of the large-scale evolution

of the universe, it can not explain why the observable universe is almost completely flat,

homogeneous and isotropic, nor the origin of its primordial scalar perturbations that seed

large-scale structure. One solution may be that a period of positively accelerating expansion

called inflation preceded the Hot Big Bang, which will be the subject of chapter 3.

This chapter will focus on the large scale evolution of the universe starting from the hot

radiation-dominated epoch, known as the ‘Hot Big Bang’ epoch, and roughly following the

general logic of the textbooks: ‘Introduction to the Theory of the Early Universe: Hot Big

Bang Theory’ by D. S. Gorbunov and V. A. Rubakov [55], ‘The Early Universe’ by E. W.

Kolb and M. S. Turner [56], and ‘Particle Physics and Cosmology: The Fabric of Spacetime’

by F. Bernardeau, C. Grojean and J. Dalibard [66]. Firstly, we will provide the reader with

the framework of the Hot Big Bang model: the dynamics of cosmological expansion, described

by Friedmann’s equations, and the thermal evolution of the universe. In the following sections

we will show that the model provides an extensive explanation and accurate description of key

events in the universe’s history, such as neutrino decoupling, Big Bang Nucleosynthesis and
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photon decoupling. We will end with the details of the best-fit cosmological model of the real

universe, which has dominant components of dark energy and cold dark matter.

2.1 Cosmological expansion

The dynamics of cosmological expansion are derived from Einstein’s field equations:

Gµν + Λgµν = 8πGTµν , (2.2)

where G is the gravitational constant, and the cosmological constant is interpreted as the

vacuum (or ‘dark energy’) energy density, Λ = ρΛ. The equations relate the density and flux

of energy and momentum, encoded in the stress-energy tensor, Tµν , with spacetime curvature,

encoded in the Einstein metric,

Gµν = Rµν −
1

2
gµνR. (2.3)

The 4D space-time metric, gµν , describes the geometry of spacetime and tells us how to compute

the distance between two points:

ds2 = gµνdx
µdxν , (2.4)

where (µ, ν = 0) denotes the time component and (µ, ν = 1, 2, 3) denotes the space components.

Throughout the thesis we will refer to two 4D spacetime metrics that describe a homogeneous

and isotropic universe: the Minkowski metric for a static universe,

ds2 = dt2 − γijdxidxj , (2.5)

and the Friedmann–Lemâıtre–Robertson–Walker (FLRW) metric for an expanding universe,

ds2 = dt2 − a2(t)γijdx
idxj , (2.6)

= a2(τ)
(
dτ2 − γijdxidxj

)
, (2.7)

where (i, j = 1, 2, 3) and for a spatially flat universe γij = δij . The scale factor a(t) defines

the scaling of the spatial coordinates with time, which is dependent on the composition of

the universe. It is used to translate between the physical coordinate system in an expanding

universe to the conformal coordinate system, which is equivalent to the physical coordinate

system in a static universe. For example, the conformal time τ , given in equation (2.7), is
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related to the physical time by

τ =

∫
dt

a(t)
. (2.8)

Additionally, we can relate the scale factor to the redshift z of a photon by

a0

a(t)
= 1 + z(t) ≡ λ(t0)

λ(t)
, (2.9)

which is defined as the ratio of a photon’s wavelength measured today to its wavelength mea-

sured at time t.

The Friedmann and Raychaudhuri equations govern the dynamics of cosmological expan-

sion. We derive them using the FLRW metric for a homogeneous and isotropic universe, which

has an energy-momentum tensor of the form:

Tµν = diag (ρ, p, p, p) , (2.10)

where ρ is energy density and p is pressure. Then taking the 00 and ij components of the

Einstein’s field equations respectively, the Friedmann and Raychaudhuri equations are given

by1:

(
ȧ

a

)2

=
ρ

3M2
P

− κ

a2
, (2.11)

2
ä

a
+

(
ȧ

a

)2

= − p

M2
P

− κ

a2
, (2.12)

where we have substituted in for the reduced Planck mass:

MP ≡
1√

8πG
= 2.435× 1018 GeV, (2.13)

and the Hubble expansion rate is defined as

H(t) ≡ ȧ(t)

a(t)
. (2.14)

Spatial curvature can take values between −1 ≤ κ ≤ +1, where positively curved space is

modelled as a 3-sphere and negatively curved space is modelled as a 3-hyperboloid. The

curvature energy density measured today is2 [33]

Ωκ ≡ −
κ

(a0H0)
2 = 0.0007± 0.0019, (2.15)

1We use the notation Ẋ ≡ ∂X/∂t, Ẍ ≡ ∂2X/∂t2.
2Subscript 0 denotes the value of parameters as measured today.
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and so we will assume the universe has no spatial curvature (κ = 0), in which case space is

modelled as a 3-plane. The total energy density of a flat universe is called the critical energy

density,

ρc = 3M2
PH

2, (2.16)

and the relative energy density of component i is given by

Ωi(t) ≡
ρi(t)

ρc(t)
, (2.17)

where
∑
i Ωi = 1 in a flat universe.

To close the set of equations (2.11) and (2.12), we require an additional equation from the

conservation of the energy-momentum tensor:

∇µTµν = 0, (2.18)

where ∇µ is the covariant derivative3. The following equation is derived from the ν = 0

component:

ρ̇(i) + 3
ȧ

a
(ρ(i) + p(i)) = 0, (2.19)

which holds for individual non-interacting components i as well as for the total sum of com-

ponents. For a universe in thermal equilibrium, equation (2.19) is equivalent to the statement

that entropy in a co-moving volume, V = a3, is conserved. The first law of thermodynamics

for the conservation of energy in a co-moving volume is

d(ρa3) = Td(sa3)− pda3 −
∑
i

µid(nia
3), (2.20)

where ρ is energy density, s is entropy density and ni is number density. We assume the chemical

potentials, µi, are vanishing, as we only require a very small matter-antimatter asymmetry in

the early universe to generate the matter-dominated universe today; we will argue that this

is a plausible assumption in section 2.2. Then, by substituting equation (2.19) into equation

3The covariant derivative is related to the Christoffel symbols by ∇µTµν = ∂Tµν

dxµ
+ ΓµµσT

σν + ΓνµσT
µσ = 0.
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(2.20), we have that entropy is conserved in a co-moving volume:

T
d(sa3)

dt
= (ρ+ p)

d(a3)

dt
+ a3 dρ

dt
,

= a3

[
(ρ+ p) 3

ȧ

a
+ ρ̇

]
= 0, (2.21)

→ sa3 = const. (2.22)

This conservation law will be particularly useful when we come to evaluate the present day

abundance of particles species, such as dark matter (DM), that are decoupled from the thermal

bath.

To find the relationship between the Hubble expansion rate and the energy composition of

universe, we require the equation of state, which for an ideal fluid is given by

pi = ωiρi, (2.23)

where the constant of proportionality, ωi, depends on the component i of the fluid. Substituting

(2.23) into (2.19), we can evaluate the dependence of the energy density, and thus the Hubble

expansion rate, on the scale factor:

ρ̇i + 3 (1 + ωi)
ȧ

a
ρi = 0,∫

dρi
ρi

= −3 (1 + ωi)

∫
da

a
,

→ ρi ∝ a−3(1+ωi). (2.24)

For non-relativistic matter (m), relativistic matter (γ) and vacuum (Λ) components,

ωi =


0, i = m

1
3 , i = γ

−1. i = Λ

(2.25)

Given equations (2.11) and (2.24), we can then determine the Hubble expansion rate’s depen-

dence on the scale factor when component i dominates the energy density of the universe:

H2 ∝ ρi ∝


a−3, i = m

a−4, i = γ

const. i = Λ

(2.26)

At the Big Bang epoch the universe is very hot and so its energy density is dominated by

radiation. As the universe expands and cools, it then enters the matter dominated epoch
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followed by the vacuum energy dominated epoch, as matter energy density decreases with

expansion whilst the vacuum energy density remains constant.

2.2 Thermodynamics

During the Hot Big Bang epoch the universe is extremely hot, with temperatures up to

O(MPl), and all the SM particles are thermalized and relativistic. As the universe expands

and cools, the particles fall out of chemical equilibrium once temperatures drop below the

mass of the particles, and depart from thermal equilibrium (known as ‘freeze-out’) once their

production rate is less than the expansion rate. It is therefore instructive to describe the history

of the universe by its thermal evolution. In order to do so, we need to evaluate quantities of

Bose and Fermi particles from equilibrium thermodynamics.

The Bose-Einstein (−) and Fermi-Dirac (+) distribution functions for Bose and Fermi gases

in thermal equilibrium are

fi(p) =
1

(2π)3

1

exp
[
E(p)−µ

T

]
∓ 1

, (2.27)

where µ is the chemical potential, T is the temperature of the thermal bath, and the energy

of particle i is

E(p) =
√
|p|2 +m2

i , (2.28)

where p is the momentum and mi is the mass. We will now show that in the early universe

the chemical potentials of thermal relativistic particles is vanishing.

Interactions of particles in thermal equilibrium conserve the sum of their initial and final

chemical potentials. For example, the scattering process p1 + p2 ↔ pA + pB has

µ1 + µ2 = µA + µB . (2.29)

Thus we can demonstrate through the process of particle-antiparticle annihilation into photons,

pp̄→ 2γ, that the chemical potentials of particles and antiparticles have equal magnitudes but

opposite signs:

µp + µp̄ = 2µγ = 0,

→ µp = −µp̄, (2.30)

as the chemical potential of photons is zero. The difference in chemical potentials of the

particles and antiparticles gives rise to a difference in their number densities, np and np̄. In
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the early universe there is a very small excess of quarks over anti-quarks, otherwise known as

the baryon asymmetry, which results in a matter-dominated universe today; we discuss this

further in section 2.3. Additionally, as the universe is electrically neutral, leptons have the

same excess over anti-leptons:

nq − nq̄
nq + nq̄

= O(10−10),
nl− − nl+
nl− + nl+

= O(10−10). (2.31)

The difference in the number densities of particles and anti-particles is extremely small, and

thus so must be the difference in their chemical potentials (µ � T ). In the early universe

it is therefore often valid to take chemical potentials as vanishing. We will now evaluate the

densities and pressure of the gas in this limit.

The number density, energy density, pressure and entropy density of a thermal relativistic

gas respectively is [67]:

n(T ) =
∑
i

gi

∫
fi(p)d3p = g∗n(T )

ζ(3)

π2
T 3, (2.32)

ρ(T ) =
∑
i

gi

∫
fi(p)E(p)d3p = g∗ρ(T )

π2

30
T 4, (2.33)

p(T ) =
∑
i

gi

∫
fi(p)

|p|2

3E
d3p =

1

3
ρ(T ), (2.34)

s(T ) =
ρ+ p

T
= g∗s(T )

2π2

45
T 3. (2.35)

The number of relativistic effective degrees of freedom for each of the following quantities is

given by [67]:

lim
T�mi

g∗n(T ) =
∑

bosons, i

gi

(
Ti
T

)3

+
3

4

∑
fermions, i

gi

(
Ti
T

)3

, (2.36)

lim
T�mi

g∗ρ(T ) =
∑

bosons, i

gi

(
Ti
T

)4

+
7

8

∑
fermions, i

gi

(
Ti
T

)4

, (2.37)

lim
T�mi

g∗p(T ) =
∑

bosons, i

gi

(
Ti
T

)4

+
7

8

∑
fermions, i

gi

(
Ti
T

)4

, (2.38)

lim
T�mi

g∗s(T ) =
∑

bosons, i

gi

(
Ti
T

)3

+
7

8

∑
fermions, i

gi

(
Ti
T

)3

, (2.39)

where Ti is the temperature of particle species i and gi is their number of intrinsic degrees

of freedom, which counts the number of flavours, spin states, colours and particle-antiparticle

pairs. The average thermal momentum of relativistic bosons and fermions is then approxi-
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mately

〈p〉 ≈ ρi
ni


2.70T, bosons

3.15T. fermions

(2.40)

At T & 200 GeV all SM particles are in thermal equilibrium, i.e. Ti = T for all species.

The SM has 28 bosonic and 90 fermionic intrisic degrees of freedom, and so the total number

of relativistic effective degrees of freedom of the SM is

g∗(T & 200 GeV) = 28 +

(
7

8
· 90

)
= 106.75, (2.41)

where g∗ ≡ g∗ρ/p/s. The number of relativistic effective degrees of freedom is a decreasing

function of temperature, as shown by Figure 2.2, as once the thermal bath temperature cools

below the mass of a particle, the species does not contribute. Today the universe has cooled

to T0 = 2.7 K, and so only photons (gγ = 2) and neutrinos (gν = 6) are light enough to

contribute to the number of relativistic effective degrees of freedom. Neutrinos departed from

thermal equilibrium in the early universe when their interaction rate dropped below the Hubble

expansion rate, and only photons remain in the thermal bath today:

g∗s(T0) = gγ +
7

8
· gν ·

(
Tν,0
T0

)3

= 3.91; (2.42)

we will evaluate the neutrino-to-photon temperature ratio in section 2.4.
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Figure 2.2: Number of effective degrees of freedom in SM against temperature

Plot of the number of effective degrees of freedom in the SM associated with number density
(g∗n), energy density (g∗ρ), pressure (g∗p) and entropy density (g∗s), defined by equations

(2.32)−(2.35) respectively, as a function of the temperature of the thermal bath; taken from
[67].

For non-relativistic particles (mi � T ), the thermal distribution function in equation (2.27)

is reduced to the Maxwell-Boltzmann distribution:

f(p) =
1

(2π)3
exp

[
−E(p)− µ

T

]
. (2.43)

The number density, energy density, pressure and entropy density of a non-relativistic particle

species of type i are:

ni = gi

(
miT

2π

) 3
2

e
µi−mi
T , (2.44)

ρi = mini +
3

2
niTi, (2.45)

pi = Tni, (2.46)

si = ni

(
5

2
+ log

[
gi
ni

(
miT

2π

) 3
2

])
. (2.47)

We can see from equations (2.44)−(2.47) that once the temperature of the thermal plasma

drops below the mass of the particle, the density and pressure of the particle is exponentially

suppressed by a factor of exp
[
−miT

]
, as fewer particles have enough kinetic energy to create

species i. At this moment the particles fall out of chemical equilibrium and their abundance

depletes, as their production rate decreases whilst they continue to interact and decay; this is

known as Boltzmann suppression.
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2.3 Conditions for baryogenesis and leptogenesis

The early universe had large quantities of quarks and anti-quarks in thermal equilibrium,

and yet today we observe the universe to be dominated by matter. We must therefore conclude

that there was a very small excess of quarks over anti-quarks in the early, hot stages of its

evolution. As the universe cooled, all the anti-quarks annihilated and only an excess of baryons

remained, thus resulting in a maximally asymmetric universe today. We parameterize baryon

asymmetry (BA) and lepton asymmetry (LA) in either of the following two ways,

∆X ≡
nX − nX̄
nX + nX̄

, (2.48)

YX ≡
nX − nX̄

s
, (2.49)

where X = B/L for baryons/leptons. At T & 1 GeV the BA of the universe (BAU) is [11]

∆B ∼ YB = O(10−10). (2.50)

Under the assumption that the universe was initially baryon-symmetric, we require pro-

cesses that generate BA during the early universe. We can create BA or LA if the following

three Sakharov conditions are satisfied [2]: 1) Baryon or lepton number violation, 2) charge

conjugation (C) violation, and charge conjugation and parity (CP) violation, 3) Out of thermal

equilibrium interactions.

1. Baryon or lepton number violation

Baryons and anti-baryons have equal and opposite baryon numbers, B = ±1, and likewise,

leptons and anti-leptons have lepton numbers L = ±1. In order to generate BA/LA, we

require processes that do not conserve baryon/lepton number.

2. C and CP violation

In order to generate a net BA/LA, we require processes with particles and antiparticles to be

asymmetric, for example,

Γ(X → qq) 6= Γ(X → q̄q̄). (2.51)

We satisfy (2.51) if the processes violate C and CP symmetries4:

Γ(X → qLqL) 6= Γ(X → q̄Lq̄L), (2.52)

Γ(X → qLqL) 6= Γ(X → q̄Rq̄R), (2.53)

4Charge conjugation (C) transforms a particle into its corresponding antiparticle, e.g. qL → q̄L. Charge
conjugation and parity (CP) transforms a particle into its corresponding antiparticle with a helicity flip, e.g.
qL → q̄R.
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where subscripts L/R refer to left/right-handed helicities.

3. Out of thermal equilibrium interactions

In order to generate a net BA/LA, processes need to be out of thermal equilibrium so that the

rates of forward and backward reactions are different,

Γ(X → qq̄) 6= Γ(qq̄ → X). (2.54)

In section 5.3, we study a leptogenesis model in which LA is generated during the production

and decay of right-handed singlet neutrinos. BA is then generated via electroweak (EW)

sphaleron processes that violate B+L at temperatures exceeding the EW symmetry breaking

scale, TEW = 160 GeV [68]. The parameter space of the model is constrained by the BAU, and

we implement the results in section 7.6, where we incorporate leptogenesis in an extension of

our inflationary model. Additionally, we constrain our inflationary model by the requirement

that the SM temperature exceeds TEW in sections 6.8 and 6.9.

2.4 Neutrino decoupling

The aim of this section is to find the neutrino temperature today in order to evaluate the

number of effective relativistic degrees of freedom in the SM. To do so, we need to find when

the neutrinos decoupled from the thermal bath. The neutrinos are in thermal equilibrium at

temperatures T & 10 MeV, where their weak interaction rate exceeds the Hubble expansion

rate. At temperature T ∼ 10 MeV, the thermal plasma is composed of photons, electrons,

positrons, protons, neutrons and neutrinos, and so the neutrinos are kept in equilibrium by

the following 4-point weak interactions,

νl + e± ←→ νl + e±

ν̄l + e± ←→ ν̄l + e±

νl + ν̄l ←→ e± + e∓ (2.55)

which have a scattering cross-section of

σν ∼ G2
FE

2
ν , (2.56)

where GF = 1.166× 10−5 GeV−2 is the Fermi constant and Eν is the energy of the neutrino.

They decouple from the thermal bath, or freeze-out, once their interaction rate decreases to
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the order of the Hubble expansion rate:

σν(Tν,f )nν(Tν,f )v ∼ H(Tν,f ), (2.57)

where v is the neutrino velocity and Tν,f is the neutrino freeze-out temperature. As their

scattering cross-section is relatively small, they freeze-out early during the radiation dominated

epoch whilst they are still relativistic. We estimate the neutrino interaction rate using the

following approximations: Eν ∼ T , n ∼ T 3, and v = c. Then substituting equation (2.33) into

Friedmann equation (2.11) for the Hubble expansion rate, the neutrino freeze-out temperature

is given by

G2
FT

5
ν,f ∼

(
g∗ρπ

2

90

) 1
2 T 2

ν,f

MP
,

Tν,f ∼
(
MPG

2
F

)− 1
3 ∼ 2− 3 MeV. (2.58)

The neutrinos freeze-out with a relativistic distribution, and their temperature remains the

same as the thermal plasma whilst the electrons, positrons and photons remain in thermal

equilibrium:

Tν(t) = Tν,f
a(tν,f )

a(t)
= T (t). (2.59)

However, the neutrinos are entropy diluted by electron-positron annihilation at temperature

Te ∼
me

3
= O(0.1) MeV, (2.60)

which effectively heats up the thermal plasma relative to the neutrinos. As a result, the

neutrino temperature does not equal the thermal plasma temperature at T < Te.

To find the neutrino temperature today we need to evaluate

Tν,0 = Tν,f
a(tν,f )

a(t0)
(2.61)

by making use of the entropy conservation law stated in (2.22), which is equivalent to

g∗s(T )T 3a3 = const., (2.62)

having substituted in for the relativistic entropy density, given by equation (2.35). We then

apply (2.62) to the conservation of entropy in the electron-photon plasma to find the ratio of
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the scale factors from neutrino freeze-out to today,

a(tν,f )

a(t0)
=

T0

Tν,f

(
ge,γ∗s (T0)

ge,γ∗s (Tν,f )

) 1
3

. (2.63)

Given the number of entropic degrees of freedom at neutrino freeze-out,5 ge,γ∗s (Tν,f ) = gγ + 7
8 ·

ge∓ = 11
2 , and after electron-positron annihilation, ge,γ∗s (T < Te) = gγ = 2, the ratio of the

neutrino temperature to the thermal photon temperature today is

Tν,0
T0

=

(
ge,γ∗s (T0)

ge,γ∗s (Tν,f )

) 1
3

=

(
4

11

) 1
3

. (2.64)

Then using equations (2.42) and (2.35), we find that the total number of entropic degrees of

freedom today is

g∗s(T0) = gγ +
7

8
· gν ·

(
Tν
T0

)3

,

= 2 +
7

8
· 6 · 4

11
= 3.91, (2.65)

and the entropy density today is

s0 =
2π2

45
g∗s(T0)T 3

0 = 2.838× 103 cm−3, (2.66)

where T0 = 2.7255± 0.0006 K [39].

The detection of relic neutrinos, called the cosmic neutrino background (CνB), would pro-

vide us with invaluable data from the earliest observable moments after the Big Bang [69].

As neutrinos are extremely weakly interacting and non-relativistic today, they may not be

directly detectable for many years. However, there is indirect evidence of the CνB from their

imprint on the Cosmic Microwave Background radiation (CMB) [70], (relic photons from the

recombination epoch). In section 2.6 we will discuss how the CMB encodes information on the

flatness and composition of the universe.

2.5 Big Bang Nucleosynthesis

The primordial abundances of light nuclei (hydrogen-2, helium-3, helium-4 and lithium-7)

are dependent on the neutron-to-proton ratio at the time of neutron freeze-out, and their

measurement ultimately allows us to constrain the number of effective degrees of freedom at

the time of Big Bang Nucleosynthesis (BBN). The neutrons and protons are kept in thermal

5The number of intrinsic degrees of freedom of a photon and an electron-positron pair are gγ = 2 and
ge∓ = 4 respectively.
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equilibrium at temperatures T > 10 MeV by the following weak interactions:

n+ νe ←→ p+ e−

n+ e+ ←→ p+ ν̄e

n←→ p+ e− + ν̄e

(2.67)

Equation (2.48) implies that the electron chemical potential is vanishing in the early universe

(µe � T ), and assuming that the lepton asymmetry of the universe is small, the neutrino

chemical potential is also negligible (µνe � T ). Then we obtain from (2.67) that the proton and

neutron chemical potentials must be equal, µp = µn. As the protons and neutrons are thermal

at temperatures well below their masses (mn,p ∼ 900 GeV), we use the thermal non-relativistic

number density equation (2.44) to evaluate the ratio of the neutron-to-proton number density:

Xn−p(T ) ≡ nn(T )

np(T )
= exp

(
−∆m

T

)
, (2.68)

where ∆m ≡ mn −mp ∼ 1.3 MeV.

At temperatures T � ∆m,me, the neutron interaction rate is

Γn = CnG
2
FT

5, (2.69)

where Cn ∼ 1.2. The neutrons freeze-out during the radiation dominated epoch, when

Γn(Tn,f ) ∼ H(Tn,f ), at temperature [71, 72]

CnG
2
FT

5
n,f ∼

(
g∗ρπ

2

90

) 1
2 T 2

n,f

MP
,

→ Tn,f = g
1
6
∗ρ

(
π

3
√

10CnMPG2
F

) 1
3

∼ 0.8 MeV. (2.70)

By the time the universe has cooled to Tn,f , the neutrinos have already decoupled from the

thermal plasma, but as the electrons and positrons are still in thermal equilibrium, the neutrino

temperature remains the same as the thermal temperature. The effective number of relativistic

degrees of freedom in the SM at neutron freeze-out is therefore

gSM
∗ρ (Tn,f ) = gγ +

7

8
(ge∓ + gν) (2.71)

= 2 +
7

8

(
4 + 2 ·NSM

ν

)
= 10.75, (2.72)

where the number of neutrino species in the SM is NSM
ν = 3.

As the neutron-proton mass difference is similar to the neutron freeze-out temperature,
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∆m ∼ Tn,f , the neutrons freeze-out with a relatively large abundance:

Xn−p(Tn,f ) = exp

(
−∆m

Tn,f

)
∼ 1

6
. (2.73)

After neutron freeze-out, the neutron-to-proton ratio deviates slowly from its equilibrium value

as the neutrons continue to deplete, predominantly via their decay. By the time light nuclei

are formed at BBN at temperature

TBBN ∼ 0.1 MeV, (2.74)

the neutron-to-proton ratio has decreased to

Xn−p(TBBN) ∼ 1

7
. (2.75)

The majority of neutrons are bound in helium-4, as it is the most stable light nucleus [39].

The primordial mass fraction of helium-4 is then approximately given by [37–39]:

YHe-4 =
2Xn−p(TBBN)

1 +Xn−p(TBBN)
' 0.25; (2.76)

hydrogen-2, helium-3 and lithium-7 make up a very small proportion with Y . O(10−5), and

so the primordial mass fraction is dominated by hydrogen-1 with YH-1 ' 0.75. If the neutrons

had a smaller (larger) cross-section or the number of effective degrees of freedom at the time

of neutron freeze-out was larger (smaller), they would freeze-out earlier (later) and we would

be left with a larger (smaller) abundance of helium-4.

The observed abundance of primordial helium-4 tightly constrains the deviation of the

neutron-to-proton ratio from the SM predicted value, ∆(Xn−p), at neutron freeze-out [35]:

|∆(Xn−p)|
Xn−p

∣∣∣∣∣
TSM
n,f

. 0.025, (2.77)

at the 68% C.L. This bound translates to a constraint on the number of additional relativistic

degrees of freedom at time of neutron freeze-out, which is historically written as the number

of extra neutrino species,

Nν = NSM
ν + ∆Nν . (2.78)

To evaluate the bound on ∆Nν , we first perform a linear expansion of the freeze-out temper-
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ature, given by equation (2.70),

Tn,f (NSM
ν + ∆Nν) ∼ T SM

n,f + ∆Tn,f , (2.79)

where T SM
n,f ≡ Tn,f (NSM

ν ), as a function of the number of degrees of freedom:

Tn,f (NSM
ν + ∆Nν) ∝

(
gSM
∗ρ +

7

4
∆Nν

) 1
6

∼ gSM
∗ρ

(
1 +

7

24
∆Nν

)
,

→ ∆Tn,f ∼
7

24

∆Nν
gSM
∗ρ (Tn,f )

T SM
n,f . (2.80)

Then linearly expanding the neutron-to-proton ratio,

Xn−p(T
SM
n,f + ∆Tn,f ) ∼ Xn−p(T

SM
n,f ) + ∆(Xn−p(T

SM
n,f )), (2.81)

as function of temperature, we obtain the following expression for the first order approximation

of the uncertainty on Xn−p:

Xn−p(T
SM
n,f + ∆Tn,f ) = exp

[
−∆m

T SM
n,f

(
1 +

∆Tn,f
T SM
n,f

)]
∼ Xn−p(T

SM
n,f )

1 +
∆m∆Tn,f(
T SM
n,f

)2

 ,

→ ∆(Xn−p)

Xn−p

∣∣∣∣∣
TSM
n,f

∼ ∆m∆Tn,f(
T SM
n,f

)2 ∼
7

24

∆m

gSM
∗ρ (Tn,f )

∆Nν
T SM
n,f

. (2.82)

We can then translate (2.77) into a bound on the number of additional effective degrees of

freedom at T ∼ 1 MeV, parameterized in terms of number of neutrino species [40]:

|∆Nν | . 0.5. (2.83)

2.6 The Cosmic Microwave Background radiation

The primordial universe was dominated by radiation, a hot plasma of charged particles and

photons that are tightly coupled by Compton scattering [73, 74]. We assume that due to a

preceding inflationary epoch, the plasma was almost completely homogeneous and isotropic,

except for small variations in density that were seeded by inflationary enhanced quantum fluc-

tuations of the inflaton field [75, 76], which we will discuss in detail in chapter 3. Baryonic

density perturbations of wavelengths smaller than the causal horizon oscillated, as matter was

attracted into the gravitational potential wells created in higher density regions, whilst radia-

tion pressure, exerted by photons scattering off charged particles, acted to push baryonic matter

into lower density regions [77, 78]. DM, which does not interact electromagnetically, collected

in gravitational wells unimpeded by radiation pressure. The compression and rarefaction of
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the baryonic matter density is known as the Baryonic Acoustic Oscillations (BAO).

Once the plasma temperature had dropped to6

Trec = (1 + zrec)T0 ∼ 0.3 eV (2.84)

at redshift zrec ∼ 1100, which corresponds to the matter-dominated epoch, it was cool enough

for protons to capture electrons and form neutral hydrogen in a process called recombination

[79, 80]. The universe then became transparent to photons, thus ceasing radiation pressure and

freezing the BAO in time. The decoupled relic photons free-streamed through the universe,

their wavelength redshifting with the expansion. Those travelling from regions of compression

are hotter whilst those travelling from regions of rarefaction are cooler. We observe them today

as the CMB radiation, as shown in Figure 2.3.

Figure 2.3: Anisotropies of the CMB

The Planck satellite’s map of the small temperature fluctuations in the CMB radiation,
T = 2.72548± 0.00057 K [81]. These correspond to small fluctuations in matter density at

the time of recombination, which seed the formation of large scale structure in the universe.

The CMB was first observed in 2003 by the Wilkinson Microwave Anisotropy Probe (WMAP)

[34] and later in more detail by Planck in 2013 [35], which has provided us with an incredible

insight into the composition and spatial curvature of the universe [82, 83]. This information

is extracted from the positions and heights of the peaks in the CMB angular power spectrum

[36] in Figure 2.4. The series of peaks show the variations in temperature at angular scales

that have reached maximum compression (odd peaks) or maximum rarefaction (even peaks)

at the time of recombination. Perturbations at angular scales larger than the sound horizon at

recombination (θ ∼ 1◦) are causally disconnected, and so we don’t observe peaks in the power

spectrum here [83].

The position of the first peak is sensitive to the spatial curvature of the universe, as it

distorts the apparent angular size. Increasingly positive spatial curvature shifts the peaks to

6Comparing the radiation energy density’s dependence on scale factor and temperature, given by equations
(2.26) and (2.33), we can see that the radiation temperature decreases like T ∝ a−1.
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the left and increasingly negative spatial curvature shifts the peaks to the right. The CMB

power spectrum is shown to be consistent with a flat universe. Since the matter and radiation

components do not make up the total critical energy density, we therefore infer that there is

an additional missing component in the form of vacuum or ‘dark’ energy that explains the

observed accelerated expansion [84, 85].

The second and third peaks of the CMB power spectrum provide evidence of DM and its

relative energy density. Increasing the abundance of DM leads to the formation of deeper grav-

itational potential wells and so a larger radiation pressure is required to reverse the direction of

the BAO at maximum compression [74]. This process is called baryon loading, and we observe

its effects by the enhancement of compression amplitudes (odd peaks) relative to rarefaction

amplitudes (even peaks). In particular, we can see an enhancement of the third peak relative

to the second peak in Figure 2.4. Additionally, perturbations with small enough wavelengths

to enter the horizon during the radiation dominated period are impacted by a process called

radiation driving [74, 86]. During the matter-dominated period the dominant DM component

creates fixed potential wells. However during the radiation-dominated period, radiation creates

potential wells that decay with the expansion of the universe at the time of maximum com-

pression, thus driving up the amplitude of the BAO [74]. The horizon scale at matter-radiation

equality is determined by the scale that fluctuations are amplified by radiation driving, which

then allows us to find the relative energy densities of matter and radiation in the universe

[74]. Whilst the impact of baryon loading increases with the DM energy density, radiation

driving decreases. From these two competing effects, we can conclude from the enhanced third

peak that DM dominated at the time of recombination [74, 83]. Peaks at smaller scales are

damped by radiative diffusion, as the wavelength of the density perturbations are smaller than

the distance photons random walk at recombination [87, 88].

In Figure 2.4 the red dots plot the Planck results and the green curve plots the results of

a dark energy and cold dark matter (ΛCDM) model that has around 5 times more cold dark

matter than baryonic matter [36]. The two plots match with an incredible accuracy, and so the

CMB provides us with a strong motivation for the ΛCDM model, which we will be discussed

in detail in the following section.
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Figure 2.4: CMB angular power spectrum

Angular power spectrum of CMB temperature fluctuations plotted at different angular scales,
taken from [36]. The temperature fluctuations are not sign sensitive. The red points mark

the Planck 2013 data and the green curve marks the expected power spectrum from a ΛCDM
model.

2.7 ΛCDM model

Planck’s 2018 parameter fit of the relative energy densities as measured today for a flat

ΛCDM model is [33]:

ΩΛ,0 = 0.685± 0.007, Ωγ,0 = (5.38± 0.15)× 10−5,

Ωm,0 = Ωb,0 + Ωc,0 = 0.315± 0.007,


Ωb,0 = 0.0493± 0.0006,

Ωc,0 = 0.265± 0.007,

(2.85)

where Ωb,0 and Ωc,0 are the baryon and cold DM energy densities respectively. Although

cold DM provides us with a very good fit for the CMB, there is a suppression of small-scale

structures relative to the model’s predictions [89, 90]. We discuss DM and structure formation

in detail in chapter 4, and show that this suppression may be an indication that DM is warm

rather than cold [91–93].

We can use today’s relative energy densities (2.85) to find an expression for the Hubble

expansion rate at some previous time t. Substituting equation (2.14) and (2.17) into the
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Friedmann equation (2.11), we find

H2(t) =
ρc(t)

3M2
P

∑
i

Ωi(t). (2.86)

Then, using (2.24) and (2.26), we can relate the relative energy densities measured at time t

to today’s:

H2(t) =
ρc,0
3M2

P

∑
i

Ωi,0

(a0

a

)3(1+ωi)

,

= H2
0

[
Ωm,0

(a0

a

)3

+ Ωγ,0

(a0

a

)4

+ ΩΛ,0

]
; (2.87)

we will always assume the standard normalization of the scale factor, a0 = 1. The critical

energy density measured today is [33]

ρc,0 = 3M2
PH

2
0 = 1.054× 10−5h2( GeV/c

2
)cm−3, (2.88)

where the Hubble expansion rate is H0 = 100 h kms−1Mpc−1 with h = 0.674± 0.005. We can

now use parameters (2.85) and equation (2.87) to find the time of matter-radiation equality

and when the universe transitioned from decelerating to accelerating expansion.

Matter-radiation equality

Neglecting the vacuum energy component, matter-radiation equality approximately occurred

when

Ωm,0

(a0

a

)3

= Ωγ,0

(a0

a

)4

, (2.89)

which corresponds to a redshift and temperature of

zeq =
Ωm,0

Ωγ,0
− 1 ∼ 6× 103, Teq ∼ 1 eV. (2.90)

Transition from decelerating to accelerating expansion

During the radiation and matter dominated epochs the universe had a decelerating expan-

sion rate, however once the vacuum energy dominated, the expansion rate transitioned to an
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accelerating rate:

ä ∝


−t− 4

3 , matter dom.

−t− 3
2 , radiation dom.

eHt. vacuum energy dom.

(2.91)

By the time the vacuum energy density dominated the radiation energy density was negligible

as it redshifts the fastest. To find when the universe transitions from a decelerating to an

accelerating expansion rate, we take the time derivative of the Friedmann equation (2.87):

d

dt

(
ȧ2
)

= H2
0

d

dt

[
ΩΛ,0a

2 + Ωm,0a
3
0a
−1
]
,

→ ä = H2
0

a

2

[
2ΩΛ,0 − Ωm,0

(a0

a

)3
]
. (2.92)

Then by setting ä = 0, we find the transition to an accelerating expansion rate occurred

relatively recently, at a redshift and temperature of

zacc ∼
(

2ΩΛ,0

Ωm,0

) 1
3

− 1 ∼ 0.6, Tacc ∼ 4 K. (2.93)

2.8 Summary and discussion

The theory in this chapter provides us with the essential framework to build and constrain

our cosmological models in chapters 6, 7 and 8. Below we will summarise the main points from

this chapter and discuss how they will be used later in our analysis.

Preceding the Hot Big Bang epoch, our cosmological models include a period of positively

accelerating expansion called inflation, which is well approximated by the de Sitter universe

(a universe dominated by vacuum energy). The conditions of inflation gives rise to a spatially

flat (κ = 0), homogeneous and isotropic universe, which is described by FLRW metric,

ds2 = dt2 − a2(t)δijdx
idxj . (2.94)

After inflation there is a process called reheating, during which the inflationary energy is

efficiently transferred into the SM.

The inflationary and reheating epochs are fully described by a closed set of differential

equations that relate the Hubble expansion rate (H ≡ ȧ/a) and macroscopic properties of the

universe (ρ, p) to the dynamics of the inflaton and SM particles. These are the Friedmann

39



and Raychaudhuri equations,

(
ȧ

a

)2

=
ρ

3M2
P

, (2.95)

2
ä

a
+

(
ȧ

a

)2

= − p

M2
P

, (2.96)

the covariant conservation of the energy momentum tensor,

ρ̇+ 3H(ρ+ p) = 0, (2.97)

and the Boltzmann collision integral equations defined in section 7.3, which describe the dy-

namics of the system of particles. Since the universe reheats to very high temperatures, all SM

particles are relativistic and in thermal equilibrium in the early universe. As SM interactions

are very fast relative to the Hubble expansion rate, we make the approximation that SM parti-

cles instantaneously thermalize on production. We can then use thermodynamics to track the

evolution of the SM temperature:

ρSM = gSM
π2

30
T 4

SM, (2.98)

where gSM is the number of relativistic degrees of freedom in the SM associated with energy

density. Our inflationary model will be constrained by the requirement that the reheating

temperature exceeds the EW symmetry breaking scale, TEW = 160 GeV [68], so that EW

sphaleron processes can generate the BAU [11],

YB ∼ O(10−10). (2.99)

In chapter 7 we will introduce a DM candidate to our model, which is produced via inflaton

decay in the early universe at time tprod. The relic abundance after production is related to

the known present day abundance by [33]

Ωc,0 = Ωc(tprod)

(
a(tprod)

a0

)3

= 0.265± 0.007. (2.100)

Given that we can solve for TSM and we know the present day entropy density,

s0 = 2.838× 103 cm−3, (2.101)
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we will use the conservation of entropy,

sa3 = const. (2.102)

→
(
a(tprod)

a0

)3

=
s0

2π2

45 gSM(tprod)T 3
SM(tprod)

(2.103)

to constrain the DM parameters of the model.

The final important constraint from this chapter is the limit on the number of additional

relativistic degrees of freedom to the SM at BBN, which is equivalent to less than half a neutrino

species [40],

∆Nν . 0.5. (2.104)

We must therefore ensure that any additional particles in our model are either heavy enough to

be non-relativistic by the time of BBN, m & 0.1 MeV, or have decayed prior to BBN [94–96],

Γ−1
decay . O(0.1) s.
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Chapter 3

Inflation and cosmological pertur-

bations

The CMB has provided cosmologists with a complex problem: the observable universe is

flat and almost completely homogeneous and isotropic on scales & 60 Mpc [97]. Whilst the

Hot Big Bang (HBB) model is successful in describing the evolution of the expanding universe

from an initial state of hot dense gas moments before BBN, there is no explanation for these

observations without the input of finely-tuned initial conditions. A possible solution is an

initial period of positively accelerating expansion, namely inflation, which flattens curved space

and ensures the observable universe has previously come into causal contact. Additionally,

inflationary enhanced quantum fluctuations of the inflaton field generate the primordial scalar

perturbations that seed structure formation.

In section 3.2 we adopt the slow roll formalism to define the conditions for inflation, and

discuss a particular set of large-field inflationary models, which will provide the reader with

the foundational knowledge for our inflaton model in chapter 6. Other types of inflationary

models that are not discussed here are: small-field models, as they have an initial condition

problem; and hybrid models, as they may generate isocurvature modes, which there is currently

no evidence of in the CMB. Note that in this chapter, we only discuss purely inflationary

models, however a realistic cosmological model must also provide mechanisms for reheating (SM

production) and DM production. This will be discussed in detail in chapter 6, where we extend

a minimal inflationary model with a scalar-Higgs portal coupling to provide a mechanism for

reheating; and in chapter 7, where we couple the scalar field to a modified Neutrino Minimal

Standard Model (νMSM) to provide a mechanism for DM production.

Whilst the background inflaton field governs the inflationary dynamics, inflationary en-

hanced quantum fluctuations of the inflaton field generate cosmological perturbations through

perturbing the metric. This gives rise to scalar and tensor perturbations, which we observe as

density inhomogeneities and gravitational waves in the universe. The aim of section 3.3 is to

determine the relationship between the amplitude of inflaton and metric perturbations, which
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we will use to constrain our inflationary model. We proceed by quantizing the canonically

normalized inflaton fluctuations with a conformally flat FLRW metric, following the same pro-

cedure as that of the harmonic oscillator. We find that the solution of the field fluctuation is

a Gaussian random field, thus allowing us to define its amplitude and power spectrum, which

contains all the information of the properties of the field. On evaluating the power spectrum, we

discover that single-field inflaton models produce adiabatic and scale-invariant perturbations,

which is in agreement with CMB observations. The measurement of the CMB’s amplitude of

primordial scalar perturbations allows us to constrain the self-coupling of the inflaton field for

a given model.

This chapter finishes by analysing the growth of density perturbations that evolve to form

the large-scale structures in the universe. We choose to study the simplified case of a static uni-

verse, which provides us with reasonable estimates of the mass and scale of baryonic structures

that begin to form after recombination.

