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Abstract

Algebraic expressions are determined for all F (R) gravity models which mimic

standard Einstein Gravity. We find that they are severely constrained by local

gravity in the Solar System which makes them virtually indistinguishable from

standard Einstein Gravity. In addition, we find that instead of F (R) → R as

R→∞, there is the possibility that F (R) ∝ R4/3.

Aspects of two well-known F (R) models are discussed together with a new

model. For the three models, the evolution of the effective equation of state

parameter, weff, is followed as well as the effective density parameter, Ωeff, and the

relationship between them. Also considered are the dependence of the potential

on its defining field and the evolution of the matter growth index, which is also

compared with that of standard Einstein Gravity. The problems that occur, the

constraints that act in order to make these parameters extreme today, and the

effect that a late-time de Sitter attractor has and how this can be evaded to give

large deviations from weff,0 = −1 are discussed.

It is the case that in the radiation and matter eras, for F (R) models that tend

to standard Einstein Gravity as R → ∞, weff < −1 and decreases with time. A

proof of this is given as a theorem.

Matter oscillations of the perturbed, weak matter fields are considered and the

equations solved algebraically to show how they evolve in time both in amplitude

and frequency. They are compared with the numeric solutions of the equations

and, under certain circumstances, they compare favourably.
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Glossary

AU – Astronomical Unit = 1.5× 108 km.

BCS – Blanco Cosmology Survey.

CDM – Cold dark matter.

COBE – Cosmic Background Explorer satellite. It was launched in Novem-

ber 1989 to measure infra-red and microwave radiation from the early Uni-

verse. It carried three instruments, a Diffuse Infrared Background Exper-

iment (DIRBE) to search for the cosmic infrared background radiation, a

Differential Microwave Radiometer (DMR) to map the cosmic radiation

sensitively, and a Far Infrared Absolute Spectrophotometer (FIRAS) to

compare the spectrum of the cosmic microwave background radiation with

a precise blackbody [1, 2].

Expansion scale factor – the dimensionless parameter, a, which measures

the expansion of the Universe. Today, a is defined as 1; the history of the

Universe, to date, is described by 0 ≤ a ≤ 1. Its natural logarithm is

denoted by N .

Ghost – particle whose Hamiltonian contains negative energy terms.

GR – General Relativity represented in modified gravity by F (R) = R.

Hubble constant – today’s value of the Hubble parameter. The Planck

best fit value is H0 = 67.11 km s−1Mpc−1.

19



Hubble parameter, H, – defined as ȧ/a, which measures the relative rate

of expansion of the Universe. It has dimensions [T−1].

ΛCDM – cold dark matter with constant dark energy density represented

in modified gravity by F (R) = R − 2Λ. Λ is termed the cosmological

constant which could explain the accelerated expansion of the Universe. It

is sometimes termed standard Einstein Gravity.

LSS– Large Scale Structure. On scales smaller than the scale of the Uni-

verse, galaxies and clusters of galaxies formed as a result of gravitational

collapse in regions of higher average density which were, themselves, caused

by perturbations early in the history of the Universe.

MACS – Massive Cluster Survey.

Newtonian gauge – a perturbation of the FRW metric. See equation

(5.1).

The phantom divide – the line weff = −1.

Planck – a space observatory operated by the European Space Agency

(ESA), and designed to observe anisotropies of the cosmic microwave back-

ground (CMB) at microwave and infra-red frequencies, with high sensitiv-

ity and small angular resolution. It began operation in 2009 and comple-

mented and improved on WMAP measurements. Its results were published

in February 2013 [3].

REFLEX – ROSAT-ESO Flux-Limited X-Ray galaxy cluster survey.

Ricci or curvature scalar, R, – a measure of the curvature of space-time

due to energy sources in the Universe. It has dimensions [T−2].

Req – the value of the Ricci scalar at equality. This is when the radiation

density equals the matter density. Req ≈ 3× 1010H2
0 .

20



RΛ – the value of the Ricci scalar under ΛCDM.

Rs – the value of the Ricci scalar at the Solar System. In this thesis it is

taken to have the value 106H2
0 .

ROSAT – the Röntgen Satellite, was an X-ray observatory developed

through a cooperative program between Germany, the United States, and

the United Kingdom.

Scalaron Mass – defined as M via M2 = FR(R)−RFRR(R)
3FRR(R)

≈ 1
3FRR(R)

. M has

dimensions [T−1].

Solar System constraint – the constraint on the parameters of a model

by the need for RsFRR(Rs)� 10−23.

Today – in cosmological terms, the current time denoted by suffix 0 so that

X0 is the value of the variable X, today. The value of Ωm, today, is denoted

by Ωm,0. Today, a = 1 and N = 0.

WMAP – the NASA Wilkinson Microwave Anisotropy Probe launched in

2001 with the first results in February 2003 [4, 5] with a nine year update

published in June 2013 [6, 7].
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Useful Expressions

In a flat FRW Universe:

H =
ȧ

a

N = log a

′ =
d

dN
d

dt
= H

d

dN

ρcrit =
3H2

8πG

= ρr + ρm + ρeff

3H2 = 8πGρr + 8πGρm + 8πGρeff

Ωr =
ρr

ρcrit

=
8πGρr

3H2

Ωm =
ρm

ρcrit

=
8πGρm

3H2

Ωeff = 1− Ωm − Ωr

=
8πGρeff

3H2

weff = −1− ρ′eff

3ρeff

weffΩeff = −1− 2H ′

3H
− H2

0e
−4NΩr,0

3H2

H2 = H2
0e
−4NΩr,0 +H2

0e
−3NΩm,0 +

8πGρeff

3
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R = 12H2 + 6Ḣ

= 12H2 + 6HH ′

= 3H2
0e
−3NΩm,0 + 8πG (4ρeff + ρ′eff)

= 3H2
0e
−3NΩm,0 + 8πGρeff (1− 3weff)

= 3H2 (1− 3weffΩeff)− 3H2
0e
−4NΩr,0

ä

a
= −4πG

3
(2ρr + ρm + (1 + 3weff) ρeff)

ä > 0⇒ weff < −1 + Ωr

3Ωeff
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Chapter 1

Introduction to Gravitational

Theories and Cosmology

1.1 Introduction

This thesis is about some aspects of modifying the gravitational theory of General

Relativity (GR) in the light of some well known problems. GR is not a particle

theory but makes the suggestion that matter and other energy sources curve

space-time which puts it at variance with traditional, Galilean and Newtonian

mechanics. However, low energy, non-relativistic sources must and do, in their

effects, tend to their Newtonian counterparts.

What we consider in this thesis are some aspects of what is termed F (R) gravity

but first, in this chapter, we review GR and consider a very brief history of the

Universe. We then look at what is termed dark energy, consider a couple of

perceived problems, consider matter perturbations and list the constraints which

act on F (R) models.

27
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1.2 General Relativity

1.2.1 General Relativity, covariant derviatives, energy-

momentum tensor

Our starting point [8–11] is to generalise Poisson’s equation ∇2Φ = 4πGρ for

mass density ρ; Φ is the equivalent of the Newtonian potential such that, for a

single mass m, it produces a gravitational potential a distance r away from it

of Φ = −Gm/r, G being Newton’s gravitational constant. We wish to find the

General Relativity (GR) equivalent of Poisson’s equation. It is a second order

differential equation which, in GR, should be a tensorial equation. It will become

a second order differential equation involving the covariant derivative, ∇µ. As is

usual, let the metric for GR be gµν such that

ds2 = gµνdx
µdxν , (1.1)

with x0 representing time and xi being the space components. We use the con-

vention (−1, 1, 1, 1) for the signature of the metric and put c = 1.

The covariant derivative is defined on a vector V µ via the Levi-Civita connection

∇µV
ν = ∂µV

ν + ΓνµλV
λ, (1.2)

where Γνµλ are termed the Christoffel symbols of the second kind. On a scalar,

φ, this reduces to

∇µφ = ∂µφ. (1.3)

Applied to tensor T µν , it gives

∇µT
νρ = ∂µT

νρ + ΓνµλT
λρ + ΓρµλT

µλ. (1.4)

A property we use is that the covariant derivative of the metric is zero, i.e.,

∇ρ gµν = 0. This means that ∇ρg
µν = 0 and that the Levi-Civita connection can,
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as a result, be defined by

Γσµν =
1

2
gσρ (∂µgνρ + ∂νgρµ − ∂ρgµν) . (1.5)

In (1.4), we have used the torsion-free requirement that Γλνµ = Γλµν . This

being the case, we describe the connection as being torsion free. If this were not

true we could form the “torsion tensor”, Γλµν − Γλνµ, which is anti-symmetric in

its lower indices [11].

Now the tensor equivalent to the mass density ρ is the energy-momentum tensor,

Tµν , mass and energy being synonymous in Special Relativity. It is defined by

Tµν = − 2√
−g

δ (
√
−g )LM

δgµν
, (1.6)

in which LM is the Lagrangian for all the physical fields contributing energy to

the Universe and g is the determinant of gµν .

In cosmology we assume the expansion of the Universe in controlled by the

presence of perfect fluids. A perfect fluid is completely specified by its rest-frame

density ρ and isotropic rest-frame pressure P . When the fluid has four-velocity

Uµ the energy-momentum tensor can be expressed as

Tµν = (ρ+ P )UµUν + Pgµν . (1.7)

With respect to comoving coordinates, Uµ = (1, 0, 0, 0), T µ ν = diag (−ρ, P, P, P ).

In Special Relativity, the energy-momentum conservation equation is ∂µT
µν = 0.

In GR, this becomes ∇µT
µν = 0 from which also follows ∇µTµν = 0.

1.2.2 The Riemann tensor and curvature and the Einstein

tensor

The Riemann tensor quantifies the curvature of space-time. It isRρσµν = gρλR
λ
σµν

where

Rρ
σµν = ∂µΓρσν − ∂νΓ

ρ
σµ + ΓρλµΓλσν − ΓρλνΓ

λ
σµ. (1.8)
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It has the following properties:

Rρσµν = −Rσρµν , (1.9)

Rρσµν = −Rρσνµ, (1.10)

Rρσµν = Rµνρσ, (1.11)

Rρσµν +Rρµνσ +Rρνσµ = 0. (1.12)

The Bianchi identity holds:

∇λRρσµν +∇ρRσλµν +∇σRλρµν = 0. (1.13)

By contracting the Riemann tensor, the Ricci tensor is formed:

Rµν = Rλ
µλν , (1.14)

and the trace of this is the Ricci or curvature scalar:

R = gµνRµν . (1.15)

Contracting the Bianchi identity twice:

gµλgνσ (∇λRρσµν +∇ρRσλµν +∇σRλρµν) = 0 (1.16)

⇒ ∇µRρµ −∇ρR +∇νRρν = 0 (1.17)

⇐⇒ ∇µRρµ =
1

2
∇ρR. (1.18)

From the Ricci tensor and the Ricci scalar is defined the Einstein tensor:

Gµν = Rµν −
1

2
gµνR. (1.19)

From (1.18), we see that ∇µGµν = 0, just as ∇µTµν = 0.

1.2.3 Formulation of the Einstein equations

In view of the property expressed in (1.19), and that we want a tensor indicating

the curvature of space-time to relate to the energy-momentum tensor, we consider

the equality

Gµν = κTµν (1.20)
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where κ = 8πG, and see if this is viable as a law of Physics. Let us consider our

local, Minkowskian, frame of reference with metric ηµν which the gravitational

effects of static, local masses have altered to gµν . It will be a small effect so we

shall consider only first-order changes to ηµν . For matter, by which we mean

baryons and dark matter, P = 0 and the energy-momentum tensor is given by

T µν = diag (−ρ, 0, 0, 0) and the trace of (1.20) gives R = −κT = κρ.

The 00 component of (1.20) gives:

R00 +
1

2
R = κρ (1.21)

⇐⇒ R00 =
1

2
κρ (1.22)

Now, and since we can ignore time derivatives in a static field,

R00 = Rλ
0λ0 (1.23)

= Ri
0i0 (1.24)

= δiiR
i
0j0 (1.25)

= δij∂
jΓi 00, to first order, (1.26)

= −1

2
∂i∂ig00. (1.27)

g00 = −1 +h00, say, means that, to first order small quantities, R00 = −∇2h00/2.

This gives, as the 00 component of (1.20),

∇2h00 = −κρ. (1.28)

Thus, identifying −h00/2 with Φ gives Newtonian gravity, i.e., the Einstein equa-

tion reduces in the weak field limit to

∇2Φ =
κ

2
ρ (1.29)

= 4πGρ. (1.30)

We also have the possibility that, more generally,

Gµν = Rµν −
1

2
gµνR = 8πGTµν . (1.31)
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These are Einstein’s equations. The trace of them gives

R = −8πGT (1.32)

= 8πG (ρ− 3P ) . (1.33)

1.2.4 The FRW metric and the Ricci scalar

Observation of the Universe suggests that a good, large-scale model is to be had

by postulating it to be expanding and, on average, spatially homogeneous and

isotropic, that is, that matter is spread out uniformly throughout the Universe in

all directions no matter from which point of the manifold one is looking. Observa-

tions support the idea that space-time has no intrinsic curvature of its own which

is thus described as being flat, which will be assumed throughout this thesis. In

the past this has been perceived as being a problem and is discussed in [12]. The

assumptions that the Universe is flat, homogeneous, isotropic and expanding is

is incorporated in the Friedmann-Lemâıtre-Robertson-Walker (FRW) metric de-

fined by gµν = diag(−1, a2, a2, a2). a is a parameter termed the expansion scale

factor of the Universe. Initially, at the Big Bang, a = 0 and it increases with time

to become, by definition, a = 1, today. For reviews see, for example, [13, 14].

The relative expansion rate of the Universe is the Hubble parameter, H = ȧ/a.

If H is known, we can compute the age of the Universe. Today’s value is H0

determined in the recent Planck Collaboration as H0 = 100h kms−1Mpc−1 =

67.4± 1.4 kms−1Mpc−1 [15–17].

Denoting da/dt by ȧ, gives the following as the only non-zero Christoffel sym-

bols:

Γ0
11 = Γ0

22 = Γ0
33 = aȧ. (1.34)

Γ1
10 = Γ1

01 = Γ2
20 = Γ2

02 = Γ3
30 = Γ3

03 =
ȧ

a
. (1.35)
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Replacing ȧ by aH, these Christoffel symbols lead to the Riemann tensor as

Rµν = diag

(
−3ä

a
, aä+ 2ȧ2, aä+ 2ȧ2, aä+ 2ȧ2

)
(1.36)

= diag
(
−3
(
H2 + Ḣ

)
, a2
(

3H2 + Ḣ
)
, a2
(

3H2 + Ḣ
)
, a2
(

3H2 + Ḣ
))

(1.37)

and the Ricci scalar as R = 12H2 + 6Ḣ.

1.2.5 Density, pressure and equation of state

In the expression for the energy-momentum tensor in subsection 1.2.1, mention

is made of the energy density, ρ, and associated pressure, P , of the perfect fluids

which are present in the Universe at any time. These fluids are radiation, in the

form of photons, and other relativistic species, with density ρr, and matter, with

density ρm. Some authors also admit to a vacuum or dark energy of density ρvac.

Dark energy is discussed in subsection 1.4.4. Each fluid may exert a pressure

and pressure is connected to fluid density by an equation of state, P = wρ. w

is termed the equation of state parameter and could vary with time, as we shall

see. For radiation, w = 1/3 so that Pr = ρr/3, for matter w = 0 so Pm = 0, while

for the vacuum, w = −1 so that Pvac = −ρvac.

Looking at the 0 component the conservation of energy equation, ∇µTµν = 0,

gives

∇µTµ0 = 0, (1.38)

⇒ ∂µT
µ
0 + ΓµµλT

λ
0 − Γλµ0T

µ
λ = 0, (1.39)

⇐⇒ −∂0ρ− 3H (ρ+ P ) = 0. (1.40)

using (1.34) and (1.35). (1.40) is true for each fluid in the energy-momentum

tensor so that we have, for each,

ρ̇ = −3H (1 + w) ρ. (1.41)
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If w is constant for any fluid then we can integrate (1.41) to

ρ = ρ0a
−3(1+w), (1.42)

where ρ0 is a constant of integration. Thus for radiation, ρr ∝ a−4, for matter,

ρm ∝ a−3, and the density of the vacuum, ρvac, is constant.

1.2.6 The Friedmann equations

If we say that the densities and pressures in the energy-momentum tensor are

given by ρ and by P , respectively, solving the Einstein equations gives, from the

00 component

3H2 = 8πGρ, (1.43)

⇐⇒
(
ȧ

a

)2

=
8πG

3
ρ, (1.44)

which is referred to as the Friedmann equation. The ij components give

3H2 + 2Ḣ = −8πGP, (1.45)

⇒ ä

a
= −4πG

3
(ρ+ 3P ) . (1.46)

This last equation is referred to as the second Friedmann equation.

1.2.7 Einstein equations derived from the action

There is an alternative way, proposed by Hilbert [10, 18], of deriving the Einstein

equations and that is by considering the total action of the gravitational field

and the action due to sources of energy, of whatever kind, which we call matter

fields. Let the total action be S = SG + SM. The gravitational part of the action

is defined to be

SG =
1

2κ

∫
d4x
√
−g R, (1.47)
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where κ = 8πG, as in section 1.2.3, above. The action for the matter fields is

SM =
1

2κ

∫
d4x
√
−g LM, (1.48)

where LM is the Lagrangian for the matter fields and it is connected to the

energy-momentum tensor by equation (1.6). Varying SG with respect to the

inverse metric, gµν ,

δSG =
1

2κ

∫
d4x δ

(√
−g R

)
(1.49)

=
1

2κ

∫
d4x δ

(√
−g gµνRµν

)
(1.50)

=
1

2κ

∫
d4x

[
δ
(√
−g
)
gµνRµν +

√
−g δ (gµν)Rµν +

√
−g gµνδRµν

]
.

(1.51)

Without going into too much detail,

δ
√
−g = − 1

2
√
−g

δg (1.52)

= − g

2
√
−g

gµνδgµν (1.53)

= −
√
−g
2

gµνδg
µν). (1.54)

δRµν = δRλ
µλν (1.55)

= ∇λδΓ
λ
νµ −∇νδΓ

λ
λµ, (1.56)

⇒ gµνδRµν = ∇λ

(
gµνδΓλνµ

)
−∇ν

(
gµνΓλλµ

)
(1.57)

= ∇σ

[
gµνδΓσνµ − gµσδΓλλµ

]
. (1.58)

Thus the right hand term of (1.51) gives, by Stokes’s Theorem, a boundary term.

We can set the boundary at infinity so this term vanishes. This leaves

δSG =
1

2κ

∫
d4x

[
δ
(√
−g
)
gµνRµν +

√
−g δ (gµν)Rµν

]
(1.59)

=
1

2κ

∫
d4x
√
−g

[
−1

2
Rgµν +Rµν

]
δgµν . (1.60)
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For the matter fields,

δSM =

∫
d4x

δ (
√
−g LM)

δgµν
δgµν (1.61)

= −1

2

∫
d4x
√
−g Tµνδgµν . (1.62)

so,

δS

δgµν
= 0, (1.63)

⇒ Rµν −
1

2
gµνR− κTµν = 0, (1.64)

⇐⇒ Rµν −
1

2
gµνR = 8πGTµν . (1.65)

Varying the action in this way enables us to produce our own versions of Ein-

stein’s equations, which is what we do when we consider actions which modify

gravity in section 1.4.

1.3 A brief history of the Universe

When considering the large scale structure of the Universe, as we do with modified

gravity, we simply split up its history into the eras when the various energies

represented in the energy-momentum tensor dominate. A detailed and scholarly

account is given in Kolb and Turner [19]. Initially, there was the radiation era

which was followed by the matter era. We include a third, the vacuum era,

because the densities of radiation and matter eventually become negligible leaving

just the vacuum. Conjectures on the past and future of the Universe are discussed

in [20].
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1.3.1 The radiation era

It is believed that immediately after the Universe came into being it underwent

a brief period of very rapid expansion which smoothed out any original uneven-

ness there might have been. This period is termed inflation and lasted until

the Universe was about 10−32 s old. The radiation era stretched from just after

inflation, to around 1011 s ≈ 3000 years during which time the temperature fell

from 1013GeV to 10eV. It ended when the radiation density, which we have seen

is proportional to a−4, fell to such an extent that it equated to the matter density

which was falling at a slower rate. The point at which this happened is termed

equality. The following two epochs formed part of the radiation era.

1. Reheating occurred between 10−32 s to 1s as the temperature fell from

1013GeV to 10MeV. It saw the creation of a dense soup of quarks, photons,

gluons and leptons. Quarks and gluons formed hadrons which decayed to

protons, electrons, photons and neutrinos. There was a slight imbalance of

matter to antimatter of the order of 1 + 10−10 : 1. This annihilated to leave

a small residue of matter plus photons and neutrinos.

2. Big Bang Nucleosynthesis (BBN) then followed in which hydrogen and some

of the lighter elements such as deuterium, helium and lithium formed. This

epoch lasted until 200s when the temperature decreased to 0.1MeV.

1.3.2 The matter dominated era and the CMB

This era stretched from when the Universe was 3000 years old until it was 109

years old. During that time, the temperature fell from 10eV to 10meV. Initially,

the Universe was opaque to light but, as cooling progressed, in the process known

as recombination, when electrons and protons formed the light atoms, photons

became decoupled to make the Universe transparent to light. We observe this

today as the Cosmic Microwave Background (CMB) at z ≈ 103 [21, 22]. The
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CMB was studied in the recent Planck survey [3] following earlier measurements

by COBE [23] and WMAP [6, 7]. From the Integrated Sachs-Wolfe (ISW) plateau

of the CMB, [24], is determined the value of the dark energy density parameter

and its equation of state parameter, [25]. With respect to the potentials, Φ and

Ψ in the Newtonian gauge, of chapter 5, Amendola et al., in [26], state that Φ+Ψ

could be measured using the ISW effect and from weak lensing while Ψ might

be measured via measurements of the velocities of galaxies. The acoustic peaks

of the CMB give us information about the various density parameters. From the

first acoustic peak, it is found that the Universe is almost spatially flat, which we

assume in this thesis. The second acoustic peak gives constraints on the baryon

density and gives a value to the baryon density parameter while the third acoustic

peak gives a value for the total matter density parameter.

1.3.3 The vacuum era

This is the era in which we now find ourselves. It commenced at around z = 9,

109 years after the Big Bang, when stars and galaxies were formed as were the

heavier elements via supernovae. In this epoch the expansion of the Universe

began to accelerate [27–29].

1.4 Modifying gravity with F (R) gravity models

It is mainly because of the cosmological constant problem (see subsection 1.4.1)

but also because observations do not confirm that the effective, or dark energy,

equation of state parameter is necessarily equal to −1, that F (R) gravity models

have been studied. It is shown that by exchanging R for F (R) in the gravita-

tional action then, without resorting to any vacuum energy whatsoever, the late,

accelerated expansion of the Universe can be accounted for. F (R) gravity models

yield an effective energy which replaces the phenomenon known as dark energy.
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For a review of F (R) gravity, see [30–34].

In modified F (R) gravity, we obtain the equivalent of the Einstein equations

by replacing R in (1.47) with F (R) in the gravitation action. Varying the total

action with respect to gµν gives

gµν�FR(R)−∇µ∇νFR(R) +RµνFR(R)− 1

2
gµνF (R) = 8πGTµν , (1.66)

where FR(R) denotes dF (R)/dR and Tµν contains only contributions from ra-

diation and matter. These are the field equations for F (R) and are the mod-

ified gravity equivalent to the Einstein equations. It can be seen that putting

F (R) = R reduces (1.66) to the Einstein equations, (1.31).

Equation (1.66) can be derived as follows. Using the notation of subsection

1.2.7,

SG =
1

2κ

∫
d4x
√
−g F (R), (1.67)

⇒ δSG =
1

2κ

∫
d4x

[
F (R)δ

√
−g +

√
−g δF (R)

]
(1.68)

=
1

2κ

∫
d4x
√
−g

[
−1

2
gµνF (R)δgµν + FR(R)δ (gµνRµν)

]
(1.69)

=
1

2κ

∫
d4x
√
−g

[
−1

2
gµνF (R)δgµν + FR(R)Rµνδg

µν + FR(R)gµνδRµν

]
,

(1.70)

using (1.54) and (1.15). The right hand term of (1.70) is

1

2κ

∫
d4x
√
−g FR(R)gµνδRµν =

1

2κ

∫
d4x
√
−g FR(R)∇σ

[
gµνδΓσµν − gµσδΓλλµ

]
=

1

2κ

∫
d4x
√
−g FR(R) [gµν�δg

µν −∇µ∇νδg
µν ]

=
1

2κ

∫
d4x
√
−g [gµν�FR(R)−∇µ∇νFR(R)] δgµν ,

(1.71)



40 Chapter 1. Introduction to Gravitational Theories and Cosmology

using (1.58) and after some manipulation involving integration by parts and em-

ploying Stoke’s Theorem [35, 36]. Thus,

δSG =
1

2κ

∫
d4x
√
−g

[
−1

2
gµνF (R) +RµνFR(R) + gµν�FR(R)−∇µ∇νFR(R)

]
δgµν

(1.72)

from which, using (1.63), (1.66) follows.

Taking the 00 component of (1.66) gives

−�FR(R)− d2FR(R)

dt2
+R00FR(R) +

1

2
F (R) = 8πGT00. (1.73)

Now, for the FRW metric of subsection 1.2.4, � = −∂2
0 − 3H∂0, as there is no

spatial dependence. Thus,

3H
d

dt
FR(R)− 3

(
H2 + Ḣ

)
FR(R) +

1

2
F (R) = 8πG (ρr + ρm) ,

(1.74)

⇐⇒ −3HṘFRR(R) + 3
(
H2 + Ḣ

)
FR(R)− 1

2
F (R) = −8πG (ρr + ρm) ,

(1.75)

where FRR(R) = d2F (R)/dR2. Taking the trace of (1.66), gives

3�FR(R) +RFR(R)− 2F (R) = 8πGT

= 8πG (−ρ+ 3P ) , (1.76)

in which, of course, the only pressure term on the right hand side is due to

radiation. Observe that (1.75) is a second order differential equation in F (R)

while (1.76) is third order. When we come to solving such equations we shall

generally solve (1.75) which will be loosely referred to as the field equation.

1.4.1 A special case

If we put F (R) = R− 2Λ, where Λ is some constant, into (1.66) we have

Rµν −
1

2
gµνR + Λgµν = 8πGTµν . (1.77)
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It is noticed that Einstein could have had these as his original equations in place

of (1.19) because the covariant derivative of the left hand side is zero just as it is

for the left hand side of (1.19).

If we subtract Λgµν from both sides and absorb the term into the energy-

momentum tensor, comparing the new equation with (1.19) would suggest that

Λ could be thought of as contributing to the density of the vacuum, i.e., Λ =

8πGρvac. That being the case, substituting F (R) = R−2Λ into the field equation,

(1.75) gives 3H2 = 8πG (ρr + ρm + ρvac), the Friedmann equation. But there is a

problem with this.

At late time when the effects of radiation and matter may be considered to

be negligible, H = ȧ/a '
√

8πGρvac/3 , which is constant. Solution of this

yields a solution for a as an exponential function of time with, ä = aH2; i.e., an

accelerating, expanding Universe. If we equate 8πGρvac with 3H2
0 Ωvac ≈ 2.1H2

0 ,

we find that ρvac = 5 × 10−47 GeV4. The problem is that, if we consider all the

energy available in the vacuum, it is of the order of 10120 times this [37–39] so

why is only a small faction of the available energy being used to accelerate the

expansion? See [40–42] for the history of this. This is a reason why do not accept

any vacuum energy in the energy-momentum tensor when we modify gravity.

This is not to decry attempts to come to terms with this cosmological problem

[43].

Historically, Λ, originally denoted λ, was introduced into the Einstein equations

[44] to solve a problem perceived by Lemâıtre that without it the Universe would

expand while, at the time (1916-1919), Einstein thought that the Universe was

static. It was abandoned, however, when Hubble discovered, in 1929, that the

Universe was expanding. Today, we still make use of Λ and, when we do, we term

it the cosmological constant. The problem referred to in the previous paragraph

is termed the cosmological constant problem. We term F (R) = R − 2Λ ΛCDM,

which is based on GR, with Λ 6= 0.
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1.4.2 A vacuum solution

It is noticed that when all the energy content of the energy-momentum tensor

has run out, at the end of the vacuum era, (1.33) gives R = 0. This, of course,

assumes that there is no residual vacuum energy, then. It is desired that this,

too, should be a solution of (1.76). If there is a time independent solution,

then we have RFR(R) − 2F (R) = 0 and so F (0) = 0. It is also possible that

RFR(R) − 2F (R) = 0 has an attractor solution R > 0. This is termed the de

Sitter solution [45, 46]. There could, instead, be a time-dependent solution which

would yield oscillations [47]. See subsection 3.2.1.2 for an example of this.

1.4.3 A modified expression for the Hubble parameter

and the effective equation of state

It is clear by comparing (1.75) with (1.77) that modifying gravity will produce

a term in the expression for H2 which might be taken to be a form of energy

missing from the energy-momentum tensor. So, rather than using the term,

ρvac, which suggests it represents the vacuum, let us term it an effective energy

density, ρeff. We can assume it to have the properties of a perfect fluid with

pressure, Peff, and equation of state parameter, weff, such that Peff = weffρeff and

ρ̇eff = −3H (1 + weff) ρeff. In allusion to the earlier expression we had for H2,

namely, 3H2 = 8πG (ρr + ρm + ρvac) let

H2 =
8πG

3
(ρr + ρm + ρeff) , (1.78)

⇐⇒ ρcrit = ρr + ρm + ρeff. (1.79)

where 8πGρcrit = 3H2. Define also the density parameters for radiation and

matter by Ωr = ρr/ρcrit and Ωm = ρm/ρcrit, respectively, and replace ρeff/ρcrit by

Ωeff, and we have

1 = Ωr + Ωm + Ωeff. (1.80)
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We define Ωeff from (1.80) and it equals 8πGρeff/ (3H2). We know from subsec-

tion 1.2.5 that ρr = ρr,0a
−4 and ρm = ρm,0a

−3, where ρr,0 and ρm,0 are today’s

values of ρr and ρm, respectively, because we define today by putting a = 1. This

leads us to

H2 =
8πG

3

(
ρr,0a

−4 + ρm,0a
−3 + ρeff

)
(1.81)

= H2
0

(
Ωr,0a

−4 + Ωm,0a
−3
)

+
8πG

3
ρeff, (1.82)

where H0 is today’s value of the Hubble parameter, termed the Hubble constant.