The general logic of this chapter roughly follows the textbooks: ‘Introduction to the theory

of the early universe: cosmological perturbations and inflationary theory’ by D. S. Gorbunov

and V. A. Rubakov [78] and ‘Cosmological Inflation and Large-Scale Structure’ by A. R. Liddle

and D. H. Lyth [98]; and lecture notes: ‘TASI Lectures on Inflation’ by Daniel Baumann [99].

3.1 Problems with the Hot Big Bang Model

3.1.1 Horizon problem

The measurement of the CMB temperature anisoptropies has revealed that the observable

universe is almost completely homogeneous and isotropic, and so we would expect all parts of

the region to have previously come into causal contact. The size of a causally connected region

is defined by the cosmological horizon, lH : the maximum distance light has travelled since the

beginning of the universe. The size of a causally connected region at t1 measured today at t0

is given by the co-moving distance travelled by a photon at t1, multiplied by the scale factor

today:

lH,1(t0) = a0

∫ t1

0

dt′
1

a(t′)
= a0

∫ a1

0

da′
1

Ha′2
(3.1)

∝


a0a

1
2
1 matter dom.

a0a1 radiation dom.,

(3.2)
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where the Hubble expansion rate is proportional to

H(t) ∝


a−

3
2 matter dom.

a−2 radiation dom.

(3.3)

As the expansion rate is a rapidly decreasing function of the scale factor, we are able to see

more regions that have not previously been in causal contact as time advances during periods of

matter and radiation domination. In order to make comparisons with the CMB, we calculate1

the angular size of a region in causal contact at recombination as measured today:

θCMB =
lH,r(t0)

lH,0(t0)
=

(
ar

a0

) 1
2

= (1 + zr)
− 1

2 ∼ 1.7◦, (3.4)

where zr = 1100. The HBB model therefore predicts that the CMB is made up of

(
lH,0(t0)

lH,r(t0)

)2

∼ 103 (3.5)

causally disconnected regions, however CMB temperature anisoptropies have been measured

to be as small as ∆T/T ∼ 10−4 [81]. As density perturbations grow during the radiation and

matter dominated epochs, it would therefore require remarkable homogeneity between regions

that haven’t been in causal contact.

3.1.2 Flatness problem

At the Planckian epoch it is natural to expect the spatial curvature of the universe to be

Ωκ(tPl) ∼ O(1), and at present we know the universe to be extremely flat, with Ωκ,0 < O(10−3).

However, during the radiation and matter domination epochs, the curvature relative energy

density is an increasing function of time:

Ωκ(t) ≡ − κ

H(t)2a(t)2
∝


a(t) ∝ t 2

3 , matter dom.

a(t)2 ∝ t, radiation dom.

(3.6)

and so the HBB model requires an exceedingly small initial curvature in order to produce a

flat universe today. At recombination, we estimate that the curvature is finely tuned to

Ωκ(tr) ∼
(
tr
t0

) 2
3

Ωκ,0 . 10−15, (3.7)

where tr ∼ 1 s and t0 ∼ 1017 s.

1Note that we have ignored the recent period of dark energy domination in our estimation.
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3.1.3 Primordial perturbation problem

Finally, and perhaps most importantly, the HBB model provides no mechanism to generate

the primordial scalar perturbations observed in the CMB, shown in Figure 2.3, which seed the

formation of large-scale structure in the universe.

3.2 Inflation

The problems of the HBB model may be solved with the addition of an initial finite period

of positively accelerating expansion called inflation. Here, we will evaluate the inflationary

conditions that would allow the entire observable universe to have been in causal contact and

become spatially flat, using the slow roll formalism. Specifically we study a generic large-field

inflationary model with a single scalar field serving as our ‘inflaton’; the analysis will then be

applicable to our quartic scalar model in chapter 6.

3.2.1 Slow roll formalism

Inflation is defined as a finite period of positively accelerating expansion, which is achieved

when the universe has an equation of state similar to that of dark energy,

p ∼ −ρ. (3.8)

As a result, the Hubble expansion rate is approximately constant, and we have the following

solution to the Friedmann equation (2.11),

a(t) = aiexp

[∫ t

ti

dt′H(t′)

]
, (3.9)

where we have assumed a flat universe (κ = 0). The period when (3.8) is satisfied is defined

by the ‘slow roll conditions’, which we discuss below.

The action of the simplest inflationary model consists of a single scalar inflaton field, φ(x, t),

that is minimally coupled to gravity2, and has potential V (φ) is3

S =

∫
d4x
√
−g
[

1

2
gµν∂µφ∂νφ− V (φ)

]
, (3.11)

2A non-minimally coupled field is directly coupled to gravity, i.e. we have the following additional term in
the Lagrangian:

L ⊃ −
1

2
ξRφ2, (3.10)

where R is the Ricci scalar. A minimally coupled field is not directly coupled to gravity, i.e. ξ = 0.
3We use the notation ∂µ ≡ ∂

∂xµ
.
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where g ≡ det(gµν). As the universe is almost completely homogeneous with small inhomo-

geneities, we can split our inflaton field into two component parts:

φ(x, t) = φb(t) + ϕ(x, t); (3.12)

a homogeneous classical background field, φb(t), overlaid with quantum fluctuations, ϕ(x, t).

The quantum fluctuations of the inflaton field source cosmological perturbations and will be

the subject of the following section. In this section we will focus on studying the homogeneous

background field, which governs the inflationary dynamics.

The equation of motion of a field is derived from the Euler-Lagrange equation:

∂L
∂φ
− ∂µ

(
∂L

∂(∂µφ)

)
= 0, (3.13)

where the Lagrangian density is related to the action by S =
∫

d4xL. The equation of motion

of the background inflaton field is then

φ̈b + 3Hφ̇b + Vφ(φb) = 0, (3.14)

where we use the FLRW metric for a homogeneous, isotropic and flat universe (for which

g = −a6), and assume the notation Vφ ≡ ∂V/∂φ. Its energy density and pressure are evaluated

using the energy-momentum tensor:

Tµν = ∂µφb∂νφb − gµνL,


T00 = ρ = 1

2 φ̇
2
b + V (φb),

Tii = p = 1
2 φ̇

2
b − V (φb),

(3.15)

thus giving a Hubble expansion rate of

H2 =
1

3M2
P

(
1

2
φ̇2
b + V (φb)

)
. (3.16)

The equation of state (3.8) is therefore satisfied when the kinetic energy of the field is much

smaller than its potential, φ̇2 � |V (φ)|, hence inflation happens in the ‘slow roll’ regime. This

period is then defined by the following two slow roll conditions, using equations (3.16) and

(3.14) respectively:

1. The inflaton’s kinetic energy is much smaller than its potential energy:

∣∣∣∣∣ φ̇2
b

2V

∣∣∣∣∣� 1, (3.17)

→ H '

√
V

3M2
P

. (3.18)
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2. The inflaton’s kinetic term is much smaller than its friction term:

∣∣∣∣∣ φ̈b

3Hφ̇b

∣∣∣∣∣� 1, (3.19)

→ φ̇b ' −
Vφ
3H

. (3.20)

Then by substituting equations (3.18) and (3.20) into equations (3.17) and (3.19) respectively,

we derive the slow roll parameters:

ε =
M2

P

2

(
Vφ
V

)2

, η = M2
P

∣∣∣∣VφφV
∣∣∣∣ , (3.21)

where ε, η � 1, and inflation ends when ε, η ∼ 1

3.2.2 Large-field inflation

The simplest example of a large field inflationary model has a potential of the form

V (φ) =
λφn

n
. (3.22)

As the name suggests, the slow-roll conditions are satisfied when the field values are very large,

φ�MP, (3.23)

during which time the field rolls slowly down its potential until4 φe ∼MP, when the slow roll

conditions are violated and inflation ends. The field then rapidly rolls to the minimum of its

potential, where it oscillates, and preheating/reheating5 proceeds.

We will now evaluate the slow-roll parameters in terms of the number of e-foldings of

expansion prior to the end of inflation:

Ne ≡ ln

(
ae

a(φ)

)
. (3.24)

To find an expression for the field value in terms of Ne, we first substitute equation (3.18) into

(3.9):

Ne =
1√

3M2
P

∫ te

t

dt′
√
V (φ), (3.25)

4We use the notation Xe to define the quantity X evaluated at the end of inflation.
5Preheating and reheating are periods of non-perturbative and perturbative particle production, which we

will discuss in detail in sections 6.7, 6.8 and 6.9.
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then make a change of variables from t→ φ using equation (3.20):

Ne =
1

M2
P

∫ φ

φe

dφ
V

Vφ
∼ φ2

2nM2
P

, (3.26)

where we have evaluated the integral in the limit φ � φe. The slow-roll parameters (3.21)

evaluated in terms of Ne are then given by

ε =
n

4Ne
, η =

(n− 1)

2Ne
. (3.27)

In chapter 6 we present our multi-field inflationary model that couples a scalar inflaton field

(X) to the SM Higgs doublet (Φ), in order to provide a mechanism for reheating (SM particle

production). In our model the universe does not therefore necessarily inflate along Φ = 0 in

field space, but along a non-zero angle of rotation in the X −Φ plane. We assume the inflaton

field has a very large initial field value that converges to the inflationary attractor solution long

before perturbations within our comsological horizon today were generated. The parameters

of our model are tuned so that the angle of the inflationary attractor solution is small, and the

inflaton-Higgs quartic coupling gives rise to a large effective Higgs mass during inflation. As

a result, fluctuations in the Higgs direction are suppressed and thus our inflationary dynamics

can be well approximated by that of a single-field model.

3.2.3 Inflation as a solution to the horizon and flatness problems

To solve the horizon problem we require the size of the causally connected region at the end

of inflation, as measured today, to be greater than the size of the observable universe:

lH,e(t0)

lH,0(t0)
=

a0

lH,0(t0)

∫ te

tPl

da′
1

Ha′2
∼ a0H0

H(tPl)a(tPl)
> 1. (3.28)

The integral here is saturated at the lower bound, and we have approximated lH,0(t0) ∼ H−1
0 .

To solve the flatness problem, we additionally require inflation to have flattened out a large

spatial curvature at the Planckian epoch:

Ωκ(tPl)

Ωκ(t0)
∼ a2

0H
2
0

H(tPl)2a(tPl)2
> 1. (3.29)

Both the horizon and flatness problems are therefore solved with the same condition, which we

will use to find the minimum amount of inflationary expansion. We can re-express conditions

(3.28) and (3.29) by the following:

(
ae

a(tPl)

)(
a0

ae

)(
H0

H(tPl)

)
> 1, (3.30)
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then substituting in for the total number of e-foldings of inflationary expansion,

N tot
e = ln

ae

a(tPl)
, (3.31)

we obtain a condition for the minimum number of e-foldings:

N tot
e > Nmin

e ∼ ln

(
ae

a0

)
+ ln

(
H(tPl)

H0

)
∼ ln

(
T0

H0

)
+ ln

(
MPl

Treh

)
∼ 70− 100, (3.32)

where H(tPl) ∼MPl and the reheating temperature is in the range6 Treh = O(102−1019) GeV.

We have assumed here that the start of reheating is instantaneous with the end of inflation,

and so use the approximation ae ∝ T−1
reh . However, reheating may proceed much later, in which

case our estimate is too high. We will therefore continue to use a more conservative estimate

of Nmin
e = 60.

3.3 Generation of cosmological perturbations

In addition to explaining the flatness and homogeneity of the universe, inflation also provides

a mechanism for generating the primordial scalar perturbations via the inflationary enhance-

ment of quantum fluctuations of the inflaton field, ϕ. The fluctuations result in different parts

of the universe ending inflation at slightly different times, i.e. for large-field inflation, a patch

with negative ϕ violates the slow roll conditions sooner than a patch with positive ϕ. This

gives rise to relative density perturbations in the universe, which provide the initial seeds for

large-scale structure formation. Single-field inflationary models generate perturbations that are

consistent with observations of the CMB anisotropies [100, 101]. The properties of these pertur-

bations (high gaussianity, scale-invariance and adiabaticity) will be defined and explained later

in this chapter. Multi-field models are less well motivated, as they can produced non-gaussian

perturbations with isocurvature modes, and so we choose not to discuss them here.

We expand the action of the scalar inflaton field (3.11) with a spatially flat FLRW metric

to second order in fluctuations to obtain the quadratic action of the quantum field:

Sϕ =

∫
d4x a3

[
1

2
ϕ̇2 − 1

2

(∂iϕ)
2

a2
− 1

2
Vφφ(φb)ϕ

2

]
, (3.33)

where we use the notation ∂i ≡ ∂/∂xi (i = 1, 2, 3). Then by making a Fourier expansion of the

6The universe reheats to a maximum reheating temperature of Tmax
reh = O(MPl) = O(1019) GeV if reheating

occurs immediately after inflation, H(te) ∼ H(treh). We restrict the reheating temperature to a minimum of
[68] Treh,min = TEW = O(102) GeV so that the baryon asymmetry of the universe can be produced via EW
sphaleron processes.
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quantum field, representing it as a sum of plane waves:

ϕ(x, t) =
∑
k

ϕ(k, t)e±ik·x, (3.34)

we obtain a linearised equation of motion of the quantum field:

ϕ̈+ 3Hϕ̇+

(
k2

a2
+ Vφφ(φc)

)
ϕ = 0, (3.35)

where k is the conformal momentum that is related to the physical momentum by

q =
k

a
. (3.36)

3.3.1 Subhorizon and superhorizon modes

Quantum fluctuations of the inflaton field are created on all k-scales, and due to the very

nature of inflationary expansion, some of these modes may exit the Hubble horizon during

inflation. We are going to show that these modes are of particular cosmological significance,

since inflation results in the enhancement of their amplitudes, which gives rise to observable

cosmological perturbations.

Inflaton fluctuations are subhorizon when

k � aH, (3.37)

where (aH)−1 is defined as the comoving Hubble horizon. Here, the second and fourth terms

in equation (3.35) are sub-dominant, as the slow roll conditions (3.21) enforce Vφφ(φc) to be

small:

Vφφ =
V

M2
P

η = 3H2η. (3.38)

The subhorizon modes thereby undergoes simple harmonic motion, unimpeded by the expan-

sion of the universe. However whilst the conformal momentum remains constant, the comoving

Hubble horizon is a decreasing function of time during inflation,

(aH)−1 ∝ e−Ht. (3.39)

The fluctuations can therefore exit the horizon when k = aH, shown by the first crossing in

Figure 3.1, and become superhorizon when

k < aH. (3.40)

50



Whilst the wavelength and momentum of the mode red-shifts with the expansion of the uni-

verse, we show below that the amplitude is fixed at horizon crossing, k = a(t∗)H(t∗), as the

mode is outside the region of causality. During this period, the amplitude of superhorizon

modes is therefore enhanced relative to the subhorizon modes, which decay with the expansion

of the universe. The superhorizon modes re-enter the horizon during the radiation or mat-

ter dominated periods, shown by the second crossing in Figure 3.1, as the co-moving Hubble

horizon during these epochs is an increasing function of time:

(aH)−1 ∝


a, radiation dom.

a
1
2 . matter dom.

(3.41)

Next we are going to formally evaluate the inflationary enhancement of superhorizon modes,

which give rise to cosmological perturbations and ultimately the large scale structure of the

universe.

Figure 3.1: Evolution of cosmological perturbations

Log-log plot of the co-moving horizon (aH)−1, in red, and the inverse conformal momentum,
k−1, in blue, against the scale factor; plot is taken from [99]. If we have exponential inflaton

(H = const.), the gradient of the red line is equal to −1. During radiation and matter
domination, the gradient of the red line is equal to 1 and 1/2 respectively, as in (3.41). Note
that we do not show the kink at the transition between radiation and matter domination in

this plot. The red and blue lines crossing represent fluctuations exiting and entering the
horizon. Regions where k−1 < (aH)−1, fluctuations are subhorizon, and regions where

k−1 > (aH)−1, fluctuations are superhorizon.
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3.3.2 Quantum fluctuations of the inflaton perturbations

In order to evaluate the inflationary enhanced amplitude of the quantum fluctuation of

the inflaton field, we will proceed by writing the action (3.33) in conformal time, τ , and the

canonically normalised field, χ = a(τ)ϕ. From the action, we then derive the equation of motion

of χ, which during slow roll inflation is analogous to the harmonic oscillator. As a result, the

field can then be quantized following the standard quantization procedure for the harmonic

oscillator. Thus we can solve for ϕ, and show that the amplitudes of superhorizon modes are

frozen during inflation. The scalar field is a Gaussian random field, which by definition has a

power spectrum that fully determines the properties of the field. On evaluation of the power

spectrum, we show that it is scale-invariant, which is in agreement with CMB measurements

[100, 101].

Using the metric with conformal time (2.7), the action of the massless scalar field is

Sχ =
1

2

∫
d3x dτ a2(τ)

[
ϕ′2 − (∂iϕ)

2
]
, (3.42)

=
1

2

∫
d3x dτ

[
χ′2 − (∂iχ)

2
+
a′′

a
χ2

]
, (3.43)

where we use the notation X ′ ≡ ∂X/∂τ, X ′′ ≡ ∂2X/∂τ2, and we can neglected the term Vφφ

during slow roll inflation (3.38). We decompose the scalar field into a Fourier expansion of

modes, χk, and vice versa:

χ(x, τ) =

∫
d3k

(2π)
3
2

χk(τ)eik·x, (3.44)

χk(τ) =

∫
d3x

(2π)
3
2

χ(x, τ)e−ik·x,

where the Fourier integral is defined in the limit of an infinite sum,

lim
k→∞

∑
k

→
∫

d3k

(2π)
3
2

. (3.45)

The equation of motion of the Fourier mode is thereby

χ′′k +

(
k2 − a′′

a

)
χk = 0. (3.46)

We can only numerically solve for χk during inflation as a′′/a has a complex dependence on the

background field dynamics. Here, we will instead find an analytical approximation for χk by

taking the limit of a purely de Sitter universe, a spatially flat universe dominated by vacuum
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energy, in which

a′′

a
=

2

τ2
= 2(aH)2. (3.47)

The equation of motion of χk is analogous to the harmonic oscillator, and so we will quantize

the field following the standard quantization procedure for the harmonic oscillator.

Quantization of the inflaton field in a de Sitter universe

The scalar field χ and its fourier components χk are promoted to operators with the following

decomposition:

χ̂(x, τ) =

∫
d3k

(2π)
3
2

(
χk(τ)Âke

ik·x + χ∗k(τ)Â†ke
−ik·x

)
, (3.48)

χ̂k = χk(τ)Âk + χ∗−k(τ)Â†−k. (3.49)

The creation and annihilation operators, A†k and Ak respectively, obey the canonical commu-

tation relation:

[
Âk, Â

†
k′

]
= δ3 (k− k′) , (3.50)

if the modes are normalized as follows:

i (χ∗kχ
′
k − χ∗k′χk) = 1. (3.51)

The vacuum state of the fluctuations |0〉 is defined by

Ak|0〉 = 0. (3.52)

In the subhorizon limit (kτ � 1), the solution to the equation of motion of χk (3.46) has

the general form:

χk = α
e−ikτ√

2k

(
1− i

kτ

)
+ β

eikτ√
2k

(
1 +

i

kτ

)
. (3.53)

The coefficients α and β are then fixed by our normalization condition (3.51):

χk =
e−ikτ√

2k

(
1− i

kτ

)
. (3.54)

In the subhorizon limit, χk behaves as a simple harmonic oscillator in Minkowski space, os-

cillating with time-independent frequency ωk = k, whilst in the superhorizon limit (kτ � 1),
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the field behaves as χk ∝ a(τ). Next we will show that the inflaton field is a Gaussian random

field, and thus define its power spectrum.

Gaussianity of vacuum fluctuations

A field is a Gaussian random field if its variables obey Gaussian statistics. If this is true,

its properties can then be completely determined by its 2-point correlation function, i.e. the

vacuum expectation value of the field operators7:

〈0|ϕ̂(x, t)ϕ̂(y, t)|0〉 ≡ 〈ϕ̂(x, t)ϕ̂(y, t)〉; (3.55)

or alternatively by its power spectrum, which we will define later. Here we will use the central

limit theorem to show that the vacuum fluctuations of the inflaton field are a Gaussian random

field, which is in agreement with CMB observations.

The Fourier components of the scalar field, χ̂k, are uncorrelated, i.e. their real and imagi-

nary parts have independent probability distributions equal to

〈 |χ̂k|2〉 = |χk(τ)|2. (3.56)

We can decompose the scalar field into a sum of plane waves with Fourier coefficients, χk(τ),

that have uniformly distributed random phases, as written in equation (3.48). Then by the

central limit theorem, which states that the normalized sum of independent random variables

tends to a Gaussian distribution, the vacuum fluctuations of the scalar field are by definition

Gaussian random fields.

Power spectrum and amplitude of the inflaton field

The power spectrum gives us the relative amplitude of each Fourier mode, which we compute

by taking the Fourier transform of the correlation function,

Pϕ(k)δ3(k− k′) =

∫
d3x

(2π)
3
2

∫
d3y

(2π)
3
2

e−ik·xe−ik
′·y〈ϕ̂(x, t)ϕ̂(y, t)〉. (3.57)

The right hand side of (3.57) is then by definition just the 2-point correlation function of the

Fourier modes:

Pϕ(k)δ3(k + k′) = 〈ϕ̂k(t)ϕ̂k′(t)〉, (3.58)

7We will continue to use the notation 〈X〉 ≡ 〈0|X|0〉, as we only deal with vacuum fluctuations.
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where ϕ̂k ≡ χ̂k/a. Using the definition of the vacuum (3.52) and the canonical commutation

relation (3.50), we are able to evaluate (3.58):

〈ϕ̂k(t)ϕ̂k′(t)〉 =
e−i(k+k′)τ

2a2
√
−kk′

(
1− i

kτ

)(
1− i

k′τ

)
〈 ÂkÂ

†
−k′〉,

=
1

2ka2

(
1 +

1

k2τ2

)
δ3 (k + k′) ,

=
H2

2k3

(
1 + k2τ2

)
δ3 (k + k′) , (3.59)

where we have inserted equation (3.54) as our solution for χk. In the superhorizon limit

(kτ � 1), our inflaton field power spectrum is given by

Pϕ(k) =
H2
k

2k3
. (3.60)

A power spectrum that has the relation P (k) ∝ k−d, where d = 3 is the number of spatial

dimensions, has the special property of being scale-invariant, i.e. the field fluctuations have

the same correlation on every scale:

〈ϕ̂(λx, t)ϕ̂(λy, t)〉 =

∫ ∞
−∞

d3k

(2π)
3
2

∫ ∞
−∞

d3k′

(2π)
3
2

eiλk·xeiλk
′·y H

2

2k3
δ3 (k + k′) (3.61)

=

∫ ∞
−∞

d(λk)

(2π)2

H2

(λk)
eiλk·(x−y)

= 〈ϕ̂(x, t)ϕ̂(y, t)〉.

This is a feature observed in the CMB, and thus one of the strong motivations for inflation.

Additionally, as the correlation function only depends on |x − y|, it is also invariant under

translations and rotations. The vacuum fluctuations are therefore defined as adiabatic pertur-

bations, as they are homogeneously and isotropically distributed in space.

Due to the scale-invariance of the power spectrum, it is standard to use the following

definition of the power spectrum that removes the k-dependence:

∆2
ϕ(k) =

k3

2π2
Pϕ(k), (3.62)

and δϕ ≡ ∆ϕ(k) defines the amplitude of the field fluctuation. The power spectrum and

amplitude of superhorizon vacuum fluctuations of the inflaton field is then given by

∆2
ϕ(k) =

(
H∗
2π

)2

, δϕ =
H∗
2π

, (3.63)

where ∗ indicates that the term needs to be evaluated at horizon crossing, a(t∗)H(t∗) = k.

Whilst the amplitude of superhorizon modes remains roughly constant during inflation, the
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amplitude of subhorizon modes (kτ � 1) decay with the expansion of the universe:

δϕsub =
k

2πa
. (3.64)

The amplitudes of superhorizon modes are therefore vastly enhanced relative to subhorizon

modes by a factor of

δϕ

δϕsub
=

H∗
q(te)

∼ a(te)

a(t∗)
∼ eNe , (3.65)

where Ne is the number e-foldings prior to the end of inflation that the mode exited the horizon.

3.3.3 Metric perturbations

During inflation, the energy density of the universe is dominated by the inflaton field. As a

result, fluctations of the inflaton field perturb the stress-energy tensor, δTµν , thus giving rise

to perturbations of the metric, δgµν , through Einstein’s equations of motion:

[
δRµν −

1

2
δ (gµνR)

]
= 8πGδTµν . (3.66)

Likewise, metric perturbations backreact on to the inflaton perturbations via the perturbed

equation of motion of the inflaton field:

δ (∂µ∂
µφ− Vφ(φ)) = 0, (3.67)

and so perturbations of the metric and inflaton field are tightly coupled.

Metric perturbations are categorised into 3 types based on their spin number: scalar (spin

0), vector (spin 1), and tensor (spin 2). We observe scalar perturbations as density pertur-

bations and tensor perturbations as gravitational waves; vector perturbations decay with the

expansion of the universe and so we will not discuss them here. The aim of sections 3.3.3.1 and

3.3.3.2 are to provide the reader with the observables of the scalar and tensor perturbations (i.e

power spectrums, amplitudes and spectral tilts) that allow us to constrain inflationary models.

3.3.3.1 Scalar perturbations

Generally scalar perturbations are a composition of adiabatic and isocurvature modes. Adi-

abatic perturbations give rise to total density fluctuations throughout the universe, but the

relative densities between different particle species are the same. For example, matter and
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radiation components must satisfy the condition:

δ

(
nm

nγ

)
= 0,

δρm

ρm
=

3

4

δργ
ργ

. (3.68)

Adiabatic perturbations are sometimes referred to as curvature perturbations, as small over-

dense regions with density ρ′ give rise to local changes in curvature:

H2 − ρ′

3M2
P

= − κ

a2
. (3.69)

Given that the overall curvature of the universe with average density ρ̄ is negligibly small:

H2 − ρ̄

3M2
P

= − κ

a2
∼ 0, (3.70)

the density perturbation is then related to the curvature perturbation by:

δρ

ρ
≡ ρ′ − ρ̄

ρ̄
=

κ

(Ha)2
. (3.71)

On the other hand, isocurvature modes have zero total density fluctuations and relative

density perturbations between different particle species:

δρ = 0,
δρm

ρm
6= 3

4

δργ
ργ

. (3.72)

Next we will show that single-field inflaton models produce adiabatic modes with no admix-

ture of isocurvature modes, which is currently in agreement with CMB measurements [100,

101]. Isocurvature modes may be produced by multi-field models, however as this is not well

motivated by observations, we will continue to review single-field inflationary models only.

The inflaton field is homogeneous on constant-time hypersurfaces8, and so quantum fluc-

tuations of the field can be expressed as a time-shift, δt(x, t), along the trajectory of the

homogeneous background field. Positive (negative) fluctuations result in different parts of the

universe exiting inflation at later (earlier) times and thus having a greater (lower) density.

For single-field inflation, the time-shift induces the same relative density fluctuation for every

species, as during reheating energy is transferred from the inflaton field into other particles

species via the same mechanism everywhere in the universe. The model therefore produces

adiabatic modes exclusively:

δϕ(x, t) = φ̇b(t)δt(x, t), δρ(x, t) = ρ̇δt(x, t). (3.73)

8We study fluctuations of gauge-invariant quantities, i.e. the value of the perturbation does not arbitrarily
depend on our choice of gauge.
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The energy density behaves in the same way as the scale factor,

ρ̇ ∼ −Hρ, (3.74)

and so we can express the relative energy density fluctuation in terms of the amplitude of the

inflaton fluctuation:

δρ

ρ
∼ H

φ̇b
δϕ. (3.75)

It is conventional to use the following parameterization for the scalar power spectrum

∆2
s(k) = Aϕ(k∗)

(
k

k∗

)ns−1

, (3.76)

where ns is the spectral index. The power spectrum and amplitude of superhorizon scalar

perturbations generated by fluctuations of the inflaton field is then given by

∆2
s =

(
H2
∗

2πφ̇b

)2

, ∆s =
H2
∗

2πφ̇b
, (3.77)

with ns ∼ 1, which is in agreement with Planck’s measurement [33]. The measurement of the

amplitude of the primordial scalar perturbations [33],

∆CMB
s (k∗) ∼ 4.7× 10−5 (3.78)

at k∗ = 0.05 Mpc−1, allows us to constrain the self-coupling of the inflaton field for a given

model. Using the slow-roll conditions, (3.20) and (3.18), the amplitude can be expressed in

terms of the inflationary potential:

∆s =

√
3

6π

1

M3
P

V
3
2

Vφ
. (3.79)

Then for a large-field inflationary models with a potential of the form given in (3.22), the

self-coupling is constrained by

λ =
12π2M4−n

P√
(2Ne)n+2nn−4

∆2
s. (3.80)

We use Ne = 60, as we are probing modes with a wavelength the size of cosmological horizon,

which exited the horizon 60 e-foldings prior to the end of inflation. Our inflationary model,

to be discussed in chapter 6, has a quartic scalar potential (n = 4). The CMB measurement

(3.78) then constrains the quartic self-coupling to λ ∼ 1.5 × 10−13, if we assume the inflaton

field is minimally coupled to gravity.
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3.3.3.2 Tensor perturbations

Tensor perturbations, hij , are free excitations of spacetime:

ds2 = a2(τ)
[
dτ2 − (δij + hij) dx

idxj
]
, (3.81)

that manifest as unsourced gravitational waves, with the action:

Sh =
M2

P

8

∫
d3x dτ a2(τ)

[
(h′ij)

2 − (∂ihij)
2
]
. (3.82)

The action of the tensor perturbations is the same as the action of the massless scalar field

given in (3.42), except with the addition of an overall factor of M2
P/4. We can therefore follow

the same quantization procedure outlined in section 3.3.2, and so will leave out some details

here.

The tensor mode is composed of two transverse polarisations, (s = +, x), and their Fourier

transform is given by

hij =

∫
d3k

(2π)3

∑
s=+,x

εsij(k)hsk(τ)eik·x. (3.83)

Given the following properties of the polarization tensors:

εii = kiεij = 0, εsij(k)εs
′

ij(k) = 2δss′ , (3.84)

the canonically normalized Fourier modes (a(τ)hsk) obey the same equation of motion of the

massless scalar field given by (3.46), but have a different overall normalization factor:

hsk =
2

MP
ϕk. (3.85)

The power spectrum of tensor perturbations is parameterized analogous to the scalar per-

turbations:

∆2
T (k) = AT (k∗)

(
k

k∗

)nT
, (3.86)

where nT is the tensor spectral index, and the power spectrum sums over both polarization

states ∆2
T (k) = 2∆2

h(k). The superhorizon tensor power spectrum generated by inflation is

then

∆2
T = 2× 4

M2
P

∆2
ϕ =

2

π2

(
H∗
MP

)2

, (3.87)

59



with nT = 0, inflation also predicts a flat power spectrum for tensor modes. We have not

yet been able to detect tensor modes as their amplitude is extremely small; a factor of M−1
P

smaller than scalar perturbations. The potential to make a measurement in the future is an

exciting prospect as it would provide us with direct evidence of inflation, since we know of

no other way of generating tensor perturbations. The tensor amplitude only depends on the

inflationary potential, as H ∝
√
V (φ) during inflation, so it would allow us to determine the

energy scale of inflation and the inflationary model. So far we only have an upper-bound on

the tensor-to-scalar ratio:

r ≡ ∆2
T (k∗)

∆2
s(k∗)

= 8M2
P

(
Vφ
V

)2

=
4n

Ne
, (3.88)

where at the 95% confidence limit [33]

r < rCMB = 0.13. (3.89)

Given equation (3.88), the tensor-to-scalar ratio of a quartic model (n = 4) exceeds this bound,

with r ∼ 0.27. However by non-minimally coupling the inflaton field to gravity, we can achieve

r < rCMB; this analysis will be carried out in section 6.3.

3.4 Structure formation

We have shown that inflationary enhanced quantum fluctuations of the inflaton field generate

density inhomogeneties, which seed the formation of large scale structures. We are now going to

provide the reader with a very simplified but intuitive description of how perturbations evolve

and form structures in a static universe, using Newtonian mechanics. Although this treatment

is naive, it does provide us with a good approximation for baryonic structure formation in the

real universe, and the results will be useful in section 4.3 where we study dark matter structure

formation.

Overdense regions of the universe gravitationally attract matter from surrounding regions.

Using our result from equation (3.71), we can see that density perturbations grow like

δρ

ρ
=

κ

(H(t)a(t))
2 ∝


t, radiation dom.

t
2
3 , matter dom.

(3.90)

during the radiation and matter dominated periods, whilst δρ/ρ < 1. The critical scale at

which perturbations reach hydrostatic equilbrium is defined as the Jeans length, RJ . At

scales beyond the Jeans length the perturbation density grows exponentially, quickly reaching

δρ/ρ ∼ 1 where perturbations undergo non-linear gravitational collapse and form compact
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objects such as stars and galaxies. We will derive the Jeans length using the Virial theorem,

which states that for a stable system of particles, the total kinetic energy, K, is equal to half

of the total potential energy, V :

K(RJ) = −1

2
V (RJ). (3.91)

In the context of star and galaxy formation, the Jeans length is the radius of a spherical cloud

of hydrogen in which the gravitational potential energy is balanced by the pressure of the gas.

When K > −V/2, the perturbations undergo acoustic oscillations, and when K < −V/2, the

perturbations gravitationally collapse.

Using Newton’s law of gravitation, the gravitational potential energy of a spherical cloud

of gas with mass M and radius R is

V = −3

5

GM2

R
, (3.92)

and assuming classical thermodynamics, the total kinetic energy of N particles is

K =
3

2
NkBT =

3

2

M

mH
kBT. (3.93)

Next we equate equations (3.92) and (3.93) using the Virial theorem and then substitute in for

mass, assuming constant density, M = 4π
3 R

3ρ. Then rearranging for the Jeans length gives

RJ =

(
15

4π

kBT

mH

1

Gρ

) 1
2

. (3.94)

Alternatively, the Jean’s length written in terms of the speed of sound within the gas cloud,

u2
s =

kBT

γmH
, (3.95)

where we assume the adiabatic index of an ideal gas, γ = 5
3 :

RJ =
3

2
√
π

us√
Gρ

;


R < RJ , acoustic oscillations

R > RJ . gravitational collapse

(3.96)

Then defining the Jeans mass as

MJ =
4π

3
R3
Jρ,
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substituting in for RJ gives

MJ =
9

2
√
π

u3
s√
G3ρ

;


M < MJ , acoustic oscillations

M > MJ . gravitational collapse

(3.97)

We can therefore deduce from (3.96) and (3.97) that cooler and denser clouds are less stable,

so they will gravitationally collapse at smaller masses and form smaller stars. On the other

hand, hotter and less dense clouds are more stable, so they require more mass to gravitationally

collapse and thus form larger stars.

The static universe approximations are applicable to the real universe in the regime when

the time it takes for a perturbation to collapse,

tJ =
λJ
us
∼ (Gρ)−

1
2 , (3.98)

is less than the Hubble time, H−1 ∼ (GρT )−
1
2 , as we can ignore the effects of expansion. This

is the case when the perturbation fluid dominates the total energy density of the universe, ρT .

In particular, the Jeans analysis is accurate in predicting the scale that baryonic structures

begin to form at recombination, when radiation pressure has ceased and gravitational forces

can dominate:

MJ(Tr) ∼ 106M�, (3.99)

where Tr is the temperature at recombination and M� = 1.2 × 1057 GeV is the solar mass;

this result gives the approximate size of the smallest dwarf galaxies in the universe. On the

other hand, the Jeans analysis is not applicable when the perturbation fluid is a sub-dominant

component of the total energy density, as when tJ > H−1 the expansion of the universe can

not be ignored. The Jeans analysis is therefore not applicable to cold (or warm) DM, which

can form structures in the radiation-dominated epoch as it does not feel the effect of radiation

pressure. We will discuss DM structure formation in detail in section 4.3.

3.5 Summary and discussion

In this chapter we show how an initial period of positively accelerating expansion called

inflation is able to explain the flatness, homogeneity and isotropy of our observable universe,

without the need to implement finely tuned initial conditions. We specifically study a minimal

single large-field inflationary model, with a potential of the form

V (φ) =
λφn

n
. (3.100)
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The slow-roll conditions are satisfied for this model whilst the field values are very large,

φ � MP, and inflation ends once the slow-roll conditions are violated, when φe = O(MP). If

inflation is to solve the horizon and flatness problems, we require a minimum of 60 e-foldings

of expansion,

N tot
e = ln

ae
a(tpl)

& 60. (3.101)

Inflation also provides us with a mechanism to generate small inhomogeneities that seed

the large-scale structure of the universe, through inflationary enhanced quantum fluctuations

of the inflaton field. Single-field inflationary models generate highly gaussian, scale-invariant

and adiabatic perturbations, which is in agreement with CMB observations [100, 101]. Multi-

field models are less well-motivated, as they can lead to non-gaussianity and the generation

of isocurvature modes. Although the models we present in chapters 6, 7 and 8 are multi-field

inflationary models, we carefully tune our parameters so that the inflationary dynamics can be

approximated by that of a single-field model.

Quantum fluctuations of the inflaton field generate scalar and tensor metric perturbations

with power spectrums that we parameterize in the following form,

∆2
s(k) = Aϕ(k∗)

(
k

k∗

)ns−1

, ∆2
T (k) = AT (k∗)

(
k

k∗

)nT
. (3.102)

Inflation predicts that the power spectrums for both scalar and tensor perturbations are flat,

with spectral indexes ns ∼ 1 and nT ∼ 0 respectively. Planck’s measurement of the amplitude

of the primordial scalar perturbations [33],

∆CMB
s (k∗) ∼ 4.7× 10−5 (3.103)

at k∗ = 0.05 Mpc−1, allows us to constrain the self-coupling of the inflaton field,

λ =
12π2M4−n

P√
(2Ne)n+2nn−4

∆2
s, (3.104)

which we evaluate at the relevant Ne = 60 e-foldings prior to the end of inflation.

So far we only have an upper-bound on the tensor-to-scalar ratio [33],

r ≡ ∆2
T (k∗)

∆2
s(k∗)

< rCMB = 0.13, (3.105)

at the 95% confidence limit. The large-field inflationary model predicts a tensor-to-scalar ratio
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of

r =
4n

Ne
. (3.106)

Later we study our inflationary model with a quartic potential (n = 4), which gives a tensor-to-

scalar ratio that exceeds the CMB bound (3.105). However, we will show that by non-minimally

coupling the inflaton field to gravity, we can achieve r < rCMB; this analysis will be carried

out in section 6.3.
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Chapter 4

Dark matter

We now have a vast amount of evidence to support the existence of DM: from the large

scale structure of the universe [19, 20], the CMB’s power spectrum [17, 18] and a catalogue

of observed gravitational effects [14–16], we infer that DM makes up over 80% of the total

matter density in the universe [21]. DM is fundamentally different to baryonic matter as we

can only indirectly observe it from its gravitational effects. Since we can not see it, we know

that it does not interact much via electromagnetic or strong forces, and as DM has proven to be

extremely difficult to detect, it is not yet known whether it is weakly interacting with the SM

or decoupled entirely. Finally, for DM models to be compatible with structure formation, their

free-streaming length, or ‘hotness’, is constrained by the scale of the smallest old structures in

the universe [92, 102].

Within these constraints lies a rich variety of possible DM models, many of which look to

solve additional problems within the SM. To name a few, there are hidden sector models that

generate baryon asymmetry [22, 23], axion-like particles (ALPs) that may solve the strong

charge-parity (CP) problem [24–26], and the dark Higgs (scalar) DM which is motivated by

the electroweak (EW) hierarchy problem [27, 28]. In chapter 7, we extend our inflaton model

with a modified Minimal Neutrino Standard Model (νMSM) [43], in which our DM candidate

is a right-handed singlet neutrino, otherwise known as a sterile neutrino. Sterile neutrinos

have historically been a well-motivated addition to the SM as they provide a mechanism for

generating SM neutrino masses via the see-saw mechanism [53, 54], and the baryon asymmetry

of the universe (BAU) via leptogenesis [103–105]. There are many models for sterile neutrino

DM production [106], for example, the Dodelson-Widrow [29] and Shi-Fuller [30] mechanisms

produce DM via active-sterile neutrino oscillations. Both of these models will be discussed

in section 5.2, where we will show that they are very strongly constrained by the active-

sterile neutrino mixing angle and their free-streaming length. We present an alternative model,

whereby DM is produced via scalar inflaton decay [43]. The parameter space is less constrained,

as the DM production mechanism does not depend on the coupling strength to the SM neutrino

sector.

The aim of this chapter is to motivate the need for DM and introduce the reader to the
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background theory that is required to constrain our sterile neutrino DM model. First we

present the main pieces of gravitational evidence of DM, followed by the freeze-out and freeze-

in production mechanisms, which are necessary to constrain the relic abundance and thus the

parameters of the DM model. Finally, we will discuss why DM is fundamental to the large

scale structure of the universe, and how small-scale structures, probed by the Lyman-α forest,

constrain the DM free-streaming length.

4.1 Gravitational evidence of dark matter

4.1.1 Galactic rotational curves

The baryonic matter within a galaxy is divided between two components: a very dense region

of stars at the centre of the galaxy called the galactic bulge, and surrounding it, a sparsely

populated region of stars and dust called the galactic disc. To approximate the dynamics within

these two regions, we will assume the total mass of the galaxy is contained within the central

bulge of mass M0, radius r0 and constant density. Then using Newton’s law of gravitation, the

force acting on a star of mass m is

Fgrav =
GM0m

r2
, (4.1)

and stars inside and outside the central bulge have rotational velocities [107]

vrot ∝


r, r < r0,

r−
1
2 , r > r0.