In this thesis, rather than taking time to be our universal parameter, we use

N = log a, which is dimensionless. If we denote differentiation with respect to N

by ′, then d/dt = Hd/dN so that ġ = H g ′, for generic function g(t). Then

ρ̇eff = −3H (1 + weff) ρeff (1.83)

⇒ weff = −1− ρ′eff

3ρeff

(1.84)

from which follows

weffΩeff = −1− 2H ′

3H
− H2

0e
−4NΩr,0

3H2
(1.85)

≈ −1− 2H ′

3H
, in the matter and vacuum eras. (1.86)

In F (R) models, it is a fact that weff decreases very slowly from being −1 at the

start of the radiation era and continues to become more negative into the matter

era. This is proved in Chapter 4. We say that, at early times, weff lies below the

phantom divide so that weff < −1 for much of its history and until recent times

[48–50].

1.4.4 Dark energy

Dark energy [37, 51–53] is the name given to what might be vacuum energy or

the effective energy derived from the geometrical nature of modifying gravity.
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It was mooted, in 1998, after the discovery that the Universe’s expansion was

accelerating [40, 54, 55]. Without dark energy [56], the expansion would slow

down and eventually come to a halt as matter runs out. Dark energy is defined

to be the fluid which causes the expansion of the Universe to accelerate. Theories

suggest that it was dark energy which was responsible for the initial inflation

of the Universe [12] but we are concerned with what happened after inflation

and since the beginning of the radiation era. It has been known for a long time

that the equation of state parameter for dark energy, which we dub, weff, is close

to −1 suggesting that ρeff, if it varies, varies slowly and eventually becomes the

dominant energy in the Universe as the matter density, being proportional to a−3,

continues to decrease [57].

Possible ways of accounting for dark energy are contained in [37, 52, 58–63].

In this thesis the F (R) gravity option has been studied but there are two other

main contenders.

1.4.4.1 The cosmological constant

This is a strong contender to explain the accelerated expansion of the Universe as

even the latest measurements [3, 17] do not rule it out. The measurements are not

definitive in making the equation of state parameter tightly constrained around

−1 but have wvac,0 = −1.04+0.72
−0.69 at the 95% significance level and dwvac,0/da <

1.32, at the same level when pure ΛCDM would give dwvac,0/da = 0.

There is, however, the cosmological constant problem to worry about as men-

tioned in subsection 1.4.1.
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1.4.4.2 Quintessence

Briefly, in this theory, dark energy is modelled by a slow-rolling scalar field φ

coupled to potential V (φ) [64–67]. The equation of state parameter is given by

1 + wvac =
φ̇2

φ̇2/2 + V (φ)
. (1.87)

Initially, at high z, φ̇ ∼ 0, because we have ΛCDM. As time progresses, φ̇2

increases and, providing V (φ) > 0, so does 1 + wvac, that is 1 + wvac > 0, for

all time. Some quintessence models have a phantom potential, V (φ) < 0, which

must decrease such that V (φ) < −φ̇2/2. In this case, 1+wvac < 0 for all time. So

one feature of quintessence models is that wvac remains firmly on one side of the

phantom divide. This is unlike the case for F (R) models for which the effective

equivalent to wvac is less than −1 before the present day [68].

1.4.4.3 Effective dark energy

If we let F (R) = R+ f(R), substitute it into equation (1.66) and rearrange it so

that it resembles the form of (1.65), where the left hand sides of both equations

agree, we could say that F (R) gravity creates a fluid; effective dark energy with

density ρeff. It also has equation of state parameter, weff, and density parameter,

Ωeff as have been mentioned at the beginning of this subsection. One aspect of

effective dark energy is that, for models which tend to ΛCDM as R → ∞, weff

starts from being −1, decreases into the phantom zone and continues to do so

until a local minimum is reached when it returns to be closer to −1 today, [48, 69].

1.4.5 The modified gravity particle

Associated with F (R) gravity is a massive particle dubbed the scalaron [70] which

has mass M defined by

M2 =
FR(R)−RFRR(R)

3FRR(R)
. (1.88)
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Owing to the various constraints on F (R), this is often approximated to M2 =

1/ [3FRR(R)]. Generally, F (R) does not deviate greatly from ΛCDM, for which

F (R) = R− 2Λ, so the mass of the scalaron is generally large. For models where

the deviation from ΛCDM increases with time, then the mass of the scalaron

decreases with time.

Where there are oscillations of the weak field potentials (Chapter 5), the fre-

quency of oscillation is shown to be proportional to 1/M at high z, in the early

stages of the matter era, which increases as z increases backwards in time.

1.4.6 The coincidence problem

This is simply the question as to why is Ωeff,0 ≈ 0.7 of the same order of magnitude

as Ωm. If we look at a graph of Ω′eff against N , Figure 1.1, we see that Ω′eff is

close to zero for much of the history and future, so why does “now”, i.e., a = 1,

N = 0, occur when Ω′eff is close to its maximum?
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Figure 1.1: The coincidence problem. (a) Evolution of the matter and effective density

parameters. (b) Ω′eff against N . The local maximum in Ω′eff occurs at around z = 0.3.
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1.4.7 The growth of matter and perturbations

In Chapter 3, subsection 3.2.1.3, the standard matter perturbation equation is

solved numerically for the various models used in that chapter. It yields the time-

dependent parameter, γ, [56, 71–75] which indicates the expansion growth history

of matter. γ is termed the matter growth index and is very sensitive to models in

that different models representing the same expansion history will yield different

values of γ at any given stage in the history of the Universe. This is illustrated

especially in Figure 2.6 in which the models illustrated share the same ΛCDM

history. The matter growth indices for F (R) models show features which are

not seen in the matter growth index for ΛCDM. How the ΛCDM matter growth

index evolves can be see in Figure 3.9(b). Ascertaining the value of γ0 would be

evidence in helping decide whether or not ΛCDM is or is not, realistically, the

current theory of gravity.

In Chapter 5, we consider how non-relativistic matter sources perturb the FRW

metric in the Jordan frame, the frame with FRW metric gµν , to produce matter

perturbation potentials. Algebraic approximations, appropriate for all time up

to the present, to the defining equations for these potentials are found and com-

pared with numerical solutions to the same equations. Providing the co-moving

wavenumber, k, is large enough in the sub-horizon regime, we shall see that there

is good agreement.

1.4.8 Constraints on F (R)

Constraints on the parameters of F (R) models are explained in [76–79] as follows:

1. FR(R) > 0, otherwise there would be ghosts, that is, particles with negative

kinetic energy, [80–83].

2. FRR(R) > 0, otherwise there would be generic instabilities, and the scalaron
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mass would be negative or zero, [84–86].

If it is desired to have F (R)→ R− 2Λ, as R→∞ then we must have [76]:

3. FR(R) < 1.

4. FR(R)→ 1 as R→∞.

Then there are local gravity constraints, discussed in [33], of which the severest

is the Solar System constraint. Local gravity constraints are derived from the

effective Newtonian gravitation constant which is derived under a weak field ap-

proximation by considering a spherical mass of constant density, ρ, surrounded by

matter of very small average density, effectively zero. As shown in [33, 49], using

linear perturbation theory in a Minkowskian background with a perturbation hµν

such that F perturbs to F + δF , FR perturbs to FR + δFR, etc, this gives for the

effective Newtonian gravitation constant

Geff =
G

FR(R)

(
1 +

e−Ml

3

)
(1.89)

where l is the scale of the experiment and M is the scalaron mass as defined in

(1.88), which can be approximated by M2 ≈ 1/ (3FRR(R)) when FR(R) ≈ 1 and

RFRR(R) � 1, which will be true in the high curvature regimes. Ml � 1 (see

[49]) which translates in [87] to

m � ρ

ρ0

(
l

H−1
0

)2

(1.90)

where m = RFRR(R)/FR(R) ≈ RFRR(R).

For the Solar System, the scale of the experiment is 1AU = 1.5 × 1013 cm,

ρ ∼ 10−23 g/cm3 and (1.90) gives m � 10−23. Using R = 8πGρ, this density

corresponds to R ∼ 106H2
0 . Weaker constraints come from the Shapiro time-

delay effect and laboratory, Cavendish-type experiments to establish the value

of G. In the Shapiro case, l ∼ 7 × 1010 cm and ρ ∼ 10−15 g/cm3 which give

m � 10−20 and R ∼ 1014H2
0 . In Cavendish-type experiments, l ∼ 10−2 cm and

ρ ∼ 10−12 g/cm3 to give m� 10−43 and R ∼ 1017H2
0 .
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To see which is of these constraints is the strongest, we model f(R) as

f(R) = −2Λ + µH2
0

(
R

H2
0

)−n
(1.91)

where n is very large and positive because, at these values of R, F (R) very closely

approximates to ΛCDM. Keeping n constant, in each of the three cases, let us

see what constraint the condition on m places on µ.

The Solar System constraint, for which m� 10−23, gives n (n+ 1)µ� 106n−17.

The Shapiro case gives n (n+ 1)µ � 1014n−6 while the Cavendish case gives

n (n+ 1)µ � 1017n−26. Thus, providing, n > 9/11, the tightest constraint put

upon µ is from the Solar System constraint.

All viable F (R) models that tend to standard Einstein Gravity should auto-

matically, by their construction, satisfy constraints 1. to 4. Some F (R) models

need only satisfy constraints 1. and 2. but all must suffer the application of the

local gravity constraint which will constrain the model’s parameters.

1.4.9 Conditions for an accelerating Universe

From (1.46), the expansion of the Universe continues to accelerate provided ρ +

3P < 0. Ignoring radiation, this gives us in F (R) gravity, 3weffΩeff < −1. This

means, from Useful Expressions on page 24, that R > 6H2. Thus any solution

which has R < 6H2 or R oscillating and going below 6H2, as with the example

of Figure 3.8, represents a more complicated Universe than one in which the rate

of expansion is monotonic.

1.4.10 Probing the Growth of Large Scale Structure

Despite the Universe being being isotropic on very large scales, perturbations,

which owe their origin to times before recombination (section 1.3.2), caused mat-

ter, after recombination, to clump into galaxies and clusters of galaxies. Thereby
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also formed voids, to give the structure we see today from surveys such as the

Two Degree Field Galaxy Redshift Survey (2dfGRS) [88] and the Sloan Digital

Sky Survey (SDSS) [89]. Measurements from these surveys provide tests for the

existence of effective dark energy. These and other surveys probe at redshifts

lower, often considerably lower, than that at which the CMB was formed. This is

useful because effective dark energy makes its effects known during the vacuum

and later matter eras.

Large scale structures (LSS) consist mainly of dark matter and observational

probes consist of weak lensing surveys, cluster counts and measurements of baryon

acoustic oscillations (BAO). The results are compared with numerical simulations

for various models of effective dark energy. Ongoing surveys include SDSS-III

[90] and BOSS (Baryon-Oscillation Spectroscopic Survey) [91]. BOSS will supply

stand-alone constraints on the properties of effective dark energy, Quasi-Stellar

Objects (QSO),H(z) and provide insights into the matter content of the Universe.

BOSS operates at two ranges of redshift. First, 0.2 < z < 0.8 on 1.5 million

luminous red galaxies and, secondly, 2.3 < z < 2.8 on 160, 000 QSOs at precisions

in excess of 1.5%.

For any large scale structure being probed, using the acoustic peak as a standard

ruler, two ratios are measured which give the angular diameter distance, dA(z)

[52], and H(z), independently of each other. Also can be found, by observing the

power spectrum of the structure, is the wavenumber at equality, keq, given by

keq = H0

√
2Ωm,0

aeq

(1.92)

where aeq is the scale factor at equality. In these cases, simple scenarios can

be tested for dark energy, e.g., the CDM model, in which Ωm,0 ∼ 1.0, or the

ΛCDM model, for which, Ωm,0 ∼ 0.3, with the result that dark energy models are

favoured above CDM models.
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Ongoing is also the Dark Energy Survey (DES)1 which will combine probes of

Type 1a supernovae, BAO, Galaxy Clusters and Weak Lensing. For the future

are planned the EUCLID satellite2, which will, from 2020, look at the distance –

redshift relationship and the evolution of cosmic structures up to z ∼ 2, and the

wide aperture Large Synoptic Survey Telescope (LSST)3 in Chile which, from

2022, will map over a period of ten years the sky and the Galaxy and detect

transient events.

1http://www.darkenergysurvey.org
2http://sci.esa.int/euclid
3http://www.lsst.org/lsst
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Chapter 2

Gravitation Models Which

Mimic ΛCDM

2.1 Introduction

The standard flat ΛCDM model has F (R) = R− 2Λ, as discussed in Chapter 1.

All F (R) models must solve the underlying field equation, (1.74). If 3Ḣ is replaced

by R/2− 6H2 and the dependence of ρr and ρm on the expansion scale factor, a,

introduced, using (1.78) and (1.82), equation (1.74) becomes

−3H
d

dt
FR(R) +

(
R

2
− 3H2

)
FR(R)− 1

2
F (R) = −3H2

0

(
Ωr,0

a4
+

Ωm,0

a3

)
.

(2.1)

Generally, when solving this equation for a specific model, F (R), we re-write it as

a relationship between H(N) and N = log a, eliminating R via R = 12H2+6HH ′.

When solving for those F (R) with a given ΛCDM history, we can simplify it to

give a relationship between F (R) and R, as in (2.6).

If F (R) = R − 2Λ were inserted into (2.1), the following expression for H2

53
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would be obtained:

H2 =
H2

0 Ωr,0

a4
+
H2

0 Ωm,0

a3
+

Λ

3
, (2.2)

for which, using R = 12H2 + 6H H ′,

R =
3H2

0 Ωm,0

a3
+ 4Λ. (2.3)

Today, we have Ωr,0 +Ωm,0 +Ωeff,0 = 1 from which, using (2.2), we find H2
0 Ωeff,0 =

Λ/3.

Models which do not have a ΛCDM history have a Hubble parameter given by

H2 =
H2

0 Ωr,0

a4
+
H2

0 Ωm,0

a3
+H2

0 Ωeff,0 χeff(a), (2.4)

where χeff(a) characterises how ρeff(a) scales with a such that χeff(1) = 1.

In this chapter, we aim to find algebraic forms for F (R) for all models with a

ΛCDM history such that (2.2) holds. Clearly, F (R) = R− 2Λ is one solution but

we show it is not unique. Solving the field equation, algebraically, through all

eras, viz, radiation, matter and vacuum, would seem to be impossible but, if we

restrict ourselves to the later two eras, then an algebraic solution is attainable,

as is shown below.