(4.2)

In 1933 Zwicky measured the average redshift of each member galaxy in the Coma galaxy

cluster. He found that their rotational velocities greatly exceeded the expected value calculated

from the gravitational mass of the luminous matter in the cluster [108]. As a result, he con-

cluded that the majority of the mass in the cluster must be made up of non-luminous matter,

called dark matter [108]. Following Zwicky’s discovery, in the 1970s Rubin and Ford inves-

tigated this result further by using a high-resolution spectrograph to measure the rotational

velocities of individual galaxies. Their results revealed that the rotational velocities of galaxies

outside their central bulge remained constant out to very large radii [14, 109], as shown in

Figure 4.1. Without modifying gravity, they concluded that the flat rotational curves can only

be explained if the galaxies are embedded within an extended dark matter halo, which makes

up over 80% of the total mass [110–112].
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Figure 4.1: Rotational velocities of galaxies plotted against distance from the centre, taken
from [109].

4.1.2 Gravitational lensing

Gravitational lensing is the bending of light within a gravitational field, predicted by Ein-

stein’s theory of General Relativity. We can use this as a tool to map out the distribution of

DM by observing the light from very distant bright objects, such as quasars and galaxies, that

has been bent by a nearby ‘lensing’ galaxy. This allows us to determine the gravitational field

produced by the lensing galaxy, and from which we can infer the mass and distribution of DM

within it.

The Sloan Digital Sky Survey (SDSS) has been able to map out the DM distribution within

galaxies at distances up to 200 kpc from the centre, which is far beyond what is achievable

using rotational velocity curves [113, 114]. Since discovering that DM halos are far larger and

more massive than we had first anticipated, we can now appreciate the extent to which the

formation and evolution of a galaxy’s observable structure (the baryonic matter) depends on

the properties of their host DM halo [15].
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Figure 4.2: Distribution of DM in galaxy cluster Cl 0024+17

On the left is the Hubble Space Telescope image of the galaxy cluster Cl 0024+17. On the
right is the same image with a superimposed blue map of the cluster’s DM distribution. The
map is derived by observing how the light from distant galaxies is distorted by Cl 0024+17’s

gravitational lens. Images are taken from [115].

4.1.3 Bullet Cluster

The Bullet Cluster is two previously collided galaxy clusters moving past each other. Figure

4.3 is a composite image of the Bullet Cluster containing X-ray data taken by NASA’s Chandra

X-ray Observatory in pink and a gravitational lensing map in blue, overlaying the Hubble

Space and Magellan Telescope optical images [116]. The galaxies within the clusters mostly

pass straight through, however the hot intergalactic gas is slowed down by its electromagnetic

interactions. This is shown in Figure 4.3 by the x-ray emissions (in pink) that are displaced

relative to the galaxies. The blue maps the region containing most of the mass of the cluster

from observing the effects of gravitational lensing of distant galaxies. Most of the baryonic mass

is contained within the intergalactic gas, however the cluster’s centre of mass peak spatially

offsets the baryonic mass peak by a statistical significance of 8σ [16, 117]. This observation is

evidence of weakly interacting DM, which passes relatively unimpeded through the colliding

galaxy clusters.
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Figure 4.3: Bullet cluster

A composite image of the galaxy cluster 1E 0657-56, known as the Bullet Cluster, taken from
[116]. The optical image of the galaxy cluster (taken by the Hubble Space and Magellan

Telescope) is superimposed with maps of the x-ray emissions in pink (data taken by NASA’s
Chandra X-ray Observatory) and mass distribution in blue.

4.2 Dark matter production mechanisms

In this section we are going to analyse two DM production mechanisms: freeze-in [118] and

freeze-out [55, 56]. Freeze-in DM has an initially negligible abundance due to its very weak

coupling to the bath particles. The DM is produced via decay/scattering of bath particles,

and remains decoupled from the bath throughout. On the other hand, freeze-out DM is more

strongly coupled with the thermal bath. It has an initially large thermal abundance, which

later departs from thermal equilibrium at the time of freeze-out.

Figure 4.4 below plots the evolution of the freeze-in and freeze-out DM yields, which is

defined as the ratio of the DM number density over the total entropy,

YDM ≡
nDM

s
, (4.3)

with the expansion of the universe [118], which is given as a function of the DM particle mass

over the thermal bath temperature. The evolution of thermal DM yield is given by the solid

black line; the yield remains constant whilst temperatures exceed the DM mass, and decreases

rapidly once temperatures drop below the DM mass due to Boltzmann suppression. The evolu-

tion of freeze-in and freeze-out DM is given by the dashed and solid coloured lines respectively,

and the arrows on the plots show the direction of increasing DM coupling strength with the

thermal bath. Whilst the freeze-in DM yield increases with increasing coupling strength, the

freeze-out DM yield decreases, as the DM departs from thermal equilibrium later when their
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abundance is more strongly Boltzmann suppressed. The DM yield remains constant once their

production and annihilation ceases.

Figure 4.4: Evolution of freeze-in and freeze-out DM yields

Plot of the DM yield, Y ≡ n/s, against the DM particle’s mass over temperature, x = m/T ,
taken from [118]. The black solid line is the yield if equilibrium is maintained; and the
coloured solid/dashed lines are the evolution of the freeze-out/in yields. The coupling

strength of the DM increases in the direction of the arrows.

The initial conditions of freeze-out DM are erased when the particles come into thermal

equilibrium, which is to be expected due to the high temperatures that are reached during

the reheating period. Freeze-in DM is therefore an unusual case as it remains out of thermal

equilibrium and as a result, its relic abundance intrinsically depends on the initial conditions of

the model. Although this makes freeze-out models arguably more robust, freeze-in models are

able to produce lighter and warmer DM, which is favourable for structure formation [91–93].

In chapter 7 we present our sterile neutrino DM candidate that is produced via freeze-in. As

the DM is an extension to a cosmological model that fully describes inflation and reheating,

we can be sure of the initial conditions and can constrain its relic abundance.

In the following analysis we evaluate the yield of freeze-out and freeze-in DM particles and

constrain the DM model parameters by equating their relative energy density today,

ΩDM,0 =
mDMnDM,0

ρc,0
, (4.4)

with the known DM abundance, given in (2.85). The number density of particles today, nDM,0,

is evaluated by diluting the number density of particles at the end of freeze-in/freeze-out, nDM,f ,

by the expansion of the universe,

nDM,0 = nDM,f

(
af
a0

)3

. (4.5)
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Then, as the co-moving entropy density is a conserved quantity, sfa
3
f = s0a

3
0, the relative

energy density is related to the DM yield by

ΩDM,0 =
mDMYDM,fs0

ρc,0
. (4.6)

4.2.1 Freeze-out production

In the early hot universe, DM particles (A) are kept in thermal and chemical equilibrium

through their weak coupling to a thermal bath of particles (B); this particular class of DM

particles are therefore referred to as weakly interacting massive particles (WIMPs) [55, 56]. We

will assume here that particles B are lighter than A, and that they annihilate and pair-create

via the following scattering process:

AA↔ BB. (4.7)

The WIMP abundance is governed by the Boltzmann equation [55, 56]:

d(nDMa
3)

dt
= −〈σann · v〉 ·

(
n2

DM − n2
DM,eq

)
a3, (4.8)

where nDM,eq is the number density of A in thermal equilibrium and 〈σann · v〉 is the thermally

averaged annihilation cross-section. The WIMPs have a thermal abundance, given by the black

line in Figure 4.4, whilst their annihilation rate,

Γann = 〈σann · v〉nDM, (4.9)

exceeds the Hubble expansion rate. At high temperatures, T > mDM, the WIMPs also maintain

chemical equilibrium, i.e. the DM production and annihilation rates are equal. As a result, we

see that their thermal yield remains constant in Figure 4.4, or equivalently from equation (4.8),

their co-moving number density remains constant whilst they remain in thermal and chemical

equilibrium.

The WIMPs freeze-out once the annihilation rate drops to the order of the Hubble expansion

rate,

Γann(Tf ) ∼ H(Tf ). (4.10)

At temperatures T < Tf , the expansion rate is too fast for the DM particles to collide and

annihilate, and so their yield remains constant. WIMPs with a small coupling to the thermal

bath freeze-out whilst they are still in chemical equilibrium, Tf > mDM and are therefore
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still relativistic. On the other hand, WIMPs with a relatively large cross-section freeze-out

after departing from chemical equilibrium, at Tf < mDM, once they are non-relativistic. As a

result, their number density is Boltzmann-suppressed, thus yielding a smaller final abundance.

We will now evaluate the yields of both cases separately, in order to constrain the WIMP

parameters using the known abundance of DM in the universe.

4.2.1.1 Freeze-out of relativistic particles

The yield of relativistic DM particles at freeze-out is the ratio of their thermal number

density, given by equation (2.32), over the total entropy, given by equation (2.35) [55, 56, 119],

YDM,f =
45ζ(3)

2π4

gDM
∗n

g∗s(Tf )
; (4.11)

the freeze-out temperature is defined by Γann(Tf ) ∼ H(Tf ). The yield is independent of

temperature, as shown in Figure 4.4 by the flat thermal yield in the region m/T . 1, and so

we can easily calculate the relative energy density of DM:

ΩDMh
2 =

gDM
∗n

g∗s(Tf )

mDM

13.4 eV
. (4.12)

4.2.1.2 Freeze-out of non-relativistic particles

Constraining the parameters of non-relativistic WIMPs is more involved, since they depart

from chemical and thermal equilibrium prior to freeze-out, which results in their yield crucially

depending on the mass-to-temperature ratio at the time of freeze-out [55, 56, 119].

Once the universe has expanded and cooled to temperatures below the mass scale of the

WIMP, T < mDM, their production becomes kinematically unviable and they drop out of

chemical equilibrium. The WIMP’s departure from chemical equilibrium is shown in Figure

4.4 where their thermal yield starts to decrease, which is known as Boltzmann suppression, as

the DM particles continue to annihilate. Once their annihilation rate drops below the Hubble

expansion rate, the DM then departs from thermal equilibrium, which is shown by the coloured

lines branching from the thermal yield in Figure 4.4. Once the universe is expanding too fast

for the particles to annihilate, the DM freezes out and their yield remains constant. Next we

are going to carefully track the DM abundance between departing from chemical and thermal

equilibrium to freeze-out.

Chemical equilibrium is lost when [55]

dnDM,eq

dt
& 〈σann · v〉n2

DM,eq. (4.13)

The non-relativistic thermal number density is given by equation (2.44), and its differential is
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[55, 119]

dnDM,eq

dt
∼ −mDM

T

Ṫ

T
nDM,eq ∼ xH(T )nDM,eq, (4.14)

where xi ≡ mDM/Ti. Then by equating equations (4.13) and (4.14), we can determine when

the WIMPs depart from chemical equilibrium [55, 119]:

xfH(Tf ) = 〈σann · v〉nDM,eq(Tf ), (4.15)

→ xf ∼ ln

[
gDM√
g∗ρ

MP〈σann · v〉mDM

]
, (4.16)

to logarithmic accuracy. We assume here that annihilation of A is efficient, and so the temper-

ature they depart from chemical equilibrium is approximately equal to the temperature that

they freeze-out, Tf .

To carefully track the abundance between exiting chemical and thermal equilibrium and

freeze-out, we must solve the Boltzmann equation (4.8), which we will reparameterize from

nDM → YDM:

dYDM

dt
=

1

a3s

d

dt

(
nDMa

3
)
, (4.17)

= −s〈σann · v〉 ·
(
Y 2

DM − Y 2
DM,eq

)
.

Then using the relation dx/dt = Hx, derived from the conservation of conformal entropy

density1, we transform coordinates from t→ x to obtain the following expression [55, 119]:

dYDM

dx
= −λ〈σann · v〉

x2
·
(
Y 2

DM − Y 2
DM,eq

)
, (4.20)

where λ ∼ 4π
3
√

10

g∗s√
g∗ρ
MPmDM. At freeze-out YDM,f ∼ YDM,eq, then using equation (4.15) [55,

119],

YDM,f =
1

s(Tf )

xfH(Tf )

〈σann · v〉
, (4.21)

=
x2
f

λ〈σann · v〉
.

1Given that entropy density is conserved in a co-moving volume, and assuming g∗s(T ) is constant, we obtain
the following relation:

d(s(T )a3)

dt
=

d

dt

(
2π2

45
g∗sT

3a3

)
= 3s(T )a3

(
Ṫ

T
+
ȧ

a

)
= 0,

→
Ṫ

T
= −

ȧ

a
= −H. (4.18)

Then substituting equation (4.18) into the time derivative of x, we have

dx

dt
= mDM

d

dt

(
1

T

)
= −x

Ṫ

T
= Hx. (4.19)
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In the limit T0 � Tf , we have YDM,0 � YDM,eq and x0 � xf , and thus we can neglect Y 2
DM,eq

in equation (4.20) [55, 119]:

∫ YDM,0

YDM,f

dYDM
1

Y 2
DM

= −
∫ x0

xf

dx
λ〈σann · v〉

x2
,

→ 1

YDM,0
∼ λ〈σann · v〉

xf
+

1

YDM,f
,

→ YDM,0 ∼
xf

λ〈σann · v〉
. (4.22)

The annihilation of WIMPs between exiting thermal equilibrium and freeze-out will therefore

deplete their yield by YDM,0/YDM,f = x−1
f . Using result (4.22), the relative energy density of

DM today is

ΩDMh
2 ∼ 1.68× 10−10 GeV−2

〈σann · v〉

(
100

g∗(Tf )

) 1
2 (xf

20

)
; (4.23)

here we use the notation g∗ ≡ g∗s/ρ, since at high temperatures g∗s = g∗ρ. As we have

previously argued, we can see explicitly here that the freeze-out yield decreases with increasing

coupling strength. Particle A is known as a ‘WIMP miracle’ when xf ∼ 20 as it reproduces

the observed DM abundance [55, 56, 119].

4.2.2 Freeze-in production

Now we will consider the scenario where in the early hot universe there is a negligible

abundance of DM particles (A) that are very weakly, or feebly, coupled to a bath of particles

(B); this class of DM particles are therefore referred to as feebly interacting massive particles

(FIMPs). Their production rate, Γprod, is far less than the Hubble expansion rate throughout

the course of the universe’s history. As a result, we see in Figure 4.4 that the FIMPs yield,

given by the coloured dashed lines, does not coincide with the thermal abundance [118]. We

will consider the following two processes for the production of A:

BB → AA, B → AA, (4.24)

where the two-to-two scattering process has coupling strength λ and the decay process has

coupling strength λmB . The FIMP abundance is governed by the Boltzmann equation [118]:

d(nDMa
3)

dt
= 2Γprod nBa

3, (4.25)

with production rate:

Γprod = ΓBB→AA + ΓB→AA. (4.26)
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The FIMP number density remains low during production, since λprod � H(T ), so we can

neglect the reverse reactions AA → BB/B. We will assume the limit mB � mDM, in which

case the decay process usually dominates, and we can neglect the two-to-two scattering in

our calculation of the final yield. Additionally, if the bath of particles B is not in thermal

equilibrium the yield of A is model-dependent. This is the case in chapter 7, where we analyse

DM sterile neutrino production from the decay of inflaton with a highly infra-red distribution

[43]. Here we will present the model-independent result, thereby assuming particles B have

reached thermal equilibrium prior to the production of A.

At temperatures T � mB , the conformal number density of particles B is constant, nBa
3 =

c., and so we can approximate the integration of equation (4.25) by2

nDM ∼ 2ΓB→AAnBt,

∼ ΓB→AAnB
H

; (4.28)

where in the second line we have used the inverse relation between the Hubble expansion rate

and time in a radiation-dominated universe, H = 1/2t. In the limit mB � mDM, the decay

rate is

ΓB→AA =
λ2mB

8π
. (4.29)

Then substituting equation (2.32) for the thermal number density of B, we obtain the following

expression for the FIMP number density:

nDM ∼ ξ(3)
3
√

10

8π4

gB√
g∗ρ

λ2MPmBT, (4.30)

and expression for the FIMP yield:

YDM ∼ ξ(3)
135
√

10

16π6

gB
g∗s
√
g∗ρ

MPmB

T 2
λ2; (4.31)

we will assume particle B is a scalar and so gB = 1. When the bath particles are in thermal

equilibrium, freeze-in production is most efficient when the temperature is of the order of the

most massive particle at the interaction vertex, and so in our case when Tf ∼ mB [118]. When

T < mB , the number density of particles B are Botzmann suppressed; and when T > mB ,

2To more precisely solve for nDM, we need to integrate over the distribution functions of the particles
(fA, fB) in the Boltzmann equation [118]:

ṅDM + 3HnDM =

∫
dΠ2

AdΠB(2π4)δ4(2pA − pB)

×
[
|MB→AA|2fB(1 + fA)2 − |MAA→B |2f2

A(1 + fB)
]

; (4.27)

where dΠi = d3pi/(2π)32Ei are the phase space elements. This results in a final yield less than a factor of 2
different from our approximation, given in (4.32). See [118] for the details.
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the universe’s expansion rate is larger and therefore so is the rate the FIMP number density

is diluted. Particles A freeze-in with a final yield of

YDM,f ∼
(
3.33× 10−2

) 1

g∗s
√
g∗ρ

MP

mB
λ2, (4.32)

evaluated when Tf = mB , which corresponds to a relative energy density of

ΩDMh
2 ∼

(
2.18× 1025

) 1

g∗s
√
g∗ρ

mDM

mB
λ2, (4.33)

∼ O(0.1)

(
100

g∗(mB)

) 3
2
(
mDM

mB

)(
λ

2× 10−12

)2

. (4.34)

Here we have abbreviated g∗ ≡ g∗s/ρ, since at high temperatures g∗s = g∗ρ. Unlike the

freeze-out DM abundance given in equation (4.23), the freeze-in DM abundance increases with

increasing coupling strength.

4.3 Structure formation

DM plays an essential role in creating the network of galaxy clusters, filaments and voids

that form the large scale structure of the universe [19, 20], which is shown by the Sloan Digital

Sky Survey (SDSS) in Figure 4.5. We will first explain how baryonic structures are formed,

and the discrepancies of purely baryonic matter models with cosmological observables. We will

then discuss how this is rectified with an additional DM component.

Figure 4.5: SDSS map of galaxy distribution

The distribution of galaxies in the universe mapped by the SDSS out to distances
∼ 600 Mpc. The galaxies are represented by dots, and colour-coded from green to red to

show low to high local density respectively. The data in the image is from Data Release 17 of
the SDSS-IV [120].
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Before recombination, protons and electrons were coupled to photons by Thomson scat-

tering, which created a large radiation pressure that prevented the gravitational collapse of

density fluctuations. At scales below the Jeans’ length, given by equation (3.96), this gave

rise to the baryonic acoustic oscillations that we observe in the CMB [83, 121]. At recom-

bination, photons decouple and subsequently free-stream through the universe. As a result,

radiation pressure ceased, allowing gravitational forces to dominate, thus leading to the col-

lapse of perturbations. Before the consideration of DM, there were two competing theories that

assumed matter was purely baryonic: Zel’dovich’s pancake model, containing only adiabatic

perturbations [122]; and Peeble’s hierarchical clustering model, containing only isothermal

perturbations [123] (which evolve in the same way as isocurvature perturbations during radi-

ation domination). In Zeldovich’s model [122], perturbations collapse into large pancake-like

structures, and small-scale perturbations are smoothed out by Silk damping [87], as photons

diffuse out of overdense regions, dragging baryons with them. In order for there to be sufficient

time for the large structures to fragment and form the small-scale filamentary structures, the

model requires large perturbation amplitudes at recombination (∆T/T > 10−3 [124]), which

we now know exceed those measured by the CMB [125]. Alternatively, Peeble’s model [123] as-

sumes only isothermal perturbations and so there is no Silk damping, thereby allowing smaller

perturbations to collapse after recombination. However we now know CMB anisotropies are

adiabatic, there is currently no evidence of any admixture of isocurvature modes [126]. We

will now discuss how an additional dominant DM matter component is able to reproduce the

observed large scale structure.

By definition, DM does not interact electromagnetically and so it does not feel the effect of

radiation pressure prior to recombination. DM that is produced at relativistic speeds (defined

as ‘hot’ or ‘warm’ DM) damps perturbations below their ‘free-streaming length’, thus limiting

the minimum scale of structures that can form [127, 128]; this will be the subject of the

following section. However perturbations of ‘cold’ or ‘warm’ DM are able to collapse long

before recombination in the radiation-dominated epoch, thus enabling small-scale structures

to form [41, 42]. After matter-radiation equality, DM then dominates the evolution of matter

perturbations, and creates the gravitational potential wells for baryonic matter to fall into after

recombination, thus negating the impact of Silk damping [78]. Initially, matter perturbations

larger than the Jeans length grow linearly, whilst δρ/ρ < 1. Small-scale perturbations reach

δρ/ρ ∼ 1 first, at which time their growth becomes non-linear, and they gravitationally collapse

to form stars and galaxies. Large-scale perturbations remain in the linear regime until today, as

once the cosmological constant dominates their growth competes with cosmological expansion.

Smaller structures then later merge to form larger structures, such as filaments and clusters,

whilst underdense regions form vast voids [78]. Whilst baryonic matter is able to form very
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compact objects, such as stars, due to radiative cooling, DM is dissipationless, and so maintains

a diffuse halo structure [113, 129].

4.3.1 Free-streaming length

The free-streaming scale of DM plays a crucial role in structure formation, as it defines the

length below which DM density fluctuations are damped. DM particles that decouple from the

thermal bath at relativistic speeds, when TDM,f � mDM, have enough kinetic energy to escape

the gravitational potential wells in small over-dense regions. As a result of the free-streaming

DM, small primordial inhomogeneities are smoothed out, thereby preventing structure forma-

tion on these scales. However, once the universe expands and cools to temperatures T ∼ mDM,

the DM particles become non-relativistic. Subsequently, they are entrapped by the gravita-

tional potential wells and structures begin to form. The distance travelled by the DM particles

between decoupling and their non-relativistic transition defines the free-streaming length. The

maximum free-streaming length for any given DM model is constrained by the smallest ob-

servable structures in the universe.

As DM is very weakly interacting, it is described by a collisional fluid with a free-streaming

wavenumber and free-streaming length of [127, 128, 130]

kFS(t) =

(
4πGρ(t)a2(t)

) 1
2

〈v〉
=

√
3

2

H(t)a(t)

〈v〉
, (4.35)

λFS(t) =
2πa(t)

kFS(t)
. (4.36)

Note that where the Jeans length (3.96) defines the scale below which perturbations in a

collisional fluid undergo adiabatic oscillations, the free-streaming length (4.36) is the scale

below which perturbations are damped in a collisionless fluid. They are defined very similarly

up to a small numerical factor, except the velocity dispersion, 〈v〉, of a collisionless fluid replaces

the speed of sound, cs, in a collisional fluid. For this example, we will assume the DM particle

is fermionic and after decoupling it free-streams with a thermal velocity. At T � mDM, the

DM particle is relativistic and therefore travels at the speed of light. However once T ∼ mDM,

the velocity of the particle decays with the expansion of the universe [127, 128]:

〈v〉 ≡ 〈p〉
mDM

=
3.15TDM

mDM
=

3.15TDM,0

mDM

(a0

a

)
=

3.15T0

mDM

(
g∗s(T0)

g∗s(T )

) 1
3 (a0

a

)( 〈p〉
3.15T

)
,

= 350 kms−1(1 + z)g∗s(T )−
1
3

(
1 eV

mDM

)(
〈p〉

3.15T

)
. (4.37)

The DM particle’s velocity transitions from relativistic to non-relativistic when 〈v〉 = 1, which
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corresponds to red-shift [127, 128]

1 + znr = 856 g∗s(T ≈ mDM)
1
3

( mX

1 eV

)(3.15T

〈p〉

)
T≈mDM

. (4.38)

Next we will calculate the free-streaming length for DM that becomes non-relativistic during

matter domination (znr < zeq) and radiation domination (znr > zeq), where zeq defines the red-

shift where matter-radiation equality occurs [55]:

1 + zeq =
Ωm,0

Ωγ,0
∼ 6× 103. (4.39)

Note that the analysis needs to be carried out separately for both regimes as the expansion

rates have a different dependence on the scale factor. We define DM as ‘hot’ if it becomes

non-relativistic during the matter-dominated period, and ‘warm’ if it becomes non-relativistic

during the radiation-dominated period. In addition there may be ‘cold’ DM particles, which

have large masses and low velocities, and so their free-streaming lengths are insignificant on

cosmological scales.

4.3.1.1 Hot DM

During the matter-dominated period, the Hubble expansion rate is

H(t) = H0

√
Ωm,0(1 + z)3, (4.40)

where Ωm,0 is the relative energy density of matter in the universe today. Next we need to find

when the free-streaming length of the hot DM reaches its maximum, as this will determine

the scale below which structure formation is suppressed. During matter-domination, the scale

factor’s dependence on time is

a ∝ t 2
3 . (4.41)

Then substituting equation (4.40) into (4.36), and using relation (4.41), we evaluate the co-

moving free-streaming length’s dependence on time whilst the DM is initially relativistic and

once it has cooled to non-relativistic speeds:

λFS/a ∝


1
Ha ∝ t

1
3 , relativistic

1
Ha2 ∝ t−

1
3 . non-relativistic

(4.42)

Therefore the maximum co-moving free-streaming length, or minimum wavenumber, is at the

moment the DM transitions from being relativistic to non-relativistic [127, 128] at redshift znr
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evaluated in (4.38). By evaluating the average thermal velocity (4.37) at the non-relativistic

transition, we obtain the following for the minimum free-streaming wavenumber [127, 128]:

(kFS,min)
−1

=

√
2

3

350 kms−1

H0

√
Ωm,0

(1 + znr)
1
2 g∗s(T ≈ mDM)−

1
3

(
1 eV

mDM

)(
〈p〉

3.15T

)
T≈mDM

. (4.43)

Then substituting in equation (4.38) for znr, the maximum free streaming length of hot DM

today is

λFS,0 ≡
2πa0

kFS,min
≈ 1.39× 103 Mpc g∗s(T ≈ mDM)−

1
6

(
1 eV

mDM

) 1
2
(
〈p〉

3.15T

) 1
2

T≈mDM

, (4.44)

where the scale factor today is a0 = 1.

4.3.1.2 Warm DM

Thermal DM with masses of O(keV) transition to non-relativistic speeds at a redshift much

larger than the red-shift at matter-radiation equality,

znr = O(106)� zeq, (4.45)

during the radiation-dominated period. During the radiation-dominated period, the Hubble

expansion rate is

H(t) = H0

√
Ωγ,0(1 + z)2, (4.46)

where Ωγ,0 is the relative energy density of radiation in the universe today. During radiation-

domination, the scale factor’s dependence on time is

a ∝ t 1
2 . (4.47)

Then substituting equation (4.46) into (4.36), and using relation (4.47), we evaluate the co-

moving free-streaming length’s dependence on time whilst the DM is initially relativistic and

once it has cooled to non-relativistic speeds:

λFS/a ∝


1
Ha ∝ t

1
2 , relativistic

1
Ha2 ∝ const. non-relativistic

(4.48)

Therefore whilst the DM is relativistic the co-moving free streaming length increases until the

DM transitions to non-relativistic speeds, where it reaches its maximum value and maintains
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a constant value there after. The minimum wavenumber is therefore given by [130]:

(kFS,min)
−1

=

√
2

3

0.350 kms−1

H0

√
Ωγ,0

g∗s(T ≈ mDM)−
1
3

(
1 keV

mDM

)(
〈p〉

3.15T

)
T≈mDM

, (4.49)

which corresponds to the following maximum free-streaming length of warm DM today [130]:

λFS,0 ≡
2πa0

kFS,min
≈ 3.64 Mpc g∗s(T ≈ mDM)−

1
3

(
1 keV

mDM

)(
〈p〉

3.15T

)
T≈mDM

. (4.50)

However, strictly speaking the better parameter for defining the scale that is affected by the

free-streaming of warm dark matter is the free-streaming horizon, which is just the present day

value of the particle horizon [130],

λFSH,0 =

∫ t0

0

dt
〈v〉
a
. (4.51)

The free-streaming horizon is larger than the free-streaming length, as whilst λFS,0 remains

constant after the non-relativistic transition, λFSH,0 continues to grow, typically by one order

of magnitude [130]. The calculation of λFSH,0 is more involved (see [130] for details), and so

we use λFS,0 in our analysis, which provides a weaker constraint on our warm DM models.

4.3.2 Lyman-α forest

The Lyman-α forest examines structure formation in the early universe by using light emitted

from highly redshifted and luminous quasars [131–136]. As the photons travel through the

universe, they are red-shifted with its expansion, and those with the Lyman-α transmission

energy that come in contact with neutral hydrogen are absorbed, exciting an electron from

its ground state to its first excited state. On returning to the ground state, the photon is

scattered away from our line of sight, and so we observe a Lyman-α absorption line in the

quasar’s spectrum. The redshift of the line tells us the distance the photon is absorbed,

thereby allowing us to map the distribution of neutral hydrogen in the universe.

In the early universe the neutral hydrogen clouds are large and diffuse, and so there are

a larger number of absorption lines at high redshifts, as seen in Figure 4.6. Over time, the

hydrogen clouds becomes smaller and denser until they eventually collapse under gravity to

form stars and galaxies, and so we see fewer absorption lines at low redshifts [134, 135]. The

broad peak at the far right of the spectrum in Figure 4.6 is the characteristic Lyman-α emission

intrinsic to the quasar, therefore all the absorption lines at lower redshifts are due to intervening

matter [133].
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Figure 4.6: Lyman-α forest

Redshifted Lyman-α absorption lines in the spectra of quasar QSO 1422+23, taken from
[134].

The Lyman-α forest is able to probe high redshifts (z = 2 − 6) that are undetectable by

telescopes, making it a powerful tool for studying the matter power spectrum in the non-

linear regime and thus constraining DM models [92, 93, 137, 138]. Hot DM is excluded as a

viable DM candidate due to its large free-streaming length, calculated in (4.44), that would

prevent the formation of MPc-scale structures [124, 139]. Although cold DM has been very

successful in describing the large scale self-similar structure of the universe [41], testing the

model in simulations of Milky Way sized galaxy formation revealed that it over-predicted the

abundance of satellite galaxies [89, 90]. Small-scale structures may have been suppressed by

reionization, which increased the pressure of the intergalactic medium at the time when the first

stars and galaxies began to form [140–142]. Alternatively, the discrepancies may be resolved

if our DM is warm, as their free-streaming suppresses the abundance of small-scale structures

[91–93]. The Lyman-α spectra from the High Resolution Echelle Spectrometer (HIRES) [136]

and the Sloan Digital Sky Survey (SDSS) [135] tightly constrains the free streaming length of

warm DM, calculated in (4.50), to be within the bound [92, 102, 130, 138, 143, 144]:

λFS,0 < λmax
FS,0 = 0.1 Mpc, (4.52)

which translates to a lower mass bound for a given model. In Section 5.2.2 we will show that

the Lyman-α constraint excludes a particular keV-scale sterile neutrino DM model (assuming

the DM makes up the total observed abundance), where the DM is produced via non-resonant

active neutrino mixing, known as the Dodelson-Widrow (DW) mechanism [29]. On the other

hand, the DM model that we present in chapter 7 is within the Lyman-α constraint [43].

4.4 Summary and discussion

In this chapter we have shown that a dominant DM component is essential for large-scale

structure formation [19, 20], reproducing the CMB’s power spectrum [17, 18] and explaining
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many gravitational effects, such as galactic rotational curves and gravitational lensing [14–16].

In order for our cosmological model to be consistent with these results, we introduce a sterile

neutrino DM candidate in chapter 7 by minimally extending our inflationary potential with

a modified νMSM. The model couples the inflaton field to three sterile neutrinos, and the

lightest, N1, is our DM candidate. We will now summarise the key results from this chapter

that will allow us to constrain the parameter space of our model.

The analysis carried out on the freeze-in and freeze-out production mechanisms will be

required to constrain the DM relic abundance and inflaton parameters of our model. Freeze-in

DM has an initially negligible abundance and remains decoupled from the thermal bath, as

its production rate is much smaller than the Hubble expansion rate. Their relic abundance is

therefore proportional to their coupling strength. On the other hand, freeze-out DM has an

initially thermal abundance, as in the early universe their production rate exceeds the Hubble

expansion rate. Their relic abundance decreases with increasing coupling strength, as DM that

is more strongly coupled remains in thermal equilibrium longer after departing from chemical

equilibrium, when their yield is Boltzmann suppressed.

In our cosmological model, the sterile neutrino DM is produced via inflaton (χ) decay in

the early universe. As the DM production rate, Γprod, is far less than the Hubble expansion

rate throughout the course of the universe’s history, the DM is produced via the freeze-in

mechanism, and so its abundance is governed by the following Boltzmann equation [118],

d(nDMa
3)

dt
= 2Γprodnχa

3. (4.53)

In section 4.2.2 we analysed the freeze-in production mechanism under the assumption that the

decaying particle is in thermal equilibrium. In our model, however, only the lightest inflaton

particles have thermalised prior to DM production, whilst the heaviest inflaton particles have a

highly non-thermal infrared distribution. In section 7.4, we provide analytical approximations

at the extremeties of our inflaton parameter space, and in section 7.5, we provide a detailed

numerical analysis in which we solve the Boltzmann equations precisely across the entire in-

flaton parameter space. We then equate the known the relative energy density of DM today,

Ωc,0 = 0.265± 0.007 [33], with the relic abundance of our sterile neutrino DM,

ΩDM,0 =
mDMYDM,fs0

ρc,0
, (4.54)

in order to constrain the parameters of our model.

In section 8.4.2, we investigate whether an inflaton with a zero vacuum expectation value

could be a possible source of WIMP (freeze-out) DM. However, using the following results for
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the freeze-out abundance of relativistic particles,

ΩDMh
2 =

gDM
∗n

g∗s(Tf )

mDM

13.4 eV
, (4.55)

and non-relativistic particles,

ΩDMh
2 ∼ 1.68× 10−10 GeV−2

〈σann · v〉

(
100

g∗(Tf )

) 1
2 (xf

20

)
, (4.56)

we show that this situation is fully excluded, as it leads to overclosure of the universe.

The size of the smallest scale structures that can form in the universe is determined by how

relativistic DM is on production. ‘Hot’ or ‘warm’ DM particles are produced with relativistic

velocities, and become non-relativistic during the matter and radiation dominated periods re-

spectively. The distance the particles travel at relativistic velocities defines their free-streaming

length, during which they have enough kinetic energy to escape the gravitational wells of small

over-dense regions. As a result, DM perturbations below the free-streaming length are damped,

and we observed a suppression of small-scale structures in the universe. ‘Cold’ DM particles

are produced with non-relativistic velocities, and so their free-streaming length is insignificant.

The Lyman-α forest is our most sensitive probe for measuring the smallest scale structures

in the universe, and imposes the following bound on the maximum free-streaming length [92,

102, 130, 138, 143, 144],

λFS,0 < λmax
FS,0 = 0.1 Mpc. (4.57)

The bound fully excludes hot DM as a viable candidate and tightly constrains warm DM

models, which have a free-streaming length of

λFS,0 ≡
2πa0

kFS,min
≈ 3.64 Mpc g∗s(T ≈ mDM)−

1
3

(
1 keV

mDM

)(
〈p〉

3.15T

)
T≈mDM

. (4.58)

Whilst cold DM models are unconstrained by the Lyman-α bound, model simulations suggest

that they may over-predict the abundance of small-scale structures [89, 90].
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Chapter 5

Neutrinos

Since the observation of neutrino oscillations we have known that the massless SM neutrino

sector is incomplete. In this chapter we will study a possible solution: we extend the SM neu-

trino sector by the Neutrino Minimal Standard Model (νMSM) with three right-handed singlet

neutrinos, which generate the SM neutrino masses via the ‘see-saw’ mechanism. Moreover, the

lightest right-handed neutrino is an ideal dark matter candidate, and two heavier right-handed

neutrinos are able to generate the observed BAU via leptogensis. Here, we aim to provide the

reader with the background theory and astrophysical bounds of the SM neutrino sector and the

νMSM, which will be implemented in a modified νMSM that extends our light inflaton model

in chapter 7. Section 5.1 outlines the SM neutrino sector, νMSM and the generation of SM

neutrino masses. Section 5.2 analyses non-resonant and resonant DM production mechanisms,

and the astrophysical constraints that tightly bound the DM parameter space. In section 5.3

we study various mechanisms for leptogenesis in νMSM, and how EW sphaleron processes con-

vert LA to BA. We then bound the parameter space of the two heavier right-handed neutrinos

by requiring they generate the total BAU.

5.1 Neutrinos in the Standard Model and beyond

5.1.1 Neutrinos in the Standard Model

Neutrinos are spin−1/2 fermions that are singlets of the spontaneously broken SM gauge

symmetry SU(2)L
⊗
U(1)Y

SSB−−→ U(1)EM. The SM has three flavours of neutrino (electron,

muon and tau), which is consistent with the primordial elemental abundances at Big Bang Nu-

cleosynthesis [55, 145] and collider experiments [146]. We only observe left-handed neutrinos,

which form part of the left-handed lepton douplet:

LLl =

νl
l


L

, (5.1)

where l = e, µ, τ .
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Masses are included in the SM through Yukawa interactions, which couple fermion states

of opposite helicities, fL/R, to the SM Higgs doublet, Φ,

−Lf = gf
(
f̄LfR + f̄RfL

)
Φ. (5.2)

Dirac mass terms that couple left- and right-handed fermions are then generated post EW

symmetry breaking, Φ→ 〈Φ〉+ φ√
2
,

−Lf =
gf√

2

(
f̄LfR + f̄RfL

)
φ+mf

(
f̄LfR + f̄RfL

)
, (5.3)

where φ is the SM Higgs boson, the fermion mass is

mf =
gfv√

2
, (5.4)

and the SM Higgs vacuum expectation value (VEV) is v ≡
√

2〈Φ〉 = 246 GeV [147]. Since

we don’t observe right-handed neutrinos, the SM predicts left-handed neutrinos to be massless

particles. Additionally, neutrino masses cannot be generated via loop-level processes since they

violate lepton number and B −L conservation. The neutrinos are therefore precisely massless

if they are to obey all SM symmetries. The neutrinos only interact via weak charged currents

(CC) and neutral currents (NC). The corresponding Lagrangian densities are

−LCC =
g√
2

∑
l

ν̄Llγ
µl−LW

+
µ + l+Lγ

µνLlW
−
µ , (5.5)

−LNC =
g

2 cos θW

∑
l

ν̄Llγ
µνLlZ

0
µ.

νl l−

W+

(a) Charged current interac-
tion

ν̄l l+

W−

(b) Charged current interac-
tion

νl/ν̄l νl/ν̄l

Z0

(c) Neutral current interaction

Figure 5.1: Neutrino interactions

5.1.2 Neutrino oscillations

The Homestake mine experiment was the first experiment to detect the electron neutrinos

created by thermonuclear reactions in the Sun [148], referred to as solar neutrinos, and notice

a discrepancy between the flux observed and the Standard Solar Model (SSM) theoretical
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prediction [149]. Referred to as the solar neutrino problem, the experiment measured only a

third of the expected flux. It was then theorised that if the SM neutrinos had mass they’d

be able change flavour (or ‘oscillate’) [150–152]. This was later confirmed by the Sudbury

Neutrino Observatory experiment that measured the total neutrino flux to be consistent with

SSM, whilst the flux of individual neutrino flavours were not [12, 13].

Neutrinos produced via weak interactions in a given flavour eigenstate, |να〉 (α = e, µ, τ),

propagate in a mass eigenstate, |νi〉 (i = 1, 2, 3), which on detection, then collapse back into a

flavour eigenstate. The linear composition of mass states that make up a given flavour state is

determined by the PMNS matrix [153], U ,

|να〉 =

3∑
i=1

Uαi|νi〉, (5.6)

that diagonalises the neutrino mass matrix,

mijδij =
∑

α,β=e,µ,τ

(UT )iαmαβUβj , (5.7)

where mij is the mass matrix of the neutrino mass eignestates. The PMNS matrix is given by

U =


Ue1 Ue2 Ue3

Uµ1 Uµ2 Uµ3

Uτ1 Uτ2 Uτ3

 , (5.8)

=


1 0 0

0 cL23 sL23

0 −sL23 cL23

 ·


cL13 0 sL13e
−iδL

0 1 0

−sL13e
iδL 0 cL13

 ·

cL21 sL12 0

−sL12 cL12 0

0 0 1

 ·

eiα1 0 0

0 eiα2 0

0 0 1

 .

(5.9)

If neutrinos are Dirac particles, the PMNS matrix has 4 independent parameters: 3 mixing

angles (cLij ≡ cos θLij and sLij ≡ sin θLij), and 1 charge-parity violating phase, δL. If the neu-

trinos are Majorana particles, there are an additional 2 phases, α1,2; we will discuss Majorana

neutrinos in the last part of this section.

The probability of a neutrino oscillating from flavour α to β in time t is

Pαβ = |〈νβ |να(t)〉|2 =
∣∣∣ 3∑
i=1

3∑
j=1

UαiU
∗
βj〈νj |νi(t)〉

∣∣∣2. (5.10)

The quantum mechanical propagation from time t = 0 to some time t when the state is
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measured, is given by

|νi(t)〉 = e−iq·x|νi(0)〉, (5.11)

where

q · x = Et− p · x, (5.12)

= L
√
p2 +m2

i − pL,

∼ m2
iL

2E
;

as the neutrinos are relativistic, pi � mi, we take the approximation pi ∼ Ei, and L is the

distance travelled by the neutrino in time t. The probability amplitude of να → νβ is then

given by

Pαβ =

3∑
i=1

|Uαi|2|Uβi|2 +

3∑
i=1

3∑
j=1

UαiU
∗
βiU

∗
αjUβje

−2iXij , (5.13)

= δαβ − 4

3∑
i<j

Re
[
U∗αiUβiUαjU

∗
βj

]
sin2Xij + 2

3∑
i<j

Im
[
U∗αiUβiUαjU

∗
βj

]
sin 2Xij ,

where we have used the orthogonality of mass eigenstates, 〈νj |νi〉 = δij , and define [39]

Xij =
∆m2

ijL

4E
= 1.27

∆m2
ij

[
eV2

]
L [km]

E [GeV]
, (5.14)

with ∆m2
ij ≡ m2

i − m2
j . The rate of neutrino oscillations is therefore proportional to the

squared mass splitting and the probability amplitude is proportional to the neutrino mixing

angles. The largest disappearance of α neutrinos occurs when Xij = π
2 , which for a given mass

splitting and distance travelled, is when the neutrinos have energy

E = 0.81∆m2
ijL. (5.15)

As we can only determine the magnitude of ∆m2
32, we define a ‘normal’ hierarchy (NH)

with mass orderings m1 < m2 < m3, and ‘inverted’ hierarchy (IH) with mass orderings m3 <

m1 < m2. The active neutrino mass splittings are [39]

∆m2
21 ≡ ∆m2

sol = (7.53± 0.18)× 10−5 eV2, (5.16)

∆m2
32 ≡ ∆m2

atm =


(2.453± 0.033)× 10−3 eV2, (NH)

(−2.536± 0.034)× 10−3 eV2. (IH)

(5.17)

Neutrinos produced from different sources have varying energies and travel different distances
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to the point of their detection, and so the measurement of their flux is sensitive to different

neutrino mass splittings, as shown by equation (5.15). Solar neutrinos have E ∼ 1 MeV and

travel L ∼ O(1010) km to reach Earth, and so their flux is sensitive to the measurement

of ∆m2
21, which is otherwise referred to as the solar mass splitting

(
∆m2

sol

)
. Although the

probability amplitude of neutrino oscillations is only sensitive to the magnitude of ∆m2
ij , the

matter effects, otherwise known as the Mikheyev–Smirnov–Wolfenstein (MSW) effect1 [151,

152], caused by solar neutrino interactions within the electron-dense Sun, induce sensitivity

to the sign of ∆m2
21. On the other hand, atmospheric neutrinos produced by pion and kaon

decays have E ∼
(
0.1− 102

)
GeV and travel L = O

(
10− 104

)
km to reach Earth, and so

their flux is sensitive to ∆m2
32, which is otherwise referred to as the atmospheric mass splitting(

∆m2
atm

)
. Additionally, neutrinos produced from reactor and accelerator experiments with

short and long baselines can access a wide range of ∆m2
ij and θij . The active neutrino mixing

angles are [39]

sin2 θ12 = 0.307± 0.013, (5.18)

sin2 θ23 =


0.546± 0.021, (NH)

0.539± 0.022, (IH)

(5.19)

sin2 θ13 = (2.20± 0.07)× 10−2. (5.20)

As we explained earlier in this section, Dirac neutrino masses cannot be generated via the

Higgs mechanism due to the absence of right-handed neutrinos. However, if neutrinos and

anti-neutrinos are the same particle, neutrino masses may be incorporated into the SM via a

Majorana mass term [155],

−LM =
mM

2

(
νCL νL + νLν

C
L

)
, (5.21)

where superscript C denotes charge conjugation of the field. The observation of neutri-

noless double-beta decay would provide confirmation that neutrinos are Majorana particles

[2019Beta, 156]. Whilst Dirac neutrinos and anti-neutrinos are distinct, with equal and

opposite quantum numbers (lepton number L = ±1, weak isospin I3 = ±1/2 and weak hyper-

charge Y = ∓1), Majorana particles and antiparticles are indistinguishable, and so they have

the same quantum numbers. As a result, the Majorana neutrino mass term violates lepton

number by ∆L = ±2, weak isospin by ∆I3 = 1 and weak hypercharge ∆Y = −2. To form

a Majorana mass term that is gauge invariant, we require new physics beyond the SM, i.e.

coupling the neutrinos to a Higgs field with I3 = −1 and Y = +2 [157].

1The interaction between electron neutrinos and the high density of electrons in the Sun increases the
electron neutrino’s effective mass relative to their mass in a vacuum. As a result, their effective mixing angle
is different to their vacuum mixing angle, and depends on the sign of ∆m2

21 [154].
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As we have not obtained any observational evidence of Majorana neutrinos, in the following

section we consider an alternative way to generate Dirac SM neutrino masses through the

addition of right-handed singlet neutrinos [53, 54]. As the right-handed neutrinos have no

charge, a Majorana mass term can be added without violating local gauge symmetries. The

term does still, however, violate lepton number conservation. The SM neutrino masses can

then be generated via the ‘see-saw’ mechanism [158, 159]. This model can also solve other

problems within the SM by providing a viable DM candidate [160, 161], and a mechanism for

leptogenesis [11, 104, 162–166] that can generate the BAU.

5.1.3 The Neutrino Minimal Standard Model

The Neutrino Minimal Standard Model (νMSM) [53, 54] aims to explain the origin of the

SM neutrino masses through the addition of right-handed singlet neutrinos, NI (I = 1,N ). It

is common to refer to SM neutrinos as ‘active’ neutrinos, as they interact via the weak force,

and right-handed neutrinos as ‘sterile’ neutrinos, as they are decoupled from the weak force.

This is considered to be a rather natural extension since the SM neutrino is the only fermion

which does not have a right-handed component. The most general renormalizable Lagrangian

is:

LνMSM = N I i∂νγ
νNI − FαILαNIΦ−

1

2
(MM )IN

C

I NI + h.c.. (5.22)

The left-handed lepton doublet and right-handed sterile neutrino is coupled to the SM Higgs

doublet, Φ, by a Yukawa coupling that generates the Dirac mass, (mD)αI = FαI〈Φ〉, post EW

symmetry breaking; MM is the Majorana mass of the sterile neutrinos. In the limit mD �MM ,

we perform a block diagonalization of the total (3 +N )× (3 +N ) neutrino mass matrix,

 0αβ (mD)αJ

(mT
D)Iβ (MM )IδIJ

→
mαβ 0αJ

0Iβ MIJ

 , (5.23)

from which we obtain the 3× 3 Majorana mass matrix for the active neutrinos [167],

mαβ = −
N∑
I=1

(mD)αI
(
mT
D

)
Iβ

(MM )I
. (5.24)

As larger Majorana neutrino masses generate lighter active neutrino masses, the mechanism is

called the ‘see-saw’ mechanism [158, 159]. Up to first order in mD/MM , the sterile neutrino

mass matrix is MIJ = (MM )IJδIJ . To simplify our notation going forward, we will just use
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MI for sterile neutrino mass and Majorana mass. The active-sterile neutrino mixing angle is

θαI =
(mD)αI
MI

, (5.25)

and the total interaction strength between a sterile neutrino and all active neutrino species is

θ2
I ≡

∑
α=e,µ,τ

|θαI |2. (5.26)

One sterile neutrino with a non-zero mixing angle is required to generate each non-zero active

neutrino mass. The minimal νMSM therefore requires the addition of only 2 sterile neutrinos to

account for the 2 observed neutrino mass splittings, assuming the lightest neutrino is massless.

If we require all three neutrinos to have mass, we need at least 3 sterile neutrinos [168]. Next

we will consider the situation where the lightest sterile neutrino is dark matter. In this case,

the mixing angle of the DM sterile neutrino is too small to contribute sufficiently to the active

neutrino masses and leptogenesis, and so an additional 2 heavier sterile neutrinos are required

[53, 54]. Moreover, since there are are 3 fermionic generations in the SM, an additional 3 sterile

neutrinos appears to be a natural choice.

5.2 Sterile neutrino dark matter

We will first investigate whether active neutrinos are a plausible WIMP dark matter candi-

date. In section 2.4, we showed that active neutrinos decouple from the SM whilst they are

still relativistic, at Tν,f = 2− 3 MeV. We can then evaluate their present energy density using

equation (4.12):

Ωνh
2 =

gν∗n
g∗s(Tf )

∑
mν

13.4 eV
=

∑
mν

96 eV
; (5.27)

where gν∗n = 3
4 × 2 = 3

2 and g∗s(Tν,f ) = 10.75 are evaluated using equations (2.36) and (2.39)

respectively. If we require the SM neutrino energy density to make-up the total DM abundance,

the neutrinos need to have a mass of mν ∼ O(10) eV. Given that neutrinos have a thermal

distribution, 〈p〉/Tν = 3.15, we use equation (4.50) to evaluate their free-streaming length:

λFS ≈ 3.64 Mpc g∗s(T ≈ 10 eV)−
1
3 × 102

(
10 eV

mν

)(
Tν
T

)
T≈10 eV

,

∼ 1.65× 102 Mpc

(
10 eV

mν

)
, (5.28)

where g∗s(T ≈ 10 eV) = 3.91, and Tν/T = (4/11)
1
3 at T ≈ 10 eV. The SM neutrino free-

streaming length greatly exceeds the Lyman-α bound on the maximum free streaming length

given in (4.52) and so they are too hot to account for the small scale structures in the universe.
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We therefore conclude that they are not a viable DM candidate.

On the other hand, sterile neutrinos are heavier than active neutrinos and can be produced

non-thermally; the lightest and therefore the most stable sterile neutrino (N1) is an ideal

dark matter candidate if it is sufficiently long-lived [160, 161]. Sterile neutrinos can decay

through active-sterile mixing into three active neutrinos via a neutral current, N → νανβνβ ,

and radiatively via N → νγ, emitting a photon with energy Eγ ∼ MI/2 [169], as shown in

Figure 5.2.

να

NI

θIα
να

νβ

νβ

Z

(a) Sterile neutrino decay via active-sterile mixing into three active
neutrinos via a neutral current.

θIα

W±

γ
NI να l∓α

να

(b) Sterile neutrino decay via active-sterile mixing into an active
neutrino and photon via a charged current.

Figure 5.2: Sterile neutrino decay channels

The dominant sterile neutrino decay channel, N → νανβνβ , constrains the maximum DM

interaction strength in equation (5.26) [106, 170],

θ2
1 < θ2

1,max = 3.4× 10−4

(
10 keV

MI

)4

, (5.29)

by the requirement that N1’s lifetime exceeds the age of the universe. However, we will later

show that the absence of x-rays observed from radiatively decaying sterile neutrinos imposes a

more stringent constraint on the DM active-sterile neutrino mixing angle [171]. Additionally,

the sterile neutrino DM is tightly constrained by two other independent astrophysical bounds:

its maximum phase space density [172] and the Lyman-α maximum free-streaming length [102].

Next we study resonant and non-resonant production of DM sterile neutrinos via active-

sterile neutrino oscillations, and show that x-ray, Lyman-α and phase space density bounds

tightly constrain their parameter space. In chapter 7 I present an alternative model that evades

these constraints, in which DM sterile neutrinos are produced via inflaton decay in the early

universe.
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5.2.1 Dark matter production

In the νMSM, the active-sterile neutrino Yukawa coupling gives rise to DM sterile neutrino

production. Below the EW scale, production is via active-sterile neutrino oscillations with a

rate approximately given by [168, 173]

ΓN ∼ Γνθ
2
M1
, (5.30)

where the rate of active neutrino production is Γν ∼ G2
FT

5, and θ2
M1

is the modified active-

sterile mixing angle for particles travelling through a medium of finite temperature and density

[168, 173],

θ2
M1

(T ) ' θ2
1(

1 + 2p
M2

1
(b (p, T )± c (T ))

)2

+ θ2
1

, (5.31)

where p is the momentum of the DM sterile neutrino. In a vacuum the active-sterile neutrino

mixing angle, θ1, is suppressed due to their large difference in mass. However, by the MSW

effect [174, 175], active neutrinos propagating through a medium acquire an effective mass due

to their weak interactions with the plasma, whilst sterile neutrinos do not, thereby decreasing

their effective mass difference. As a result, the active-sterile neutrino mixing angle in a medium

is enhanced relative to the active-sterile neutrino mixing angle in a vacuum. The function

b(p, T ) accounts for the MSW effects induced by the active neutrinos’ weak interactions with the

thermal plasma. The main contributions are from gauge boson resonances in νν, νee
−, νee

+

scatterings [168, 174],

b(p, T ) =
16G2

F

παW
p
(
2 + cos2 θW

) 7π2T 4

360
, (5.32)

where θW is the Weinberg angle, GF is the Fermi constant and αW is the weak coupling

constant. The term b(p, T ) dominates over c(p, T ) in a CP-symmetric plasma. The function

c(T ) accounts for the lepton-number driven MSW effect that is present if the plasma is CP-

asymmetric [30, 168],

c(T ) = 3
√

2GF
(
1 + sin2 θW

)
(nνe − nνe) , (5.33)

where nνe(nνe) is the number density of background (anti-)electron-neutrinos. In equation

(5.31) c(T ) contributes with an opposite sign for N1 mixing with active neutrinos and anti-

neutrinos [168].

Next, we will consider regions of the sterile neutrino parameter space where θ2
M1
� O(1) and

θ2
M1
∼ O(1), which give rise to non-resonant and resonant production respectively. These cases
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will be analysed separately, since the sterile neutrinos have different momentum distributions.

We will then constrain the DM sterile neutrino parameter space using various astrophysical

bounds in section 5.2.2.

Non-resonant production

DM sterile neutrinos are non-resonantly produced (NRP) when their active-sterile neutrino

mixing angle is θM1
� O(1), which is known as the Dodelson-Widrow (DW) mechanism [29] .

This physically corresponds to when the CP-asymmetry in the plasma is small, in which case the

function b(p, T ) dominates over c(T ) in (5.31). Their momentum distribution function is well

approximated by that of the active neutrino, a relativistic thermal Fermi-Dirac distribution,

suppressed by a factor χ,

fN1
' gN

(2π)
3

χ

e
p
Tν + 1

. (5.34)

The number of internal degrees of freedom of N1 is gN = 2, the active neutrino temperature is

Tν , and the suppression factor is approximately χ ∼ θ2
1. With a more careful analysis, we find

that the momentum distribution is actually slightly shifted towards the infrared relative to the

thermal distribution with 〈p〉 = 3.15T . The sterile neutrinos are therefore slightly cooler, with

an average momentum of [29, 143]

(
〈p〉

3.15T

)
T≈keV

= 0.8− 0.9. (5.35)

NRP sterile neutrinos with a mass of O(keV) are classified as warm DM candidates, which

may well be favoured over cold DM for structure formation [176, 177]. Their production

temperature, defined when the production rate (5.30) has reached a maximum, is [29]

Tprod ' 133

(
M

keV

) 1
3

MeV. (5.36)

As ΓN (Tprod)� H(Tprod), the DM sterile neutrinos remain out of thermal equilibrium.

Resonant production

The resonant production (RP) of DM sterile neutrinos, known as the Shi-Fuller mechanism

[30], occurs when the effective mass of the active neutrino is approximately equal to the mass

of the sterile neutrino, which corresponds to when [168]

1 +
2p

M2
1

(b (p, T )± c (T )) = 0. (5.37)
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For the functions b(p, T ) and c(p, T ) to cancel, we require the LA of the plasma to be large.

When equation (5.37) is satisfied, the effective active-sterile neutrino mixing angle, given by

equation (5.31), is θM1
∼ 1, and thus we generate the maximum abundance of RP sterile

neutrino DM for a given LA [168, 178]:

Y1,max ∼ YL, (5.38)

where Y1 ≡ n1/s and YL is the LA defined in equation (2.49). The maximal amount of LA

generated by the thermally-decoupled decay of heavy sterile neutrinos (N2,3) is [178, 179]

∆L,max =
4

(9× 2) + 4
=

2

11
, (5.39)

where 4 is the total number of spin states of N2,3 and 9 is the number of spin states of 3 leptonic

generations. In equation (5.39) we have used the LA paramerization defined in equation (2.48),

which corresponds to

YL,max ∼ 7× 10−4. (5.40)

The RP sterile neutrinos populate a highly non-thermal, infra-red momentum distribution,

with an average momentum of [30, 143]

(
〈p〉

3.15T

)
T≈keV

≈ 0.6, (5.41)

RP sterile neutrinos are therefore colder than NRP sterile neutrinos, but with a mass of O(keV),

they are also classified as warm DM candidates. Their maximum abundance is constrained by

the observed DM abundance [168, 178],

Y1 ≤ YDM ∼ 10−6

(
keV

M1

)
, (5.42)

therefore resonant effects do not significantly contribute to the DM abundance if YL < O(10−6)

for keV sterile neutrinos. For resonant effects to significantly contribute to the production of

DM, we require lepton flavour asymmetries that greatly exceed2 the BAU, YB = O(10−10).

The majority of the LA must therefore be generated after the EW phase transition, once

sphalerons are frozen-out, in order to prevent the overproduction of BA [30].

2The total LA may be of the order of the BAU if there is a cancellation between different neutrino species.
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5.2.2 Astrophysical dark matter constraints

Next we evaluate two independent astrophysical bounds: the phase space density and x-ray

bounds, which we then apply to RP and NRP sterile neutrino models. We show that with the

addition of the Lyman-α bound, their parameter space is strongly constrained.

Phase space density bound

DM particles have a maximum allowed phase-space density (PSD) that can be constrained

either by Liouville’s theorem or the Pauli Exclusion Principle (PEP), if the DM is fermionic.

Using a DM-dominated object with a known density and velocity dispersion, such as dwarf

spheroidal galaxies (dSphs), we can then obtain a lower mass bound of the DM particle, which

is defined when the PSD of the object corresponds to the maximum PSD of the DM particle

[180].

By PEP, the PSD of fermionic DM can not exceed that of a degenerate Fermi gas. The

maximum number of fermionic DM particles allowed within a sphere of momentum-space of

radius kF is

N =
g · 4

3πk
3
F(

2π
L

)3 , (5.43)

where g is the number of internal degrees of freedom of the DM particle and L is a unit of

length. The Fermi vector, kF , is then given by

kF =

(
6π2ρ(r)

gm

) 1
3

, (5.44)

where m is the mass of the DM particle, and ρ ≡ mN/L3 is the average mass density. For the

DM particles to be gravitationally bound within a spherical object, the Fermi velocity [172,

180],

vF ≡
~kF
m

= ~
(

6π2ρ(r)

gm4

) 1
3

, (5.45)

must be less than the escape velocity of the object [172],

v∞(r) =

(
8πG

∫ rmax

r

dx

x2

∫ x

0

ρ(y)y2dy +
2GM(< rmax)

rmax

) 1
2

. (5.46)

rmax is some cut-off scale in the density profile of the object and M(< rmax) is the mass

contained within rmax. As a result, the following lower mass bound of a DM particle is obtained
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from the dSh Leo II data at the 95% C.L. [172],

M1 ≥MPEP =

(
6π2~3ρ(r)

gv∞(r)3

) 1
4

= 0.13 keV. (5.47)

The Leo II dSph was used in [172] to obtain all the DM mass bounds since its data provided

the strongest constraint of all the dSphs.

For specific DM models, such as RP and NRP sterile neutrinos, for which we know the

primordial DM (fine-grained) distribution function, we are able to obtain a more stringent

mass bound using Liouville’s theorem, which states “the phase-space distribution function does

not change in the course of dissipationless, collisionless dynamics” [180]. The maximum of the

fine-grained primordial distribution, fmax, therefore remains constant as the system evolves.

Physical measurements, however, can only probe the course-grained distribution of the dSph,

F ≡ dρ/d3v, i.e. the phase-space density averaged over some region of momentum space [172].

The course-grained distribution is related to the fine-grained distribution, f ≡ dn/d3p, by

F = m4 d (ρ/m)

d3 (mv)
= m4f. (5.48)

Using Liouville’s theorem, we are then required to satisfy the following inequality [172, 180],

Fmax ≤ m4fmax, (5.49)

which translates into a lower mass bound of the DM particle. This was originally evaluated by

Tremaine and Gunn (TG) [181], however we will refer to a modified version from [172], which

assumes the DM halo has a multivariate Gaussian velocity distribution:

Fmax =
ρ(r)

(2π)
3
2σr(r)σ2

t (r)
, (5.50)

where σr and σt are the radial and tangential velocity dispersions respectively. The maximum

of the Fermi-Dirac distribution function for relativistic and thermal fermions is

fmax,FD =
g

2(2π~)3
. (5.51)

NRP sterile neutrinos have a distribution function that is well-approximated by (5.34), the

Fermi-Dirac distribution normalised by χ ∼ θ2
1, and so its maximum is [172, 180]:

fmax,NRP ∼ χfmax,FD =
gχ

2(2π~)3
. (5.52)
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Then equating the abundance of NRP sterile neutrinos with the total DM abundance [182],

ωDM ≡ ΩDMh
2 = gχ

MNRP

94 eV
, (5.53)

allows us to re-express equation (5.52) as [172, 180]

fmax,NRP ∼
ωDM

2(2π)3

94 eV

MNRP
, (5.54)

where ωDM ' 0.12. Equating equations (5.50) and (5.54) using Liouville’s theorem, given by

equation (5.49), the lower mass bound for NRP sterile neutrino at the 95% C.L. is [172]

M1 ≥MNRP = 1.74 keV. (5.55)

The distribution function of RP sterile neutrinos is highly non-thermal and dependent on the

LA. A detailed numerical analysis is therefore necessary to obtain the lower mass bound as a

function of the mixing angle; the results from [172] are shown in Figure 5.3 below. Across the

full parameter space of RP sterile neutrinos, we require [180]

M1 &MRP = 1 keV. (5.56)

The model-dependent bounds for NRP and RP sterile neutrinos are more stringent than the

model-independent PEP bound.
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Figure 5.3: Phase space density exclusion plot of RP sterile neutrino DM

Plot of RP sterile neutrino mixing angle against mass, taken from [172]. The blue hatched
region is ruled out by PSD bounds based on Liouville’s theorem, and assuming the DM has a

Gaussian velocity dispersion. The solid blue line is the central value of the bound, and the
dark/light regions are ±1/2σ confidence intervals. The region above the solid black line,

which defines where ΩN1 = ΩDM for NRP sterile neutrinos, is excluded since ΩN1 > ΩDM.
The purple region at the bottom is excluded by the maximum lepton asymmetry allowed by

BBN [183]. The region to the left of the red-dashed line is disfavoured by structure formation
given by Lyman-α data [102, 184]. The green region in the top right is excluded by the

absence of x-ray emissions from the radiative decay of sterile neutrinos [185]. The yellow star
is an interpretation of the unidentified 3.55 keV x-ray signal if it was emitted via the

radiative decay of a sterile neutrino [186], details of which will follow in the section below.

X-ray bound

Sterile neutrinos decay radiatively via N → νγ, as shown in Figure 5.2b, emitting photons

with energy Eγ ∼ M1/2. For DM sterile neutrinos of mass ∼ O(keV − MeV), we would

therefore expect to see a narrow x-ray line in the spectrum of DM dominated objects. The

DM line can be distinguished from other x-ray emissions as its brightness is proportional to

the density of DM in the object [168].

Extensive searches for the DM line (for example, by XMM-Newton and Chandra [187–

189]), have placed strong constraints on the active-sterile neutrino mixing angle by reliably

estimating the amount of DM in the observed object. Their radiative decay width is [106, 190,
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191]

ΓN1→νγ =
9αG2

F

1024π4
sin2(2θ1)M5

1 ' 5.5× 10−22θ2
1

(
M1

keV

)5

s−1, (5.57)

and in the absence of x-rays [171, 185],

θ2
1 . θ2

1,x-ray = 3× 10−5

(
keV

M1

)5

, (5.58)

which is equivalent to Γ−1
N1→νγ ∼ O(108) times the age of the universe.

An unidentified x-ray line of energy 3.52 ± 0.02 keV was observed in spectra of the An-

dromeda (M31) galaxy and the Perseus galaxy cluster [186]. The signal may be attributed to

DM sterile neutrinos of mass M1 = 7.14± 0.07 keV and sin2 2θ1 = 4.9+1.3
−1.6 × 10−11, as plotted

in Figures 5.3 and 5.4, [172, 184, 186, 192], however the possibility that this signal is an instru-

mental effect or an atomic line can not be ruled out. If sterile neutrino DM of this mass is to

remain within the current x-ray bound and make up the total DM abundance, they must be

produced resonantly, and so we require a non-zero LA. Alternatively, 7.1 keV sterile neutrinos

may be produced non-resonantly (YL = 0) and be consistent with x-ray bounds if they do not

constitute more than ∼ 15% of the total DM abundance [106]. However, recently improved

Lyman-α bounds using combined data from SDSS, XQ and HR excludes both possibilities by

over 3σ [184], as shown by the shaded red region of parameter space in Figure 5.4.

We can conclude from Figure 5.4 that the x-ray and Lyman-α bounds rule out the possibility

of NRP sterile neutrinos making up the total DM abundance. RP sterile neutrinos with mass

of O(10) keV may make up the total DM abundance if the LA is at least O(105) times greater

than the BAU, which would therefore require the majority of the LA to be generated post

sphaleron freeze-out. In chapter 7 we present our modified νMSM, in which DM sterile neutrino

production does not depend on the active-sterile neutrino mixing angle, rather the strength of

its coupling to a scalar inflaton field. As a result, the model evades the x-ray constraints.
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Figure 5.4: X-ray and Lyman-α exclusion plot of RP sterile neutrino DM

Plot of RP sterile neutrino mixing angle against mass, taken from [184]. Black lines are
isocurves of constant LA, where L6 ≡ 106YL. The mixing angle is bounded from below by the

maximum LA that can be produced in νMSM (L6 = 700), and from above by the
overproduction of NRP sterile neutrino DM (L6 = 0). The green shaded region is the bound

from the absence of x-rays, and the black dot is the sterile neutrino interpretation of the
unidentified 3.55 keV x-ray signal [186]. The blue and red regions are excluded by over 3σ by

SDSS and SBSS + XQ + HR Lyman-α forest power spectrums respectively.

5.3 Leptogenesis

Sterile neutrino interactions can generate a LA if the three Sakharov conditions stated in

section 2.3 are satisfied. As sterile neutrinos are singlets under the SM gauge transformations,

a lepton number violating Majorana mass term is allowed whilst still conserving the SM gauge

symmetries. As a result, sterile neutrinos can undergo lepton number violating Yukawa in-

teractions, such as N → φ̄L̄ (∆L = 2). These interactions may then generate a LA if the

Yukawa couplings contain a complex CP-violating phase and are small enough for the sterile

neutrinos to depart from equilibrium [11]. In the following sections we will discuss the two

mechanisms by which LA can be generated: during sterile neutrino production (freeze-in) via

neutrino oscillations, and during sterile neutrino decay (freeze-out). There is a maximal lepton

asymmetry bound from Big Bang Nucleosynthesis [178, 183], where electron neutrinos have

Y BBN
νe . 2.5 × 10−3. Any larger will change the primordial abundance of light elements, due
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to their sensitive dependence on the neutron to proton ratio at the time weak interactions

freeze-out. For the νMSM model, this bound is weaker than the maximum LA that can be

produced, which is given in (5.40). Recent observations of the abundance of 4He suggests that

the universe may well have a large LA [193], however the focus of this section will be to examine

how leptogenesis can generate the BAU, and what constraints this puts on the νMSM.

EW sphaleron processes violate B+L, and can therefore generate a net BA from an initial

LA. Here, sphalerons convert the LA in left-handed leptons to BA in left-handed quarks,

which then gets redistributed to right-handed particles via SM interactions [194]. Sphaleron

scatterings are frozen-out after EW symmetry breaking [11], once T < TEW, and so the LA

must be generated during the symmetric Higgs phase, when T > TEW. During this period,

the B−L conserving sphaleron processes are fast enough to be in thermal equilibrium, and so

there are only NF conserved global charges [195, 196]:

Xl =
1

NF
B − Ll; (5.59)

where the number of fermion families is NF = 3, and l = e, µ, τ . By imposing the conservation

of Xl, the neutrality of the system with respect to SU(2) and U(1) gauge charges, and requiring

the EW sphaleron processes to be in thermal equilibrium, we obtain the following expression

for the BA in the symmetric Higgs phase [197, 198]:

YB =

(
8Nf + 4NΦ

22Nf + 13NΦ

)
(YB − YL) ; (5.60)

when Nf = 3 and the number of Higgs doublets is NΦ = 1, this yields YB = 28/79 (YB − YL).

During the freeze-out and freeze-in periods, the sterile neutrinos have departed from ther-

mal equilibrium, and so the necessary Sakharov conditions to generate a LA are satisfied. Next,

we will look at the mechanisms that generate LA during these periods: thermal and resonant

leptogenesis generate LA through sterile neutrino decay, and leptogenesis via neutrino oscil-

lations generate LA during sterile neutrino production. Requiring that at least some LA is

generated prior to the EW phase transition and that it is large enough to produce the observed

BAU, we will constrain the sterile neutrino parameter space for each mechanism accordingly.

5.3.1 Thermal leptogenesis

The thermal leptogenesis process assumes an initial thermal abundance of sterile neutrinos

hierarchical in mass (M1 �M2 �M3), which generate a lepton asymmetry via their out-of-

equilibrium decay at temperature Tdecay ∼MI [11, 162, 163].
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Figure 5.5: Sterile neutrino decay channels

The tree-level contribution to the amplitude of the process NI(p1, σ1) → L(p2, σ2)φ(p3),

as shown in Figures 5.5a and 5.5b, is:

MTL
NI→Lφ = u2FIu1,

|MTL
NI→Lφ|

2
=

(
F †F

)
II

2

∑
σ1,2

[u2u1][u1u2],

= 2
(
F †F

)
II

(p1 · p2) ,

=
(
F †F

)
II

(
M2
I −m2

φ

)
; (5.61)

therefore the tree-level decay width is CP-symmetric, i.e. ΓNI→Lφ = ΓNI→L̄φ̄. Following the

notation used in [197, 199],

(
F †F

)
II

=
MI

〈Φ〉2
m̃I (5.62)

and

m̃I =
∑
J

mJ |RIJ |2, (5.63)

where RIJ is any orthogonal matrix and mJ is the active neutrino mass. The tree-level con-
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tribution to the total decay width of neutrino NI is thereby [103]

ΓTL
I ≡ ΓTL

NI→Lφ + ΓTL
NI→L̄φ̄ =

(
F †F

)
II

8π
MI

(
1−

m2
φ

M2
I

)2

(5.64)

∼ M2
I m̃I

4πv2
;

we implicitly sum over all contributions, defining ΓNI→LΦ ≡
∑
α ΓNI→LαΦ, where all charged

and neutral components of the Higgs doublet are physical.

CP asymmetry is generated by the interference of tree-level and loop-level decay processes.

The 1 loop-level processes have a vertex and wavefunction contribution, as shown in Figures

5.5c and 5.5d respectively. The decay asymmetry is defined by [103]

εI ≡
ΓNI→LΦ − ΓNI→L̄Φ̄

ΓNI→LΦ + ΓNI→L̄Φ̄

. (5.65)

The vertex contribution to the decay asymmetry is [103]

εVI =
1

8π

∑
J 6=I

f

(
M2
K

M2
I

) Im
[(
F †F

)2
JI

]
(F †F )II

, (5.66)

where f(x) =
√
x
(
1− (1 + x)ln

[
1+x
x

])
, and the wavefunction contribution to the decay asym-

metry is [103]

εWF
I = − 1

8π

∑
J 6=I

MIMJ

M2
J −M2

I

Im
[(
F †F

)2
JI

]
(F †F )II

, (5.67)

in the limit that the neutrinos are hierarchical, |MI −MJ | � |ΓI − ΓJ |.

In the limit M2
J � M2

I , the CP asymmetry generated by the wavefunction component is

twice as large as the vertex component [103]:

εI = εVI + εWF
I ∼

∑
J 6=I

− 1

16π

MI

MJ

Im
[(
F †F

)2
JI

]
(F †F )II

− 1

8π

MI

MJ

Im
[(
F †F

)2
JI

]
(F †F )II


= − 3

16π

∑
J 6=I

MI

MJ

Im
[(
F †F

)2
JI

]
(F †F )II

. (5.68)

As N1 is the lightest sterile neutrino, it is still in thermal equilibrium after N2 and N3 have

decayed. As a result, any LA generated by N2 and N3 decays will be washed out by the

lepton number violating interactions of N1 [162, 197] shown in Figure 5.6; therefore only the

LA generated by N1 decays contribute significantly to the final LA [162].
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Figure 5.6: Lepton number violating interactions, ∆L = 2

Substituting equation (5.62) into (5.68) and using the orthogonality of R, the upper bound

on the decay asymmetry generated by the lightest sterile neutrino, N1, is [199]

|ε1| .
3

4π

M1

v2
(m3 −m1) ,

.
3

4π

M1

v2
matm; (5.69)

where we have used the notation matm ≡
√

∆m2
atm. We will then use approximation (5.69) to

obtain the lower mass bound on N1 that generates the observed BAU.

Assuming an initial thermal abundance of N1 at T �M1, the LA generated is [103]

YL = ε1ηYN,eq(T �M1), (5.70)

where η is the decay efficiency of N1. The equilibrium abundance of N1 is [103]

YN,eq =
45gN

2g∗sπ4
∼ 4× 10−3, (5.71)

where the number of spin degrees of freedom of Majorana neutrino is gN = 2, and the effective

number of relativistic degrees of freedom that contributes to entropy is g∗s ∼ 100. The decay

efficiency of N1 is η ∼ 1 if Γ1(Tdecay) < H(Tdecay), as the neutrinos decay out of equilibrium;

and η < 1 if Γ1(Tdecay) > H(Tdecay), as there is a wash-out of LA whilst the neutrinos decay in

thermal equilibrium [197]. To achieve η ∼ 1, the active neutrino mass is required to be within

the following bound [197, 199]:

m1 < m̃1 <
4π2

√
90

√
g∗v

2

MP
∼ 10−3 eV, (5.72)

where due to orthogonality of R, the active neutrino mass is well approximated by m1 . m̃1.

It is however unlikely that η ∼ 1 if the Yukawa coupling is large enough to produce a thermal
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abundance. Even so, the decay efficiency of thermal neutrinos only mildly suppresses the LA

when T < M , since inverse sterile neutrino decays are Boltzmann suppressed [194]. We will

use the estimate η ∼ 0.1, as given in [199], to approximate the lower mass bound of N1.

The maximum LA that can be generated from the decay of N1, obtained from substituting

the maximum decay asymmetry calculated in (5.69) into equation (5.70), is

YL . 8η

(
M1

GeV

)
× 10−19. (5.73)

Assuming that thermal leptogenesis generates the total BAU, we use equation (5.60) to obtain

the lower mass bound on the lightest sterile neutrino,

M1 >

(
0.1

η

)
×O(109) GeV, (5.74)

which is known as the Davidson-Ibarra bound [199]. Here we approximated YB − YL ∼ −YL

in equation (5.60), as sphaleron processes that convert LA to BA are inefficient at very high

temperatures (T > 1012 GeV) [197, 199].

5.3.2 Resonant leptogenesis

Thermal leptogenesis presents problems for both experimentalists and theorists: the theory

is untestable by experiment, since it is unfeasible to detect sterile neutrinos at the required

mass scale; and it presents a hierarchy problem for theorists [200], as the Yukawa couplings

give large radiative corrections to the bare Higgs mass parameter, µ2
Φ.

φ

ν

φ

N

Figure 5.7: Radiative correction to Higgs mass parameter

The radiative correction to µ2
Φ, given by the Feynman diagram in Figure 5.7, is of the order

[200]

δµ2
Φ ∼

(
F †F

)
II

4π2
MI log

(
q

MI

)
∼ miM

3
I

2π2v2
log

(
q

MI

)
, (5.75)

for external momenta3 q < MI . For the theory to produce the active neutrino mass splitting,

3Here q is the renormalization group scale, which is just the typical energy scale that the Higgs mass is
observed. The value of the observed Higgs mass (µ2

Φ+δµ2
Φ) thus changes with energy due to the δµ2

Φ dependence
on q. The relation between the bare and observed mass for a given q is determined by the renormalization
group equations.
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we require mi > matm, and for the radiative corrections to be sub-dominant, we need δµ2 <

O(104) GeV2. To satisfy both requirements, the sterile neutrino mass needs to be within the

range [11, 200]

MI < O(107) GeV, (5.76)

which is below the lower mass bound (5.74) required for thermal leptogenesis to generate the

BAU. To reproduce the Higgs mass with larger sterile neutrino masses requires higher order

loop corrections with finely-tuned tree values.

However, if the sterile neutrinos are degenerate in mass rather than hierarchical, the wave-

function contribution to the decay asymmetry (5.67) is singular as MI → MJ , which is an

artefact of the assumption that sterile neutrinos are asymptotic states [104, 165, 166, 201]. In

the limit ∆M32 �M2 (∆Mij ≡Mi −Mj), using out-of-equilibrium QFT methods [201–205],

the wavefunction decay asymmetry gains a finite regulator term, A ∼ MIΓI [104, 165, 166,

201]:

εWF =
Im
[(
F †F

)
32

]2 [(
F †F

)
22

+
(
F †F

)
33

]
16π (F †F )22 (F †F )33

M2M3∆M2
23

(∆M2
23)

2
+A2

. (5.77)

Going forward, we assume the lightest sterile neutrino, N1, is DM, which necessarily has a

lifetime that exceeds the age of the universe. The LA is therefore resonantly produced via the

decay of two heavier degenerate sterile neutrinos, N2 and N3. The resonant enhancement of

CP violation occurs when ∆M32 ∼ Γ2/2 [104, 164–166], which gives the following wavefunction

contribution to the decay asymmetry [104, 165, 166, 206],

|εWF| ' 1

2

Im
[(
F †F

)
32

]2
(F †F )22 (F †F )33

. (5.78)

Resonant leptogenesis can achieve a decay asymmetry that is independent of the sterile neutrino

mass with a magnitude of up to |εWF| ≤ 1
2 , and is therefore far more efficient than the thermal

leptogenesis process for lighter sterile neutrinos [104, 165, 166, 206]. The Davidson-Ibarra

bound (5.74) is then relaxed and we may have M2/3 as small as 1 TeV, which is bounded

by the requirement that the LA is created at T > TEW [11, 104, 164–166, 201]. Such sterile

neutrinos may have evaded experimental detection due to their weak Yukawa coupling. If

we require the model to generate the active neutrino masses, the typical value of a Yukawa

coupling, given equation (5.62), is

|FI |2 ∼
MI

v2/2
matm, (5.79)

which for M2/3 = O(1) TeV is as small as |FI |2 ∼ O(10−12).
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Important variations of the standard resonant leptogensis model based on lepton flavour

symmetries are presented in [207–210], in which the BAU is produced from the sphaleron

conversion of individual lepton numbers. In these scenarios, M2/3 can be as light as 100 GeV.

5.3.3 Leptogenesis via neutrino oscillations

Now we will consider an initial zero abundance of sterile neutrinos that are produced out-

of-equilibrium in the early universe via their Yukawa interactions with the SM. As these inter-

actions are CP-conserving, the universe has an initial equal abundance of Majorana neutrinos

with opposite helicities, and so the total lepton number is Ltot = L+L1 +L2 +L3 = 0, where

L is the lepton number in the active species and LI = 0 (I = 1, 2, 3) are the lepton numbers of

the individual Majorana neutrino states [53, 105]. However, since the neutrinos are produced

in their gauge basis, which doesn’t coincide with their mass basis, they change states via CP

violating oscillations, thereby redistributing the lepton number between the active neutrino

sector (L 6= 0) and sterile neutrino sector (LI 6= 0). As the total lepton number is conserved

(Ltot = 0), we have [53, 105]

∆L = −
∑

I=1,2,3

∆LI . (5.80)

The LA generated in the active neutrino sector is then converted into BA via EW sphalerons

processes at T > TEW.

The dark matter sterile neutrino, N1, does not contribute to the generation of LA as the

x-ray bound, given in equation (5.58), requires the Yukawa coupling to be extremely small,

|F1|2 < O(10−21) [53]. As a result, N1 is effectively decoupled from the plasma in the early

universe [53]. The dominant mechanism for generating LA in the active and sterile neutrino

sectors is CP violating N2 − N3 oscillations, mediated by a lepton and Higgs doublet loop

[53, 105], as shown in Figure 5.8. Oscillations between sterile and active species and between

active neutrinos of different flavours are strongly suppressed due to their very different effective

masses [53]. Additionally, active neutrino oscillations that violate lepton number and sterile

neutrino oscillations that change helicity are also suppressed [53].

F †α2

Φ

Fα3N2 Lα N3

Figure 5.8: CP violating N2 −N3 oscillations mediated by a lepton and Higgs doublet loop

Although the rate of the CP violating N2 − N3 oscillations is strongly suppressed by their

Yukawa couplings, |Fα2|2|Fα3|2, we are able to resonantly produce a large LA if N2,3 are
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degenerate in mass [53, 105]. Next we will determine the mass range of N2,3 that are out of

thermal equilibrium prior to EW symmetry breaking, and can therefore generate the BAU.