There has been some discussion, for example in [92], as to whether or not

solutions other than F (R) = R − 2Λ exist in all eras, with the result that there

are. Fay et al., in [92], used the concept of critical points to suggest simple,

approximating expressions for F (R). It has even been suggested, for example

in [93], that there is no real algebraic solution other than F (R) = R − 2Λ but

this is not true. The mistake that Dunsby et al. make in [93] is to choose the

wrong variable with which to express the series solution for F (R). The expression

they find is divergent in terms of this variable. Further, they say that at values

of R ≥ 4Λ, the series makes F (R) complex so the only option is to choose the

constants of integration to be zero leaving the particular integral, F (R) = R−2Λ,

as the only possibility.
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Other than the standard F (R) = R−2Λ solution, the solutions we find are infi-

nite power series which fall into two categories. First, we solve the field equation

when R > 4Λ. This solution is highly convergent at large R but the convergence

is very slow as R = 4Λ is approached. Secondly, we find a power series solution

for which convergence does include R = 4Λ but the convergence only extends as

far as R = 5Λ. That there is some overlap between these two solutions means

that we must reconcile them with regard to the constants of integration and this

is done next.

Finally, we investigate algebraic solutions to the field equation in the radiation

era, that is largeR. Here, we find that, asR increases, F (R) may be approximated

by R or by R4/3, depending on the parameter choice.

In this chapter, Ωm,0, will be be taken to be 0.3. If we ignore radiation, this

means that Ωeff,0 = 0.7 and R0 = 9.3H2
0 .

2.2 Finding all models which mimic ΛCDM

Our goal is to establish all functions, F (R), which lead to the same expansion

history as F (R) = R − 2Λ. We demand that the Universe evolves according to

H2 = Ωr,0H
2
0e
−4N +Ωm,0H

2
0e
−3N +Λ/3, i.e., exactly as for ΛCDM. For any F (R),

R = 12H2 + 6HH ′ and R′ = −3(R− 4Λ) are determined uniquely once the scale

factor is fixed. This means that equation (2.1) can be written as:

9H2 (R− 4Λ)FRR(R)−
(

3H2 − R

2

)
FR(R)− 1

2
F (R) = −3H2 + Λ.(2.5)

In the matter and vacuum eras, we can make the approximation that R ≈ 3H2 +

3Λ, which allows us to write (2.5) as a differential equation in R, i.e.

3 (R− 3Λ) (R− 4Λ)FRR(R)−
(
R

2
− 3Λ

)
FR(R)− 1

2
F (R) = −R + 4Λ.

(2.6)
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This has an obvious particular integral, F (R) = R− 2Λ, which will be utilised in

the series solutions, below.

2.2.1 Algebraic solution for R > 4Λ

Define the dimensionless parameter p = Λ/ (R− 3Λ) = Λ/ (3H2) = H2
0 Ωeff,0/H

2.

Given in terms of N = log a, it is p = Ωeff,0/
(
Ωm,0e

−3N + Ωeff,0

)
. It obviously

takes finite positive values in the range 0 < p < 1. To start with we work in the

matter era, i.e., we take z < 1000 which means, when we take Ωm,0 = 0.3, that

R < 4× 108Λ ≈ 109H2
0 , N > −6.9 and p > 2× 10−9. Figure 2.1(a) shows how p

varies with N . We shall return to earlier times in section 2.3.

-4 -3 -2 -1 1 2
N

0.2

0.4

0.6

0.8

1.0

p

(a)

0.5 1.0 1.5 2.0
N

0.2

0.4

0.6

0.8

1.0

q

(b)

Figure 2.1: (a) p against N = log a and (b) q against N . q is defined in subsec-

tion 2.2.2. Axes cross at the current time when p = Ωeff,0 = 0.7 and when q ≈ 0.43.

This substitution for R in terms of p converts the homogeneous part of equation

(2.6) into

−6p2 (1− p)Fpp + p (15p− 13)Fp + F = 0. (2.7)

Looking for solutions of the form

F = pn
∑
i=0

aip
i, (2.8)
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where the coefficients ai are constant, and putting this into (2.7) gives the solu-

tions

F = C pn1
[
α0 + α1p+ α2p

2 + . . .
]

+D p−n2
[
β0 + β1p+ β2p

2 + . . .
]
,(2.9)

in which C, D are constants of integration, and n1 =
(
−7 +

√
73
)
/12 ≈ 0.129

and n2 =
(
7 +
√

73
)
/12 ≈ 1.295. n1 and n2 are found, using the Frobenius

Method, by forming the indicial equation, 6n2 + 7n − 1 = 0. This has roots n1

and −n2.

The coefficients αi and βi satisfy

(α0, β0) = (1, 1) , (2.10)

(αi, βi) =

[
3 [n+ i− 1] [2 (n+ i) + 1]

6 (n+ i)2 + 7 (n+ i)− 1

]
(αi−1, βi−1), (2.11)

=

[
1− 2 [5 (n+ i) + 1]

6 (n+ i)2 + 7 (n+ i)− 1

]
(αi−1, βi−1), (2.12)

for i ≥ 1 and where n = n1 for the αi and n = −n2 for the βi. Table 2.1 gives

the first six values of αi and βi.

i αi βi

0 1 1

1 0.0865 0.625

2 0.0375 −0.193

3 0.0218 −0.0635

4 0.0146 −0.0336

5 0.0105 −0.0214

Table 2.1: Values of αi and βi for solution (2.9), to 3 significant figures.

The complete solution of equation (2.6) is thus

F (R) = R− 2Λ + CΛf(R) +DΛg(R) (2.13)

where f(R) =

(
R− 3Λ

Λ

)−n1 ∞∑
i=0

αi

(
R− 3Λ

Λ

)−i
(2.14)

and g(R) =

(
R− 3Λ

Λ

)n2 ∞∑
i=0

βi

(
R− 3Λ

Λ

)−i
(2.15)
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It can seen from (2.12) that, as i→∞, |αn+1/αi| → 1 and |βn+1/βi| → 1 so that

convergence of the series is only guaranteed when |p| < 1, that is, R > 4Λ. Only

when R is close to 4Λ is a large number of terms in (2.14) and (2.15) required

but, for R� 4Λ, a very good approximation is

F (R) = R− 2Λ + CΛ

(
R− 3Λ

Λ

)−n1

+DΛ

(
R− 3Λ

Λ

)n2

(2.16)

' R

[
1 +D

(
R

Λ

)n2−1
]
, (2.17)

for sufficiently large R.

Solutions (2.13) for typical values of C and D are shown in Figure 2.2. It is

clear that only when D = 0 does the solution tend to R − 2Λ, the standard

Einstein Gravity solution, as R increases.

2.2.2 Algebraic solution which includes R = 4Λ

This is achieved by setting q = (R− 4Λ) /Λ. How q varies with N is shown in

Figure 2.1(b), above. Equation (2.6), in terms of q, is

−6q (1 + q)Fqq − (2− q)Fq + F = 2q. (2.18)

The homogeneous form of (2.6) has indicial equation with roots n = 2/3 and

n = 0 so that (2.6) has series solution

F (R) = Λ

[
q + 2 + C ′

∑
i=0

γiq
i+2/3 +D′

∑
i=0

δiq
i

]
. (2.19)

The first six values of γi and δi are listed in Table 2.2 and are such that their

sums to infinity are convergent. They satisfy

(γ0, δ0) = (1, 1) (2.20)

(γi, δi) =

(
−6i2 − 11i+ 2

2i (3i+ 2)
γi−1,−

6i2 − 19i+ 12

2i (3i− 2)
δi−1

)
, (2.21)

for i ≥ 1. In the form of (2.11) they are

(γi, δi) = −

[
6 (n+ i)2 − 19 (n+ i) + 12

2 (n+ i) (3 (n+ i)− 2)

]
(γi−1, δi−1) , (2.22)
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for i ≥ 1 where n = 2/3 for the γi and n = 0 for the δi.

i γi δi

0 1 1

1 3/10 1/2

2 −0.0375 0.0625

3 0.01307 −0.01339

4 −0.00630 0.00536

5 0.00360 −0.00276

Table 2.2: Values of γi and δi for solution (2.19), to 3 significant figures.

In terms of R, (2.19) is

F (R) = R− 2Λ + Λ

[
C ′
∑
i=0

γi

(
R− 4Λ

Λ

)i+2/3

+D′
∑
i=0

δi

(
R− 4Λ

Λ

)i]
.

(2.23)

Convergence of (2.19) is valid for |q| ≤ 1, that is 4Λ ≤ R ≤ 5Λ and F (4Λ) =

(2 +D′) Λ. Note that if D′ = 0, F (4Λ) = 2Λ, the same as the late time de Sitter

limit for standard ΛCDM. If C ′ 6= 0 then FR(4Λ) is unbounded and, as R→ 4Λ,

FR(R) takes the sign of C ′. However, if C ′ = 0, FR(R) → 1 as R → 4Λ, just

as it does in standard cosmology. Two curves for which C ′ = 0 are shown in

Figure 2.4.

2.2.3 Matching conditions for the two expressions for F (R)

The expression for F (R) of section 2.2.1 must be the same as the expression for

F (R) from subsection 2.2.2 where they have common values of R, i.e., 4Λ < R ≤

5Λ. In terms of q 6= 0, where p = 1/ (1 + q), they are
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F (R) = Λ

[
q + 2 + C

∑
i=0

αi (1 + q)−(i+n1) +D
∑
i=0

βi (1 + q)−(i−n2)

]
,

(2.24)

= Λ

[
q + 2 + C ′

∑
i=0

γiq
i+2/3 +D′

∑
i=0

δiq
i

]
, (2.25)

which are the same when 0 < q ≤ 1. Note that (2.24) does not have a Maclaurin

expansion in terms of q.

Numerically, C ′ and D′ are linearly dependent on C and D according to the

approximate relations,

C ′ = −0.774 C + 0.970 D, (2.26)

D′ = 1.256 C + 1.187 D. (2.27)

This correspondence between coefficients C and D and coefficients C ′ and D′ was

obtained by equating (2.24) with (2.25), and their derivatives with respect to q,

at some value of q between 0 and 1. In fact, the parameter choice we made was

q = 1, as convergence of the series is fastest the further one is away from R = 4Λ.

Figure 2.2 shows graphs of F (R)/ (R− 2Λ) against p for various values of C

and D and with the corresponding values of C ′ and D′ as defined by (2.26) and

(2.27) listed in Table 2.3.

To demonstrate the overlap between the solutions of (2.13) and (2.23), curves

2 and 3 of Figure 2.2 and their counterparts as defined from (2.23), using the

relations, (2.26) and (2.27), are shown in Figure 2.3. Also shown is how quickly

each curve diverges from its counterpart.

Figure 2.4 shows two examples with C ′ = 0, as has already been mentioned.

From (2.26) we see that, in this case, D 6= 0, for any given non-zero C, so that

the F (R) is bound to diverge from R− 2Λ at large values of R, as p approaches

zero. From (2.23), the limit of F (R) as R→ 4Λ is (2 +D′) Λ where D′ = 2.23C.
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Figure 2.2: F (R)/ (R− 2Λ) against p = Λ/ (R− 3Λ). (a) shows seven numbered

curves for values of C and D. In (a), axes cross at the current time, “today”, when

p = 0.7. In (b), axes cross at some time in the future. (b) shows detail very close to

p = 1 for curves 2, 4 and 6 to indicate their gradients as p → 1. Values of the pairs

(C,D) for each of the seven curves are: 1 (dot-dashed, maroon), (0.1, 0.1); 2 (dashed,

dark green), (−0.1, 0.1); 3 (continuous, dark blue), (0.1, 0); 4 (continuous, red), (0, 0),

standard Einstein Gravity; 5 (continuous, royal blue), (−0.1, 0); 6 (dashed, green),

(0.1,−0.1); 7 (dot-dashed, pink), (−0.1,−0.1).
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Curve No. C D C ′ D′ FR(R) as p→ 1

1 0.1 0.1 0.0196 0.244 +∞

2 −0.1 0.1 0.174 −0.00691 +∞

3 0.1 0 −0.0773 0.126 −∞

4 0 0 0 0 1

5 −0.1 0 0.0773 −0.126 +∞

6 0.1 −0.1 −0.174 0.00691 −∞

7 −0.1 −0.1 −0.0196 −0.244 −∞

Table 2.3: Values of C, D, C ′ and D′ for each of the solution curves in the left hand

pane of Figure 2.2 and the behaviour of FR(R) as R → 4Λ (p → 1). Curve No.4 is

standard Einstein Gravity. The values of C, D, C ′ and D′ chosen are for representative

purposes only.
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Figure 2.3: Two example curves from Figure 2.2 and subsets of their counterparts

as defined from (2.23). (a) shows curve 2 (dashed, dark green) and its counterpart

(continuous, pink) while (b) shows curve 3 (continuous, dark blue) and its counterpart

(dashed, orange). The dotted, black line is at p = 0.5. Each pair of curves has common

points when 4Λ < R ≤ 5Λ which is 0.5 ≤ p < 1. Axes cross at the current time,

p = 0.7.
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Thus, the limits, as p→ 1 of F (R)/ (R− 2Λ) of the two examples of Figure 2.4,

are 1.11 when C ′ = 0 and C = 10−1, and 1.01 when C ′ = 0 and C = 10−2.

C¢
= 0, C = 10-1

C¢
= 0, C = 10-2

0.0 0.2 0.4 0.6 0.8 1.0
p

1.0

1.1

1.2

1.3

FHRL�HR-2LL

(a)

0 2 4 6 8
log10HR-2LL�L

2

4

6

8

10

log10FHRL�L

(b)

Figure 2.4: F (R)/ (R− 2Λ) against p, and log10[F (R)/Λ] against log10 [(R− 2Λ) /Λ]

for two solutions for which C ′ = 0. The straight lines (in red) are the standard Einstein

Gravity curves for comparison. Notice how, the smaller C is, the more the solution

curve “hugs” the standard ΛCDM curve for a longer time before finally veering away

at large R. For both curves, D > 0. Time goes from left to right in (a) and from right

to left in (b). Axes cross at the current time.

From (2.2), the matter density equals the “effective” vacuum density when

H2
0 Ωm,0/a

3 = Λ/3 to give, using (2.3), R = 5Λ. 5Λ thus represents the value of R

at what one might describe as equality between matter and “effective” vacuum

densities, in analogy to equality between radiation and matter densities.

We note that, providing D 6= 0, F (R) deviates significantly from R − 2Λ at

early times in the matter era. At late times, in the vacuum era, the behaviour of

F (R) is governed by the values of both C ′ and D′ and only when D′ = 0 will the

limit of F (R) coincide with the limit of R− 2Λ as R→ 4Λ.



64 Chapter 2. Gravitation Models Which Mimic ΛCDM

2.2.4 Application of constraints to the solutions

Apart from local tests of gravity, which we shall reconsider later, the general

requirements of F (R) are taken to be FR(R) > 0 and FRR(R) ≥ 0 [76, 77]. They

have been discussed in subsection 1.4.8. The two quantities are connected via the

mass, M , of the scalaron, viz

M2 =
FR(R)−RFRR(R)

3FRR(R)
, (2.28)

⇐⇒ FR(R) =
(
3M2 +R

)
FRR(R). (2.29)

Thus, except when M → ∞, FR(R) > 0 ⇐⇒ FRR(R) > 0, and FR(R) <

0 ⇐⇒ FRR(R) < 0. In standard Einstein Gravity, FRR(R) = 0 and M2 →∞.