The main contribution to the sterile neutrino interaction rate with the SM is the two-to-two

Higgs-mediated scattering process, tt↔ NILα:

yt

FαI

t(p, σ1)

NI(k, σ3) Lα(k′, σ4)

t(p′, σ2)

Φ(p + p′)

Figure 5.9: Scattering process tt↔ NILα, mediated by the Higgs boson

The amplitude of the process in the centre of mass frame, p = (E, 0, 0,E) and p′ = (E, 0, 0,−E),

is

|Mtt→NL| = [u3v4] · FαI ·
gµν − EµEν

m2
h

4E2 −m2
h

· yt · [v2u1], (5.81)

which gives an average squared amplitude of

|Mtt→NL|
2
∼ (FαIyt)

2 ·
(
E

mh

)4

, (5.82)

where we define |M |
2
≡ 1

4

∑
σ1,σ2

∑
σ3,σ4

|M |2. The rate of the scattering process, summing

over all active lepton flavours (α) is [53, 105]

Γtt→NL ≡ nt · σtt→NL ∼
3

4
gt
ξ(3)

π2
T 3 · F

2
I y

2
t

64π

E2

m4
h

,

∼ 9

64π3
F 2
I T, (5.83)

where nt is the relativistic thermal number density of top quarks, which have gt = 12 degrees

of freedom and a Yukawa coupling yt ∼ 1. We then take the approximation 〈E〉 ∼ mh ∼ T ,

since we are evaluating the rate prior to EW symmetry breaking. The temperature at which

NI thermalizes with the SM (Γtt→NL(Teq) ∼ H(Teq)) is:

Teq =
27
√

10

64π4

MP√
gSM
|FI |2 . (5.84)

We will assume the typical value of a Yukawa coupling that can explain the active neutrino
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mass splitting, which given the see-saw relation in equation (5.62) is

|FI |2 ∼
matmMI

v2/2
. (5.85)

Then, by requiring Teq < TEW, we obtain the following upper bound on M2,3 [53, 105],

M2,3 <
32π4

27
√

10

v2√gSM

MP matm
TEW ∼ 30 GeV. (5.86)

Additionally, for the model to be consistent with the BBN predictions, N2/3 must decay prior

to this epoch. Post EW symmetry breaking, the main decay channels of sterile neutrinos with

MI < MW are N → νανβνβ/l
−
α l

+
β νβ/ναl

+
β l
−
β /l
−
αUD/ναqq, which has decay width [211, 212]:

ΓNI ≥
G2
FM

5
I

192π3
θ2
I . (5.87)

The inequality ΓNI > H (TBBN), where TBBN ∼ few MeV, translates into a lower mass bound

of [53, 105]

M2,3 > few GeV. (5.88)

The late-time decay of sterile neutrinos within this mass range does not release a large amount

of entropy into the SM, which would subsequently lead to a dilution of the BA. The details of

this analysis is given later in section 7.7.

The majority of the BA is generated when the N2 −N3 oscillation rate [11, 53, 105, 168],

ω ∼
∣∣∆M2

23

∣∣
E

∼
∣∣∆M2

23

∣∣
T

, (5.89)

is of the order of the Hubble expansion rate (ω(TB) ∼ H(TB)); we assume in (5.89) the typical

energy of a sterile neutrino is E ∼ T . When T > TB (ω < H) CP violation has no time to

develop, and once T < TB (ω > H) the neutrino oscillations are out of resonance and the LA

is strongly suppressed by averaging effects [11, 53, 105, 168]. The BA is therefore generated at

temperature [11, 53, 105, 168]

TB =

(
3
√

10

π
√
gSM

MP

∣∣∆M2
23

∣∣) 1
3

∼ O
(
106
)
×

(∣∣∆M2
23

∣∣
GeV2

) 1
3

GeV, (5.90)

if ω(TB) ∼ H(TB) occurs prior to EW symmetry breaking (TB & TEW) and the thermalization

of the sterile neutrinos (TB & Teq).

The evolution of the lepton asymmetries generated in the active and sterile neutrino sectors

are tracked by the kinetic equations of the neutrino density matrix. The quantitative analysis
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is beyond the scope of this review, and is found in [53, 105]. Below we quote the final result

for the BA generated via neutrino oscillations [11, 53]:

YB = 2× 10−10δCP

(
10−6

|∆M2
23| /M2

3

) 2
3
(

M3

10 GeV

) 5
3

, (5.91)

which shows that N2,3 must be highly degenerate in mass in order to produce the total BAU.

The CP violation parameter [11, 53],

δCP = 4sR23cR23

[
sL12sL13cL13

((
c4L23 + s4

L23

)
c2L13 − s2

L13

)
· sin (δL + α2) (5.92)

+ cL12c
3
L13sL23cL23

(
c2L23 − s2

L23

)
· sinα2

]
,

can have a magnitude of up to O(1) according to current neutrino oscillation data, and is non-

zero even when there is no CP violation in active neutrino oscillations (i.e. when θL13 = 0).

The mixing angles θLij , CP violating phase δL, and Majorana phase α2 are parameters of

the active neutrino PMNS mixing matrix, given in (5.8), whilst the mixing angles θRij are

parameters of the analogous PMNS mixing matrix (L→ R) for sterile neutrinos.

5.3.4 Unification of leptogenesis mechanisms

Until recently, resonant leptogenesis (freeze-out LA production) and leptogenesis via neutrino

oscillations (freeze-in LA production) were considered as two separate mechanisms that operate

in two distinct sterile neutrino mass scales: M2,3 = O(102 − Treh) GeV and M2,3 = O(1 −

10) GeV respectively. Conversely, the work carried out in [201] suggests that the generation

of LA via both mechanisms could be described by the same set of quantum kinetic equations

operating in different regions of the sterile neutrino parameter space, with a significant overlap

between them. We will present the results from [201] in this section, however there is still a

debate over whether the two mechanisms of mixing and oscillations are distinct or the same

phenomenon [204, 213]

The analysis carried out in [201] showed that contradictory to what was originally thought,

the mass scales of the two mechanisms are not completely separate. Sterile neutrinos with

masses as small as O(1) GeV cause a significant deviation from equilibrium during freeze-out.

Additionally, LA can be produced via freeze-in by sterile neutrinos that thermalize prior to

sphaleron freeze-out, which is the case for M2,3 > O(10) GeV [201]. Although thermal sterile

neutrinos washout the generated LA, once temperatures drop below their mass scale, the

washout is strongly suppressed by the Boltzmann factor, proportional to exp [−MI/T ] [197,

201]. As a result of these two effects, LA can be generated during freeze-out by sterile neutrinos

that are lighter than expected, and during freeze-in by sterile neutrinos that are heavier than

expected.
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The results are summarized in Figure 5.10 below, which plots the squared active-sterile

neutrino mixing angle, U2 ≡
∑
αI |θαI |2, against the average sterile neutrino mass, M ; the

left and right plots assume active neutrinos have a normal and inverted hierarchy respectively

[201]. The coloured gradient in the legend to the right of the plots gives the maximum mass

splitting of N2 and N3 that can produce the total BAU, the white regions in the plot require

∆M/M < 10−6. The solid black curve bounds the parameter space where both freeze-in

and freeze-out mechanisms produce the observed BAU, assuming an initial zero abundance of

sterile neutrinos [201]. The blue dashed curve bounds the parameter space where an initial

thermal abundance of sterile neutrinos is assumed, and so the BAU can only be produced via

freeze-out; and the red dotted line bounds the parameter space where sterile neutrinos with

an initial zero abundance don’t deviate from equilibrium due to the expansion of the universe,

and so the BAU can only be produced via freeze-in [201]. The active-sterile neutrino mixing

angle is bounded from below by requiring the active neutrino masses to be produced via the

see-saw mechanism; and as the LA washout rate increases with U2, the active-sterile neutrino

mixing angle is bounded from above by requiring the sterile neutrinos to produce the total

BAU [201].

Figure 5.10: Exclusion plot of sterile neutrino parameter space for production of BAU via
leptogenesis

Plots of the squared active-sterile neutrino mixing angle, U2, against the average sterile
neutrino mass, M , for normal and inverted active neutrino masses on the left and right plots
respectively, taken from [201]. The notation used is U2 ≡

∑
αI |θαI |2, where θαI is given in

equation (5.25). The red dotted and blue dashed line bounds the sterile neutrino parameter
space where freeze-in and freeze-out mechanisms produce the BAU respectively, and the solid
back line is the region where both mechanisms contribute to the production of the BAU. The

colour of the shaded regions within the bounds give the maximum sterile neutrino mass
splitting that could produce the BAU, as labelled by the legend to the right of the plots; the

white regions are where ∆M/M < 10−6 is required.

5.4 Summary and discussion

Here we present a summary of the νMSM constraints that allow the model to reproduce the

active neutrino masses via the type-1 see-saw mechansism, produce a viable DM candidate,
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and explain the origin of the BAU.

The solar and atmospheric active neutrino mass splittings are

msol = 8.68× 10−3 eV, (5.93)

matm = 4.95× 10−2 eV, (5.94)

where mx ≡
√

∆m2
x, and we assume a normal mass hierarchy (m1 < m2 < m3). The typical

value of the active-sterile neutrino Yukawa coupling that would explain the origin of the active

neutrino mass splitting is

|FI |2 ∼
matmMI

v2/2
. (5.95)

In the νMSM, the DM candidate is the lightest sterile neutrino, N1. The average momentum

and mass range of DM sterile neutrinos that are NRP and RP are tabulated below.

DM production mechanism 〈p〉
3.15T M1

Non-resonant 0.8-0.9 O(1-10) keV

Resonant 0.6 O(1-10) keV

Table 5.1: Average momentum and mass range of non-resonantly and resonantly produced
sterile neutrino DM

The astrophysical bounds that constrain the DM sterile neutrino parameter space are:

• Lyman-α bound: maximum DM free-streaming length that would reproduce the smallest

known structures in the universe, given by (4.52).

• Phase-space density bound: Maximum phase space density determined using Liouville’s

theorem, for NRP and RP DM sterile neutrinos

M1 & 1 keV.

• X-ray bound: Absence of x-rays observed from the radiative decay of sterile neutrinos

θ2
1 . 3× 10−5

(
keV
M1

)5

.

Note that both the Lyman-α and phase-space density bounds are dependent on the momentum

distribution of the DM, whereas the x-ray bound is not. These astrophysical bounds are

stated here as rough estimates of the precise bounds, which have a complex dependence on the

momentum distribution and mass of the DM. For the exact astrophysical bounds for NRP and

RP DM sterile neutrinos, consult Figures 5.3 and 5.4. We conclude that RP and NRP sterile
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neutrinos are only viable DM candidates if they do not make up the total DM abundance, or

the plasma has a LA that greatly exceeds the BAU.

In chapter 7 we extend a light scalar inflaton model with a modified νMSM, in which DM is

produced via inflaton decay in the early universe. We are able to produce cooler DM than RP

and NRP mechanisms that is within the Lyman-α bound. Additionally, our DM production

mechanism is independent of the active-sterile neutrino mixing angle so the parameter space

is also unconstrained by the x-ray bound.

The two heavier sterile neutrinos, N2,3, produce LA during their out-of-equilibrium decay

and production. If the two sterile neutrinos are degenerate in mass, the LA is produced

efficiently by resonant leptogenesis and leptogenesis via neutrino oscillations. N2,3 in the

following mass ranges,

M2,3 =


O(102 − Treh) GeV, resonant leptogensis

O(1− 10) GeV, leptogensis via neutrino oscillations

(5.96)

generate a large enough LA to account for the BAU,

YB ∼ O(10−10). (5.97)

Note that (5.96) are conservative mass bounds that we will apply to our modified νMSM in

chapter 7. Less stringent mass bounds are discussed in section 5.3.4, which are based on the

work carried out in [201].
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Chapter 6

Scalar inflaton model

6.1 Introduction

The observable universe is homogeneous and isotropic, and almost completely flat. It is filled

with matter and radiation and has an almost scale invariant spectrum of primordial density

perturbations. These seemingly finely tuned initial conditions can be explained by the presence

of an inflationary epoch prior to the Hot Big Bang [214–218]. Viable inflationary models should

also provide a mechanism to initiate a reheating period post-inflation, during which the SM

particles are produced.

This chapter studies an extension of the SM by a scalar inflaton with quartic self-interaction,

which was suggested in [45]. With the addition of a small, non-minimal coupling to gravity,

this model provides inflationary predictions in agreement with the CMB observations [48, 219,

220]. We assume that the scale symmetry in the scalar sector is broken only by the symmetry

breaking mass term of the inflaton [43, 45–48, 52]. A negative quartic inflaton-Higgs coupling

then allows for the transfer of symmetry breaking into the SM sector. Thus, the scalar provides

symmetry breaking in the Higgs sector, as well as inflation.

Section 6.2 outlines the scalar quartic inflationary model with a non-minimal coupling,

followed by the cosmological constraints on the inflaton self-coupling given by the scalar density

perturbation amplitude and limits on the tensor-to-scalar ratio in section 6.3. We define three

rotation angles in the inflaton-Higgs field space with respect to the gauge basis: the inflationary

direction in section 6.3.1; the angle of rotation of the vacuum in section 6.4; and the inflaton-

Higgs mixing angle in section 6.5. In section 6.6 we address the domain wall problem by

breaking the Z2 symmetry of our model through the addition of a small cubic inflaton term.

Defining the inflationary, vacua and mixing angles is essential for analysing the preheating

and reheating periods, which describe the non-perturbative and perturbative transfer of in-

flationary energy into the SM. In section 6.7 we show that turbulent preheating proceeds via

parametric resonance, and that the misalignment of the inflationary and vacuum angles does

not transfer a significant amount of inflationary energy into the SM. In sections 6.8 and 6.9 we
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study the reheating period, in which we use the inflaton-Higgs mixing angle to find the infla-

ton decay width in order to bound the inflaton parameter space. In section 6.8 we review the

reheating analysis carried out in previous works [45–48] that focus on the region of parameters

where the inflaton is lighter than the Higgs boson. Here, the dominant reheating mechanism

is two-to-two inflaton-Higgs scattering. The inflaton mass is bounded from below by the min-

imum reheating temperature, which is required to exceed the EW symmetry breaking scale,

and from above by ensuring quantum corrections to the inflaton’s quartic self-coupling are

small. Section 6.9 covers my own work [43] that focuses on the region of parameters where

the inflaton is heavier and the channel of its direct decay to a pair of Higgs bosons is open,

which allows for a more efficient reheating. The inflaton mass is also bounded from below

by the minimum reheating temperature, and from above by the kinematics of the decay. In

section 6.8 an analytical approach is sufficient, as the inflaton is not far from thermal equilib-

rium at the time of reheating. In section 6.9, however, the inflaton has a highly non-thermal

distribution, and so it is necessary to solve the Boltzmann equations numerically. The inflaton

distribution resulting from turbulent preheating in section 6.7.2 provides the initial condition

for the reheating study.

6.2 The model

A minimal extension of the SM that incorporates mechanisms for inflation and reheating can

be achieved with the addition of a single scalar field serving as our inflaton, X, which couples

to the SM Higgs doublet,

Φ =
1√
2

ϕ1 + iϕ2

φ+ iϕ3

 , (6.1)

where φ is the SM Higgs boson, and ϕi (i = 1, 2, 3) are the EW Goldstone bosons. The action

and Lagrangian of the inflaton model expressed in the Jordan frame is [43, 45–47]:

SXSM =

∫ √
−gd4x (LSM + LX + Lgrav) , (6.2)

LX =
1

2
∂µX∂

µX +
1

2
µ2
XX

2 − β

4
X4 − λ(Φ†Φ− α

λ
X2)2, (6.3)

Lgrav = −M
2
P + ξX2

2
R, (6.4)

where LSM is the SM Lagrangian and R is the Ricci scalar. The inflaton potential1 requires

parameters that will lead to symmetry breaking of the Higgs field, tuned to the SM expected

1The Z2 symmetry of the inflaton potential gives rise to a domain wall problem. This may be resolved with
the addition of a small cubic term, µX3, without influencing the dynamics of inflation and reheating. This will
be discussed in section 6.6, where we define the range of µ that satisfies these requirements.
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value. We assume the only source of scale symmetry violation is due to the negative mass term

in the inflaton sector; the negative quartic inflaton-Higgs coupling then allows for the transfer

of symmetry breaking into the SM sector.

6.3 Inflation

During slow-roll inflation, the quartic2 inflaton term dominates the energy density of the

universe as field values exceed O(MP). We can therefore simplify our model to a single-field

quartic scalar potential, and apply the standard slow-roll formalism [78, 221] as in section

3.2. In section 3.3.3, we showed that the self-coupling of a minimally coupled inflaton field is

fixed from the measurement of the CMB’s amplitude of the primordial scalar perturbations by

equation (3.80), from which we obtain a quartic self-coupling of β = O(10−13). Using equation

(3.88), we find the tensor-to-scalar ratio of the model is r ∼ 0.27, which exceeds the CMB’s

upper bound on the tensor-to-scalar ratio, rCMB = 0.13 [33].

We will now analyse the scenario where we have a non-minimally coupled inflaton field,

ξ > 0, for which we are able to achieve r < rCMB for a given range of the quartic self-coupling,

β. Additionally, we assume no new scales below the Planck scale3, so we require ξ < 1. In order

to obtain the inflationary parameters (β, r) for ξ 6= 0 using the standard slow-roll formalism,

we need to transform (6.2) from the Jordan frame to the Einstein frame via the following

conformal transformation of the metric [46, 48, 219, 220]:

gµν → g̃µν = Ω2gµν , Ω2 = 1 + ξX2/M2
P; (6.5)

g̃µν corresponds to the metric in the Einstein frame, in which the inflaton field couples mini-

mally to gravity, and the inflaton potential is [46, 48]

U(X) =
βX4

4Ω4
. (6.6)

The kinetic term is then conformally transformed using the following relation [46, 48]:

dX̃

dX
=

√
Ω2 + 6ξ2X2/MP

Ω4
, (6.7)

after which we can obtain the slow-roll parameters (ε, η) using the standard formalism [78,

221] (given by equations 3.21) for the canonically normalized inflaton field X̃. Following the

2We choose a quartic inflationary potential as the dimensionless self-coupling evades additional new energy
scales below MP.

3Our model is UV complete up to the cutoff scale, Λ ∼ MPl√
ξ
/MPl

ξ
, and at energy scales E > Λ, scattering

processes violate perturbative unitarity [222–225]. We want our model to be UV complete up to the scale of
quantum gravity, MPl, and so without complicating our theory, we conservatively require ξ < 1. Note that this
is not a stringent bound in our model, and ξ > 1 could only be ruled out by a measurement of r.
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analysis given in section 3.3, the tensor-to-scalar ratio is then given by [46, 48]:

r =
16 (1 + 6ξ)

(Ne + 1) (1 + 8 (Ne + 1) ξ)
. (6.8)

In Figure 6.1a, we plot r as a function of ξ, given by the blue line, and the CMB bound

(rCMB = 0.13 [33]), given by the red dashed line. We show that for ξ ≥ O(10−2), r is

sufficiently suppressed (r < rCMB) when evaluated at the relevant number e-foldings prior to

the end of inflation for our model, Ne ∼ 60. The scalar’s quartic self-coupling is fixed by the

CMB measurement of the primordial scalar perturbation amplitude [226] given in (3.78), and

if we assume no new scales below the Planck scale, ξ < 1, we obtain the following range [46,

48]:

β =
3π2∆2

s

2

(1 + 6ξ)(1 + 6ξ + 8(Ne + 1)ξ)

(1 + 8(Ne + 1)ξ)(Ne + 1)3)
,

= O(10−12 − 10−9), (6.9)

where the lower bound corresponds to the excessive production of tensor modes (r > rCMB),

and the upper bound would require ξ > 1 and introduces additional scales below Planck.
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(a) Blue curve plots the tensor-to-scalar ratio, r,
against non-minimal coupling, ξ. The red
dashed line plots the CMB’s upper bound,

rCMB = 0.13.
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(b) Inflaton quartic self-coupling, β, against
non-minimal coupling, ξ.

Figure 6.1: Tensor-to-scalar ratio and inflaton self-coupling plotted as functions of the
inflaton’s non-minimal coupling

6.3.1 Inflationary attractor solution

During the slow-roll inflationary epoch, we decompose the fields into a homogeneous classical

component and a quantum component,

X(x, t) = Xb(t) + χ(x, t), (6.10)

Φ(x, t) = Φb(t) +
h(x, t)√

2
.
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The classically evolving background fields converge towards the inflationary attractor solution,

which is found by evaluating the gradient of the potential4, Vθinf
≡ ∂V

∂θinf
= 0, using the following

field transformations,

Xb → R cos θinf,

√
2Φb → R sin θinf, (6.11)

where R is a coordinate along the inflationary direction. Neglecting the quadratic terms in

the potential, the direction of the inflationary attractor solution in field space is then given by

[43],

tan θinf ≡
√

2Φb
Xb

∼
√
β + 2α

λ
, (6.12)

in the limit α, β � λ. We verify our analytical result by numerically solving the Friedmann and

Raychaudhuri equations, (2.11) and (2.12) respectively, derived from the Einstein’s equations

assuming a homogeneous and isotropic universe with zero spatial curvature:

(
ȧ

a

)2

=
1

3M2
P

(
V (Xb,Φb) +

Φ̇2
b

2
+
Ẋ2
b

2

)
, (6.13)

2ä

a
+

(
ȧ

a

)2

=
1

M2
P

(
V (Xb,Φb)−

Φ̇2
b

2
− Ẋ2

b

2

)
; (6.14)

and the Euler-Lagrange equations, which govern the background field dynamics:

Ẍb + 3HẊb + VX = 0, (6.15)

Φ̈b + 3HΦ̇b + VΦ = 0. (6.16)

The blue curves in Figure 6.2 give the numerical evolution of the fields from an initial random

point in field space, and are shown to converge to our analytical result (6.12), given by the red

dashed line.

4Going forward we will use the notation VX ≡ ∂V
∂X

implicity.
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Figure 6.2: Inflationary attractor solution

The blue curves give the numerical evolution of the classical background fields from various
initial random points in field-space, whose dynamics are governed by equations (6.13), (6.14),

(6.15) and (6.16). The field lines are shown to converge towards the red dashed line θinf,
which is the analytical inflationary attractor solution given by equation (6.12). We use the
following parameters (λ = 0.1, α = 10−2, β = 10−3), and the field values (Xb,

√
2Φb) are

given in units of MP.

6.4 Symmetry breaking

As far as we are only interested in the situation where both fields have broken symmetry

in order to correspond to observations, then v ≡
√

2〈Φ〉 is fixed by the SM Higgs vacuum

expectation value (VEV) equal to 246 GeV [147], and we can write the following formula for

any non-zero VEV of the inflaton field, vX ≡ 〈X〉 [46–48]:

vX = ±

√
µ2
X + 2αv2

β + 4α2

λ

= ±v
√

λ

2α
, (6.17)

which is evaluated by solving for the inflaton field value at the minimum of its potential,

VΦ(v, vX) = 0. The vacuum angle, defined as the angle of rotation of the vacuum with respect

to the gauge basis (h, χ) = (
√

2Φ− v,X − vX) is given by

tan θV ≡
v

vX
=

√
2α

λ
. (6.18)
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6.5 Mass basis

By definition, the mass basis (χ̃, h̃) diagonalises the matrix of second derivatives of the gauge

fields, evaluated at their VEVs:

M =
(
χ̃, h̃

)VXX VXΦ√
2

VΦX√
2

VΦΦ

2


χ̃
h̃

 =

m2
χ 0

0 m2
h

 , (6.19)

where

VXX VXΦ√
2

VΦX√
2

VΦΦ

2

 =

 3v2βλ
2α + 4v2α− µ2

X − 2
√

2αλ

−2
√

2αλ 2v2λ

 . (6.20)

The mass basis is rotated with respect to the gauge basis (h, χ) ≡ (
√

2Φ− v,X − vX),

h̃ = h cos θm − χ sin θm,

χ̃ = χ cos θm + h sin θm. (6.21)

by mixing angle5 [43, 46–48]

θm = θV
2α

2α− β
. (6.22)

The eigenvalues of M are the masses of the physical inflaton and Higgs states (i.e. the excita-

tions of the fields on top of the vacua in the mass basis) that are generated post spontaneous

symmetry breaking [43, 46–48]:

mh =
√

2λv, mχ = mh

√
β

2α
. (6.23)

The measurement of mh = 125 GeV [147] constrains the SM Higgs boson self coupling λ ' 0.1.

Later we will analyse separately the ‘light’ inflaton parameter space, mχ � 2mh ( ≡ (β � 8α)),

and the ‘heavy’ inflaton parameter space, mχ > 2mh ( ≡ (β > 8α)), since they define regions

where the universe reheats via different mechanisms.

6.6 Domain wall problem

As the inflaton potential is Z2 symmetric, the field resides in one of two degenerate vacua

states post spontaneous symmetry breaking:

vX = ± µX√
β + 4α2

λ

, (6.24)

5θm reduces to the angle given in [46–48] in the limiting case of light inflaton, where β � 8α.
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at temperatures exceeding the EW symmetry breaking scale, when 〈Φ〉 = 0. Regions where

fields occupy the same vacuum state form bubbles, which are separated by those with a different

vacuum state by problematic topological defects called domain walls. In the case of degenerate

vacuum states, the domain wall bubbles are stable and pressureless, and expand under their

own surface tension until there is roughly one wall per horizon scale, where they remain and

dominate the universe’s energy density. In order for our model to be consistent with cosmology,

we therefore need to destablise the domain walls. This can be achieved by softly breaking the

Z2 symmetry of the model with the addition of a cubic term, µX3, thereby making one vacuum

state more energetically favourable:

V (X,Φ = 0) =

(
β

4
+
α2

λ

)
X4 − µ2

X

2
X2 + µX3, (6.25)

where the energy density difference between the two vacua is

δV = V (+vX)− V (−vX) ≈ 2µv3
X . (6.26)

The energy of a domain wall bubble of radius R and surface tension σ is

Eb(R) = −4

3
πR3δV + 4πR2σ. (6.27)

For the domain wall bubbles to collapse we require the pressure exerted on the wall by the

difference in energy density between the two vacua to exceed the surface tension of the bubble

[227], which is satisfied when

δEb =Eb(R− δR)− Eb(R) > 0,

→ δV >
2σ

R
, (6.28)

where the surface energy density is [228]

σ ∼ 2
√

2

3

(
β +

4α2

λ

) 1
2

v3
X , (6.29)

assuming the width of the bubble wall is negligible in comparison to its radius, R. If the domain

walls expand to the maximum scale, their curvature is of the order of the Hubble horizon [229],

R ∼ 1

H
=

√
90

π2gSM

MP

T 2
. (6.30)

We require inequality (6.28) to be true at the moment spontaneous symmetry breaking occurs,

so that the walls immediately collapse before they affect the evolution of the universe.
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The inflationary potential at finite temperatures includes an additional term called the

thermal mass,

VT (X) =
m2
T

2
X2, (6.31)

the dominant contributions to which are [228]

m2
T ∼

(
β

4
+
α2

λ

)
T 2. (6.32)

The universe transitions to its broken symmetric phase once the squared inflaton mass is

negative, i.e. when the thermal mass contribution is subdominant to the negative bare mass

term, which occurs once the universe has cooled below the critical temperature

Tc ∼ 2vX . (6.33)

Using (6.28), we then evaluate the lower bound on the inflaton cubic coupling, µmin, to ensure

the immediate collapse of the domain walls at the moment the inflaton sector’s symmetry is

spontaneously broken:

µ > µmin =

√
4π2gSM

405

(
β +

4α2

λ

) 1
2 T 2

c

MP
,

=

√
16π2gSM

405

v2

MP

(
βλ2

α2
+ 4λ

) 1
2

,

∼ 1.55× 10−13
(gSM

100

) 1
2

(
βλ2

α2
+ 4λ

) 1
2

GeV. (6.34)

To ensure the addition of the cubic term doesn’t influence the reheating dynamics, we require

the cubic coupling contribution to the three-inflaton scatterings on top of the vacuum to be

small compared to that of the quartic coupling post symmetry breaking. Additionally we

require the cubic coupling’s contribution to the inflaton mass to be negligible,

∂2V

∂X2

∣∣∣
X=vX ,

√
2H=v

= 3βv2
X − µ2

X − 2αv2 +
12α2

λ
v2
X + 6µvX ,

=

(
2β +

4α2

λ

)
v2
X + 6µvX . (6.35)

Since β > α2/λ, both of these requirements are satisfied when

βvX � µ, (6.36)
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from which we obtain the following upper bound on µ:

µ < µmax = O(10−2)× βv
√

λ

2α
. (6.37)

The cubic coupling does not have any one-loop corrections to the running of the inflaton

quartic self-coupling, which has the beta function

ββ = N1β
2 +N2βα+N3α

2, (6.38)

where Ni are numerical factors. The one-loop beta function of the cubic coupling is

βµ = N1µβ +N2µα. (6.39)

In sections 6.8 and 6.9, we determine the β−α parameter space of the model that has successful

inflation and reheating, and find that β ≤ O(10−9) and α ≤ O(10−5). The cubic coupling

therefore remains small and the theory is self-consistent at all energy scales. We will evaluate

the allowed range of µ using the bounds defined by (6.34) and (6.37).

6.7 Preheating

Following the inflationary epoch, which is terminated by the violation of the slow-roll condi-

tions once Xb = O(MP), is a period of non-perturbative particle production called preheating.

In this section we study inflationary attractor misalignment and parametric resonance pre-

heating, and show that neither mechanism efficiently transfers inflationary energy into the SM

sector. The non-thermal inflaton distribution resulting from parametric resonance provides us

with the initial condition for the reheating study in sections 6.8 and 6.9.

6.7.1 Inflationary attractor misalignment

Prior to the transfer of inflationary energy into excitations of the inflaton and Higgs fields,

the inflaton’s quartic self-coupling dominates the potential, and so the classical equation of

motion of the inflaton background field is well approximated by

Ẍb + 3HẊb + βX3
b = 0, (6.40)

where the Hubble expansion rate is

H2 ' 1

3M2
P

(
1

2
Ẋb

2
+
β

4
X4
b

)
, (6.41)
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and MP is the reduced Planck mass. At the end of inflation the Hubble friction term, 3HẊ, is

subdominant to the kinetic term, Ẍ, in (6.40), and so the inflaton background field rolls to the

minimum of its potential. Whilst the amplitude of the zero mode inflatons greatly exceeds its

VEV, the field homogeneously oscillates about the origin along the direction of the inflationary

attractor, as shown by the blue curves in Figure 6.3. The initial amplitude6 of the inflaton

field after inflation (Xb,0 ∼ 0.1MP [230]) is damped by Hubble expansion and asymptotically

approaches [230]

Xb(t) ≈
1√
t

(
3M2

P

β

) 1
4

∝ a−1, (6.42)

in the limit t→∞. The full solution of Xb is a function of the elliptical cosine7 [230],

Xb(t) = Xb(t) cn

(
x− x0,

1√
2

)
(6.45)

where x ≡ 2
(
3βM2

P

) 1
4
√
t and x0 ≈ 2.44. Note that the energy density of the field is propor-

tional to a−4, and so it decreases at the same rate as the radiation energy density given in

(2.26). Once the amplitude is sufficiently damped by Hubble expansion and particle produc-

tion, symmetry is spontaneously broken and the fields oscillate on top of the vacuum along the

direction of the inflationary attractor. For a light inflaton (β � 8α) the angle of the inflation-

ary attractor (6.12) aligns with the angle of rotation of the vacua (6.17), so preheating proceeds

with the total inflationary energy residing in the oscillations of the inflaton field. However, for

a heavy inflaton (β > 8α) the angle of the inflationary attractor is misaligned with the angle

of rotation of the vacua. As a result, Figure 6.3 shows that the direction of field oscillations on

top of the vacuum, given by the double headed black arrow, is misaligned with the inflaton-like

direction of the vacuum, given by the red dashed-line, and therefore some of the inflationary

energy is deposited in oscillations of the Higgs field.

6Here we use bold font to denote the amplitude of the inflaton field, not a vector quantity.
7The Jacobi elliptical cosine function is

cn(u, k) = cos (amp(u, k)), (6.43)

where the Jacobi amplitude is amp(u, k) = F−1(u, k), and F−1(u, k) is inverse of the elliptic integral:

F (u, k) =

∫ u

0

dt√
1− k2 sin2 t

. (6.44)
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Figure 6.3: Field oscillations at preheating

Blue lines (numerical results) show the oscillations of the fields above their VEVs along the
direction of the inflationary attractor, given by equation (6.12). The red dashed lines are the

angles of rotation of the vacua, given by equation (6.17). The double headed black arrow
gives the direction of the field oscillations on top of the vacuum after inflation, which is in the

direction of the inflationary attractor solution. As the direction of the field oscillations are
misaligned with the angle of rotation of the vacua, some of the inflationary energy is

deposited in the Higgs direction. We use the following parameters:
λ = 0.1, α = 10−2, β = 10−3, and the field values are given in units of MP.

We can approximate the magnitude of the energy transferred into the SM as a result of

the misalignment of the inflationary attractor with the vacua by evaluating the ratio of the

inflaton to Higgs fields’ energy densities (for simplicity we take α � β, so the Higgs field in

the vacuum (6.17) is negligible compared to its value along the inflationary attractor (6.12)):

ρX
ρΦ
∼ βX4

λΦ4
∼ O

(
λ

β

)
∼ O(108 − 1012). (6.46)

Therefore, this mechanism does not transfer noticeable energy into the Higgs-like direction

during the early stages of preheating.

6.7.2 Parametric resonance

The preheating stage continues with energy transfer from oscillations of the zero mode into

quantum excitations of the Higgs and inflaton fields via the Higgs portal coupling, 2αX2ΦΦ†,

and the inflaton self-coupling, β/4X4, respectively. During the period which defines preheating,

this process is enhanced by a non-stochastic production mechanism called parametric resonance

as a result of the periodically varying energy source that is our classical background inflaton

[46]. To investigate this effect, we use the Heisenberg representation for the quantum fields,
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which for the inflaton field is given by

χ(t,x) =
1

(2π)
3
2

∫
d3k

(
âkχk(t)e−ik.x + â†kχk(t)eik.x

)
, (6.47)

where âk and â†k are annihilation and creation operators and k is the conformal momentum.

The equation of motion of the temporal eigenmodes, χk(t), is then [230]

χ̈k + 3Hχ̇k +

(
k2

a2
+ 3βX2

b (t)

)
χk(t) = 0. (6.48)

To simplify (6.48), we remove the field’s dependence on the expansion of the universe through a

conformal transformation, χk(t)→ Xk(t)/a(t), thereby reducing the problem to an equivalent

one in Minkowski space-time [230],

X ′′k + ω2
kXk = 0, (6.49)

where X ′′k ≡
∂2Xk
∂x2 . The conformal eigenmodes, Xk, oscillate with frequency [230]

ω2
k = κ2 + 3cn

(
x− x0,

1√
2

)
, (6.50)

where κ is the conformal momentum rescaled by X̃b(t) = a(t)Xb(t) and the inflaton self-

coupling [230]:

κ2 =
k2

βX̃2
b

. (6.51)

A defining feature of the Xk is that they oscillate with a frequency, ωk, that varies periodically

with the frequency of the zero-mode oscillations. Equation (6.49) therefore has the same form

as the Mathieu equation, which has exponentially unstable solutions for modes with momenta

that lie within the resonance bands. Physically, this corresponds to the exponential production

of inflaton particles to occupy a highly non-thermal infra-red distribution function. However,

since the resonance bands are narrow, the exponential production of particles is halted fairly

promptly [230] due to the decaying amplitude of the zero-mode, as a result of the energy

lost through particle production, and backreaction effects, which give an effective mass to the

inflaton particles (m2
eff ∼ 3β〈χ2〉). These two effects cause the position of the resonance bands

to shift, thereby preventing the growth of the initial resonant modes [230]. However, it is the

rescattering of particles out of their resonance bands that terminates parametric resonance

all together. This becomes effective once the comoving number density of the particles, nk,

is of the order of the reciprocal of their self-coupling, which for inflatons is nk ∼ β−1. It is

for this reason that parametric enhancement can not take effect in transferring energy into
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Higgs particles, since they promptly re-scatter from their resonance bands due to their large

self-coupling, λ� α [230–232].

Rescattering of inflatons from their resonance bands becomes significant once roughly half

of the energy of the inflaton condensate has been transferred, after which the inflaton enters

a phase of free-turbulence. During this period the inflaton distribution evolves self-similarly

towards thermalisation, and so the following ansatz is used [232, 233]:

fχ(k, τ) = τ−qfχ,0(kτ−p); (6.52)

τ = t/t0 is a dimensionless time scale, where t0 is some arbitrarily late time, and k is conformal

momentum. Exponent p is related to the number of m-particle scatterings by [232]

p =
1

2m− 1
=


1
5 , m = 3

1
7 , m = 4

(6.53)

and exponent q ≈ 3.5p is approximated numerically using lattice simulations [232]. Compar-

ative analysis of lattice simulations with wave kinetic theory verify that particle interactions

with the zero-mode are important for most of the free-turbulence period, and so the evolution of

the inflaton towards thermalisation is primarily driven by three-particle scatterings (p = 1/5).

Only at later times, once the majority of the energy in the zero-mode has been transferred

into excitations of the field, do four-particle scatterings (p = 1/7) dominate the evolution [232,

233].

The momentum distribution follows a power law at low momenta, k−s, with exponent [232]

s = d− m

m− 1
=


3
2 , m = 3

5
3 , m = 4

(6.54)

where d = 3 is the number of spatial dimensions. Larger momenta are bounded by an ultra-

violet cut-off [232, 233], which we will model in the form of an exponential function, parame-

terised by k0:

fχ(k, t) =

(
t

t0

)−q (
k

k0

(
t

t0

)−p)−s
× exp

[
− k

k0

(
t

t0

)−p]
. (6.55)

Our analysis proceeds in the perturbative reheating period, during the later stages of ther-

malisation, from t ∼ t0. Once the Hubble expansion rate has decreased to the order of the

inflaton decay width, the inflaton can efficiently transfer its energy into the SM via the Higgs

portal. Light inflaton (mχ � 2mh) and heavy inflaton (mχ > 2mh) have different kinetmati-

cally favourable reheating mechanisms, therefore we carry out the analysis of these two regimes
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separately.

6.8 Reheating: light inflaton (mχ � 2mh)

Here we review the reheating analysis carried out in the previous works [45–48] that focus

on the region of parameters with the inflaton mass below the Higgs boson mass.

The dominant reheating mechanism for a light inflaton in the EW restored symmetry regime

(Φ = 0) is the two-to-two scattering process χχ→ hh/ϕiϕi [46, 47], with an amplitude of

V (X,Φ) ⊃ −α
(
h2 + ϕ2

1 + ϕ2
2 + ϕ2

3

)
χ2,

→ |Mχχ→hh/ϕiϕi | = 4α; (6.56)

where the combinatorial factor 2 ·2 accounts for the 2 identical particles in the initial and final

state. The total cross-section of the two-to-two scattering process is

σSM = σχχ→hh +

3∑
i=1

σχχ→ϕiϕi ∼
α2

πp2
avg

,

where pavg is the average momentum of the inflaton. The universe reheats when the mean free

path of the inflaton,

ΓSM(T ) ∼ nχσSM, (6.57)

is comparable with the Hubble expansion rate, ΓSM(Treh) ∼ H(Treh). If we first assume that

the inflaton is in thermal equilibrium at the time of reheating, then a thermal estimate of

the reheating temperature can be found analytically using the number density for a thermal,

relativistic inflaton, given by equation (2.32), with gχ = 1, and pavg ∼ T [44, 46]:

Treh,T ∼
ζ(3)α2

π4

√
90

g∗
MP; (6.58)

the total number of effective degrees of freedom is g∗ = gSM + gχ ∼ 102. We require the

reheating temperature to exceed the EW symmetry breaking scale, TEW = 160 GeV [68], so

that the BAU can be produced via EW sphaleron processes. In the thermal limit, the minimum

reheating temperature translates to the following lower bound on α [44, 46]:

α > αmin,T ≈
(
π4

ζ(3)

√
gSM

90

TEW

MP

) 1
2

∼ 7.5× 10−8. (6.59)

However, since the inflaton distribution slowly evolves self-similarly toward thermal equi-

librium [232, 233], a better approximation of the reheating temperature assumes a non-thermal
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inflaton, which has an average momentum suppressed with respect to the thermal estimate,

pavg ∼ T :

pavg

T
=

(
MP

T

)p
β

1+p
4 . (6.60)

As a result, the inflaton number density and cross-section are enhanced with respect to their

thermal estimates by factors (T/pavg) and (T/pavg)
2

respectively, thereby increasing the ther-

mal approximation of the reheating temperature (6.58) by a factor of (T/pavg)3. This gives

the more realistic non-thermal estimate of the lower bound on α [44, 46],

α > αmin ≈
(
MP

TEW

) 3p
2
(
π4

ζ(3)

√
gSM

90

TEW

MP

) 1
2

β
3(1+p)

8 ∼ (1.6× 10−9)

(
β

10−12

) 3
7

, (6.61)

where gSM ∼ 100, and we take p = 1/7 to evaluate the most conservative bound to use in our

analysis.

Additionally, to ensure quantum corrections to the inflaton’s quartic self-coupling are suf-

ficiently small and the inflationary analysis above holds, we require α2 < 0.1β [45], leading

to

α < αmax = (0.1β)
1
2 . (6.62)

6.8.1 Analytical results

The β − α parameter space is fully closed by cosmological constraints, which determine the

allowed range of β given in (6.9); and the reheating and inflationary constraints, which deter-

mine the upper and lower bounds of α given by (6.61) and (6.62) respectively. The results are

summarised in Table 6.1 [44].

β α

10−9 (3.1× 10−8)− (1.0× 10−5)

10−10 (1.1× 10−8)− (3.2× 10−6)

10−11 (4.2× 10−9)− (1.0× 10−6)

10−12 (1.6× 10−9)− (3.2× 10−7)

Table 6.1: Light inflaton β − α parameter space that allows for successful inflation and
reheating. λ ' 0.1 is constrained by the measurement of the SM Higgs boson mass [147].