If M → ∞, FRR(R) = 0 and F (R) is a linear function of R which could be

thought of as rescaled standard Einstein Gravity.

Defining the two variables m and r, as is standard in texts on modified gravity

[49, 52, 77, 87, 92], by m = RFRR(R)/FR(R) and r = −RFR(R)/F (R), it is

noted in [49] that “viable cosmological trajectories are restricted to be in the

range m > 0 and r < 0.”

We shall define R1 to be the smallest value of R at which we shall apply FR(R) >

0 and FRR(R) ≥ 0 to the solution (2.13). Today’s value of R = R0 = 4.4Λ so

we choose R1 ≥ 4.4Λ. R2 is the largest value of R at which we can apply these

criteria. R2 ∼ Req, the curvature at the time of equal matter and radiation.

Generally, we take R2 = 1010Λ.
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2.2.4.1 The condition that FR(R) > 0

FR(R) > 0 gives 1 + CΛfR(R) +DΛgR(R) > 0 which rearranges at R = R2 and

R = R1 = 4.4Λ as

C < − 1

Λf ′(R2)
− gR(R2)

fR(R2)
D, (2.30)

=
1

n1

(
R2

Λ

)n1+1

+
n2

n1

(
R2

Λ

)n1+n2

D, (2.31)

≈ 1.5× 1012 + 1.8× 1015D, (2.32)

and C < − 1

Λf ′(R1)
− gR(R1)

fR(R1)
D, (2.33)

≈ 3.2 + 4.9D. (2.34)

Boundaries for the regions defined in (2.30) and in (2.33) meet at C = 3.2 and

at D = −8.6× 10−4. The boundaries are shown in Figure 2.5 as FR(R2) = 0 and

FR(R1) = 0, respectively.

2.2.4.2 The condition that FRR(R) ≥ 0

FRR(R) ≥ 0 is CΛfRR(R) +DΛgRR(R) ≥ 0 which rearranges to

C ≥ −n2 (n2 − 1)

n1 (n1 + 1)

(
R2

Λ

)n1+n2

D, (2.35)

≈ −4.6× 1014D, (2.36)

and C ≥ −gRR(R1)

fRR(R1)
D, (2.37)

≈ 0.58D, (2.38)

since−gRR(R1)/fRR(R1) has a maximum value of approximately 0.58 at R1 = R0.

The two boundaries of this region are shown in Figure 2.5 as FRR(R1) = 0 and

FRR(R2) = 0.

2.2.4.3 The local gravity constraint

As discussed in subsection 1.4.8, the local gravity constraint implies m � 10−23

[33, 49, 94] at R = Rs ≈ 106Λ, which is well inside the matter era. In terms of the
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scalaron mass, via (2.29), this translates to 3M2
s /Rs � 1023FR(Rs), where Ms is

the value of M at R = Rs. The smalless of FRR(R) and the closeness of FR(R)

to unity mean that the scalaron mass, defined from (2.28), is approximated by

3M2
s = 1/FRR(Rs). Thus, on rearrangement, we have

C =
R2

3M2
s n1 (n1 + 1)

(
Rs

Λ

)n1+1

− n2 (n2 − 1)

n1 (n1 + 1)

(
Rs

Λ

)n1+n2

D, (2.39)

≈ 1.36× 1013Λ

M2
s

− 9.2× 108D, (2.40)

� 4.1× 10−16 − 9.2× 108D. (2.41)

The boundary of the region represented by (2.41) meets the boundary of the

region defined by (2.35) at (D2, C2), where

C2 =
Rs

3M2
s n1 (n1 + 1)

(
Rs

Λ

)n1+1
[

1−
(
Rs

R2

)n2+n1
]−1

, (2.42)

≈ 4.1× 10−16, (2.43)

D2 = − Rs

3M2
s n2 (n2 − 1)

(
Rs

Λ

)−n2+1
[(

R2

Rs

)n2+k1

− 1

]−1

, (2.44)

≈ −8.9× 10−31. (2.45)

The boundary of the region represented by (2.41) meets the boundary of the

region defined by (2.37) at (D0, C0) = (4.4× 10−25, 4.0× 10−26). It is noted that

C2 � {−D2, C0, D0}. The boundaries (2.32), (2.34), (2.36) and (2.38) and the

line (2.39) are shown schematically in Fig. 2.5.

If we require FRR(R) not to be singular as R → 4Λ then we must set C ′ = 0

in equation (2.26). This adds the further constraint C = 1.25D, which is shown

as the short green line in Figure 2.5. This meets the Solar System constraint

boundary (2.39) at (D3, C3) = (4.4× 10−25, 5.5× 10−25).

To see which terms of (2.16) for the expression for F (R) are relevant, with the

above constraints imposed, near equality D ∼ 10−25, R ∼ 1010 Λ give
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Figure 2.5: Schematic diagram showing the constraints from F (R) > 0 and FRR(R) ≥

0 and from local gravity. The axes are labelled 0D and 0C with 0 being the origin.

The solid, diagonal, red line on which lie the points (D0, C0), (D2, C2) and (D3, C3), is

the line represented by (2.39) when Ms takes its smallest value. The allowed region is

thus the unshaded triangular region with the origin as one vertex.

DΛ (R/Λ)n2 ∼ 10−12 Λ. From this we conclude that the range of values of (C,D)

which are compatible with FR(R) > 0, FRR(R) > 0 and the local gravity con-

straint is very restricted to being close to (0, 0). Therefore, it appears that the

only models meeting these criteria are effectively standard Einstein Gravity.

2.2.5 The matter growth index, γ

We investigate what bearing various solutions have on the matter growth index,

γ, as introduced in Chapter 1 and expanded upon in Chapter 3. We define the

matter growth index, γ, by [74]

(Ωm)γ =
d log δm

d log a
(2.46)

=
δ′m
δm

. (2.47)
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where δm, known as the matter density contrast, is defined in terms of perturba-

tions in the matter density as δm = δρm/ρm.

We shall ignore the severe parameter constraints of subsection 2.2.4, for illus-

trative reasons, because to include them we should not be able to differentiate

between them and standard Einstein Gravity. We show it for completeness and

to illustrate how the same a(t) can give very different γ.

We shall use the expression of equation (2.13). Clearly if F (R) is to tend to

standard Einstein Gravity at high R we must let D = 0. Thus, we are dealing

with a one-parameter set of solutions. We choose C = 0, 10−5, 10−4 and 10−3.

The first of these is, of course standard Einstein Gravity. We cannot allow C to

be negative when D = 0 as this would result in FRR(R) being negative for all

values of R greater than some minimum value. The results acquired by numerical

integration are shown against redshift z in Figure 2.6 and the trend as C varies

is seen clearly. At high z, there is ΛCDM, γ ≈ 6/11 = 0.545 while, as z → −1,

γ tends to 2/3 for all models, again, as for ΛCDM. This is discussed further in

Chapter 3. With C as small as in the allowed triangle of Figure 2.5, the result

is indistinguishable from ΛCDM and if, further, we must have C ′ = 0, then the

only solution is C = D = 0, i.e., ΛCDM.

2.3 In the radiation era

It can be seen in Figure 2.2 that curves 1, 2, 6 and 7, curves for which D 6= 0, are

not tending to standard Einstein Gravity at high curvature, that is as p→ 0. It

is thus worth investigating what happens to solutions like these in the radiation

era, which we have ignored so far.

In the radiation era, we may take R ≈ 3H2
0 Ωm,0 e

−3N and H2 ≈ H2
0 Ωr,0 e

−4N ,

i.e., H2 = κR4/3, where κ = Ωr,0/
(
81H2

0 Ω4
m,0

)1/3
. Since H2 � Λ, we may rewrite
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Figure 2.6: Curves of the matter growth index, γ, against z for four examples of

the solution to equation (2.13). The values of C are indicated except when C = 0

when the curve is labelled standard Einstein Gravity. Today’s values of γ for each

curve are as follows: C = 0, γ0 = 0.555; C = 10−5, γ0 = 0.533; C = 10−4, γ0 = 0.475;

C = 10−3, γ0 = 0.430. In all cases, D = 0.

the field equation, (2.5), as

3RFRR −
(

1− R−1/3

6κ

)
FR −

R−4/3

6κ
F + 1 = 0. (2.48)

This has solution F (R) = R and asymptotic solution F (R) = αR4/3, where α

is constant. We see that as R increases without limit, either F (R)/R → 1 or

F (R)/R4/3 → constant. Notice that the matter era solution, (2.16), has n2 =

1.295 which is close to 4/3, so the two solutions match quite nicely.

If we want a power series solution to (2.48), it is helpful to rewrite it in terms

of the scale factor a as

aFaa + 5Fa −
3

2

Ωm,0

Ωr,0

F = −9H2
0 Ωm,0

a4
, (2.49)

where 0 < a� 1.

Equation (2.48) has particular integral F (R) = R while we look for solutions to

the homogeneous form of (2.49) of the form F (R) = an
∑

i=0 ηia
i. The indicial
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equation is n(n − 1) + 5n = 0 giving n = 0 or −4 which leads to the general

solution

F (R) = R + AΛ

(
R

Λ

)4/3∑
i=0

ρi

(
R

Λ

)−i/3
+ (A log a+B) Λ

∑
i=0

σi

(
R

Λ

)−i/3
,

(2.50)

where a = (Ωm,0/Ωeff,0)1/3 (R/Λ)−1/3 and ρi, σi are constants, the first six of

which are given in Table 2.4, and A and B are constants of integration. The

introduction of the log term has been necessitated by the roots of the indicial

equation differing by an integer. See, for example, [95].

i ρi σi

0 −1.09× 10−12 1

1 1.23× 10−9 6.79× 102

2 −1.04× 10−6 1.91× 105

3 1.18× 10−3 3.10× 107

4 1 3.29× 109

5 −1.36× 102 2.48× 1011

Table 2.4: The first six coefficients of equation (2.50). The fact that these coeffi-

cients are becoming numerically larger with increasing i does not matter as each is also

multiplied by (R/Λ)−i/3 where R/Λ is large.

For R/Λ sufficiently large, F (R) = R+AΛρ0 (R/Λ)4/3 is a good approximation.

By sufficiently large, in this context, we mean that R & 1016 Λ which is before

equality, well into the radiation era. The point at which AΛρ0 (R/Λ)4/3 overtakes

R depends on the value of AΛρ0.

Only if A = 0 is the large R solution equal to that of standard Einstein

Gravity, otherwise it is given by F (R) ∼ R4/3. Of course, as we have seen,



2.4. Conclusion 71

the Solar System constraint must make Aρ0 very small; we have seen its coun-

terpart, D, in the matter era has to be of order 10−25 or smaller. We expect

AΛρ0 (R/Λ)4/3 ∼ DΛ (R/Λ)n2 at equality which means that the R4/3 term will

only become dominant when R & 1076 Λ, when z & 1025.

2.4 Conclusion

In this chapter we have shown that there are functions, F (R), which satisfy the

field equation

−3H2R′FRR(R) +

(
R

2
− 3H2

)
FR(R)− 1

2
F (R) = −3H2 + Λ, (2.51)

other than the standard ΛCDM model, F (R) = R−2Λ. These solutions share the

same history as defined by the Hubble parameter, H, where H2 = Ωr,0H
2
0e
−4N +

Ωm,0H
2
0e
−3N + Λ/3 and N = log a. In the matter and vacuum eras, when the

effects of radiation may be neglected, algebraic expressions have been found which

fall into two groups:

I. There is an infinite series solution, expressed as a power series in Λ/ (R− 3Λ),

which is convergent for R > 4Λ. The significance of 4Λ is that it is the lim-

iting, de Sitter, value of R at the end of the vacuum era, when 3H2 = Λ.

II. There is also an infinite series solution, this time expressed as a power series

in (R− 4Λ) /Λ, but which is only convergent in the range 4Λ ≤ R ≤ 5Λ.

Where the convergence ranges of these two groups overlap, i.e., when 4Λ < R ≤

5Λ, the solutions have been matched in terms of their particular constants of

integration showing one set to be a linear combination of the other set. The rela-

tionship between the two sets is given in equations (2.26) and (2.27) with graphical

correspondence between two pairs of examples being shown in Figure 2.3.
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The late time value of the standard Einstein Gravity model is F (4Λ) = 2Λ.

A feature of these more general solutions is that at late times it is possible for

F (4Λ) to equal 2Λ by choosing D′ to be zero. Recall that C ′ and D′ are defined

in (2.19). In no other sense does the general F (R) tend to R − 2Λ because for

FR(R) to tend to a common value of unity, C ′ must be zero, as well, and if both

are zero we have F (R) = R− 2Λ, for all R.

At early times in the matter era, the general F (R) can tend to R − 2Λ which

requires D of (2.13) to be equal to zero. With D not being zero F (R) diverges

away from R − 2Λ as R increases. When R � 4Λ, we find F (R) ∝ Rn2 where

n2 ≈ 1.3.

Then we considered what could happen in the radiation era by solving a sim-

plified field equation applicable when R � Req. Here, we were only concerned

with the leading terms of any series solution but found that either F (R)→ R, as

R increases, or F (R)/R4/3 → constant.

For none of the solutions illustrated in Figures 2.2, 2.3 and 2.4 were local

gravity constraints applied. When they were applied it was seen that the solutions

are extremely close to standard Einstein Gravity; the coefficients C, D, C ′ and

D′ were in the range O(10−16) to O(10−25), or smaller. Further, if there is to

be no singularity in FR(R) as R → 4Λ, then either the solution is standard

Einstein Gravity or solutions must run backwards through time very close to

F (R) = R − 2Λ until well past Rs when they diverge such that F (R) ∝ R4/3 as

R increases further. In this case, C, D, C ′ and D′ are of order 10−25, or smaller.

As an extension of this work, we could specify the history of H in some other

way or specify the history of weff, of Ωeff or of R. Generally these would all be

equivalent to specifying the history of H by use of the following relationships,
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again ignoring the radiation era although this could be included if necessary:

Ωeff = 1− H2
0e
−3NΩm,0

H2
(2.52)

weff = − 3H2 + 2HH ′

3H2 − 3H2
0e
−3NΩm,0

(2.53)

R = 12H2 + 6HH ′ (2.54)

We would then be left with a differential equation for F (N) in terms of N .

Whether or not this is soluble, algebraically, would depend upon circumstances.



74 Chapter 2. Gravitation Models Which Mimic ΛCDM



Chapter 3

Non-ΛCDM Gravitation Models

3.1 Introduction

Currently, there is some doubt as to today’s value of what we term the “effective”

equation of state, weff,0. While the latest results from the Planck Collaboration

[17] do not rule out ΛCDM as a valid model describing the history of the Universe,

they do not confirm weff,0 to be −1. Instead Planck gives a broad range of values

at the 95% level of significance, namely, weff,0 = −1.04+0.72
−0.69. It should be noted

that quintessence models [96] have weff ≥ −1 while F (R) models have weff close

to −1 but always below it, at high redshift, which becomes more negative until

a local minimum is reached when weff increases to cross the phantom boundary,

weff = −1, some time later [49, 68]. With a particular F (R) model it is possible

that 1 + weff,0 is positive, zero or negative [97–100].

In this chapter we look at three models which, while they cleave to ΛCDM at

high curvature in the matter era, veer away from it in the late matter or the early

vacuum eras to give values of weff,0 differerent from −1. The three models chosen

will be:

I. the HSS (Hu-Sawicki-Starobinsky) model, [101]. It is a modified version of

75
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the Hu-Sawicki model described in [97],

II. the AB (Appleby-Battye) model, also described in [101] but first introduced

in [76],

III. a new model, defined in subsection 3.2.1 of this thesis, which we call the Erf

model because it is based on the error function, erf(x).

The AB model is a two-parameter model while the Erf and HSS models, have

three parameters. For all of them, we see how weff,0 and Ωeff,0 vary as their

parameters are varied. Similarly, we see the relation between weff,0 and Ωeff,0 and

between w′eff,0 and weff,0

For each of the Erf, AB and HSS models, two examples are chosen and, for

each, it is seen how f(R), fR(R), weff and Ωeff vary with time. For these six

examples it is arranged that Ωeff,0 = 0.7. This is just a round figure as it is noted

that Planck [17, 102] gives its value as 0.686 ± 0.020 at the 68% significance

level. This result, which is numerically smaller than previously measured [5], was

found using the Doran and Roberts model for dark energy [103] in the context of

ΛCDM. The ΛCDM model is used as a background model because it has proved

to be so successful. If some other model were substituted then the reults of

Planck and previous attempts such as WMAP might change. A quote from the

introductory paper to the Planck results [3]: . . . the Planck data are in remarkable

accord with a flat ΛCDM model; however, there are tantalizing hints of tensions

both internal to the Planck data and with other data sets. While such tensions

are model-dependent, none of the extensions of the ΛCDM cosmology we explored

resolve them. It is to be hoped that more data and further analysis will shed light

on these areas of tension. Along these lines, we expect significant improvement

in data quality and the level of systematic error control, plus the addition of

polarization data, from Planck in the near future.

One of the demands of General Relativity is that F (0) = 0, that is, letting
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F (R) = R + f(R), f(R) → 0 as R → 0. Just because f(0) = 0 does not

necessarily mean that R can become zero, however. This is because there could

be a de Sitter attractor [46, 104], RdS, which prevents this so that R → RdS

as N = log a → ∞. How this happens, whether R gradually decreases to RdS

or whether it oscillates around it with ever-decreasing size, is discussed. The

parameter space of the contour plots that we present in this chapter is generically

divided into two regions; one region where there would be a de Sitter attractor,

RdS ≥ 0, and another where there is a Minkowski solution R = 0, as N → ∞

[105]. In fact, the de Sitter region is split up into two; a region in which R

oscillates on its way to the attractor, we call this the de Sitter oscillating region,

and another region in which there is a gradual movement towards the de Sitter

attractor with no oscillation, we call this the de Sitter non-oscillating region.

What happens in the Minkowski region can be more complicated especially when

R oscillates as, when R is close to zero, at some point, it will go negative. See

subsection 3.2.1.2.

We use the phrase would be in the previous paragraph because the purpose of

this exercise is to see how large we can make |1 + weff,0| without any regard to the

future. If we were restricted to the de Sitter region, we would not see the greater

possibilities of straying into the Minkowski region. We find that for examples in

the Minkowski region, if left unaltered, give future values of weff and Ωeff which

are unacceptable. See, for example, subsection 3.2.1.2.

Note, there are some graphs in this chapter with an axis marked as f ′(R).

This means fR(R) = df(R)/dR and not df(R)/dN . Where some graphs are

plotted against N = log a, today is always represented by N = 0 so that redshift

z = e−N − 1.
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3.2 Three models compared

Three models are compared; The AB and HSS models and also a new function

which we dub the Erf function. The first two have been extensively studied and

are represented in [78, 97, 101].

As has been explained elsewhere in this thesis, all successful models approxi-

mate to ΛCDM at high curvature. This requirement might not be strictly neces-

sary but it tends to be assumed because of the severe constraint imposed by the

Solar system [49] at R = Rs = 106H2
0 . Also, using data from measurements of

supernovae type Ia and from the CMB, m = RFRR(R)/FR(R) [49, 77, 106] must

be less than O(0.1)[49, 87]. In effect, this means that 0 < FRR(R) < 0.1/R which

means that when R is very large, as in the early matter era just past equality,

deviations for F (R) = R + f(R) from ΛCDM, that is F (R) = R − 2Λ, must be

very small indeed. Thus it is assumed that F (R) → R − 2Λ as R → ∞, as a

practical convenience.

We also demand that at the end of time if R → 0 so should F (R). This is to

be compatible with GR, i.e., F (0) = 0.

As always in this thesis, F (R) = R + f(R) so that f(R) denotes deviations of

F (R) from GR. As R →∞, f(R)→ −2Λ∞; Λ∞ being an effective cosmological

constant.

An intrinsic feature of all models is that R0, weff,0 and Ωeff,0 are connected

via R0 = 3H2
0 (1− 3weff,0Ωeff,0), if we neglect the tiny effect of radiation; see

Useful Expressions on page 24. This poses a problem if we wish to have Ωeff,0

equal to a fixed value like 0.7, say, because R0 is constrained to be within a

certain range. Thus, large differences in weff,0 between models are bound to be

impossible. Applying data from Planck, which assumed GR, gives an idea that

R0 lies in the approximate range 7H2
0 < R0 < 12H2

0 .
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3.2.1 The Erf model

This model was derived in an attempt to see if the values of weff,0 it produced

could deviate more from −1 than the values delivered by other models. It is

based on the error function erf(x) which is defined as

erf(x) =
2√
π

∫ x

0

e−t
2

dt. (3.1)

It is an odd function in that erf(−x) = −erf(x) and continuously takes all values

between −1, when x→ −∞, and 1, when x→∞.

For general positive parameter b, the Erf model is

f(R) = −2Λ∞

(
erf [c+ bR/H2

0 ]− erf [c]

1− erf [c]

)
; (3.2)

fR(R) = − 4Λ∞ b√
π H2

0 (1− erf [c])
exp

[
−
(
c+ b

R

H2
0

)2
]
. (3.3)

It is a three-parameter model; b, c and Λ∞ being the parameters.

For given values of b and c the model approaches ΛCDM as R increases so it is

able to pass the Solar System test (3.5) for suitable values of b and c. Typically,

R0 ' 10H2
0 ; ΛCDM gives R0 = 9.3H2

0 . For R0 of this order (R0 changes slightly

as the parameters change), decreasing the value of b from a large positive value

to a smaller, positive one effects a swing away from ΛCDM. fR(R) changes from

being numerically very small to being numerically larger, as can be seen from

(3.3). The negative, squared exponent in (3.3) ensures that F (R) adheres very

closely to ΛCDM until it swings away when it does so rapidly, just as e−x
2

clings

to zero until x becomes sufficiently close to zero. Some other models may not have

the facility to do this because local gravity tests constrain model parameters to

such an extent that they are not able to deviate sufficiently from ΛCDM, today.

For numerically extremely small b, f(R) approximates to

f(R) ∼ − 4Λ∞ b e
−c2

√
π (1− erf [c])

R

H2
0

(3.4)
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which can be considered to give re-scaled GR, but we do not get this far as we

are limited as to how small R can go. As can be seen from (3.2), increasing the

value of c+ bR/H2
0 , takes the Erf model closer to ΛCDM, so increasing the value

of c does the same thing as can be seen in the contour plots of Figure 3.4.

The behaviours of f(R) and its derivative with respect to R, when plotted

against N , are illustrated in Figure 3.1. We choose two representative points in

parameter space, both of which satisfy the Solar System constraint [49], namely,

RsfRR(Rs) � 10−23 , (3.5)

where Rs ≈ 106H2
0 . For the general Erf model this is

8Λ∞Rsb
2 (c+ bRs/H

2
0 )

H4
0

√
π (1− erf [c])

exp

[
−
(
c+ b

Rs

H2
0

)2
]
� 10−23. (3.6)

Because of the negative squared exponent, this does not place practical con-

straints on the parameters. It is sufficient that b & 10−5. When c = 1, b� 10−5.2

which falls, when c = 6, to b� 10−6.3.

The model for which c = 1.5, log10 b = −1.517 and Λ∞ = 2H2
0 , which will

represented by continuous, pink curves, below, we shall term Model 1 while that

for which c = 1.5, log10 b = −0.914 and Λ∞ = 2H2
0 , represented by dashed,

mauve curves, we shall term Model 2.

3.2.1.1 The dark energy equation of state

For the parameter values of Figure 3.1, the corresponding values of weff and Ωeff

over the history of the Universe are shown in Figure 3.3. They were derived by

solving the field equation (1.75) for H(N), for given F (R), on the assumption that

at the initial value ofN , Ni, the theory is ΛCDM, that is, H2(Ni) = H2
0 Ωm,0e

−3Ni+

Λ∞/3. weffΩeff is then found from (1.86) while Ωeff is defined as 8πGρeff/ (3H2)
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Figure 3.1: f(R)/H2
0 and f ′(R) against N = log a.
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Figure 3.2: R/H2
0 against N . For Model 1, R0 = 6.2H2

0 while for Model 2, R0 =

9.1H2
0 .
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using (1.82), assuming the effects of radiation are negligible. This gives

Ωeff(N) = 1− H2
0e
−3NΩm,0

3H(N)2
, (3.7)

weff(N) = −3H(N)2 + 2H(N)H ′(N)

3H(N)2 − 3H2
0e
−3NΩm,0

. (3.8)

Ωm,0 is taken to be 0.3 to give Ωeff,0 = 0.7. The slight mismatch at N = Ni

between what H(N) should be and the ΛCDM value we use manifests itself in

graphs of weff as small but rapid oscillations which die out as N increases. This

can be seen in the Erf Model 1 graph of Figure 3.3(a). These oscillations can be

reduced by starting the numerical integration to find H(N) at a slightly smaller

value of Ni, as can be seen in the Erf Model 2 graph.
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0 1 2 3 4
z0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7
Weff

(b)

Figure 3.3: weff and Ωeff against z for the curves of Figure 3.1.

Figure 3.4 shows how today’s values of weff and Ωeff vary with the parameters

c and log10 b, for the case when Λ∞ = 2H2
0 . The points in parameter space

representing Models 1 and 2 are indicated by spots, pink for Model 1 and mauve

for Model 2. The large c region corresponds to GR while c = 0, and large b

coincides with ΛCDM, with Ωeff,0 tending to Λ∞/3. In the limit b→ 0, f(R)→ 0

which would give GR if it were not for the fact that before that could happen R0

becomes zero.

In Figure 3.5, we plot weff against Ωeff,0 and w′eff,0 against weff,0 for various

values of Λ∞ as indicated when c = 1.5. We see that along each curve, b increases

towards the fixed point at which Ωeff,0 = Λ∞/(3H
2
0 ).
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Figure 3.4: For Λ∞ = 2H2
0 , contour plots of weff,0 and Ωeff,0 as functions of c and

log10 b. The lower boundary is where R0 comes close to being zero.
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Figure 3.5: For c = 1.5, weff,0 as a function of Ωeff,0 and w′eff,0 as a function of

weff,0. The fixed points are in (a) (Λ∞/
(
3H2

0

)
,−1) and in (b) (−1, 0). Each curve

is represented by a value of Λ∞/H
2
0 which is indicated. The spots represent Model 1

which is at (0.7,−0.50) in (a) and at (−0.50, 0.79) (not shown owing to the scale of the

diagram) in (b), and also by Model 2 at (0.7,−0.97) in (a) and at (−0.97, 0.10) in (b).
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3.2.1.2 Late-time behaviour

This thesis is concerned with the the history of the Universe up to the present

time. How do parameters such as H(N), R(N), weff(N), Ωeff(N) etc develop? The

thesis is not concerned with the future, as has been discussed in the introduction

to this chapter. As has been said, if our models give unacceptable problems after

today, such as can be seen in Figure 3.8, that can be remedied simply by altering

the model so that an appropriate change can be put into effect, then, to keep the

model well behaved. However it is instructive to gain an insight into what would

happen if the models were not altered.

It will be noticed in Figure 3.4 that three regions, viz, de Sitter oscillating, de

Sitter non-oscillating and Minkowski, covering the whole parameter plane, have

been marked separated by boundaries coloured red. These regions represent the

late-time, vacuum state behaviour of the model. Following Frolov in [107], we

identify the scalar field, φ(R) = FR(R) − 1 = fR(R) with associated potential

V (φ(R)) given by

V (φ(R)) =

∫ R

∞

1

3
(r + 2f(r)− r fR(r)) fRR(r) dr. (3.9)

As has already been said, the late-time value of R is not necessarily equal to

zero but is defined where V (φ) is a local minimum. The resulting equation to be

satisfied is

R + 2f(R)−RfR(R) = 0. (3.10)

If such a stable solution exists, R = RdS is termed the late-time de Sitter

attractor solution. Putting all the time derivatives (equivalently, derivatives with

respect to N = log a) and densities in the field equation (q.v.) equal to zero

gives equation (3.10). There is always a solution for which R = 0 when space is

completely flat and this solution is thus termed the GR or Minkowski solution

[108]. If this solution is not a de Sitter solution, it may be unacceptable because
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R will tend to oscillate around zero as it decays to zero. However, as can be seen

from Figure 3.4, the Minkowski region has the potential to give larger values of

|1 + weff,0| than would otherwise be the case for the de Sitter region. The de Sitter

solutions fall into two groups; oscillating, for which weff, R and H exhibit late-time

oscillations, and non-oscillating, for which these variables increase or decrease to

their final values. An example of the latter is ΛCDM where weff = −1, Ωeff → 1,

R→ 4Λ and H2 → Λ/3 with no oscillations.

Two examples when Λ∞ = 2H2
0 for the Erf model are shown in Figures 3.6

and 3.7. One is in the oscillating de Sitter region of Figure 3.4 and one is in the

non-oscillating de Sitter region. The differing ways in which R/H2
0 and weff vary

with time in the future are clearly shown.
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Figure 3.6: R/H2
0 against N = log a for two examples of the Erf model at times well

after today. (a) shows Model 2 with Λ∞ = 2H2
0 , c = 1.5 and log10 b = −0.914, which is

in the de Sitter oscillating region, and (b) shows an example with Λ∞ = 2H2
0 , c = 1.5

and log10 b = −1.12, which is in the de Sitter non-oscillating region. Solving (3.10) for

R, gives the de Sitter values of R as (a) 7.486H2
0 and (b) 3.309H2

0 , respectively.

It is also instructive to see what happens in the Minkowski region and here

we shall consider Model 1. Just like Model 2 there are oscillations but there

are also oscillations in Ωeff(N). For example, in the de Sitter region, Ωeff(N)

simply keeps growing until it tends to unity as N → ∞. We can see that from

the expressions for weff and weffΩeff in the glossary entitled Useful Expressions,
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Figure 3.7: weff for the two examples of the Erf model in Figure 3.6. (a) shows both

examples plotted against z. (b) shows the late-time oscillations of Model 2 when weff is

plotted against N . Note the severe gradient in (a) of weff for the non-oscillating curve

(continuous, green) as z → −1. While dweff/dN → 0+, dz/dN → 0−.

putting the derivative with respect to N equal to zero gives final de Sitter values

of weff, dS = −1 and Ωeff, dS = 1.