For non-thermal inflaton, (6.58) and (6.60) are used to estimate the reheating temperature,

Treh ∼
(

T

pavg

)3

Treh,T,

∼
(
Treh

MP

) 3
7

β−
6
7
ζ(3)α2

π4

√
90

g∗
MP; (6.63)
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then substituting in for αmin using equation (6.61), the reheating temperatures within the

bounds of the parameter space stated in Table 6.1 are [44]

Treh ∼
( α

αmin

) 7
2

TEW,

= O(TEW − 1010) GeV. (6.64)

The inflaton mass, given by equation (6.23), is inversely proportional to α, and so is bounded

from below by αmax and from above by αmin:

mχ ∼

[
0.16

(
β

10−12

) 1
4

− 2.2

(
β

10−12

) 2
7

]
GeV. (6.65)

The range of the trilinear inflaton self-coupling, µ, is bounded by the constraints (6.34) and

(6.37), which ensure µ is large enough to prevent domain walls forming and small enough to

not significantly alter the reheating dynamics and inflaton mass. In Table 6.2 we evaluate the

allowed range of µ using the bounds on light inflaton parameter space given in Table 6.1.

β µmin(αmin)− µmax(αmin) [GeV] µmin(αmax)− µmax(αmax) [GeV]

10−9 O(10−11 − 10−6) O(10−13 − 10−7)

10−10 O(10−11 − 10−6) O(10−13 − 10−8)

10−11 O(10−11 − 10−7) O(10−13 − 10−8)

10−12 O(10−11 − 10−8) O(10−13 − 10−9)

Table 6.2: Light inflaton trilinear coupling

Allowed range of the trilinear inflaton coupling, µ, in the light inflaton parameter space,
where λ ∼ 0.1 and the allowed ranges of β and α are given in Table 6.1. µmin is the lower

bound to ensure the immediate collapse of the domain walls at the time of the phase
transition, and µmax is the upper bound to ensure the coupling is small enough so that

inflationary and reheating dynamics are not affected.

6.8.2 Light inflaton search

The light inflaton can be produced via rare meson decays. The most sensitive bound on the

light inflaton parameter space is from searches for invisible scalars produced via kaon decay

[234, 235], K± → π±χ, for inflaton with mass in the kinematically viable region mχ . 0.3 GeV.

Having applied the necessary constraints for inflation and reheating to our model, equation

(6.65) shows that the inflaton is only light enough when β =
(
10−12 − 10−11

)
. Due to a

discrepancy between the K+ → π+χ amplitude given in [236] and [47, 237–239], we carry out

the calculation in the Appendix. First, at the free-quark level, we obtain the amplitude of the

weak-contribution to the quark self-energy, where the flavour-changing neutral current (s→ d)

is mediated by the W-boson or Faddeev-Popov unphysical scalar (Φ+), and an internal quark
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line [238, 239]. The largest contribution to the K+ → π+χ amplitude is from the internal

quark radiating a Higgs boson that then mixes with an inflaton [47, 239], as shown by Figure

6.4. As we can presume a soft Higgs boson emission, we approximate the Higgs as an external

field [239].

θm

W+/Φ+

s q q d
h

χ

Figure 6.4: Quark-level process of dominant contribution to K+ → π+χ.

Quark-level process of K+ → π+χ. The neutral quark current (s→ d) changes flavour via
the W boson (W+) or unphysical scalar (Φ+) loop. The Higgs boson (h) is emitted from the

internal quark, which then mixes to produce an inflaton particle (χ).

The subdominant contributions to the K+ → π+χ amplitude from the above flavour-changing

neutral current process [47, 239, 240] are given below in Figure 6.5.

K+ π+ π+

χ

(a)

K+ K+ π+

χ

(b)

K+ π+

χ

(c)

K+ π+

χ

(d)

K+ π+

χ

(e)
K+ π+

χ

(f)

Figure 6.5: Sub-dominant contributions to K+ → π+χ.

The sub-dominant contributions to K+ → π+χ amplitude [240]. The wavy line represents the
W+/Φ+ boson, the filled dot denotes an effective vertex and the crossed dot denotes the

Higgs boson (h) mixing into an inflaton (χ). Figures 6.5a and 6.5b are pole diagrams, which
at quark-level is the emission of a Higgs boson from the bound-state quarks of π+ and K+

respectively. Figures 6.5c-6.5e are non-spectator diagrams. In Figures 6.5c and 6.5d the
effective π+hW+(Φ+) and K+hW+(Φ+) vertices denote the contribution from the heavy

quark traingle diagram with external gluons, see [240] for details. Figure 6.5f is the one-loop
spectator diagram.

We do not include the contributions from the subdominant processes in our analysis.

Next we implement chiral perturbation theory [241–243] to obtain the meson interaction

amplitude from the free-quark approximation [238, 239]. Our calculation reproduces the result
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given in [47, 237–239], which gives the following branching ratio of K+ → π+χ,

Br(K+ → π+χ) =
Γ(K+ → π+χ)

Γtotal(K+)
≈ 1.3× 10−3

(
2|pχ|
MK

)
θ2

m, (6.66)

where pχ is the inflaton momentum in the centre of mass frame, MK is the kaon mass and

Γtotal(K+) is the total decay width of K+.

Figure 6.6 shows regions of the light inflaton parameter space that are excluded by searches

for scalars produced via meson decays. The black dashed lines are of constant β, and the region

between β = 10−12 and β = 10−9 defines the light inflaton parameter space. Lighter inflatons

with mass below the muon threshold (mχ . 2mµ) have a long enough lifetime to decay outside

the detector, whilst heavier inflatons have a short enough lifetime to decay within the detector

[47]. The main decay channels of inflatons with masses in the range 2mµ < mχ < 1 GeV are

χ→ µ−µ+/ππ [47]. In Figure 6.6 the solid coloured lines are the exclusion plots from searches

for invisible scalars [235, 244–246], and the dotted coloured lines are the exclusion plots from

searches for scalars that decay visibly within the detector via χ → µ−µ+ [247–250]; current

bounds from LHCb limits mχ > 1 GeV.
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Figure 6.6: Exclusion plot of light inflaton parameter space from searches for invisible scalars
produced via meson decay

Plot of the squared inflaton-Higgs mixing angle against inflaton mass. The black dashed lines
plot the parameter space for the light inflaton model (mχ � mh) with given values of the
inflaton’s quartic self-coupling, β =

(
10−12 − 10−9

)
. The solid coloured lines are exclusion

regions from searches for an invisible scalar produced via meson decay. Bounds are given
from the following experiments: NA62 (K+ → π+ + inv.) in red [235]; NA62 (π0 → inv.) in

blue [244]; E949 in green [245]; CHARM in cyan [246]. The dotted coloured lines are
exclusion regions from searches for a visible scalar produced via meson decay, which then
decays in the detector via χ→ µ−µ+. Bounds are given from the following experiments:
NA48/2 in grey [247]; LHCb in orange and purple [248, 249]; and Belle in purple [250].
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6.9 Reheating: heavy inflaton (mχ > 2mh)

In this section we focus on my own work [43], where the inflaton is heavier and the channel

of its direct decay to a pair of Higgs bosons is open, which allows for a more efficient reheating.

The dominant reheating process for heavy inflaton (mχ > 2mh) in the restored EW sym-

metry regime (Φ = 0) is via the decay process χ → hh/ϕiϕi [43, 46], thereby kinematically

bounding α from above:

α < αmax =
β

8
. (6.67)

The amplitude of the decay process is

V (X,h) ⊃ −2αvX
(
h2 + ϕ2

1 + ϕ2
2 + ϕ2

3

)
χ, (6.68)

→ |Mχ→hh/ϕiϕi | = 4αvX , (6.69)

where a symmetry factor of 2 accounts for the two identical particles in the final state. The

total decay width of the process is

ΓSM = Γχ→hh +

3∑
i=1

Γχ→ϕiϕi =
β

4π

m4
h

m3
χ

K(T ),

where the kinematic factor is

K(T ) =
(

1− 4m2
h(T )

m2
χ

) 1
2

. (6.70)

The heavy inflaton decays prior to thermalization, when its distribution is highly non-thermal

from turbulent preheating. As a result, the reheating temperature can not be well approximated

analytically, as in the light inflaton case. Instead, we solve the Boltzmann equations numerically

to evaluate the inflaton upper mass bound (and therefore αmin), which is provided by ensuring

the minimum reheating temperature is greater than the EW symmetry breaking scale.

6.9.1 Boltzmann equations for reheating

Three Boltzmann collision integral equations fully describe the dynamics of the system of

particles during reheating [251, 252]:

dfχ
dt

= Cχχ↔hh/ϕiϕi + Cχχ↔hh/ϕiϕi , (6.71)

dfSM

dt
= CSM

χ↔hh/ϕiϕi + CSM
hh/ϕiϕi↔SMSM + CSM

h/ϕi↔SMSM, (6.72)
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where ϕi (i = 1, 2, 3) are the EW Goldstone bosons. The rate of particles x scattering in and

out of their distribution functions, fx, is calculated using the quantum collision integral; the

standard definition for a general two-to-two scattering process, a(p)a′(p′) ↔ b(q)b(q′), with

amplitude Maa′→bb′ is

Caaa′↔bb′ =
1

2Eap

∫
ga′ d3p′

2Ea
′
p′ (2π)3

gb d3q

2Ebq(2π)3

gb′ d3q′

2Eb
′
q′ (2π)3

(2π)4δ4(p+ p′ − q − q′)|Maa′→bb′ |2 (6.73)[
fb(q, t)fb′(q

′, t)
(
1± fa(p, t)

)(
1± fa′(p′, t)

)
− fa(p, t)fa′(p

′, t)
(
1± fb(q, t)

)(
1± fb′(q′, t)

)]
.

Exp is the energy of particle x with physical momentum p, and gx is the number of effective

degrees of freedom of particle x. The (1± f) term is to account for the probability that the

final state boson (+) or fermion (−) is free to scatter into, which is determined by Bose-Einstein

and Fermi-Dirac statistics respectively.

Equations (6.71) and (6.72) are simplified using the following:

• ΓSM & O(107)Γχχ→hh/ϕiϕi , so Cχχ↔hh/ϕiϕi , is neglected.

• Number conserving and violating interactions between W±/Z bosons are at rates of at

least O(1011) times greater than the Hubble expansion rate during reheating. As a result,

kinetic and chemical equilibrium are reached very quickly, and so CSM
hh/ϕiϕi↔SMSM and

CSM
h/ϕi↔SMSM are neglected. Additionally, we assume the SM thermalises instantaneously

on production to some temperature TSM, and therefore implement the detailed balance

condition.

• We verified numerically that the density of inflaton particles at the start of the reheating

period (when ΓSM ∼ H) is small, and up until the end of the reheating period, the density

of Higgs particles is also small. As a result, we take the classical limit of equation (6.73),

where f � 1, and ignore the (1± f) terms .

The above simplifications reduce the Boltzmann equations (6.71) and (6.72) to [253, 254]

∂fχ(k, t)

∂t
=

amχ√
(amχ)2 + k2

ΓSM

[
feqχ (TSM)− fχ(k, t)

]
, (6.74)

where k is the conformal inflaton momentum. f eq
χ (k, t) is the Bose-Einstein distribution func-

tion of the inflaton thermalised at the SM temperature, TSM(t):

feqχ (k, t) =
1

(2π)3

1

exp
[√

(amχ)2+k2

aTSM(t)

]
− 1

. (6.75)

The differential equation for a(t) is found using the Friedmann equation for the Hubble
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expansion rate:

H(t) =
ȧ(t)

a(t)
=

√
ρχ(t) + ρSM(t)

3M2
P

; (6.76)

where ȧ(t) = da
dt , MP is the reduced Planck mass and the energy densities of the inflaton and

SM are:

ρχ(t) =
4πgχ
a4

∫ ∞
k=0

dk k2
√
k2 + (amχ)2fχ(k, t), (6.77)

ρSM(t) =
π2gSM

30
T 4

SM(t). (6.78)

The number of degrees of freedom of the inflaton is gχ = 1. We take the number of effective

degrees of freedom of the SM as constant throughout reheating, at gSM = 100.

Next we want to find the differential equation for TSM to replace the Boltzmann equation

(6.72), which we derive from the covariant conservation of the energy-momentum tensor given

in equation (2.19):

ρ̇T + 3H (ρT + pT ) = 0, (6.79)

where T denotes the sum of the inflaton and SM components. The time-derivative of the

inflaton energy density,

ρ̇χ =
d

dt

∫
d3k

a3
Ekfφ(k, t), (6.80)

= −3H (ρχ + pχ) +

∫
d3k

a3
Ek

∂fχ(k, t)

∂t
, (6.81)

is substituted into equation (6.79) to obtain the time-derivative of the SM energy density,

ρ̇SM = −3H (ρSM + pSM)−
∫

d3k

a3
Ek

∂fχ(k, t)

∂t
. (6.82)

We then use the relation pSM = 1
3ρSM and substitute equations (6.74) and (6.78) into (6.82)

to find the differential equation for TSM,

dTSM

dt
= −HTSM −

30

gSMπ(aTSM)3

∫ ∞
0

dk k2mχΓSM

[
feqχ (TSM)− fχ(k, t)

]
. (6.83)

(6.74), (6.76) and (6.83) form a closed set of differential equations.

Next, we solve the Boltzmann equations numerically across the entire inflaton parameter

space; here the inflaton mass is constrained, for a given self-coupling, from below by kinematics

of the decay and from above by the electroweak symmetry breaking scale.
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6.9.2 Numerical results

The non-thermal inflaton distribution resulting from turbulent preheating, detailed in section

6.7.2, provides the initial condition for the reheating study. Motivated by the works carried out

in [232, 233], we assume the free turbulent evolution of the inflaton is driven by three particle

scatterings up to some moment t = t0, leading to the distribution function (6.55), with q = 1/5

and s = 3/2,

f(k, t0) =

(
k

k0

)− 3
2

e−
k
k0 . (6.84)

Starting from a universe filled with only inflaton particles at t0, the initial Hubble expansion

rate is approximated by

H(t0) =

√
ρχ(t0)

3M2
P

∼

√
mχk3

0

3M2
Pa(t0)3

. (6.85)

The parameter k0 is chosen so that H(t0) & ΓSM, i.e. we choose the moment slightly before the

inflaton decays. When the Hubble expansion rate has decreased to H(t) ∼ ΓSM, the universe

will start to reheat.

In Figure 6.7 we show that a heavy inflaton with self-couplings in the range O(10−12) 6

β 6 O(10−9) is constrained to the mass range (250 < mχ . 7600) GeV. The inflaton mass

is bounded from below by the kinematics of the decay, χ → hh/gg, requiring mχ > 2mh.

The inflaton mass is bounded from above by the minimum reheating temperature, which is

required to exceed the EW symmetry breaking scale, TEW = 160 GeV [68]. Here we define the

reheating temperature, Teq, as the temperature when the energy densities of the inflaton and

the SM are equal. For inflaton that entered thermal equilibrium, we can roughly estimate

Teq ∝
√

ΓSM ∝
√

β

m3
χ

. (6.86)

However, the proper equilibrium temperature for inflaton starting from a non-thermal distri-

bution is found by solving the Boltzmann equation numerically.
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Figure 6.7: Reheating temperature against inflaton mass

Reheating temperature, Teq, defined when the energy densities of the SM and inflaton are
equal, against the inflaton mass. The black dashed lines give the lower inflaton mass bound,

at 2mh = 250 GeV, and the lower reheating temperature bound at the EW symmetry
breaking scale, TEW = 160 GeV [68].The diagonal black dotted line plots Teq = mχ.

The coloured dashed lines in Figure 6.7 give the area of parameter space where we would

expect the thermal mass of the Higgs boson in the kinematic term (6.70) to suppress the inflaton

decay width. We approximate the region using the leading contributions to the thermal Higgs

mass:

m2
h(Teq) ∼

(λ
2

+
g2
t

4

)
T 2

reh − 2αv2
X ,

∼
(λ

2
+
g2
t

4

)
T 2

eq − λv2,

→ Teq & mχ, (6.87)

where the Yukawa top coupling is gt ∼ 1. Precise analysis of this region requires a full thermal

quantum treatment of the evolution, which is beyond the scope of this thesis, so the precise

results here should be treated with caution. As the majority of the parameter space has

Treh < mχ, we take the kinematic factor to be K(T ) = 1 in our analysis.

Now we have obtained the bounds of the heavy inflaton’s parameter space, we evaluate the

range of the trilinear inflaton self-coupling that solves the domain wall problem in Table 6.2,

using the constraints (6.34) and (6.37).
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β µmin(αmin)− µmax(αmin) [GeV] µmin(αmax)− µmax(αmax) [GeV]

10−9 O(10−6 − 10−3) O(10−9 − 10−5)

10−10 O(10−6 − 10−4) O(10−8 − 10−5)

10−11 O(10−6 − 10−5) O(10−8 − 10−6)

10−12 O(10−6 − 10−5) O(10−7 − 10−6)

Table 6.3: Heavy inflaton trilinear coupling

Allowed range of the trilinear inflaton coupling, µ, in the heavy inflaton parameter space.
µmin is the lower bound to ensure the immediate collapse of the domain walls at the time of

the phase transition, and µmax is the upper bound required for mχ > 2mh ≡ α < β/8.

The heavy inflaton parameter space evades all current experimental constraints, due to

extremely low mixing of the inflaton with the Higgs sector.

6.10 Discussion and conclusion

We studied a singlet scalar model with a quartic self-interaction and a coupling to the Higgs

sector. With the addition of a non-minimal coupling of the scalar field to gravity, this model

can successfully produce inflation within CMB bounds of the tensor-to-scalar ratio and the

amplitude of primordial scalar perturbations, for self-coupling in the range β = O(10−12 −

10−9). With scale invariance only broken in the scalar sector, the inflaton-Higgs coupling gives

rise to symmetry breaking in the Higgs sector and provides the mechanism to initiate reheating.

The parameter space of light inflaton particles (mχ � mh) is constrained to the mass range

(0.16 . mχ . 16) GeV. The inflaton mass is bounded from below by equation (6.62), which

ensures radiative corrections to the inflaton’s quartic self-coupling from the inflaton-Higgs

quartic coupling are small enough to evade spoiling the inflationary potential. The inflaton

mass is bounded from above by requiring the universe is efficiently heated above the EW scale

via two-to-two inflaton-Higgs scattering. However in addition to cosmological constraints,

experimental searches for scalars in meson decays [235, 244–250] further constrain the light

inflaton mass range to mχ > 1 GeV. In the parameter space of heavy inflaton particles (mχ >

2mh), the mixing angle with the Higgs sector is very small, thus evading direct experimental

constraints. Our analysis restricts the heavy inflaton mass range to (250 < mχ . 7600) GeV,

by ensuring efficient reheating of the universe above the EW scale, via inflaton decay into two

Higgs bosons. We find in both regions of parameter space that we can solve the domain wall

problem with the addition of a small trilinear inflaton term, without influencing the inflationary

and reheating dynamics.

Let us turn to the limitations of our analysis. First, our results depend on the assump-

tion that the initial heavy inflaton distribution is governed by turbulence driven by 3-particle
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scatterings, as suggested in [232, 233]. We assessed the level of influence of these assumptions

by comparing the results of the three-particle scattering function to a 4-particle scattering

function (the power law distribution k−s in (6.55) with s = 5/3 instead of s = 3/2) in the

non-analytical region of the parameter space. We found a relatively weak dependence on the

initial distribution function, with up to a (10− 20)% difference between the results. Secondly,

we ignored the details of symmetry restoration in the EW sector after preheating, which would

require a full thermal field theory treatment. Thus our results for inflaton masses approaching

the kinematic limit of decay into two Higgs bosons may be modified by exact study.

A potentially interesting region of inflaton masses could be when mχ ' mh, when the

mixing angle (8.5) becomes large. However, we expect that reheating in this range is still

inefficient. Although this would significantly enhance the inflaton decay rate via inflaton-Higgs

mixing, such processes can not contribute to reheating in restored EW symmetry, and χχ→ hh

is inefficient for an inflaton in this mass range. Nonetheless, we can not rule out the possibility

of significant SM production here as a result of the misalignment of the inflationary attractor

with the vacuum, without a careful study of the preheating period.

Future work on this model may also include studying the effects of adding the renormal-

isable trilinear inflaton-Higgs coupling, χΦ†Φ. A sizeable coupling may significantly enhance

χ → hh in the heavy inflaton parameter space, thus reheating the universe more efficiently

and extending the upper mass bound of the inflaton. Additionally there are experimental

motivations if θm is significantly larger, as new detection channels in particle colliders, such as

χ→ qq̄, may become accessible.

In the following chapter we extend our inflationary model with three sterile neutrinos in

a modified νMSM model. We require the model parameters to be consistent with the SM

neutrino mass splittings, and incorporate mechanisms for DM production via inflaton decay in

the early universe, and leptogenesis to generate the BAU. We utilise the theory and relevant

bounds from chapters 4 and 5 to constrain our model.
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Chapter 7

Inflaton model + νMSM

7.1 Introduction

A more realistic model of nature should have a DM candidate and a means to produce it, to

give over 80% of the total matter energy density today [255, 256]. In this chapter we minimally

extend the light scalar inflaton model of chapter 6 with a modified version of the νMSM [53].

Here, symmetry breaking in the scalar sector gives Majorana masses to three sterile neutrinos,

the lightest of which can be used as DM [43, 45, 52]. The DM is produced from direct inflaton

decay during the reheating process, leading to a non-thermal velocity distribution for DM.

Moreover, the additional two heavier sterile neutrinos are able to generate the SM neutrino

masses via the seesaw mechanism, as in section 5.1.3, and produce the BAU via leptogenesis,

as in section 5.3.

This chapter first outlines the scalar inflaton and νMSM model with a scalar-sterile neutrino

Yukawa coupling, which generates the sterile neutrino mass post scalar symmetry breaking.

We derive the DM production rate via inflaton decay. We argue that DM production via active-

sterile neutrino mixing is negligible due to the absence of x-rays observed from the radiative

decay of sterile neutrinos [106, 187]. Sections 7.3, 7.4 and 7.5 are concerned with evaluating the

DM mass and average momentum across the inflaton parameter windows defined in chapter 6

by successful inflation and reheating. First we review DM production via light inflaton decay

(mχ � mh) from previous works [45–47, 52]. In this case, the DM properties are determined

analytically across the entire light inflaton parameter space as the inflaton thermalizes prior to

DM production. The light inflaton produces DM sterile neutrinos with mass O(10− 100)keV,

and an average momentum over temperature at the end of reheating of 2.45. Next we focus on

my own work [43] that analyses DM production via heavy inflaton decay (mχ > 2mh). Across

the majority of the heavy inflaton parameter space the inflaton has a non-thermal distribution,

resulting from turbulent preheating, at the time of DM production. As a result, we can only

make analytical estimates in the limit reheating temperatures are much less/greater than the

inflaton mass [45, 257]. We then solve the Boltzmann equations numerically across the entire
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heavy inflaton parameter space; the analytical and numerical results are comparable only at the

extremities of the parameter space. Our final results conclude that a heavy inflaton produces

MeV sterile neutrinos, with an average momentum over temperature at the end of reheating

of O(1 − 10). On evaluation of the DM free-streaming length, we find that keV DM from a

light inflaton is classified as warm DM and MeV DM from a heavy inflaton is classified as cold

DM, and both are within the Lyman-α free-streaming bound (4.52).

In section 7.6, we make use of our analysis in section 5.3 to constrain the masses of the

two heavier sterile neutrinos, by requiring they generate sufficient LA to account for the BAU

and their masses are consistent with the SM neutrino mass splittings. In section 7.7, we then

evaluate the entropy dilution from the late time decay of the two heavier sterile neutrinos.

This is important to check, as a large entropy could be problematic if it dilutes the generated

BA, but may be beneficial if it cools the DM, thereby relaxing the Lyman-α free-streaming

bound (4.52). We conclude from our analysis, however, that the entropy dilution in our model

is negligible.

7.2 The model and DM production

The νMSM can explain the origin of the BAU and DM [53] through the addition of three

sterile neutrinos, NI (I = 1, 2, 3), to the SM. We reviewed the standard νMSM model in section

5.2, in which DM sterile neutrinos are NRP or RP via active-sterile neutrino oscillations. The

review concluded that the total DM abundance can not be made up of NRP sterile neutrinos

due to constraints from unobserved x-rays emissions (5.58) and the Lyman-α free-streaming

bound (4.52). Although it is possible for RP sterile neutrinos to make up the total DM

abundance, the model is complicated by the requirement that the LA exceeds the BAU by

at least 5 orders of magnitude. The aim of this section is to offer an alternative mechanism

for DM sterile neutrino production that is not tightly constrained by these astrophysical and

cosmological bounds.

We extend our light inflaton model in chapter 6 with a νMSM that is modified with the

addition of a NI −X Yukawa coupling [43, 45–47, 52]:

LνMSM+X = LνMSM +
1

2
(∂µX)2 − fI

2
NI

c
NIX + h.c.+ V (X,Φ), (7.1)

where LνMSM is the Lagrangian of the standard νMSM given in equation (5.22), and V (X,Φ) is

the potential of our light scalar inflaton model given in equation (6.3). Spontaneous symmetry

breaking in the inflaton sector, X → vX + χ, generates the sterile neutrino mass,

MI = vXfI , (7.2)
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and a coupling to the inflaton field; we assume the normal mass hierarchy (M1 < M2 < M3).

As in the scalar sector, we assume that the massive parameters enter only in the inflaton

operators, i.e. we do not add bare Majorana masses for NI . As discussed in section 5.2.2,

the active-sterile neutrino coupling is strongly constrained from above by the absence of x-rays

observed from the radiative decay of sterile neutrinos [106, 187]:

|Fα1| . 3× 10−11

(
keV

M1

) 3
2

. (7.3)

We can therefore assume FαI � fI , and neglect NI production from active-sterile neutrino

oscillations. In this limit, all sterile neutrinos with MI < mχ/2 are produced via the freeze-in

mechanism from inflaton decay in the early universe. The amplitude of the process χ(q1) →

NI(p1, σ1)N I(p2, σ2) is

|Mχ→NN | = fIuσ1vσ2 , (7.4)

where a symmetry factor of 2 accounts for the two identical Majorana particles in the final

state. The squared amplitude summed over all possible spin states (σ1, σ2), and evaluated in

the centre of mass frame is

∑
σ1,σ2

|M |2 = f2
1 Tr

[
(/p1

+MI)(/p2
−MI)

]
, (7.5)

= 4f2
I (p1 · p2 −M2

I ),

= 2f2
Im

2
χ

(
1− 4M2

I

m2
χ

)
.

The corresponding decay width is [43, 45, 47]

ΓNI =
f2
Imχ

16π

(
1− 4M2

I

m2
χ

) 3
2

' β

8π

M2
I

mχ
, (7.6)

in the limit mχ �MI . ΓNI is much less than the Hubble expansion rate throughout reheating,

so sterile neutrinos remain decoupled from the thermal bath. The lightest of the three sterile

neutrinos, N1, is both massive and stable, and so is an ideal Feebly Interacting Massive Particle

(FIMP) DM candidate. We will assume in our analysis that N1 makes up the total DM energy

density in the universe, thereby constraining its abundance using equation (4.6) [255]:

ΩDM,0 =
1

D

s0

ρc,0
M1Y1,f (t) ∼ 0.25. (7.7)

The values of s0 and ρc,0 are given in (2.101) and (2.88), and Y1 is evaluated at the end of

freeze-in DM production. We have an additional factor D to account for the entropy dilution
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from heavier sterile neutrino decays. In section 7.7 we will show that this has a negligible

impact on the DM abundance, i.e. D ∼ 1. Constraining the coupling f1 from the abundance,

we can then evaluate the mass of DM, using (7.2), which has important consequences for

structure formation [92].

7.3 Boltzmann equations for reheating and DM produc-

tion

Three Boltzmann collision integral equations fully describe the dynamics of the system of

particles during reheating and DM production [251, 252]:

dfχ
dt

= Cχχ↔hh/ϕiϕi + Cχχ↔hh/ϕiϕi + Cχ
χ↔NN (7.8)

dfN
dt

= CN
χ↔NN (7.9)

dfSM

dt
= CSM

χ↔hh/ϕiϕi + CSM
hh/ϕiϕi↔SMSM + CSM

h/ϕi↔SMSM (7.10)

Equations (7.8) and (7.10) are simplified by the same assumptions stated in section 6.9.1,

and additionally, the sterile neutrino collision integrals in equations (7.8) and (7.9) are simpli-

fied using the following:

• ΓSM = O(106 − 108)ΓN , so Cχ
χ↔NN is neglected.

• Sterile neutrino density remains low during reheating, as ΓN is much less than the Hub-

ble expansion rate throughout the time of production; therefore the backward reaction

CN
NN→χ is neglected.

The above simplifications reduce the set of Boltzmann equations (7.8, 7.9, 7.10) to the

following [253, 254]:

∂fχ(k, t)

∂t
=

amχ√
(amχ)2 + k2

ΓSM

[
feqχ (TSM)− fχ(k, t)

]
, (7.11)

∂fN (kN , t)

∂t
=
mχΓNa

k2
N

∫ ∞
k′min

dk′
k′√

(amχ)2 + k′2
fχ(k′, t). (7.12)

k and kN are the conformal inflaton and sterile neutrino momenta respectively. In equation

(7.12) we neglect the production of sterile neutrino DM via active-sterile neutrino oscillations,

as for the range of parameters we are considering their production via inflaton decay is the

dominant process. The lower bound on the integral is

k′min =
∣∣∣kN − (amχ

)2
4kN

∣∣∣. (7.13)
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As in section 6.9.1, the differential equation for a(t), neglecting the contribution of the

sterile neutrinos to the total energy density, is

H(t) =
ȧ(t)

a(t)
=

√
ρχ(t) + ρSM(t)

3M2
P

, (7.14)

where the energy densities of the inflaton and SM are given by equations (6.77) and (6.78). We

take the number of effective degrees of freedom of the SM as constant throughout reheating and

DM production in the heavy inflaton parameter space, at gSM = 100. This is an acceptable

approximation even for a lighter heavy inflaton, which produces sterile neutrinos at (20 <

TSM < 80) GeV; with gSM = 86.25 [67], the corresponding error on the inflaton-sterile neutrino

coupling, f1, is still less than 5%.

The differential equation for TSM to replace the Boltzmann equation (7.10) is also the same

as in section 6.9.1,

dTSM

dt
= −HTSM −

30

gSMπ(aTSM)3

∫ ∞
0

dk k2mχΓSM

[
feqχ (TSM)− fχ(k, t)

]
. (7.15)

(7.11), (7.14) and (7.15) form a closed set of differential equations; the solution for fχ(k, t)

will then be used in (7.12) to solve for fN (kN , t).

7.4 Analytical treatment

The DM mass and momentum heavily depends on the inflaton distribution function at the

time of production. At the extremities of the heavy inflaton parameter space, where the

reheating temperature is much less/greater than the inflaton mass, the DM is produced via

two different mechanisms; as we have done previously, we define the reheating temperature,

Teq, as the temperature when the energy densities of the inflaton and the SM are equal. In

these two regions we can use analytical approximations of the inflaton distribution functions to

investigate the dependence of the DM properties on the inflaton parameters. In the parameter

space between, the DM is produced via both mechanisms, so a more careful numerical analysis

is required. Across the entire light inflaton parameter space the reheating temperatures are

much less that the inflaton mass, and so we simply determine the DM properties in this window

analytically.

7.4.1 Relativistic inflaton particles (Teq�mχ)

In the limit Teq � mχ, the inflaton has thermalised with the SM prior to the production

of sterile neutrinos, at Tprd ∼ mχ
2 . The thermal inflaton distribution function at the SM

temperature, given by (6.75), is used in (7.12) to obtain the analytical approximation of the
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sterile neutrino distribution. The sterile neutrino number density is given by [45]:

nN (t) =
4πgN
a3

∫ ∞
k=0

dkN k2
NfN (kN , t), (7.16)

=
3ΓNM0ζ(5)T 3

SM(t)

2πm2
χ

,

where the number of degrees of freedom of the sterile neutrino gN = 2, and M0 ≈ 3MP√
gSM

.

Having evaluated the entropy of the universe at the end of reheating,

s(t) =
4

3

ρSM(t)

TSM(t)
=

2π2

45
gSMT

3
SM(t), (7.17)

the relative DM abundance (7.7), is calculated using (6.17), (7.2) and (7.6) for vX , M1 and

ΓN1 respectively, to obtain the following power-law relations between mχ, β, f1 and M1:

ΩDM,0 ∝
f3

1√
β
, (7.18)

f1 = (4.45× 10−10)

(
ΩDM,0

0.25

) 1
3
(

β

10−9

) 1
6 (gSM

100

) 1
2

, (7.19)

M1 = 9.94 keV

(
ΩDM,0

0.25

) 1
3
(

10−9

β

) 1
3
(
gSM(Tprod)

100

) 1
2 mχ

GeV
. (7.20)

Here we have taken D = 1, which we will show is a reasonable estimate in section 7.7. The

analytical approximation of the average sterile neutrino DM momentum on production is [45,

52]

〈pN 〉
Tprod

=
π6

378ζ(5)
≈ 2.45. (7.21)

Sterile neutrinos are therefore cooler than thermal fermions, which have 〈p〉/T = 3.15.

The DM mass and momentum in the light inflaton parameter space (mχ � 2mh) are well

approximated by the analytical results (7.20) and (7.21); this region of parameter space has

been previously analysed in [45–47, 52]. Given the allowed range of light inflaton masses and

self-couplings for successful inflation and reheating, stated in equation (6.65) and Table 6.1,

we obtain the following range of DM masses:

M1 ∼


(

7
(
gSM(Tprod)

60

) 1
2 − 160

(
gSM(Tprod)

100

) 1
2

)
keV, β = 10−9(

5
(
gSM(Tprod)

10

) 1
2 − 170

(
gSM(Tprod)

80

) 1
2

)
keV. β = 10−12

(7.22)

Note that we have analytically evaluated (7.20) by taking gSM(Tprod) as constant throughout

DM production. However, gSM(Tprod) is a rapidly changing function of temperature for mχ ∼

O(0.1− 1) GeV and so the DM mass ranges in (7.22) should be taken as rough estimates. The
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keV DM is classified as warm DM, then using equation (4.50), we calculate their free-streaming

length to be

λFS ≈ 3.64 Mpc g∗s(T ≈M1)−
1
3

(
1 keV

M1

)(
g∗s(T ≈M1)

g∗s(Tprod)

) 1
3
(
〈pN 〉

3.15Tprod

)
,

≈ 3.64 Mpc g∗s(Tprod)−
1
3

2.45

3.15

(
1 keV

M1

)
,

= O(10−3 − 10−1) Mpc. (7.23)

In the first line we have used the conservation of entropy (2.22) to write the free-streaming as

a function of the momentum on production, by rescaling the momentum at T ≈ M1 by the

ratio of the number of degrees of freedom.

Figure 7.1, taken from [52], plots the inflaton-Higgs mixing angle against the inflaton mass.

The black line plots the inflaton parameters that would lead to the production of 7 keV sterile

neutrino DM, which is motivated by the anomalous x-ray emission [172, 184, 186, 192].

Figure 7.1: Exclusion plot of light inflaton parameter space with 7 keV sterile neutrino DM

Plot taken from [52] of the squared inflaton-Higgs mixing angle against inflaton mass. Shaded
regions are forbidden: blue (top-left) region due to large radiative corrections to the

inflationary potential; green (bottom) due to inefficient reheating; yellow (bottom-left) region
due to tensor-to-scalar ratio, r, exceeding the CMB limit; and brown region is the

experimental bound from the CHARM experiment [258]. The coloured lines are isocurves of
constant r. The black curve corresponds to the inflaton parameters that would lead to the

production of 7 keV sterile neutrino DM (motivated by the anomalous x-ray signal [186]) via
inflaton decay.

We can see from Figure 6.7 that there is only a small region of the heavy inflaton (mχ >

2mh) parameter space where Teq � mχ and thus the thermal approximation is reasonable:
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where the inflatons are relatively light, mχ . 500 GeV, and have self-couplings, β ≥ 10−10.

In section 7.5 we will precisely analyse where the analytical approximations diverge from our

numerical results.

7.4.2 Non-relativistic inflaton particles (Teq�mχ)

Heavier inflatons with smaller self-couplings have Teq � mχ, as shown in Figure 6.7. In this

limit, sterile neutrinos are produced prior to thermalisation from a highly infra-red inflaton

distribution resulting from turbulent preheating, given by equation (6.84), at the same time as

SM production:

fχ(k, t) ∼ e−ΓSMtfχ(k, 0) =
( k
k0

)− 3
2

e−
(
k
k0

+ΓSMt
)
. (7.24)

The sterile neutrino number density is obtained by solving the equation

∂nN (t)a3

∂t
= 2ΓNnχ(t)a3, (7.25)

where the inflaton number density is

nχ(t) =
4πgχ
a3

∫ ∞
0

dk k2fχ(k, t) = (2
√
π)

3
2

(
k0

a

)3

e−ΓSMt. (7.26)

This leads to

nN (t) = 2(2
√
π)

3
2

ΓN
ΓSM

(
k0

a

)3

. (7.27)

Solving for the entropy in terms of k0:

∂nSM (t)a3

∂t
= 2ΓSMnχ(t)a3, (7.28)

s(t) =
2π4nSM (t)

45ζ(3)
=

4π4(2
√
π)

3
2

45ζ(3)

(
k0

a

)3

,

YN =
45ζ(3)

4π4

ΓN
ΓSM

.

The relative DM abundance, (7.7), is calculated using (6.17), (7.2) and (7.6) for vX , MI and

ΓN , to obtain the following power-law relations between mχ, β, f1 and MI :

Ω0
DM ∝M1

ΓN
ΓSM

∝
f3

1m
5
χ

β
3
2

, (7.29)

M1 ∼(1.05× 103) m
− 2

3
χ MeV. (7.30)

Here we have also taken D = 1. Given that sterile neutrinos are produced at TSM ∼ Teq, and

presuming all the sterile neutrinos are created from inflaton particles at rest, their average
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momentum on production is

〈pN 〉
Tprod

∼ mχ

2Teq
. (7.31)

7.5 Numerical results

We set up our numerical analysis with the same initial conditions as stated in section 6.9.2,

i.e. the universe filled with inflatons with a highly non-thermal infra-red distribution, given

by equation (6.84). We proceed by numerically evolving the closed set of differential equations

(7.11), (7.14) and (7.15). The solution for fχ(k, t) is then used in (7.12) to solve for fN (kN , t),

and from which, we can determine the DM mass and momentum in the heavy inflaton window

defined in section 6.9.2.

The reheating temperature relative to the inflaton mass determines when the DM sterile

neutrinos are produced relative to the thermalisation of the inflaton distribution with the SM,

and therefore the properties of the DM. This is demonstrated in Figure 7.2, which shows the

time of sterile neutrino and SM production for a 260 GeV inflaton, as a function of the SM

temperature. The temperature when the inflaton distribution thermalises is indicated by the

vertical dotted lines.

Inflaton particles of mass 260 GeV and coupling β = 10−9 have a reheating temperature

of Teq ∼ 2400 GeV. As shown by the red line in Figure 7.2, sterile neutrinos are produced

from remnant thermalised inflaton particles post SM production. This is most efficient when

the universe has cooled to TSM ∼ mχ/2; at lower temperatures, production is inefficient as the

inflaton occupation number is highly Boltzmann suppressed. However, non-relativistic inflatons

most efficiently produce sterile neutrinos at the same time as the SM, at TSM ∼ Teq; at this

time, the inflaton distribution is non-thermal and the occupation number is at its largest.

The orange line in Figure 7.2 demonstrates the non-thermal production of sterile neutrinos

from inflaton particles of mass 260 GeV, coupling β = 10−12, and a reheating temperature of

Teq ∼ 240 GeV. The intermediate couplings, β = 10−10/10−11, generate sterile neutrinos by

both mechanisms that govern the highly relativistic/non-relativistic inflaton regions. The blue

and green lines in Figure 7.2 show the increasing efficiency of sterile neutrino production at

Teq with decreasing β.
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Figure 7.2: Evolution of inflaton decay and SM and DM sterile neutrino production, as a
function of SM temperature

The plot gives numerical results for a 260 GeV inflaton, with self-coupling
(10−12 6 β 6 10−9), represented by different colours given in the legend. The dashed lines

are the relative energy densities of inflaton/SM, ρχ/ρSM, and the full lines are the normalised
conformal number densities of sterile neutrino, nNa

3, plotted against the SM temperature,
TSM. The label mχ on the x-axis indicates where TSM equals the inflaton mass. The vertical

dotted lines give the SM temperature at which the inflaton distribution thermalises.

Analytical approximations of the sterile neutrino mass as a function of inflaton mass, that

lead to the proper DM abundance, show a positive correlation for relativistic inflaton particles

(7.20), and a negative correlation for non-relativistic inflaton particles (7.30). Plotting the

sterile neutrino mass against the inflaton mass, shown in Figure 7.3, allows us to clearly

identify which production mechanism dominates in different regions of the inflaton parameter

space. The inflaton mass which produces the maximum sterile neutrino mass is analytically

approximated, using (7.20) and (7.30), by

mχ ∼ (5.1× 104)β
1
5 GeV. (7.32)

The left/right of the peak in Figure 7.3 corresponds to the inflaton parameter space where the

thermal/non-thermal production mechanism dominates. In agreement with Figure 7.3, (7.32)

demonstrates that as β increases, the peak sterile neutrino mass moves to larger values of the

inflaton mass; and (7.20) states that a relativistic inflaton with smaller β produces heavier
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sterile neutrinos.

The numerical results in Figure 7.3 are given by the solid lines, and the analytical results

by the dashed lines. The relativistic approximations (7.20), have a dependence on β, and are

coloured accordingly; the non-relativistic approximation (7.30), has no dependence on β, so

is given by the black line. The analytical and numerical results match to good accuracy for

the lightest and heaviest inflaton particles with self-coupling β = 10−9. The inflaton particles

with smaller β do converge towards the analytical approximations, however numerical analysis

is necessary for arbitrary values of the parameters.

Figure 7.4 plots the average sterile neutrino momentum over temperature at the end of

reheating1, 〈pN 〉/T , across the inflaton parameter space. The lightest inflaton particles, with

coupling β = 10−9, have 〈pN 〉/T ∼ 2.4, which is in agreement with our analytical approxima-

tion for thermal production (7.21). Whilst mχ < Teq, increasing the inflaton mass increases the

efficiency of sterile neutrino production at Teq, thereby decreasing 〈pN 〉/T until a minimum is

reached at Teq = mχ, corresponding to 〈pN 〉/T ∼ 1. 〈pN 〉/T rapidly increases once mχ > Teq,

as 〈p〉 and Teq are increasing and decreasing functions of mχ, respectively. Analytical results

are consistent with our numerical results for a heavy non-relativistic inflaton, given by (7.31);

for example, the analytical estimate for 7600 GeV inflaton is 〈pN 〉/T ∼ 24.

The model for NRP and RP DM sterile neutrino production from active neutrinos [178,

185] that we studied in section 5.2.1 produce keV sterile neutrinos; with an average momentum

over temperature at T ∼ keV of 〈pN 〉/T = O(1) (precise values are given in (5.35) and (5.41)),

they are warm DM candidates. By comparison, production in heavy inflaton decays needs MeV

sterile neutrinos, which are cold DM candidates with

(
〈pN 〉
T

)
T∼keV

=

(
gSM(T ∼ keV)

gSM(Tprod)

) 1
3 〈pN 〉
Tprod

∼ 0.3− 8, (7.33)

where gSM(T ∼ keV) = 3.91. Our model is therefore well within the constraints from the

Lyman-α data with a free-streaming length, calculated from equation (4.50), of

λFS,0 = O(10−5 − 10−3).

Sterile neutrinos with the largest free-streaming length are produced from a 7600 GeV inflaton

with coupling β = 10−9, and the smallest free-streaming length from an inflaton with coupling

β = 10−12.

1As we approximate the number of effective degrees of freedom to be constant throughout reheating, gSM =
100, the average DM momentum over temperature at the end of reheating, given in Figure 7.4, is equal to that
on production, 〈pN 〉/Tprod.
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Figure 7.3: Sterile neutrino mass against inflaton mass

The solid lines are the numerical results and the dashed lines are the analytical
approximations constrained by the observed DM abundance. The analytical results for

thermal inflatons, given by (7.20), have a dependence on β so are colour-coded accordingly.
The analytical result for non-relativistic inflatons, given by (7.30), has no dependence on β,

so is given by the black dashed line.
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Figure 7.4: Average sterile neutrino momentum over temperature at the end of reheating,
〈pN 〉/T , against inflaton mass

Different colours represent inflatons with different self-coupling, β.
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7.6 Leptogenesis

In section 5.3 we reviewed the mechanisms by which the νMSM model can generate a LA

during the out-of-equilibrium production (freeze-in) and/or decay (freeze-out) of the two heav-

ier sterile neutrinos, N2 and N3. The model is able to produce sufficient LA to explain the

BAU for a wide range of sterile neutrino masses, O(1−Treh) GeV, if they are degenerate. The

aim of this analysis is to check how the leptogenesis mechanisms are affected with the addition

of the inflaton-sterile neutrino coupling in our model, and if this restricts the sterile neutrino’s

parameter space as a result.

In the νMSM model, the dominant process that thermalizes the sterile neutrino with the

SM during the Higgs symmetric phase is tt → NL, at a rate given in (5.83). If we take the

typical value of the SM Yukawa coupling, FαI , that can generate the active neutrino masses

via the Type 1 seesaw mechanism, as given in (5.85), the scattering rate is

Γtt→NL ∼
9

32π3

matmMI

v2
T (7.34)

= O(10−13)

(
MI

10 GeV

)(
T

103 GeV

)
GeV.

The sterile neutrinos equilibrate with the SM via this process when Γtt→NL(Teq) ∼ H(Teq), at

temperature

Teq ∼ 5MI . (7.35)

As the sterile neutrinos equilibrate once they are non-relativistic, sterile neutrinos with masses

large enough for Teq > TEW can produce sufficient LA to generate the BAU during freeze-in,

as the LA washout rate is Boltzmann suppressed. However, if the additional inflaton-sterile

neutrino Yukawa coupling is large enough for sterile neutrinos to equilbriate whilst they are

still relativisitic, the LA generated during freeze-in will be significantly washed-out.

The competing inflaton-sterile neutrino interaction in the symmetric Higgs phase is χ →

NIN I for MN < mχ/2, which has a rate given in equation (7.6) of

ΓNI = O(10−12)

(
β

10−10

)(
MI

10 GeV

)2(
102 GeV

mχ

)
GeV. (7.36)

The s-channel scattering process hh/ϕiϕi → NIN I mediated by an inflaton particle, and t-

channel scattering process χχ→ NIN I mediated by a sterile neutrino are sub-dominant. The

equilibration temperature of the sterile neutrino decay process is

Teq ∼ 200

(
β

10−10

) 1
2
(

102 GeV

mχ

) 1
2

MI . (7.37)
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Therefore in a large proportion of sterile neutrino parameter space, where β = 10−9/10−10

and mχ ≤ 102 GeV, the sterile neutrinos freeze-out at Teq � MI . As a result, there is a

significant washout of the LA produced during freeze-in. For this reason, we will restrict our

model to the parameter space of sterile neutrinos (N2, N3) that can produce sufficient LA only

during freeze-out via the resonant leptogensis mechanism. Using the results obtained from

[104, 164–166], our heavy sterile neutrino mass range is then restricted to M2/3 & 103 GeV.

This is a conservative bound, since variations of the resonant leptogenesis model [207–210]

allow for M2/3 & 100 GeV. A more relaxed lower mass bound still was argued in [201], in

which M2/3 ≥ O(10) GeV; the results from [201] are summarised in section 5.3.4, where the

parameter for resonant leptogenesis is given by the blue dashed line in Figure 5.10. Since

resonant leptogenesis generates the LA at temperatures just below the sterile neutrino mass

[104, 164–166, 208], its upper bound is limited by the maximum reheating temperature of our

model, Treh ≤ O(1010) GeV. We may also want to restrict sterile neutrinos masses to M2/3 ≤

O(107) GeV in order to evade a hierarchy problem due to their large radiative corrections to

the Higgs mass [11, 200], given by the term in (5.75).

7.7 Entropy dilution

The out-of-equilibrium decay of heavy, long-lived particles can release significant entropy. As

the particles can be non-relativistic during radiation domination, their energy density increases

by a factor of a relative to the radiation energy density, and can thus dominate the energy

density of the universe by the time of its decay [56]. If we assume the heavy particles decay

into SM particles, their entropy release effectively heats the SM relative to hidden sectors [56,

212, 259], such as DM. We define the entropy dilution factor, D, as the ratio of the entropy in

the SM after and before the heavy particles decay [56],

D ≡ Safter

Sbefore
=

(
Tafter

Tbefore

)3

, (7.38)

where entropy is SX = s(TX)a3, and Tafter/before is the SM temperature after/before the heavy

particles decay. Note that as entropy release into the SM sector effectively cools the DM sector,

it is a particularly beneficial process for very warm DM models [259, 260] that are strongly

constrained by the Lyman-α free-streaming bound (4.52).

In this section we will evaluate the entropy dilution factor as a result of heavy sterile neutrino

(N2 and N3) decays. This is an important part of our analysis as a large entropy release may

significantly dilute the DM abundance (7.7), if N2 and N3 decay after DM production, and
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the generated BA. The entropy dilution of our model is approximately given by [212, 261]

D '

(
1 + 2.95

(
2π2g̃∗s

45

) 1
3 (rMI)

4
3

(MPΓNI )
2
3

) 3
4

≡ (1 + x)
3
4 , (7.39)

where g̃∗s is the number of SM effective degrees of freedom at the time of NI decay, and r is

the ratio of NI number density over the entropy density at the time of freeze-out.

In order to evaluate r, we first need to find the freeze-out temperature of NI . Post EW

symmetry breaking, sterile neutrinos are kept in equilibrium by their weak interactions with

the thermal plasma, at a rate equal to the active neutrino rate suppressed by the squared

active-sterile mixing angle [56],

ΓI(T ) ∼ G2
F θ

2
IT

5. (7.40)

The sterile neutrinos freeze-out once ΓI(Tf ) ∼ H(Tf ), at temperature

Tf = 1.3
( g∗ρ

100

) 1
6

(
10 GeV

MI

) 2
3

MI , (7.41)

which is evaluated using the typical value of a sterile neutrino Yukawa coupling, given in (5.85).

g∗ρ is the number of SM effective degrees of freedom at the time of NI freeze-out. As sterile

neutrinos are non-relativistic at freeze-out, their number density is Boltzmann suppressed, and

r is given by

r ≡ nN
s

=
45

8

(
2

π7

) 1
2 gN
g∗ρ

(
MI

Tf

) 3
2

exp

[
−MI

Tf

]
,

∼ 2× 10−3

(
100

g∗ρ

) 5
4
(

MI

10 GeV

)
exp

[
−0.8

(
100

g∗ρ

) 1
6
(

MI

10 GeV

) 2
3

]
. (7.42)

r is exponentially suppressed with increasing sterile neutrino mass, and so lighter sterile neu-

trinos produce a larger entropy dilution. In order to evaluate the maximum entropy dilution in

our model, we will use the following decay width for light sterile neutrinos of mass MI < MW ,

given by equation (5.87),

ΓNI ∼
G2
Fmatm

192π3
M4
I ,

∼
(

MI

10 GeV

)4

× 10−20 GeV. (7.43)

We then use (7.42) and (7.43) to evaluate x in equation (7.39),

x ∼ 0.3

(
g̃∗s
10

) 1
3
(

100

g∗ρ

) 5
3

exp

[
−0.7

(
100

g∗ρ

) 2
9
(

MI

10 GeV

) 8
9

]
. (7.44)
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If we require sterile neutrinos to be within the mass range that generates sufficient LA to

account for the BAU (MI > O(10) GeV), we can see from (7.44) that their decay does not

produce significant entropy dilution, i.e. D ∼ 1. This result is confirmed in [262], where a

more detailed analysis is provided.

7.8 Discussion and conclusion

A mechanism for freeze-in DM production is realised in our model through the addition of a

Yukawa coupling of the inflaton to sterile neutrinos, within the framework of the νMSM. We

assume DM is made up entirely of the lightest sterile neutrino and is produced via inflaton

decay. For an inflaton with mχ � Teq, DM is produced once the inflaton has thermalised and

so the model parameters can be deduced analytically. The analytical analysis is applicable

to the entire light inflaton (mχ � mh) parameter space and to the heavy inflaton (mχ >

2mh) parameter space where mχ . 500 GeV and β ≥ 10−10, in which DM is produced with

〈pN 〉/T ∼ 2.45. For a heavy inflaton with mχ & Teq, DM is produced simultaneously with the

SM from a highly non-thermal infra-red inflaton distribution, and so it is necessary to solve the

Boltzmann equations numerically. In the heavy inflaton parameter space the DM is strongly

non-thermal with 〈pN 〉/T ∼ O(1 − 10) at the end of reheating. Using the known abundance

of DM in the universe, the Yukawa coupling constrains the DM mass from a light inflaton

to O(10 − 100) keV and from a heavy inflaton to O(1 − 10) MeV. The keV sterile neutrinos

are classified as warm DM and the MeV sterile neutrinos are classified as cold DM, and both

results are within the requirements for structure formation given by the Lyman-α data.

We constrain the mass range of the two heavier and degenerate sterile neutrinos in our model

by requiring they produce sufficient LA to account for the BAU, and generate SM neutrino

masses via the seesaw mechanism that are consistent with the neutrino mass splittings. We first

evaluated the applicability of the leptogenesis mechanisms in the standard νMSM, in which

LA can be generated during the freeze-in [11, 53, 105] and freeze-out [104, 164–166] of sterile

neutrinos, to our modified νMSM. We compare the interaction rates of the sterile neutrinos

with the SM and inflaton, as their equilibration rate impacts the final LA. In our model we

find the sterile neutrino’s interaction rate with the inflaton is greater than their interaction

rate with the SM if mχ > 2MI and β ≥ 10−10. In this region of parameter space the sterile

neutrinos equilibrate faster than those in the standard νMSM, resulting in a larger washout of

LA that is produced during freeze-in production. We therefore choose the scenario where all

the LA is efficiently generated via resonant leptogenesis during freeze-out. This conservatively

limits the heavy sterile neutrino mass range to M2/3 = O(103 − 1010) GeV, however the lower

bound may be relaxed to O(10) GeV according to the results presented in [201]. We find that

the entropy dilution from the decay of sterile neutrinos within this mass range is Boltzmann
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suppressed, with D ∼ 1, and so it does not significantly dilute the DM abundance or generated

BA.

Overall, the model provides a viable inflationary mechanism and DM generation, and is

able to produce the SM neutrino masses via the see-saw mechanism and the BAU via lepto-

gensis. The heavy inflaton parameter space evades all current experimental constraints, due

to extremely low mixing of the inflaton with the Higgs sector, and strongly sterile neutrinos

at cold DM velocity. A light inflaton is more likely to be detectable in future experiments,

as it mixes more strongly with the Higgs sector. It produces sterile neutrinos at warm DM

velocity, and so the light inflaton window may be constrained by the requirements for structure

formation in the future.

A future study that could lead to potentially interesting detectable signatures would require

extensions of the basic model studied here. In particular, it is possible to modify the potential so

that the DM is warmer and therefore more visible. Mass terms for the Higgs doublet and sterile

neutrino were removed from the Lagrangian so scale invariance is only broken in the inflaton

sector, however these terms can be used to tune the sterile neutrino mass so the DM is lighter

and therefore warmer. For example, the Majorana sterile neutrino mass term, −MI

2 N̄ cN , can

be tuned to have the opposite sign and have an equal magnitude to that acquired from the

Yukawa coupling, thereby giving a smaller effective sterile neutrino mass. Alternatively, the

inclusion of the symmetry breaking Higgs doublet mass term, +µ2
ΦΦ†Φ, would change the

VEV of the inflaton field, and thus change the contribution to the sterile neutrino mass from

the Yukawa term. Producing lighter and therefore warmer DM would allow the model to be

constrained from the observation of the smallest DM structures formed in the universe.

In the following chapter we choose to re-analyse our model with the addition of the sym-

metry breaking Higgs doublet mass term. In this case, the Higgs quartic self-coupling, λ, is

not fixed by the measurement of the Higgs boson mass, and so the EW vacuum may be stable

or metastable. We argue that the universe with a positive cosmological constant should be

metastable and reconstrain the parameter space of the model under this assumption, whilst

evading all current cosmological and experimental constraints. If we incorporate sterile neu-

trino DM into our inflatonary model, we find that only inflaton with mχ > O(0.1) GeV can

produce DM that satisfies the requirements for structure formation.
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Chapter 8

Light inflaton model in a metastable

universe

8.1 Introduction

The SM is in excellent agreement with the experimental data at the present time. Moreover,

the precision measurements of the Higgs boson mass, the top quark mass and the strong

coupling constant indicate that the SM can be considered as a weakly coupled model up to

the Planck scale. Intriguingly, the central measured values for the top and Higgs boson masses

correspond to the situation of a metastable EW vacuum [39, 49, 263, 264]. The SM, however,

does not include mechanisms for inflation [214–218], and should therefore be extended.

The experimental indication of the metastability of the EW vacuum is especially interesting

in view of the theoretical expectations of the inconsistency of eternal de Sitter expansion of

the universe, which would correspond to the present day dark energy domination [50, 51]. As

far as it is argued that the eternal de Sitter expansion would lead to inconsistencies due to the

quantum breakdown of the classical description from graviton-graviton scatterings [50, 51], it is

required that the expansion finishes in some, possibly rather far, future. Therefore, we require

a mechanism by which the universe can gracefully end before this critical time is reached.

A universe in a false-vacuum state with a sufficiently long lifetime (a metastable vacuum)

will eventually decay into the true vacuum state, thus providing us with a solution to this

problem. At the same time, the inflationary scenario should lead in some way to the creation

of the universe filled with this metastable state, to coincide with the current observations, in

particular to our existence.

As in chapter 6, we extend the SM by an additional scalar inflaton field. Here, we study the

most generic renormalizable Z2 symmetric potential that allows the full model to be weakly

coupled, which contains an additional massive parameter as compared to the previously studied

model (6.3). The model can then provide us with both good inflationary behaviour while

retaining metastability of the EW vacuum at present times. During inflation the Higgs direction
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is stabilized by its positive mass generated by the interaction with the inflaton field [265, 266],

while at late time the contribution of the inflaton is negligible, and the EW vacuum becomes

metastable. In addition, by demanding that we have successful preheating with a reheating

temperature at least above the EW phase transition, which is required for the generation of BA

from leptogenesis, we arrive at a rather tightly constrained region of parameters for the inflaton

field. In particular, this region will be largely explored by current and planned experiments on

the high intensity frontier.

The chapter is organised as follows. In section 8.2 we outline the details of the model.

Section 8.3 gives an overview of the metastable EW vacuum. Section 8.4 highlights the cosmo-

logical and observational constraints on the inflaton. In section 8.5 an analytical approximation

of the allowed region for the experimentally observable parameters is given. Section 8.6 dis-

cusses the results. In section 8.7 we extend the model with νMSM dark matter, as in chapter

7, and evaluate the Lyman-α bound on the inflaton parameter space.

8.2 The model

In chapter 6 we minimally extended the SM with a single scalar (inflaton) field with a

quartic self-coupling, serving as our scale-invariant inflationary potential; a scalar-Higgs portal

coupling, which provides a mechanism for reheating; and a negative squared scalar mass term

that leads to symmetry breaking in both sectors. We will now re-constrain that model with the

most generic renormalizable Z2 symmetric1 potential, in which we have an additional negative

squared mass term for the Higgs field, µ2
Φ. The model assumes parameters that will lead to

symmetry breaking of the Higgs field, tuned to the SM expected value, and of the inflaton

field, to evade a relic abundance of stable particles:

V (X,Φ) =
β

4
X4 − 1

2
µ2
XX

2 − µ2
ΦΦ†Φ + λ

(
Φ†Φ +

α

λ
X2
)2

. (8.1)

We consider both positive and negative α in our analysis.2 As far as we are only interested in

the situation where both fields have broken symmetry in order to correspond to observations,

we can write the following formulas for µΦ and µX for any non-zero vacuum expectation values

(VEVs) of the fields, v ≡
√

2〈Φ〉 and vX ≡ 〈X〉:

µ2
Φ = v2λ+ 2αv2

X , (8.2)

µ2
X = v2

X

(
β +

4α2

λ

)
+ 2αv2. (8.3)

1A small cubic term, µX3, may solve the domain wall problem without influencing the dynamics of inflation
and reheating, see section 6.6 for details.

2Note, that in equation (6.3) and previous works [43, 45–47] the sign convention for α was the opposite to
(8.1), i.e. α ≡ −αpresent work.
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Going forward, we will work in the parameter space that trades µΦ and µX in favour of v and

vX , where v is the SM Higgs VEV, equal to 246 GeV. The ‘vacuum angle’, defined previously

in equation (6.18), is

tan θV ≡
v

vX
. (8.4)

Spontaneous symmetry breaking of the fields gives mass to excitations of the fields on top

of the vacua in the mass basis (h̃, χ̃). Following the same formalism given in section 6.5 for the

model given in (8.1), we find that the mass basis is rotated with respect to the gauge basis,

(h, χ) ≡ (
√

2Φ− v,X − 〈X〉), by the angle:

tan θm =


+
(

2αvX
vλ

)
1

1−
m2
χ

2v2λ

, α < 0

−
(

2αvX
vλ

)
1

1−
m2
χ

2v2λ

. α > 0

(8.5)

As the angle θm is a complicated expression in terms of v and vX , in equation (8.5) we excep-

tionally use the mass of the physical inflaton state χ̃, denoted by mχ, for which an approximate

analytical formula (8.37) is given later.

8.3 Metastability of the electroweak vacuum

The running of the Higgs quartic self-coupling, λ, to high energy scales determines the nature

of the EW vacuum. If λ is positive at all energy scales, the EW vacuum is stable as it is the

only vacuum state. However, if λ becomes negative at some energy scale (called the instability

scale, µs), there exists an additional vacuum state with lower-energy that the EW vacuum will

ultimately decay into. In this case, the EW vacuum is said to be metastable if its lifetime

exceeds the age of the universe. Figures 8.1a and 8.1b below illustrate the renormalization

group (RG) evolution of λ and the SM Higgs potential respectively, for a stable EW vacuum

(blue curves) and metastable EW vacuum (red curves).
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λ

(a) 3-loop RG evolution of the Higgs self-
coupling, λ, with energy scale, µ, evaluated at
the SM value λSM(mt) = 0.126 in red and at
λ(mt) = 0.141 in blue. The instability scale,
µS = O(1010) GeV, is the energy scale where
λSM becomes negative.

λSM(mt)=0.126

λ(mt)=0.141
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(b) The Higgs quartic potential, VSM[µ] = λ[µ]
4
µ4,

normalised at the reference scale µ0 = mt.

Figure 8.1: RG evolution of the Higgs quartic self-coupling and the Higgs quartic potential

The running of λ is especially sensitive to experimental inputs of the top quark mass, mt,

and the strong coupling constant, αs, due to the large negative contribution of the top Yukawa

coupling, yt, to λ’s beta function. At 1-loop the beta functions of λ and yt are3 [267]:

βλ =
1

16π2

(
12λ2 + 6y2

t λ− 3y4
t

)
, (8.6)

βyt =
1

16π2

(9

4
y3
t − 4g2

syt

)
. (8.7)

Smaller mt and larger αs increase λ and therefore stabilise the EW vacuum. We use the

following experimental values of the top quark’s pole mass and αs(mZ), quoted with one

standard deviation from their central value [39]:

mt = 172.76± 0.30 GeV, (8.8)

αs(mZ) = 0.1179± 0.0010. (8.9)

The measurement of the Higgs boson mass in the SM fixes its self-coupling at the EW scale

[λSM(mh) = 0.1291 ± 0.0003 [39]]. The central values thus correspond to the metastable EW

vacuum [49]. In our model, however, the value of λ is not uniquely fixed by the Higgs boson

mass. Therefore, to assure the universe is in the metastable state at present, as outlined in the

introduction, we just demand λ to be within the stability bound, λ < λstab [49]:

λstab(mt) = 0.134. (8.10)

3Modification from the inflaton, X, is negligible; δβλ ∼ α2 . 10−10.
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Additionally λ is constrained by the instability bound, λ > λinstab [268, 269]:

λinstab(mt) = 0.1, (8.11)

by the requirement that our universe exists at all; otherwise, the universe would decay faster

than its lifetime. Both bounds (8.10) and (8.11) are evaluated at the central values of mt (8.8)

and αs (8.9), with the renormalization scale equal to the top quark mass.

However, the bounds (8.10) and (8.11) alone do not ensure the survival of a mestable

universe throughout the course of its history. In particular, periods of inflation and reheating

could easily destabilise the metastable vacuum, and so additional model-dependent constraints

are necessary. In addition to metastability constraints, those from cosmology and ensuring

consistency of the model with current experimental measurements of the Higgs boson are the

subjects of the following section.

8.4 Constraints

8.4.1 Cosmological constraints

8.4.1.1 Inflationary constraints

During the slow-roll inflationary epoch the classically evolving background fields converge

towards the inflationary attractor solution, that is the direction along which the gradient of

the potential is zero. Following the analysis carried out in section 6.3.1, the direction of the

inflationary attractor solution in the field space is [43],

tan θinf ≡
√

2Φb
Xb

∼
√
β − 2α

λ
, (8.12)

requiring that |α|, β � λ. To establish if slow-roll inflation is compatible with a metastable

universe, we evaluate Φb for α ≶ 0 and 2|α| ≶ β) in Table 8.1.

α > 0 α < 0

2|α| > β
√

2Φb = 0
√

2Φb ∼
√

2|α|
λ[µ]Xb

2|α| < β
√

2Φb ∼
√

β
λ[µ]Xb

√
2Φb ∼

√
β
λ[µ]Xb

Table 8.1: Φb evaluated from equation (6.12) for α ≶ 0 and |α| ≶ β

In regions of parameter space where θinf 6= 0, we require the initial condition that Φb(0)

starts from a point in field space where λ[Φb] > 0. Φb(t) then evolves to larger field values as

it converges towards the inflationary attractor solution, which simultaneously increases as λ
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runs to higher energy scales. For most of the metastability parameter space, Φb evolves to field

values of O(1016 − 1018) GeV, which greatly exceed the instability scale, thus λ[Φb] becomes

negative and the inflationary attractor breaks-down. Only λ within ∼ 1% of the stability

bound (8.10) gives Φb < µs during inflation. Additionally for α < 0, the negative cross-term

is large enough to dominate the Higgs potential up to the scale of O(MP) if

α & O

(
10−10 ×

(
µs[GeV]

1016

)2
)
. (8.13)

In this region, the potential is unstable at the origin and so the Higgs field can only evolve

towards the vacuum state beyond the scale of MP. We conclude that a non-zero inflationary

attractor is only compatible with slow-roll inflation in a metastable universe for finely-tuned

λ ∼ λstab in the parameter space α > 0 & 2|α| < β, and α < 0 if |α| is smaller than the

destabilising region defined in (8.13). The focus of our analysis going forward will therefore

be on constraining the region α > 0 & 2|α| > β, where for Φb = 0, we evade the need to

finely tune λ. Parameters within this region correspond to the light inflaton parameter space

that was analysed in section 6.8. We can therefore apply the same inflationary and reheating

constraints evaluated in section 6.8 to our model in sections 8.4.1.1 and 8.4.1.2.

The inflationary potential is constrained by the CMB measurement of the primordial scalar

density perturbation amplitude [226], given in (3.103), and the tensor-to-scalar ratio limit

[48, 219, 220], given in (3.105). Following the same procedure as in section 6.3, to ensure

r is within the CMB limit, we require a non-minimal coupling of the scalar field to gravity(
ξX2R/2

)
with ξ ≥ O(10−2). If we assume no new scales below the Planck scale (ξ < 1), we

obtain the following range for the scalar field quartic self-coupling [46, 48]:

O(10−12) ≤ β ≤ O(10−9), (8.14)

where the lower bound corresponds to the excessive production of tensor modes and the upper

bound would require ξ > 1 and introduces additional scales below Planck.

Additionally, to ensure quantum corrections to the inflaton quartic self-coupling are suffi-

ciently small and the inflationary analysis above holds, as in (6.62), we require [45]

α < αmax = (0.1β)
1
2 . (8.15)

8.4.1.2 Constraints from preheating and reheating

For efficient sphaleron conversion of lepton to baryon asymmetry, we require the reheating

temperature to exceed the EW symmetry breaking scale, TEW = 160 GeV [68]. The mini-

mum reheating temperature requirement translates to a lower bound on α, which has been
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established previously for the model with µ2
Φ = 0. The analyses are carried out separately for

mχ < 2mh in section 6.8 [45–47] and mχ > 2mh in section 6.9 [43], as they reheat via different

mechanisms: χχ→ hh and χ→ hh respectively. However, inflation requires our model to have

α > 0 & 2|α| > β (for λ that is not finely-tuned), which limits us to light inflaton, mχ . mh.

Following inflation is a preheating period, during which parametric resonance excites infla-

ton particles to occupy a highly infra-red distribution but does not efficiently transfer energy

into the SM (due to α � λ). The inflaton distribution slowly evolves self-similarly towards

thermal equilibrium [232, 233] until perturbative reheating proceeds once the mean-free path is

comparable to the Hubble expansion rate, nχσχχ→hh ∼ H [46]. Assuming at this moment the

inflatons have not yet thermalised, the minimum reheating temperature (Treh > TEW) imposes

the following lower bound on α,

α > αmin ∼ (1.6× 10−9)

(
β

10−12

) 3
7

, (8.16)

which we evaluated in section 6.8. Together with (8.15) this fully closes the β − α parameter

space:

β α

10−9 (3.1× 10−8)− (1.0× 10−5)

10−10 (1.1× 10−8)− (3.2× 10−6)

10−11 (4.2× 10−9)− (1.0× 10−6)

10−12 (1.6× 10−9)− (3.2× 10−7)

Table 8.2: Light inflaton β−α parameter space that allows for successful inflation and reheating

8.4.1.3 Big Bang Nucleosynthesis constraints

The measurement of primordial elemental abundances tightly constrains the number of ad-

ditional relativistic degrees of freedom (evaluated in (2.83) to be approximately less than half

a neutrino species) to the SM at this epoch [55]. A light inflaton should therefore preferably

decay prior to Big Bang Nucleosynthesis (BBN), Γ−1
χ . 1 s, which constrains the mixing angle

from below:

Γχ = sin2 θmΓh(mχ), (8.17)

θm &

√
Γ−1
h (mχ)

1 s
. (8.18)

Here Γh(mχ) is the SM Higgs boson decay width evaluated if its mass is equal to mχ [48]. The

lower bound on θm is evaluated for mχ ≤ 1 GeV in Table 8.3.
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mχ[GeV] (θBBN
m )2

10−4 0.44

10−3 3.3× 10−4

10−2 3.9× 10−10

10−1 3.8× 10−11

Table 8.3: Minimum θm for a given inflaton mass, to ensure decay prior to BBN

Inflaton that are heavy enough to have hadronic decay modes (mχ & 2mπ ∼ 0.3 GeV),

are more tightly constrained by BBN to have a lifetime Γ−1
χ < O(0.01) s [94, 95]. However,

inflatons with mass above the muon threshold (mχ & 2mµ ∼ 0.2 GeV) have a much shorter

lifetime of Γ−1
χ < O(10−5) s [47], and so there are no further BBN constraints in this region.

8.4.2 〈X〉 = 0 is excluded by overclosure of the universe

The relic inflaton with 〈X〉 = 0, which cannot deplete via decay into the SM, freezes out

with a large abundance. This could be a possible source of DM with the inflaton playing the

role of a weakly interacting massive particle (WIMP), but this situation is fully excluded, as

it leads to overclosure of the universe.

Post reheating the inflaton is in thermal equilibrium with the SM bath. However, as the

universe expands and cools, the inflaton decouples and freezes out once its annihilation rate

drops below the Hubble expansion rate. Using equation (4.23), we find that inflatons that are

non-relativistic at the time of freeze-out, Tf < mχ, have a relic abundance today of [55]

Ωχ ∼
O(10−10) GeV−2

〈σannv〉
. (8.19)

The cross-section of the Higgs-mediated s-channel annihilation into SM particles is

〈σannv〉χχ→SM SM =
1

2

|Mχχ→h|2√
s

1

|Dh(s)|2
Γh(
√
s), (8.20)

where |Mχχ→h| = 4αv and the invariant mass at T . mχ is
√
s ≈ 2mχ, and the propagator

term is

|Dh(s)|2 =
1

(s−m2
h)2 +m2

hΓh(mh)2
∼


1
m4
h
, mχ � mh

1
16m4

χ
. mχ � mh

(8.21)

The Higgs-mediated s-channel annihilation into SM particles is the dominant contribution to

165



the light inflaton cross-section, mχ � mh,

〈σannv〉χχ→SM SM ∼
4α2v2

mχm4
h

Γh(2mχ) . O(10−20) GeV−2, (8.22)

for mχ ≤ 1 GeV and α ≤ 10−5. For a heavy inflaton, mχ > mh, there is an additional

contribution from the direct two-to-two inflaton-Higgs vertex,

〈σannv〉χχ→SM SM + 〈σannv〉χχ→hh ∼
α2v2

4m5
χ

Γh(2mχ) +
α2

16πm2
χ

, (8.23)

. O(10−17) GeV−2,

for mχ ≤ 103 GeV and α ≤ 10−5. In both cases, (8.22) and (8.23), the inflatons overclose the

universe, Ωχ � ΩDM. Very light inflatons are relativistic at the time of freeze-out, Tf � mχ,

and have a relic abundance today of [55, 147]

Ωχ ∼ ΩDM

(
mχ

O(10) eV

)
, (8.24)

which we evaluated using equation (4.12), assuming 1 MeV . Tf . 100 MeV that corresponds

to g∗s(Tf ) = 10.75 effective degrees of freedom. BBN constraints disfavour mχ � TBBN ∼ 1

MeV, so we conclude that very light inflatons also overclose the universe. As a result of this

analysis, our model is constrained by the requirement that 〈X〉 6= 0.

8.4.3 Particle physics constraints

8.4.3.1 Higgs measurement constraints

Our model must also be consistent with the current experimental measurement of the Higgs

boson’s signal strength and the invisible decay width bound. The signal strength, µ, is defined

as the product of the Higgs boson production cross-section and its branching ratio (σ · BR)

observed, normalised to that of the SM. The result from combined ATLAS and CMS Run 1

data is [255]

µ ≡ (σ ·BR)obs

(σ ·BR)SM
= 1.09± 0.11. (8.25)

Given that for our model

(σ ·BR)obs = cos2θm(σ ·BR)SM, (8.26)
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we obtain the following 1σ upper bound on the mixing angle θm,

|θm| < |θ1| = 0.14. (8.27)

In the parameter space mχ < mh/2, there is an additional bound from the Higgs boson’s

invisible branching ratio, BRinv,

Γh→χχ ≤

(
1

1−BRinv
− cos2 θm

)
ΓSM , (8.28)

where ΓSM = 4.1 MeV is the theoretical SM Higgs boson width and

Γh→χχ '
α2v2

2πmh

(
1 + 6

(λSM − λ)
1
2

λ

)2

, (8.29)

evaluated in the limit µ2
Φ � v2λ and mχ � mh. The 95% C.L. limit on the invisible branching

ratio from combined ATLAS Run 1 and Run 2 data is BRinv = 0.26 [270], which imposes a

weaker bound on our parameter space than (8.27). Although this bound will not contribute to

our results, this analysis may be useful for future reference.

8.4.3.2 Direct detection constraints

Furthermore, it is possible to directly constrain the inflaton particle created in high intensity

experiments, which either escapes the detector (invisible mode) or decays later into a pair of

observable particles. The constraints on a light scalar boson with the Higgs mixing angle, θm,

and mass, mχ, can readily be used [246, 271–280] and are shown in Figures 8.2a and 8.2b.

8.4.4 Stability Constraints

8.4.4.1 Inflation

To prevent the universe from being trapped in the true vacuum state, we require that the

Higgs field value remains below the potential’s instability scale, µV , defined as the energy scale

where the Higgs potential is zero4. Although the inflationary attractor rapidly converges the

Higgs background field to zero, we also need to ensure quantum fluctuations of the Higgs field,

h, during inflation do not destabilise the EW vacuum.

The effective mass of h is dominated by the large inflaton field variance during slow-roll

inflation. Evaluated at 60 e-foldings prior to the end of inflation, X60 = O(10MP), when the

4The energy scale that the Higgs potential is zero, µV , does not equal the SM instability scale, µs, for
non-zero values of the inflaton field, due to the inflaton-Higgs quartic coupling. When the inflaton field value
is zero, we just have µV = µs.
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largest vacuum fluctuations are produced,

meff =
√

3λ〈Φ2
60〉+ 2α〈X2

60〉 ∼ O(
√
α× 1019) GeV; (8.30)

for simplicity we ignore the contribution from the backreaction of the Higgs field here. The

large meff stabilisies the EW vacuum by pushing the potential’s instability scale to higher

energy scales with respect to the SM [265, 266]

µV ∼
meff√
|λ|

& O(1015 − 1017) GeV, (8.31)

where |λ| ≤ O(0.01). As meff is greater than the Hubble expansion rate5 [48],

H(X60) =

√
U(X60)

3M2
P

= O(1013 − 1014) GeV, (8.32)

the amplitude of inflationary enhanced quantum fluctuations of the Higgs field is [265, 266]

h = O

(
H(X60)

10

)
∼ O(1013 − 1012) GeV. (8.33)

So we conclude that the EW vacuum is not destabilised during inflation, as we have shown

µV > Φ across the entire parameter space where α > 0 & 2|α| > β.

8.4.4.2 Preheating and reheating

Post-slow-roll inflation, the oscillatory zero-mode inflaton transfer energy into excitations of

the fields through parametric resonance, which could destabilize the EW vacuum if the Higgs

fluctuations exceed the instability scale. However, this is evaded as the Higgs scattering rate

greatly exceeds the production rate, λ � α, thereby promptly halting the transfer of energy

into excitations of the Higgs field [43].

In the perturbative reheating regime, we require temperatures to exceed the EW symmetry

breaking scale. Assuming the inflatons are non-thermal, the range of reheating temperatures

are

Treh = O(TEW − 1010) GeV, (8.34)

which we evaluated in (6.64). Relatively low reheating temperatures stabilize the Higgs poten-

5U(X60) is the conformally transformed potential given in equation (6.6), which is a decreasing function of
β, evaluated in the range β = O(10−12 − 10−9) [48].
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tial due to the addition of the thermal Higgs mass [281],

Veff (T, h) ≈ Veff (0, h) +
m2

T

2
h2, (8.35)

m2
T ∼

(λ
2

+
g2
t

4

)
T 2,

as positive thermal corrections increase the instability scale. However, very high temperatures

induce local nucleation of bubbles that probe the instability region, either via quantum tun-

nelling from an excited state or classical excitation over the potential barrier. The bubbles then

expand rapidly, close to the speed of light, and destroy everything in their way [264, 268, 282].

However, cutting the parameter space at the 1σ Higgs signal strength bound (8.27) restricts λ

to the range 0.123 < λ(mt) ≤ λSM, and for

λ(mt) > 0.120, (8.36)

the EW vacuum is sufficiently stable up to Treh = O(MP) [49, 268, 283]. We therefore assume

the universe can safely reheat; however, if a less stringent Higgs signal strength bound was

to be considered, cuts from reheating may be necessary to ensure thermal fluctuations do not

destabilise the EW vacuum.

8.5 Analytical approximations

The analytical approximations for the inflaton and Higgs boson masses for α > 0 & 2|α| > β

are:

m2
χ ≈ 2βv2

X −
β2v4

X

2λv2
+O(α, β, α2), (8.37)

m2
h ≈ 2λv2 +

β2v4
X

2λv2
+O(α, β, α2) = 2λSMv

2,

where the SM Higgs quartic coupling is λSM(mh) = 0.129. By fixing the Higgs mass, we obtain

the λ− vX parameter space, for a given value of α and β,

λ± =
λSM

2

(
1±

√
1−

4β2v4
X

m4
h

)
. (8.38)

In the limit vX � mh√
2β

, the two solutions are


λ+ ∼ λSM

(
1−

(
βv2
X

m2
h

)2
)
,

λ− ∼ λSM

(
βv2
X

m2
h

)2

,

(8.39)
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however λ+ is the only solution that lies within the metastability bounds (8.10) and (8.11).

The maximum value of vX is when λ = λSM

2 ,

vX,max ≈
mh√

2β(1 + Y )
(8.40)

where Y = 16α2

βλSM
. For Y < 1, vX,max is a decreasing function of β, and for Y & 1, vX,max is

a decreasing function of α. Using approximations (8.37) and (8.40), we can then see that the

maximum inflaton mass approaches the Higgs mass for the smallest Y and is suppressed for a

larger Y ,

mχ,max ≈
mh√
1 + Y

∼


mh, if Y � 1√

β
8α2λSMv. if Y > 1

(8.41)

8.6 Results

We obtain the mχ − θ2
m parameter space for a given value of the inflaton self-coupling, β,

which is plotted in Figure 8.2 for β = 10−9 (top) and β = 10−12 (bottom). The shaded regions

define theoretical bounds, while solid and dashed lines define current and future experimental

bounds respectively. The dotted black curves are lines of constant α, and the solid green/blue

lines define the boundaries for maximum/minimum α, which are given in Table 8.2. The

parameter space is fully closed by the solid red line, which gives the 1σ bound from ATLAS

and CMS measurements of the Higgs signal stength (8.27), and the shaded grey region, which

eliminates the parameter space where Γ−1
χ ≤ 1s to ensure inflaton decay prior to BBN (Table

8.3). The analytical approximation of the maximum inflaton mass (8.41) is in agreement with

the results in Figure 8.2, which show that the maximum inflaton mass approaches the Higgs

boson mass for smallest α and is suppressed for larger α.

Inflatons with mχ ∼ (1 GeV−mh) have larger mixing angles and so future precision experi-

ments may observe suppressed production cross-sections and tri-linear/quartic Higgs couplings

with respect to the SM expectation. The (almost) horizontal dot-dashed lines in Figure 8.2 are

isocurves of the tri-linear Higgs coupling, λv cos3 θm, which are suppressed by up to 2% with

respect to the SM expected value (λSMv = 31.7). However, fully disentangling the parameter

space will require multiple particle physics observables, including the Higgs’ couplings and sig-

nal strength, as well as a tighter bound on the invisible decay width, corresponding to Γh→χχ

(8.29) in our model. Additionally, a measurement of the tensor-to-scalar ratio would allow us

to fix β.