For Model 1, however, R/H2
0 oscillates between positive and negative values

of ever-decreasing amplitude while Ωeff(N) oscillates between fixed negative and

positive values as shown in Figure 3.8. This means, that weff would tend to

infinity at some point in the future. This is because weff Ωeff = −1 − 2H ′/ (3H)

(1.86) with H ′/H, though it oscillates, remaining finite.
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Figure 3.8: Showing the late-time oscillations in R/H2
0 and Ωeff for Model 1 in the

Minkowski region.
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3.2.1.3 The matter growth index

Starting from the standard, linearised, matter perturbation equation in the sub-

horizon regime [74, 109–113], which is derived in [112],

δ̈m + 2Hδ̇m − 4π
G

FR(R)

(
3 + 4k2/ (aM(a))2

3 + 3k2/ (aM(a))2

)
ρmδm = 0, (3.11)

where k is the comoving wavenumber and M is the scalaron mass defined by

equation (1.88) with approximation given by

M2 ≈ 1

3FRR(R)
, (3.12)

we can define the matter growth index, γ, as a function of the matter density

contrast, as already stated in section 2.2.5, by

(Ωm)γ =
d log δm

d log a
(3.13)

=
δ′m
δm

. (3.14)

Equation (3.11) can be re-cast as

γ′ log Ωm + γ
Ω′m
Ωm

+ (Ωm)γ + 2 +
H ′

H
=

3

2
η(a)(Ωm)1−γ, (3.15)

in which

η(a) =
1

FR(R)

[
1 + 4k

2

a2
FRR(R)
FR(R)

1 + 3k
2

a2
FRR(R)
FR(R)

]
. (3.16)

The factor in square brackets on the right hand side of equation (3.16) increases

from being 1 at early times to being 4/3 at late times. Equation (3.15) can be

solved numerically, with the initial condition at large R being that γ = 6/11 (as

appropriate for ΛCDM, [111, 113]). The ΛCDM value of γ at high R can be

deduced from (3.15) by varying Ωm with respect to Λ/H2.

The solution for γ, again corresponding to the parameters used in Figure 3.1

are shown in Figure 3.9(a) for k = 0.14hMpc−1. This value of k is also used
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in the examples, where relevant, of sections 3.2.2 and 3.2.3. For comparison, in

Figure 3.9(b) we show how γ varies in ΛCDM. Clearly the range of values for γ0

can, under certain circumstances, be larger than has been previously supposed

[74, 114].

Ignoring those cases when γ(N) has been taken to be constant or linear, authors

have commented on the value of γ0 only in respect of particular models. In [114],

in which five models are considered, it is found that all of these models have

0.40 . γ0 . 0.55. We find that both the AB and the Erf models can give values

of γ0 lower that 0.40. Measurements of galaxy clusters by Rapetti et al. [73],

using data from ROSAT, BCS, REFLEX and Bright MACS, with a background

ΛCDM model, give γ0 = 0.55+0.13
−0.10. Using XLF data, they find a γ0 with a mean

value of 0.38. See also see [110].
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Figure 3.9: Erf model: γ against z for the examples of Figure 3.1. The dotted, red

line represents the asymptotic ΛCDM value 6/11. The general behaviour of γ, as z

decreases, is to increase initially away from 6/11, as it would in ΛCDM, to a local

maximum before decreasing to a local minimum from which it rises to today’s value.

The value of γ0 for curve for Model 1 is 0.362 while for Model 2 it is 0.426. (b) shows γ

for the ΛCDM model which has Ωm,0 = 0.3. At early times γ is asymptotic to 6/11. As

z decreases, γ increases to approach the value 2/3 as γ′ → 0 and z′ → 0 making dγ/dz

undefined. Solution of the ΛCDM equivalent to (3.15) shows that, for Ωm,0 = 0.3, then

γ0 = 0.55472± 8× 10−6 and γ′0 = 0.01688± 4× 10−6.
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3.2.2 The AB model

The AB model [101] is

f(R) = −R
2

+
εAB

2
log

[
cosh (R/εAB − b)

cosh b

]
, (3.17)

εAB =
Rvac

b+ log (2 cosh b)
, (3.18)

Rvac = 4Λ∞. (3.19)

It is a two-parameter model and it, like the Erf model, similarly adheres closely

to ΛCDM until comparatively late in the history of the Universe. The Solar

System constraint means that b � −4, although very large values of Λ∞ reduce

this limit slightly, e.g., Λ∞ = 10 means b � −3. Positive values of b means

the Solar System test is passed with ease. For example, Λ∞ = 2H2
0 , b = 0

gives RsfRR(Rs) = 5 × 10−75,253. In the paper where it was introduced [76],

Appleby and Battye take the parameter b & 1.2. This was done because current

data suggests that we are approaching a late time de Sitter vacuum state (not

Minkowski space). Since ΛCDM tends to a late-time de Sitter vacuum state,

Appleby and Battye wanted to find models that behaved like ΛCDM (because the

data are consistent with ΛCDM), but which had no true cosmological constant.

This, however, restricts the value of |1 + weff,0| to be less than 0.04 [101].

Figure 3.11 shows how the fixed points are approached, as b increases, for a

range of Λ∞.

For Figures 3.12, 3.13 and 3.14, two examples have been chosen, one with

b = 0.2 and Λ∞ = 1.65H2
0 , which we term Model 3, and one with b = 1.2 and

Λ∞ = 1.92H2
0 , which we term Model 4. Both give Ωeff,0 = 0.7 and are indicated

by spots in Figures 3.10 and 3.11.
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Figure 3.10: Contour plots for the AB model. Though they do not show up at all

well, in (a) all values weff,0 are negative. The two spots represent Models 3 and 4, see

below. Note the inclusion of the late-time de Sitter and Minkowski regions.
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Figure 3.11: AB model: weff,0 as a function of Ωeff,0 and w′eff,0 as a function of weff,0

for the values of Λ∞/H
2
0 indicated. The fixed points are in (a) (Λ∞/(3H

2
0 ),−1) and

in (b) (−1, 0). Parameter b starts at the top of each curve and increases towards the

fixed points.
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Figure 3.12: AB model: f(R)/H2
0 and fR(R) against N .
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Figure 3.13: AB model: R/H2
0 against N for the curves of Figure 3.12. For Model 3,

R0 = 8.1H2
0 and, for Model 4, R0 = 9.1H2
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Figure 3.14: AB model: weff and Ωeff against z for the curves of Figure 3.12.
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Figure 3.15: AB model: Evolution of γ against z for the examples of Figure 3.12.

The values of γ0 are 0.39 for Model 3 and 0.42 for Model 4.

3.2.3 The HSS model

Like the Erf model, the HSS model is a three parameter model:

f(R) = −Rvac

2

c (R/Rvac)
2n

1 + c (R/Rvac)
2n , (3.20)

Rvac = 4Λ∞, (3.21)

with n > 0. In fact, for this model to pass the Solar System test, we must have

n > 1. For n < 2, when Λ∞ = 2H2
0 , for instance, it passes this test only for

some values of Rvac, as c varies, so it is safest to have n ≥ 2. For very large but

unrealistic values of Λ∞ the lower limit on n may have to be increased to 3. The

limit as R→∞ is f(∞) = −Rvac/2 which is ΛCDM with cosmological constant

equal to Rvac/4, as for the AB model. It should be noted that up to the present

time R > R0. If R0/Rvac > 1 this model tends to ΛCDM if either of c or n should

tend to infinity.

Graphical examples below are for n = 2 and n = 6. The blank ‘triangular’ re-

gion at the bottom right hand corner of the contour plots is owing to the fact that,

for small enough c, fRR(R0) will become zero (see, for example, Figure 3.22(b)).

The value of c for which this happens is given by

c =
2n− 1

2n+ 1

(
R0

Rvac

)−2n

. (3.22)
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Figure 3.16: Contour plots for the HSS model of weff,0 and Ωeff,0 against Λ∞/H
2
0 and

log10 c when n = 2. The pink spot represents Model 6, see below. The narrow late-time

de Sitter non-oscillating region has not been labelled.
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Figure 3.17: Contour plots for the HSS model of weff,0 and Ωeff,0 against Λ∞/H
2
0 and

log10 c when n = 6. The mauve spot locates Model 5, see below.
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Notice, from Figures 3.16 and 3.17, how restricting solutions to the de Sitter

regions gives values of |1 + weff,0| . 0.04. How the fixed points are approached,

for a given value of Λ∞/H
2
0 , is shown in Figures 3.18 and 3.19.
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Figure 3.18: HSS model: weff,0 as a function of Ωeff,0 and w′eff,0 as a function of weff,0

when n = 2. The fixed points are in (a) (Λ∞/
(
3H2

0

)
,−1) and in (b) (−1, 0). Each

curve is labelled with its value of Λ∞/H
2
0 ; parameter c increases towards the fixed

point. The pink spot locates the example we term Model 6.

Of the plethora of possibilities, we choose just two to illustrate the nature and

properties of the HSS f(R). The chosen examples, both with Λ∞ = 1.2H2
0 have

n = 6, which we call Model 5, or n = 2, which is Model 6, and appropriate values

of c to give Ωeff,0 = 0.7.
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Figure 3.19: HSS model: weff,0 as a function of Ωeff,0 and w′eff,0 as a function of weff,0

when n = 6. The fixed points are in (a) (Λ∞/
(
3H2

0

)
,−1) and in (b) (−1, 0). Each

curve is labelled with its value of Λ∞/H
2
0 ; parameter c increases towards the fixed

point. The mauve spot locates the example we term Model 5.
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Figure 3.20: HSS model: f(R)/H2
0 and fR(R) against N when Λ∞ = 1.2H2

0 and for

two values of n. Model 5 has n = 6 and log10 c = −2.34 while Model 6 has n = 2 and

log10 c = −0.496.
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Model 5
Model 6
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Figure 3.21: HSS model: R/H2
0 against N for the curves of Figure 3.20. Model 5 has

R0 = 9.8H2
0 while Model 6 has R0 = 8.7H2

0 .

Model 5

Model 6

6 8 10 12 14
R�H0

2

-1.0

-0.8

-0.6

-0.4

-0.2

0.0
f ¢HRL

(a)

10 20 30 40
R�H0

2

-0.5

-0.4

-0.3

-0.2

-0.1

f ¢HRL

(b)

Figure 3.22: HSS model: fR(R) against R for Models 5 and 6, and three examples

when n = 2 with parameters close to the lower boundary of Figure 3.16. (a) shows how

far the values of R0, denoted by spots, are from the turning points. In (b) the curves

have parameters (Λ∞/H
2
0 , log10 c), as follows: dot-dashed, pink curve, (1.6,−0.58);

blue, (2,−0.28); dashed, green (2.5, 0.05). The spots indicate the respective values of

R0 and indicate how close they are to the problematic values of R for which fRR(R) = 0.
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Figure 3.23: HSS model: weff and Ωeff against z for the curves of Figure 3.20.
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Figure 3.24: HSS model: Evolution of γ against z for the examples of Figure 3.20.

Model 5 gives γ0 = 0.40 while Model 6 gives γ0 = 0.37.
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3.3 Conclusion

The results of Planck do not conclusively show that we are living in a ΛCDM

Universe, though they do not rule that out. Essentially, there is still some doubt

as to today’s value of the effective dark energy equation of state parameter,

which we have called weff. It was decided to review the properties of some F (R)

models and to produce one of our own in order to see how large a deviation

from −1 we could obtain for weff,0. Constraining weff,0, constrains R0 for, using

R = 3H2 (1− 3weffΩeff) (from Useful Expressions on page 24), |1 + weff,0| < δ

means that |R0 −RΛ,0| < 9H2
0 Ωeff,0δ. In this regard we went beyond the bounds

set by Planck and its predecessor, WMAP, to see what would happen but ensuring

that Ωeff,0 was always the same.

All F (R) = R+f(R) models are constrained quite severely by the Solar System

which has the effect of ensuring that f(R) lies close to −2Λ∞ until comparatively

recently. Until then, weff always lies close to −1. When f(R) then swings away

from −2Λ∞ then fR(R) swings away from being close to zero, though still neg-

ative, and weff swings away from −1, first in a negative sense, then reaching a

local minimum in the recent past before returning to give a value for weff,0.

For each generic model, we have seen how varying the parameters of those

models varies the values of weff,0 and Ωeff,0, how weff,0 and Ωeff,0 and how w′eff,0 and

weff,0 are connected when one specific parameter changes. We have also seen how,

if left unmodified, what the future of each model might be. In some instances, the

potential of the scalar field, φ = fR(R), reaches a stable minimum, at RdS, as a de

Sitter attractor which can be reached by R oscillating with decaying amplitude

about RdS or by simply decreasing to it without any oscillations. It could be that

RdS = 0. Alternatively, R tends to zero by wild oscillations with Ωeff oscillating

between positive and negative values thereby driving weff to infinity and back

again, repeatedly, with ever-increasing frequency.
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The matter growth index was studied for all six examples which showed that,

while those models which kept close to ΛCDM at the present time gave values

of γ, the matter growth index, of 0.4 or slightly higher, those which swung away

markedly from ΛCDM gave values of γ0 less than 0.4. The perceived wisdom

to date is that F (R) models give γ0 in the approximate range 0.4 to 0.55. The

γ for ΛCDM, itself, increases from the value 6/11 = 0.545 at high curvature to

give γ0 = 0.555. It is also noticed that some of the values of γ go negative as

the Universe evolves. This is illustrated, but not remarked upon, in Appleby

and Weller’s paper [113]. The effect of letting γ go negative is to allow Ωγ
m and,

hence, δ′m/δm to be larger than they would otherwise be. Thus, whatever value

δm starts with at some earlier stage, it has a larger value today than it otherwise

would have. This is illustrated in Figure 3.25 for three models: standard Einstein

gravity, Erf Model 1, for which γ goes negative, and Erf Model 2, for which γ > 0.
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Figure 3.25: Comparing the effect of γ going negative as opposed to its always being

positive. Illustrated are standard Einstein gravity (sEg, dotted green), Erf Model 1

(1, continuous pink) and Erf Model 2 (2, dashed mauve). The evolution of γ for these

models is shown in Figure 3.9. Pane (a), above, shows how Ωγ
m varies with z while

(b) shows late detail of the evolution of the ratio δm/δi, where δi is the value of δm at

z = 1095, the point at which evolution of γ was started. For z & 3, in these cases the

values of δm/δi are indistinguishable. At z = 0, the respective values of δm/δi are 859

for standard Einstein gravity, 919 for Erf Model 2 and 953 for Erf Model 1.
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The graphs were obtained by numerically solving (3.15) for γ and then integrat-

ing (3.14) for δm. The initial value of z was taken to be 1095, at which γ = 6/11

and δm = δi. Assuming Erf Model 1 to be an extreme case, we see that F (R)

models give a deviation, today, for γ of up to around 10% from the standard Ein-

stein gravity case but that cases in which γ does not go negative achieve almost

as much.