Because of an increase in motivation to search for new physics in the hidden sector, i.e.

particles with sub-EW mass that are very weakly-coupled to the SM, there are plans for a large
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number of future experiments to probe regions beyond the reach of the Large Hadron Collider

(LHC) [278]. The testability of our model would greatly benefit from these proposals, as with

a combination of experiments, our parameter space could be accessible down to θ2
m = O(10−11)

for inflaton masses in the range mχ ∼ (0.03−5) GeV, as shown by the dashed coloured contours

in Figure 8.2.
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Figure 8.2: Exclusion plot of light inflaton paramater space in a metastable universe

The plots give the parameter space of the squared mixing angle, Log10[θ2
m], against the

inflaton mass mχ, for β = 10−9 (top) and β = 10−12 (bottom). The shaded regions are
theoretical bounds: (i) Bottom-right (blue): inefficient reheating, Treh < TEW (Table 8.2); (ii)
Bottom-left (grey): inflaton decay after BBN, Γχ > tBBN where tBBN ∼ 1s (Table 8.3); (iii)
Top-left (green): large radiative corrections to the inflationary potential, α2 > 0.1β (Table

8.2). The full and dashed lines are existing and future experimental bounds. The LHC bound
is the 1σ bound from the ATLAS and CMS Higgs’ signal strength measurements, given by

(8.27). All other experimental bounds are taken from [246, 271–280]. Dotted lines are curves
of constant α, and the (almost) horizontal dot-dashed lines are isocurves of the trilinear

Higgs coupling, λv cos3 θm.
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8.7 Sterile neutrino dark matter

As in chapter 7, we can incorporate DM production by extending our light inflaton model

with a νMSM that is modified with the addition of a NI −X Yukawa coupling [43, 45, 46]:

LνMSM+X = LνMSM +
1

2
(∂µX)2 − fI

2
NI

c
NIX + h.c.+ V (X,Φ), (8.42)

where V (X,Φ) is the potential of our light scalar inflaton model given in (8.1). Spontaneous

symmetry breaking in the inflaton sector, X → vX+χ, initiates DM sterile neutrino production

via inflaton decay in the early universe, χ → N1N1, and generates the DM sterile neutrino

mass,

M1 = vXf1. (8.43)

Our light inflaton model in chapters 6 and 7 assumes scale symmetry is only broken in the

scalar sector (i.e. µΦ = 0). As inflation constrains the maximum value of α to be very small,

within bound (6.62), the inflaton field has a very large VEV, given by equation (6.17), with

vX ≥ O(104) GeV. The results of our analysis on sterile neutrino DM production in sections

7.4 and 7.5 concluded that the DM sterile neutrinos are heavy and cool enough to be within the

requirements for structure formation, given by the Lyman-α data. However, with the addition

of the Higgs doublet massive parameter in (8.1), the model can have a much smaller inflaton

VEV when µ2
Φ ∼ v2λ,

vX =

√
µ2

Φ − v2λ

2α
�
√
v2λ

2α
. (8.44)

As a result, model (8.1) is able to generate much lighter and warmer DM. Next we are going

to evaluate the lowest inflaton mass that could generate DM consistent with Lyman-α data.

The Lyman-α free-streaming bound (4.52) constrains the lower mass of the DM particle,

M1 > 36.4 keV gSM(Tprod)−
1
3

(
〈p〉

3.15Tprod

)
. (8.45)

Here we have used the conservation of entropy (2.22) to obtain the momentum at T ≈ M1 in

equation (4.50) for the free-streaming length, by rescaling the momentum on production by

the number of degrees of freedom. In section 7.4.1, we analytically evaluate the DM sterile

neutrino mass for our µΦ = 0 model in the light inflaton parameter space, where relativistic

inflatons have thermalised with the SM prior to DM production. The results of the analysis is

applicable to our µφ 6= 0 model with mχ ≤ O(1) GeV, where Treh � mχ and mχ ≈
√

2βvX .
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Then, equating the analytical approximation for M1 in equation (7.20) with (8.45), we obtain

a lower inflaton mass bound of

mχ > 36.6 GeV gSM(Tprod)−
5
6

(
0.25

ΩDM,0

) 1
3
(

β

10−9

) 1
3
(

〈p〉
3.15Tprod

)
, (8.46)

where the DM sterile neutrinos are produced with an average momentum of 〈p〉 = 2.45Tprod

and Tprod ∼ mχ/2. The Lyman-α inflaton mass bound for β = 10−9/10−12 is

mχ >


0.7 GeV

(
80

gSM(Tprod)

) 5
6

, β = 10−9

0.4 GeV
(

10
gSM(Tprod)

) 5
6

, β = 10−12

(8.47)

which corresponds to DM with M1 ≥ O(10) keV. Note that we have analytically evalu-

ated (8.46) in (8.47) by taking gSM(Tprod) as constant throughout DM production. However,

gSM(Tprod) is a rapidly changing function of temperature for mχ ∼ O(0.1 − 1) GeV and so

these bounds should be taken as rough estimates. Interestingly, the inflaton mass bounds are

within the visible region of the inflaton parameter space, as shown by the current and future

experimental sensitivity bounds in Figure 8.2. A measurement of the scalar particle would

therefore allow us to predict the viability and properties of our DM model.

8.8 Discussion and conclusion

Our model minimally extends the SM via the addition of a single scalar inflaton field with

a Z2-symmetric potential. By doing so, we are able to incorporate mechanisms for inflation

via the quartic scalar coupling, efficient reheating via the scalar-Higgs portal, and symmetry

breaking in the Higgs and scalar sectors by the addition of two negative mass terms.

The addition of the scalar-Higgs portal rotates the mass basis of our model with respect

to the gauge basis. As a result, the Higgs boson mass does not define uniquely its quartic

coupling and so the stability of the EW vacuum is determined not only by the measurements

of SM parameters, but also by the properties of the inflaton field. In order to constrain our

model, we instead use the argument that an eternally accelerating universe is impossible [50,

51] to motivate the need of a metastable EW vacuum. However this is problematic during

inflation, as here if λ becomes negative for an inflationary attractor that does not align along

Φb = 0, it will break down. Only if λ is finely tuned close to the stability bound can this be

avoided. We therefore proceeded to analyse the case where fine-tuning is not necessary: in the

parameter space where the inflationary attractor solution is Φb = 0, given by α > 0 & 2|α| > β.

Additionally, this region of parameter space benefits from generating a large effective mass of

the Higgs field during inflation, which exceeds the Hubble expansion rate. As a result, the
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instability scale of the Higgs potential exceeds the amplitude of the Higgs inflationary-enhanced

quantum fluctuations, thereby preventing the EW vacuum from being destabilized.

The range of the inflaton self-coupling, β, is determined by the CMB amplitude of scalar

perturbations and the upper-bound on the tensor-to-scalar ratio. For a given value of β, the

range of the inflaton-Higgs coupling, α, is bounded from below, to ensure reheating temper-

atures exceeds the EW symmetry breaking scale, and from above, so quantum corrections to

the inflationary potential are sufficiently small. The maximum inflaton mass approaches mh

for α2/β ≤ O(10−4), and is suppressed for α2/β ≥ O(10−2). We require the inflatons to have a

non-zero VEV so that post-reheating they are depleted via decay into SM particles. Inflatons

with zero VEV are stable and would overclose the universe. We require inflatons to decay prior

BBN due to the tightly constrained number of additional degrees of freedom at this epoch,

thereby constraining inflatons with mχ = O(0.001− 0.1) GeV to have θ2
m ≥ O(10−9 − 10−11).

To be consistent with the observed Higgs signal strength results, there is an upper-bound

on the inflaton-Higgs mixing angle, θm ≤ 0.14, which translates to a lower bound on the Higgs

self-coupling, λ(mt) ≥ 0.123. Within this bound, we evade additional cuts to the parameter

space from reheating, as for λ(mt) > 0.120 the EW vacuum is stable up to Treh = O(MP).

Note that the interesting metastable region in our model (0.123 ≤ λ(mt) . λSM) exists for any

value of top quark mass within reasonable experimental errors given in (8.8). Even if the top

quark is light enough for the SM to be stable, this would just reduce the stability bound (8.10)

and only slightly shrink the allowed region in Figures 8.2a and 8.2b.

We can include freeze-in DM production in our model through the addition of a Yukawa

coupling of the inflaton to sterile neutrinos, within the framework of the νMSM. In the pa-

rameter space 2|α| > β and mχ ≤ O(1) GeV, DM is produced once the inflaton has ther-

malised and so the model parameters can be deduced analytically. A very light inflaton with

mχ = O(0.001− 0.1) GeV has a small VEV and thus produces light and very warm DM with

M1 < O(10) keV, which is excluded by the requirements for structure formation.

To conclude, the parameter space for α > 0 & 2|α| > β, which evades all current exper-

imental, cosmological and stability constraints required for a metastable vacuum, spans light

inflaton with masses O(10−3−125) GeV and mixing angles θ2
m = O(10−11−10−2). We have a

rich set of experimental probes from particle physics and cosmology to study our model, which

requires a multitude of observables: from measurements of the Higgs couplings, invisible decay

width and production cross-section, and a measurement of the tensor-to-scalar ratio. Future

upgrades of current experiments may be sensitive enough to observe suppressed linear and tri-

linear couplings Higgs couplings with respect to the SM in the parameter space of larger mixing

angles, θ2
m ≥ O(10−4), where inflatons have masses mχ & 1 GeV. However, accessibility to

the parameter space of very weakly-coupled inflatons is dependent on the planned proposals
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of new experiments [278] that target the hidden sector (namely MATHUSLA200, SHIP, and

FASER2). The experimental testability of our model would greatly benefit from a combination

of these experiments, which can probe mixing angles down to θ2
m = O(10−11) and inflatons

with masses mχ ∼ (0.03−5) GeV. A measurement of the inflaton within the visible mass range

would allow us to predict the viability and properties of our DM model, where for an inflaton

with mχ ≤ O(0.1) GeV, our DM model would be excluded by constraints from Lyman-α data.
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Chapter 9

Conclusions and outlook

In this thesis we analyse cosmological models that aim to solve some of the fundamental

problems in cosmology and the SM: explaining the homogeneity and isotropy of the universe,

SM and DM production, large scale structure formation, and the generation of the BAU and

SM neutrino masses. We study three variations of a minimal single-field inflationary model.

First we constrain the basic model, with one scalar mass term, which provides mechanisms

for inflation and reheating. We then extend the basic model with a modified νMSM that

provides a mechanism for DM production, and generates the SM neutrino masses and the

BAU. Finally, we re-constrain a generic Z2 symmetric inflationary model with two mass terms,

under the assumption that our universe is metastable. We will now summarise the results and

the limitations of our models, noting where we have made assumptions and approximations,

where improvements and extensions to our analysis could be made in the future, and the

prospects of experimental searches.

Our basic inflationary model incorporates mechanisms for inflation and reheating through

minimally extending the SM with a single scalar inflaton field. The model has a Z2 symmetric

potential, with a quartic scalar self-coupling (β), a negative scalar mass term (µ2
X) and an

inflaton-Higgs portal coupling (α). The quartic inflaton term dominates the energy density of

the universe during inflation, when inflaton field values are X > O(MP). In order for our model

to be within the tensor-to-scalar ratio, we are required to introduce a non-minimal coupling

of the inflaton field to gravity. Using the slow-roll formalism, the inflaton quartic self-coupling

is constrained by the CMB’s measurement of the amplitude of scalar perturbations to the

range β = O(10−12 − 10−9), where the lower bound corresponds to the excessive production

of tensor modes and the upper bound introduces additional scales below Planck. The negative

scalar mass term gives rise to symmetry breaking in the inflaton sector. The inflaton-Higgs

portal coupling then allows for the transfer of symmetry breaking into the Higgs sector, with

parameters tuned to the SM Higgs VEV, as well as providing a mechanism for reheating.

Following the inflationary epoch is a period of preheating, in which inflationary energy is

non-perturbatively transferred into excitations of the fields via parametric resonance. Energy

is inefficiently transferred into the SM, as excitations of the Higgs field promptly re-scatter
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from their resonance bands due to their large self-coupling, λ ∼ 0.1. As the inflaton field has

a relatively small self-coupling, energy is efficiently transferred into excitations of the field,

which populate a highly non-thermal infra-red distribution function. The inflaton particles

then enter a period of free-turbulence, during which three and four particle scatterings evolve

the inflaton distribution self-similarly towards thermalization.

Once the Hubble expansion rate is of the order of the inflaton decay/scattering rate, the

perturbative reheating period proceeds, during which inflatons can efficiently transfer their

energy into the SM. We define two regions of the inflaton parameter space that reheat via

different mechanisms. First we review the previously analysed [45–48] light inflaton parameter

space (mχ � 2mh ≡ α � β), in which the universe reheats via χχ → hh. The light inflaton

mass is constrained to (0.16 . mχ . 16) GeV, where the lower bound ensures radiative

corrections from the inflaton-Higgs coupling do not spoil the inflationary potential, and the

upper bound ensures reheating temperatures exceed the EW symmetry breaking scale, TEW =

160 GeV, so that the BAU can be produced via EW sphaleron processes. Experimental searches

of scalars in meson decays [235, 244–250] further constrains the light inflaton mass range to

mχ > 1 GeV. I then present my original work [43] on the heavy inflaton parameter space

(mχ > 2mh ≡ α < β/8), in which the universe reheats via χ → hh. The heavy inflaton

parameter space is constrained to (250 < mχ . 7600) GeV, where the lower bound is necessary

for the kinematics of the decay, and the upper bound is also provided by the minimum reheating

temperature, TEW. Heavy inflaton evade direct observational constraints, due to their small

mixing with the Higgs sector.

Now we turn to the limitations of our model, and the approximations and assumptions

we made in our analysis. Firstly, our maximum quartic scalar self-coupling is not a stringent

theoretical bound, but ensures our model is UV complete up to the Planck scale without

complicating the theory. We may have β > O(10−9) if modifications to our model are made

to ensure unitarity up to the Planck scale, for example, by adding additional particles to our

theory. Note that a measurement of the tensor-to-scalar ratio in the future would fix β in our

model. The heavy inflaton distribution function is highly non-thermal at the time of reheating,

and so the parameter space is constrained by numerically solving the Boltzmann equations,

assuming that 3-particle scatterings drive the turbulent evolution towards thermal equilibrium,

as suggested in [232, 233]. We found a relatively weak dependence on the initial distribution

function, with a (10−20)% difference between 3- and 4-particle scattering functions. We ignored

the details of symmetry restoration in the EW sector after preheating in our analysis, and our

results for inflaton masses approaching the kinematic limit of decay into two Higgs bosons

may be modified by the full thermal quantum treatment of the evolution. The light inflaton

distribution function is closer to thermal equilibrium at the time of reheating, due to their larger
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coupling with the SM, and so we approximate the reheating bounds analytically. We assume

4-particle scatterings drive the turbulent evolution towards thermal equilibrium, as we obtain

a more conservative bound than the 3-particle scattering function. In our reheating analysis

for both light and heavy inflaton, we made the approximation that the SM instantaneously

thermalises on production, which is reasonable at Treh ≥ O(100) GeV, as the SM interaction

rate greatly exceeds the Hubble expansion rate.

Future work on this model may include adding the renormalisable trilinear inflaton-Higgs

coupling, χΦ†Φ, which would lead to more efficient reheating and thus extend the upper mass

bound on the inflaton. Additionally, a significant increase in the inflaton-Higgs mixing angle is

motivated by particle physics experiments, as detection channels, such as χ→ qq̄, may become

accessible. Alternatively, if we are able to generate the BAU at temperatures below the EW

scale, we could relax the minimum reheating bound and thus the inflaton upper mass bound

would be increased. This may be possible if we are able to produce sphaleron configurations

non-thermally during the preheating epoch [284, 285]. Note that at low reheating temperatures

it may then be necessary to study non-equilibrating SM dynamics. The light inflaton parameter

space would particularly benefit from these alterations, as the mass range is tightly constrained

from below by particle physics experiments.

Next we study our inflationary model extended by the νMSM, modified with an additional

inflaton-sterile neutrino Yukawa coupling. The model contains three sterile neutrinos: the

lightest is our DM candidate (N1), and two heavier (N2, N3), which generate the SM neutrino

masses via the see-saw mechanism and the BAU via leptogenesis. Our model produces freeze-

in DM via inflaton decay in the early universe, χ → N1N1, and we constrain the mass of

N1 assuming it makes up the total DM abundance. We neglect the contribution of active-

sterile neutrino oscillations to DM production, as the active-sterile neutrino coupling is strongly

constrained by the absence of x-ray emissions from the radiative decay of sterile neutrinos

[106, 187]. Relativistic light inflaton produce DM after they have thermalised with the SM at

Tprod ∼ mχ/2 and with an average momentum of 〈pN 〉/T ∼ 2.45. We can constrain the DM

parameter space analytically in this region, in which light inflaton produce warm DM with

mass O(10 − 100) keV. Non-relativisitic inflaton produce DM simultaneously with the SM

from a highly non-thermal distribution, and so a numerical analysis is necessary to constrain

the DM parameter space in this region. Heavy inflaton produce strongly non-thermal cold

DM with an average momentum of 〈pN 〉/T ∼ O(1 − 10) and mass O(1 − 10) MeV. Both

regions of the DM parameter space currently satisfy the requirements for structure formation.

However in the future, more stringent bounds from Lyman-α data may increase the lower

mass bound of the warm DM and thus constrain the light inflaton window. Two degenerate

heavier sterile neutrinos can produce the BAU via resonant leptogenesis during freeze-out,
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and the SM neutrino masses via the see-saw mechanism, with masses in the range M2/3 =

O(103 − 1010) GeV.

In our DM study we make the approximation that the number of effective SM degrees of

freedom (gSM) during DM production is constant. However in the light inflaton parameter

space, where Tprod ∼ O(0.1 − 1) GeV, gSM is a rapidly changing function of temperature.

In future studies, we may want to perform a numerical analysis with gSM as a function of

temperature, in order to make higher precision bounds on the DM parameter space. Other

future studies include extentions to the model so that the DM is lighter and therefore warmer,

which could lead to potentially detectable signatures from structure formation. For example,

the Majorana sterile neutrino mass term, −MI

2 N̄ cN , can be tuned to have the opposite sign

and have an equal magnitude to that acquired from the Yukawa coupling, thereby giving a

smaller effective sterile neutrino mass. Alternatively, we could modify the sterile neutrino

mass with the addition of the symmetry breaking Higgs doublet mass term, +µ2
ΦΦ†Φ, which

we studied in chapter 8. Producing warmer DM then allows our model to be constrained by

Lyman-α data.

Our final model [44] extends the basic inflationary model with a negative Higgs doublet mass

term (µ2
Φ), so we have symmetry breaking in both the Higgs and scalar sectors. We require the

Higgs VEV to correspond to the SM expected value and the inflaton VEV to be non-zero, so

that the universe is not overclosed with inflaton particles. As a result of the additional massive

parameter, the Higgs boson mass does not fix the Higgs quartic self-coupling (λ 6= m2
h/2v

2),

and so the stability of the EW vacuum is dependent on the parameters of the inflationary

model. We assume that a universe with a positive cosmological constant is metastable, based

on Dvali’s argument that an eternal de Sitter universe would lead to quantum inconsistencies

[50, 51], and constrain our model accordingly. The metastable region constrains the Higgs

self-coupling to the range 0.1 < λ(mt) < 0.134. However, additional model-dependent bounds

from inflation and reheating are necessary, as during these periods the Higgs field value can

exceed the instability scale and thus destabilise the EW vacuum. For λ(mt) > 0.120, the EW

vacuum is stable up to reheating temperatures T = O(MP) against thermal fluctuations of the

Higgs field.

In most regions of our model’s parameter space the universe inflates along a non-zero angle

in the inflaton-Higgs field space, inversely proportional to
√
λ. As a result, the inflationary

attractor will break down if λ runs to negative values. This can be evaded if λ is finely tuned

close to the stability scale, however, we choose to analyse the case where fine-tuning is not

necessary: the parameter space region α > 0 & 2|α| > β, where the inflationary attractor

solution is Φb = 0. Additionally, the large effective Higgs mass from the positive α term in the

potential stabilizes the EW vacuum against inflationary enhanced quantum fluctuations of the
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Higgs field.

The region of parameter space where α > 0 & 2|α| > β corresponds to the light inflaton

region, in which the universe reheats via χχ → hh. The model’s β − α parameter space

is constrained from inflation and reheating by the same bounds previously evaluated for the

basic model. Additionally the model is constrained by the requiring the inflaton particles

decay prior to BBN, which bounds the inflaton-Higgs mixing angle to θ2
m ≥ O(10−9 − 10−11)

for inflatons with mχ = O(0.001−0.1) GeV. Finally, we require the model to be consistent with

experimental observations. The measurement of the Higgs signal strength constrains the Higgs

self-coupling to λ(mt) ≥ 0.123, which is within the bound for EW stability during reheating.

The interesting metastable region of our model is then confined to 0.123 ≤ λ(mt) ≤ λSM.

We conclude that in the region of parameter space where α > 0 & 2|α| > β, inflaton with

mχ = O(10−3 − 125) GeV and θ2
m = O(10−11 − 10−2) evade all current experimental, cos-

mological and stability constraints required for a metastable vacuum. If we extend the model

with our sterile neutrino DM model we would have further constraints from Lyman-α data.

The addition of the Higgs mass term results in small inflaton VEVs when µ2
Φ ∼ λv2, and thus

lighter and warmer DM compared to the previously analysed µΦ = 0 model. As a result, a

measurement of inflaton with mχ ≤ O(0.1) GeV would exclude our DM model by the require-

ments for structure formation. The model has a number of experimental probes from particle

physics and cosmology: measuring the Higgs’ couplings, invisible decay width and production

cross-section, and the tensor-to-scalar ratio. Future upgrades of current experiments may be

sensitive enough to probe the parameter space of larger mixing angles, θ2
m ≥ O(10−4), where

inflatons have mχ & 1 GeV, through the observation of suppressed linear and trilinear Higgs

couplings. The experimental testability of very weakly coupled inflaton is dependent on the

planned proposals of future experiments [278] (MATHUSLA200, SHIP, and FASER2), that are

able to probe inflatons with mχ ∼ (0.003−5) GeV and mixing angles down to θ2
m = O(10−11).

A measurement of the inflaton within this mass range would allow us to predict the viability

and properties of our sterile neutrino DM model.
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Chapter 10

Appendix

In this chapter we calculate the amplitude of K+ → π+χ, due to a discrepancy between the

results in [236] and [47, 237–239]. We begin by evaluating the amplitude of the flavour-changing

neutral current (s → d) in the free-quark approximation. Then we utilize the low-energy

effective field theory of QCD, chiral perturbation theory, to find the amplitude of the hadronic

states. We will begin with a short introduction to chiral perturbation theory in section 10.1,

before calculating the decay width of K+ → π+χ in section 10.2.

10.1 Chiral perturbation theory

QCD is a theory of the strong force, involving interactions between gluons and quarks. As the

strong force coupling, αs, increases at low energies, gluons and quarks can not be approximated

to asymptotic states in the low-energy regime. Therefore an effective field theory of QCD is

built using hadronic states, called chiral perturbation theory [286, 287].

In the low-energy regime, only the three lightest quarks (u, d, s) are considered. In the limit

that the quark masses are taken to zero, the QCD Lagrangian is

LQCD =
∑
f

q̄f,i(iγ
µ(Dµ)ijqf,j −

1

4
Gµν,aG

µν
a , (10.1)

where qf,i are quark fields of flavour f (f = u, d, s) and colour i (i = red, blue, green), γµ

are the Dirac matrices, and Gaµν (a = 1...8) are the gluon field strength tensors. The gauge

covariant derivative is

(Dµ)ij = ∂µδij − ig(Ta)ijA
a
µ, (10.2)

where Ta are the SU(3) generators, which are related to the Gell-Mann matrices by Ta = λa/2,

Aaµ are the gluon fields, and g is the quark-gluon coupling strength. In the chiral limit of

zero quark masses, the QCD Lagrangian has a SU(3)L × SU(3)R × U(1)V symmetry, where

SU(3)L×SU(3)R corresponds to chiral symmetry (i.e. invariance under parity transformation)
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and U(1)V corresponds to baryon number conservation. The generators of SU(3)L × SU(3)R

are QaL and QaR, which for the purpose of investigating chiral symmetry breaking, are more

conveniently written as vector and axial-vector operators [286, 287],

QaV = QaR +QaL,

QaA = QaR −QaL, (10.3)

that have parity P = −1 and P = +1 respectively.

Spontaneous symmetry breaking occurs when a global symmetry of the theory is broken

under the global transformation of the ground state, φ0, i.e. the generators of the theory do

not annihilate the ground state [288],

T aφ0 6= 0. (10.4)

Goldstone’s thoerem states that for each generator of the symmetry that is broken, a massless

scalar particle called a Goldstone boson is produced.

To conserve symmetry currents, we require the following commutation relation to hold [286,

287],

[H0
QCD, Q

a
A,V ] = 0, (10.5)

where H0
QCD is the Hamiltonian operator. We would therefore expect any state of negative

parity to have a degenerate state of positive parity. However, in the low-energy hadronic

spectrum there is a pseudoscalar meson octet (K±,K0, π±, π0, η, η
′
), which have much lower

masses than the rest of the hadronic spectrum, and no pseudoscalar baryon octet. The asym-

metry of the hadronic spectrum hints at the spontaneous breakdown of chiral symmetry

SU(3)L × SU(3)R → SU(3)V , where for every axial operator that breaks the chiral sym-

metry, a massless meson (P = −1) is produced in the limit of zero quark masses [286, 287].

The pseudoscalar meson octet are therefore realised as the Goldstone bosons, which form the

asymptotic states used to construct chiral perturbation theory [286, 287].

The lowest order effective Lagrangian for chiral perturbation theory, which obeys SU(3)L×

SU(3)R global symmetries and has a ground state invariant under U(1)V , is [286, 287]

Leff =
F 2

0

4
Tr
(
∂µU∂µU

†) . (10.6)
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U transforms under global SU(3)L × SU(3)R transformations as [286, 287]

U → RUL†, (10.7)

U† → LU†R†, (10.8)

where LL† = RR† = I, and U is invariant under U(1)V transformations as mesons have a

baryon number of zero. U is given by [286, 287]

U(x) = exp

(
i
φ(x)

F0

)
, (10.9)

where F0 is the pion decay constant and matrix φ is [286, 287]

φ(x) =

8∑
a=1

λaφa(x) =


π0 + 1√

3
η8

√
2π+

√
2K+

√
2π− −π0 + 1√

3
η8

√
2K0

√
2K−

√
2K̄0 − 2√

3
η8

 , (10.10)

where φa are the Goldstone bosons. The factor
F 2

0

4 in (10.6) is required to give the standard

kinetic term of the field, 1
2∂µφa∂

µφa, in the first order expansion of the Lagrangian [286, 287].

The Goldstone boson masses are incorporated into the QCD Lagrangian with the addition

of the explicit chiral symmetry breaking term [286, 287],

LQCD = −q̄RMqL − q̄LM†qR. (10.11)

In order to incorporate Goldstone masses into our effective fied theory, we include the following

additional term [286, 287]

LS.B. =
F 2

0B0

2
Tr
(
MU† + UM†

)
, (10.12)

where B0 is a constant related to the chiral quark condensate by 3F 2
0B0 = −〈qq̄〉, and [286,

287]

M =


mu 0 0

0 md 0

0 0 ms

 , (10.13)

where mi (i = u, d, s) are the quark masses. We can then predict the masses of the Goldstone

bosons of the theory, the pseudoscalar meson octet, by expanding (10.12) to second-order in
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the fields,

LS.B ⊃ −
B0

2
Tr
(
Mφ2

)
,

= −B0

2

(
2(mu +md)π

+π− + 2(mu +ms)K
+K− + 2(md +ms)K

0K̄0,

+ (mu +md)π
0π0 +

(mu +md + 4ms)

3
η2
)
. (10.14)

The masses of the Goldstone bosons are then given by [286, 287]

m2
π± = B0(mu +md), m2

K± = B0(mu +ms),

m2
K0 = B0(md +ms), m2

η =
B0

3
(mu +md + 4ms). (10.15)

10.2 Decay width of K+ → π+χ

Particle physics experiments can search for invisible scalars, such as our light inflaton, in

rare meson decays [47], the largest amplitude of which is from K+ → π+χ. To calculate the

amplitude of K+ → π+χ we first take the free-quark approximation. We evaluate the weak

contributions to the flavour-changing neutral quark current s→ d from a W boson (W+) and

Faddeev-Popov unphysical scalar (Φ+) loop with an internal quark line [239]. A Higgs boson is

radiated from the internal quark line, and mixes to produce an inflaton field [47, 239], as shown

in Figure 10.1. We presume a soft Higgs boson emission, i.e. we take the Higgs momentum to

zero and the internal quark momentum to p− q. In this limit, the amplitude is approximately

given by the weak contribution to the quark self-energy with an external Higgs field, multiplied

by the Higgs-inflaton mixing angle [47, 239]. The internal quark line has contributions from

top, charm and up flavours, however as the charm and up quarks’ contributions are suppressed

by their small masses, only the top quark contribution is significant. Finally we implement

chiral perturbation theory to find the meson interaction amplitude.
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θm

W+/Φ+(q)

s(p) q q d(p)
h

χ

Figure 10.1: Flavour-changing neutral current s→ d

Quark-level process of K+ → π+χ. The neutral quark current (s→ d) changes flavour via
the W boson (W+) or unphysical scalar (Φ+) loop. The Higgs boson (h) is emitted from the
internal quark, which then mixes to produce an inflaton particle (χ). p is the momentum of

the external quarks and q is the loop momentum of W+/Φ+.

10.2.1 Feynman Rules in Feynman-’t Hooft Gauge (ξ = 1)

• W+ propagator:

Gµν(q) =
−i

q2 −m2
W + iε

[gµν − (1− ξ) qµqν
q2 − ξm2

W

] =
−igµν

q2 −m2
W + iε

, (10.16)

where q is the momentum and mW is the mass of the W boson.

• φ+ propagator:

G(q) =
−i

q2 − ξm2
W + iε

=
−i

q2 −m2
W + iε

. (10.17)

• qf propagator1:

G(p) =
i(/p+mf )

p2 −m2
f + iε

, (10.18)

where p is the momentum and mf is the mass of quark (f = u, d, c, s, t, b).

• uαW
+dβ interaction vertex:

igW√
2
γµPLVαβ , (10.19)

where gW is the SU(2) gauge coupling constant, uα are ‘up’-type quarks (α = u, c, t), dβ

are ‘down’-type quarks (β = d, s, b), and Vαβ is the CKM matrix element for quark-mixing

of flavours α and β.

• uαφ
+dβ interaction vertex:

igW√
2

(
mα

mW
PL −

mβ

mW
PR

)
Vαβ =

i
√

2

v
(mαPL −mβPR)Vαβ , (10.20)

where v = 2mW
gW

is the Higgs VEV.

1We use the notation /X ≡ γµXµ.
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PL and PR are the left- and right-handed projection operators,

PL =
1− γ5

2
, PR =

1 + γ5

2
. (10.21)

PL and PR project out the left- and right-handed components of a particle,

uL/R = PL/Ru, vL/R = PR/Lv,

ūL/R = ūPR/L, v̄L/R = v̄PL/R,

(10.22)

where u(ū) is an incoming (outgoing) particle, v̄(v) is an incoming (outgoing) antiparticle.

Next we will evaluate the W+ and Φ+ contributions to the amplitude of the flavour changing

neutral current,

M(p) = s̄(p)[−iΣ(p)]d(p), (10.23)

where Σ(p) is the polarisation operator.

10.2.2 W+ boson contribution

In the Feynman-’t Hooft gauge, the polarisation operator of the quark self-energy with a

W+ boson loop is

−iΣ(p) =

∫
d4q

(2π)4

[
−igW√

2
γµPLV

∗
ts

][
i(/p− /q +mt)

(p− q)2 −m2
t

][
igW√

2
γνPL)Vtd

][
−igµν

q2 −m2
W

]
. (10.24)

The term proportional to mt does not contribute to the amplitude of the quark self-energy:

− iΣ(p) ⊃ γµPLγµPL = γµPLPRγµ = 0. (10.25)

The term proportional to (/p− /q) = γρ(p− q)ρ does contribute to the amplitude of the quark

self-energy:

− iΣ(p) ⊃ γµPLγργµPL − γµγργµPL = −2γρPL. (10.26)

Here we have used the anti-commutation relation

{γ5, γµ} = γ5γµ + γµγ5 = 0, (10.27)

and identities

(γ5)2 = I4, (10.28)

γµγργµ = −2γρ.
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However, the correct result for the calculation of the off-diagonal quark self-energy amplitude

in [239] states that the only contribution in the Feynman-’t Hooft gauge is from the unphysical

scalar loop. Unfortunately we have failed to show that the contribution from the W+ boson

loop is zero here. Nevertheless, we continue our attempt to calculate the K+ → π+χ amplitude

from the φ+ loop contribution to the quark self-energy in the following section.

10.2.3 φ+ contribution

In the Feynman-’t Hooft gauge, the polarisation operator of the quark self-energy with a φ+

boson loop is

−iΣ(p) =

∫
d4q

(2π)4

[
−i
√

2

v
(msPL −mtPR)V ∗ts

][
i(/p− /q +mt)

(p− q)2 −m2
t

]
(10.29)[

i
√

2

v
(mtPL −mdPR)Vtd

][
−i

q2 −m2
W

]
.

In order to evaluate the above expression, we implement the following tricks to simplify the

integral.

Feynman parameterisation

Applying the Feynman parameterisation,

1

AB
=

∫ 1

0

dx
1

[Ax+ (1− x)B]2
, (10.30)

to the denominator of equation (10.29) with A = (p− q)2 −m2
t and B = q2 −m2

W , we obtain

the following expression,

1

[q2 −m2
W ][(p− q)2 −m2

t ]
=

∫ 1

0

dx
1

[l2 −∆]2
, (10.31)

with l = (q − xp) and ∆ = (1− x)(m2
W − xp2) + xm2

t .

Wick rotation

We re-express our integral over q as an integral over l, and perform the Wick rotation

l0 → il0E ,

∫
d4q

(2π)4

/p− /q +mt

[q2 −m2
W ][(p− q)2 −m2

t ]
=

∫
d4lE
(2π)4

∫ 1

0

dx
(1− x)/p+mt

[l2E + ∆]2
. (10.32)

As l is anti-symmetric about the integrand, linear terms in l are dropped.
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Dimensional regularisation and MS Scheme

To dimensionally regularise the logarithmic divergent loop integral over lE , we infinitesimally

shift the number of dimensions from D = 4 to D = 4 − 2ε, which gives the following finite

result,

∫
d4−2εlE
(2π)4−2ε

1

[l2E + ∆]2
=

1

(4π)2

(
4πµ2

∆

)ε
Γ(ε)

Γ(2)
,

=
1

(4π)2

(
1

ε
+ ln(4π) + ln

(
µ2

∆

)
− γE +O(ε)

)
, (10.33)

where µ is the ultraviolet cutoff and Γ(x) is the Gamma function. In the second line we have

expanded the following terms in orders of ε,

Γ(ε) =
1

ε
− γE +O(ε),(

4πµ2

∆

)ε
= 1 + ε ln

(
4πµ2

∆

)
+O(ε2), (10.34)

where γE ∼ 0.58 is the Euler-Mascheroni constant.

The MS scheme subtracts the terms 1
ε + ln(4π)− γE from equation (10.33),

→ 1

(4π)2
ln

(
µ2

∆

)
. (10.35)

Then putting the external momentum on-shell, p2 = m2
s/d, and expanding about the Higgs

VEV,
√

2Φ→ v + h(x), integral (10.32) becomes2

∫ 1

0

dx[(1− x)/p+mt] ln

(
µ2

∆

)
⊃ −h

v
[/p− 2mt]. (10.36)

We only retain the terms linear in h in order to calculate the effective amplitude of a soft Higgs

emission from the internal quark line, which has a polarization operator of

−iΣ(p) =
2
√

2GF
16π2

h

v
V ∗tsVtd

(
m2
t/pPL +msmd/pPR + 2m2

tmdPR + 2m2
tmsPL

)
. (10.37)

2There is some uncertainty around producing the result given in (10.36).
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Wavefunction renormalisation

In order renormalize the wavefunction, we first define the Lagrangian for the s and d quarks,

expressed in terms of the propagator operator P̂ , and mass matrix, M̂ ,

L = ψ̄P̂ψ + ψ̄M̂ψ, (10.38)

=



s̄L

s̄R

d̄L

d̄R



T 
/p 0 δz1/p 0

0 /p 0 δz2/p

δz∗1/p 0 /p 0

0 δz∗2/p 0 /p





sL

sR

dL

dR


+



s̄L

s̄R

d̄L

d̄R



T 

0 ms 0 δm1

ms 0 δm2 0

0 δm∗2 0 md

δm∗1 0 md 0





sL

sR

dL

dR


.

The mixed quark terms correspond to the effective propagators and masses of the flavour

changing neutral current:

L ⊃ s̄
[
δz1/pPL + δz2/pPR + δm1PR + δm2PL

]
d+ c.c. (10.39)

Then equating the terms in (10.39) with the terms in the amplitude calculated in (10.37),

M(p) =s̄[−iΣ(p)]d = As̄
[
m2
t/pPL +msmd/pPR + 2m2

tmdPR + 2m2
tmsPL

]
d, (10.40)

where A = 2
√

2GF
16π2 V ∗tsVtd

h
v , we obtain the following for the effective propagators and masses for

the quark-mixing terms,

δz1 = Am2
t , δz2 = Amdms → 0,

δm1 = 2Am2
tmd, δm2 = 2Am2

tms. (10.41)

The renormalised wavefunction is given by ψ̃ = D̂ψ,

ψ̃ =



s̃L

s̃R

d̃L

d̃R


=



1 0 δz1 0

0 1 0 δz2

δz∗1 0 1 0

0 δz∗2 0 1



1
2


sL

sR

dL

dR


, (10.42)

where D̂ diagonalises the kinetic terms in the Lagrangian. In order to obtain the renormalised

mass matrix, ˆ̃M , we evaluate the mass term in (10.38) of the renormalised wavefunction,

L ⊃ ψ̄M̂ψ =
¯̃
ψ ˆ̃Mψ̃, (10.43)
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where ˆ̃M = (D̂)−1M̂(D̂)−1 and

D̂−1 ≈



1 0 − δz12 0

0 1 0 − δz22

− δz
∗
1

2 0 1 0

0 − δz
∗
2

2 0 1


(10.44)

to first order in δz. The renormalised masses of the flavour changing quark current to first

order in δz and δm are

L ⊃ ¯̃sL

[
− δz2

2
ms + δm1 −

δz1

2
md

]
d̃R + ¯̃sR

[
− δz1

2
ms + δm2 −

δz2

2
md

]
d̃L + c.c. (10.45)

Then by substituting in the expressions for δz and δm from (10.41), we obtain the contribution

of a Φ+ loop with a soft Higgs emission to the radiative corrections of the quark masses,

L ⊃ 3
√

2GF
16π2

V ∗tsm
2
tVtd

h

v

[
md

¯̃sLd̃R +ms
¯̃sRd̃L

]
+ c.c. (10.46)

Implementing chiral perturbation theory

In order to obtain the amplitude of the meson decay K+ → π+χ from the free quark ap-

proximation, we need to implement the chiral perturbation theory that we studied in section

10.1. In the low energy effective field theory, K+ and π+ are Goldstone bosons of the sponta-

neously broken chiral symmetry SU(3)L × SU(3)R → SU(3)V . The Goldstone boson masses

are incorporated into the theory with the addition of an explicit symmetry breaking term [286,

287] given by equation (10.12),

LS.B. =
F 2

0B0

2
Tr
(
MU† + UM†

)
, (10.47)

where M is the 3×3 light quark (u, d, s) mass matrix and U is the matrix of Goldstone bosons,

defined in (10.9) and (10.10). The off-diagonal quark mass elements due to the radiative

corrections given in (10.46) are expressed in matrix form by [239]

Mrad = γ3M =


0 0 0

0 0 msξ

0 mdξ
∗ 0

 , (10.48)
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where

γ3 =


0 0 0

0 0 ξ

0 ξ∗ 0

 , (10.49)

and ξ = 3
√

2GF
16π2

h
vV
∗
tsm

2
tVtd. Then by expanding (10.47) to second order of the fields, we extract

the terms proportional to π±K± in order to obtain the amplitude of K± → π±h,

LS.B. −
F 2

0B0

2
Tr
(
MradU

† + UM†rad

)
⊃ B0

8
Tr
(
Mradφ

2 + φ2M†rad

)
,

=
B0

2
Tr




0 0 0

0 ξmsπ
+K− ξmsK

+K−

0 ξ∗mdπ
+π− ξ∗mdπ

−K+

+


0 0 0

0 ξ∗msπ
−K+ ξmdπ

+π−

0 ξ∗msK
+K− ξmdπ

+K−


 ,

=
B0

2

(
ξ(ms +md)π

+K− + ξ∗(ms +md)π
−K+

)
,

=
m2
K

2

(
ξπ+K− + ξ∗π−K+

)
, (10.50)

where m2
K = B0(ms +md). Then with the addition of the inflaton-Higgs mixing angle, θm, we

obtain the amplitude for

M(K+ → π+χ) =
m2
Kθm

v

3
√

2GF
32π2

Vtsm
2
tV
∗
td, (10.51)

which is agreement with the results given in [47, 237–239]. The corresponding branching

fraction is [47]

Br(K+ → π+χ) =
Γ(K+ → π+χ)

Γtotal(K+)
,

=
1

Γtotal(K+)

|M(K+ → π+χ)|2

16πMK

2|pχ|
MK

,

≈ 1.3× 10−3

(
2|pχ|
MK

)
θ2

m, (10.52)

where pχ is the inflaton momentum in the centre of mass frame, MK is the kaon mass and

Γtotal(K+) is the total decay width of K+.
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