The next step could be to try to construct an F (R) model which could give

realistic values within their range of uncertainty to all the cosmological parameters

currently measured.



Chapter 4

The weff < −1 Theorem for F (R)

Models

4.1 Introduction

Excluding ΛCDM, all practical F (R) = R+ f(R) models have the property that

f(R) → −2Λ, as R → ∞ and they all have graphs similar to Figure 3.1 in the

matter and radiation eras. Further, fR(R) < 0, fRR(R) > 0 such that fR(R)→ 0

and fRR(R) → 0, as R → ∞. All instances of graphs of weff for these F (R)

models show that it is slightly less than −1 at high z becoming more negative

with time until it reaches a local minimum [47, 68, 97, 101, 115]. In this chapter,

we prove that in the radiation and matter eras, weff < −1 and decreases.

4.2 The theorem

Theorem: For F (R) models which tend to ΛCDM as R → ∞, which is a → 0,

weff decreases from −1 as a increases from 0 through the radiation and matter

eras.

101
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Proof : To prove this we use weff = −1− ρ′eff/ (3ρeff), which is (1.84), and show

that ρ′eff(N) > 0 in the radiation and early matter eras. A difficulty arises in

that, at early times, f(R) lies extremely close to −2Λ, while being above it, for

a very long time; see Figure 3.1(a). ρ′eff(N) will be numerically very small indeed

for much of the history of the Universe up to the present time. Figure 4.1, which

compares 8πGρeff/H
2
0 with corresponding weff, shows one example.

-2.0 -1.5 -1.0 -0.5
N

-1

1

2

3

4

8ΠGΡeff�H0
2,weff

Figure 4.1: A combined graph showing how 8πGρeff/H
2
0 (continuous) and correspond-

ing weff (dashed) vary with N . Data are from Erf Model 1 of subsection 3.2.1.

As yet, making no assumptions, let our variable be N = log a, as usual, and

introduce a new parameter, χ = 8πGρeff/3. Thus

H2 =
8πGρr

3
+

8πGρm

3
+

8πGρeff

3
(4.1)

= αe−4N + βe−3N + χ, (4.2)

⇒ weff = −1− χ′

3χ
, (4.3)

where α and β are constants. χ will tend to Λ/3 as R→∞. From this we find

2HH ′ = −3H2 + 3χ+ χ′ − αe−4N . (4.4)

R = 3H2 + 9χ+ 3χ′ − 8πGρr. (4.5)
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From the field equation (1.75),

3H∂0FR(R) +

(
3H2 − R

2

)
FR(R) +

1

2
F (R) = 3H2 − 3χ (4.6)

⇒ 3H∂0fR(R) +

(
3H2 − R

2

)
fR(R) +

1

2
f(R) = −3χ. (4.7)

From the trace, (1.76),

3�FR(R) +RFR(R)− 2F (R) = 8πG (−ρ+ 3P ) (4.8)

⇒ −3∂2
0fR(R)− 9H∂0fR(R)−R +RfR(R)− 2f(R) = −3H2 + 3χ+ 8πGρr

(4.9)

⇒ −3∂2
0fR(R)− 9H∂0fR(R) +RfR(R)− 2f(R) = 12χ+ 3χ′. (4.10)

Adding 4×(4.7) to (4.10) and then dividing by 3 gives

−∂2
0fR(R) +H∂0fR(R) +

(
4H2 − R

3

)
fR(R) = χ′. (4.11)

In the regions we are concerned with, χ′ and fR(R) are first order small quan-

tities. In expressing the values of the terms on the left hand side of (4.11) to

form (4.21), we make use the following zero-th order approximations, 2HH ′ =

− (4− θ)H2, R = 3θ H2 and R′ = −3R. The parameter θ has been introduced to

indicate where in the radiation and matter eras we are operating. In the matter

era, θ = 1 while, in the radiation era, θ = 0, except we must be careful not to let

R = 0 where so doing would be incorrect. θ takes values between 0 and 1.

We can express f(R) as a convergent power series in a but because it is so flat

in the radiation era and most of, if not all of, the matter era, we can express f(R)

as

f(R) = −2Λ + an
∞∑
i=0

µia
i, (4.12)

where the µi are constants, µ0 > 0, an
∑∞

i=0 µia
i > 0 and n will be very large. In

view of the flatness of f(R) and that 0 < a � 1, at early times, we need only
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consider the leading term, so let

f(R) = −2Λ + µ0 a
n, (4.13)

= −2Λ + µ0 e
nN , (4.14)

using N = log a. We now express fR(R) in terms of N and evaluate ∂0fR(R) and

∂2
0fR(R).

fR(R) =
f ′(R)

R′
(4.15)

= −nµ0

3R
enN . (4.16)

∂0fR(R) = −Hnµ0

3

(
enN

R

)′
(4.17)

= −n (n+ 3)µ0H

3R
enN . (4.18)

H∂0fR(R) = −n (n+ 3)µ0H
2

3R
enN . (4.19)

∂2
0fR(R) = −n (n+ 3) (2n+ 2 + θ)µ0H

2

6R
enN . (4.20)

Putting these into (4.11) gives

χ′ =
n [2n2 + (6 + θ)n− 8 + 5θ]µ0H

2

6R
enN (4.21)

' n3µ0H
2

3R
enN > 0. (4.22)

Initially, when a = 0 and N → −∞, χ′ will be zero because, although H2/R is

proportional to e−N in the radiation era, χ′ is proportional to e(n−1)N which tends

to zero as N → −∞. So starting from f(R) = −2Λ, where weff = −1, e(n−1)N

increases. That is, χ′ increases with N while, to very good approximation, χ

remains constant. χ′/χ increases so that weff decreases into the phantom region.

It continues to do so until the proposed expression for f(R), (4.13), fails to be a

good approximation.



Chapter 5

Evolution of Perturbations

5.1 Introduction

In this chapter we consider matter and metric perturbations of the line element

in an FRW Universe. In the Newtonian gauge these can be encoded via

ds2 = − (1 + 2Ψ) dt2 + a2 (1− 2Φ) δijdx
idxj, (5.1)

where Φ and Ψ are small, dimensionless perturbations to the FRW metric. We

attempt to produce algebraic solutions to the evolution equations (A1) and (A2)

and the linear Einstein equations (A3) and (A4) of Pogosian and Silvestri [79].

They are:

δ′ +
k

aH
V − 3 (1 + w) Φ′ + 3

(
δP

δρ
− w

)
δ = 0, (5.2)

V ′ + (1− 3w)V − k

aH

(
δP

δρ
− Π

δ

)
δ − k

aH
(1 + w) Ψ = 0. (5.3)

(1 + fR)

(
6Ψ + 6Φ′ + 2

k2

a2H2
Φ

)
= −3Ei

H2
δi + 3fRRδR

′ − f ′R (6Ψ + 3Φ′) ,

−
[
3fRR

(
1 +

H ′

H

)
− k2

a2H2
fRR − 3f ′RR

]
δR.

(5.4)
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(1 + fR) (kΨ + kΦ′) =
3a

2H
EiVi +

1

2
k (fRRδR)′

−1

2
kfRRδR−

1

2
kf ′RΨ. (5.5)

These equations are in Fourier space with δ ≡ δρ/ρ, the density contrast,

V ≡ (1 + w) v, where v is the scalar component of the velocity, and E ≡ H2/H2
0 .

Ei and δi are the various energy components of E and δ, respectively, so that as far

as matter perturbations are concerned, Eiδi = Emδm = 8πGρmδm/ (3H2
0 ). δP is

the pressure perturbation which, for matter, is zero and ρΠ ≡
(
k̂j k̂i − δji/3

)
πij

is the anisotropic stress which is zero because πij is the traceless component of

the energy-momentum tensor [79]. In particular, Πm = 0.

(5.4) is a corrected version of (A3) with three typographical errors removed. As

a check they were compared to the equivalent equations in Ma and Bertschinger

[116]. ′ means differentiation with respect to N = log a. We solve these equations,

as applied to matter perturbations only, for a given co-moving k.

Some work, in this area, had already been done on this by Starobinsky [78],

by Appelby et al. [101] and by Elizalde et al. [117], but they only considered

what happens at early times in the matter era and the approach was different

from ours. No initial conditions were applied. Tsujikawa [112] adopted different

approach and found expressions for the perturbed potentials as powers of t. Our

challenge was to produce a solution which remained viable up to the present time.

In trying to produce an algebraic solution to these equations, a series approach

in terms of a single variable was adopted. This variable was chosen to remain

as small as possible throughout the history of the Universe. The four equations

above, were reduced, with the aid of the field equation and an expression for δR,

to two coupled, second order, homogeneous, linear differential equations in Φ and

Ψ. Approximate algebraic expressions in terms of this variable were then found

for Φ and Ψ which contained both oscillating and non-oscillating components.

In order to illustrate the oscillations, graphically, it was necessary to define as
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x(N) a “difference” in Φ and Ψ, as defined in (5.54) different from Φ − Ψ. To

complement this, the sum, y(N), was also constructed, (5.55). Initial conditions

were applied to Φ and Ψ. Using the same initial conditions, the two differen-

tial equations were integrated, numerically, and the functions corresponding to

the algebraic solutions for x(N) and y(N) produced and compared for differing

models and for different values of k.

It was found that, while the algebraic and numeric solutions were in general

agreement when k & 0.1h Mpc−1, smaller values of k produced less agreement in

the later stages of the Universe’s history. Also noticed in the solution for x(N)

was a “jump” which is due to the non-oscillating component of x(N).

5.2 Matter perturbation equations in k-space

for the Jordan Frame

The equations we solve are those of Pogosian and Silvestri [79]. Subscripts “m”

refer to the matter component and the anisotropic stress is taken to be zero.

The anisotropy equation with no anisotropic contribution from matter, equation

(30) of [79], is

FR (Φ−Ψ) = FRR δR. (5.6)

while the evolution equations for matter density perturbations and matter fluid

velocity are

δ′m +
k

aH
Vm = 3Φ′, (5.7)

V ′m + Vm =
k

aH
Ψ. (5.8)

These are equations (A1) and (A2) of [79] with w = 0 and δP/δρ set to zero since

P , the pressure of matter, is zero at all times. Π is also set to zero since we take

πij of equations (26) of [79] to be zero.
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The 00 and 0, i components of the Einstein equations, perturbed to first order,

give, with some manipulation,

FR

[
k2

a2
(Φ + Ψ)−

(
6H2 − R

2

)
(Φ−Ψ)

]
+ 3H2R′FRR (Φ′ + Ψ) = −8πGρm

[
δm +

3aH

k
Vm

]
,(5.9)

FR (Φ′ + Ψ′ + Φ + Ψ)−R′FRR (Φ− 2Ψ) =
8πGρma

Hk
Vm. (5.10)

(5.9) is derived from (A3) and (A4) by eliminating (FRR δR)′, (5.10) is (A4), (5.7)

is (A1) and (5.8) is (A2). ρ′m = −3ρm.

The perturbed Ricci scalar in k-space is [112, 118]

δR = −4k2

a2
Φ +

2k2

a2
Ψ− 6H2 (Φ′′ + Ψ′)−

(
12H2 +R

)
Φ′ − 2RΨ. (5.11)

It should be borne in mind that, when converting a derivative with respect to

time to one with respect to N = log a, d/dt = H d/dN , so that, for example,

Φ̈ = HH ′Φ′ +H2Φ′′.

If we can ignore radiation then the 00 component and the trace of the field

equation give

6H2R′2FRRR = −3F +
(
R + 6H2

)
FR −

(
RR′ + 6H2R′′

)
FRR. (5.12)

This will be needed when differentiating (5.10) and using (5.8) to eliminate Vm.

Introducing two new variables

ξ =
3H2FRR
FR

, (5.13)

λ =
k

aH
, (5.14)

and eliminating δR from (5.6) and (5.11) gives

Φ′′ +

(
2 +

R

6H2

)
Φ′ +

(
1

2ξ
+

2λ2

3

)
Φ

+ Ψ′ −
(

1

2ξ
+
λ2

3
− R

3H2

)
Ψ = 0, (5.15)
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and, from (5.8), (5.10) and (5.12),

Φ′′ +

(
2 +

R

6H2

)
Φ′ +

F

2H2FR
Φ

+ Ψ′′ +

(
2 +

R

6H2
+
R′ξ

H2

)
Ψ′ +

(
R

H2
− 3F

2H2FR

)
Ψ = 0. (5.16)

Now using R = 12H2 + 6HH ′ and F = R + f these two equations become

Φ′′ +

(
4 +

H ′

H

)
Φ′ +

(
1

2ξ
+

2λ2

3

)
Φ

+ Ψ′ −
(

1

2ξ
+
λ2

3
− 1− H ′

2H

)
Ψ = 0, (5.17)

Φ′′ +

(
4 +

H ′

H

)
Φ′ +

(
6 +

3H ′

H
+

f

2H2 (1 + fR)

)
Φ

+ Ψ′′ +

(
4 +

H ′

H
+
R′ξ

H2

)
Ψ′ −

(
6 +

3H ′

H
+

3f

2H2 (1 + fR)

)
Ψ = 0. (5.18)

In solving (5.17) and (5.18), it is assumed that F (R) is ΛCDM at an early value

of a in the matter era [79]. Numerical solution of these equations is relatively

straightforward. Before attempting to solve them algebraically, we look at the

ΛCDM case.

5.2.1 The ΛCDM model

In ΛCDM, F (R) = R − 2Λ and ξ = 0. Equation (5.6) gives Φ = Ψ and (5.16)

becomes

Φ′′ +
5R− 12Λ

2 (R− 3Λ)
Φ′ +

3Λ

R− 3Λ
Φ = 0. (5.19)

Following Pogosian et al. in [79], the initial conditions are Φ = −1 and Φ′ = 0.

Numerical solution of this is shown in Figure 5.1, where we see that, today, Φ

has risen to around −0.78. Algebraic solution of (5.19) could be attempted. By

substituting for R in terms of N , using R = 3H2
0 Ωm,0e

−3N + 4Λ, gives Φ =

A+Be−5N/2 as an approximating solution at early times, and Φ = Ce−N at late

times as R → 4Λ. For a better solution than this, a series approach would need

to be taken using a variable such as p = Λ/ (R− 3Λ).



110 Chapter 5. Evolution of Perturbations

-6 -4 -2 2 4 6
N = log a

-1.0

-0.8

-0.6

-0.4

-0.2

F

(a)

1 2 3 4
z

-1.00

-0.95

-0.90

-0.85

-0.80

-0.75

F

(b)

Figure 5.1: ΛCDM: Numerical solution of (5.19) shown against (a) N = log a and

also (b) z. The value of Λ has been chosen to give Ωm,0 = 0.3, namely, Λ = 2.1H2
0 .

5.3 Approximating algebraic solutions

From now on, the dependence of variables on N will be shown. Subtracting (5.17)

and (5.18) gives

[
1

2ξ(N)
+

2λ(N)2

3
− 6− 3H ′(N)

H
− ε(N)

]
Φ(N)

= Ψ′′(N) +

[
3 +

H ′(N)

H(N)
+
R′(N)ξ(N)

H(N)2

]
Ψ′(N)

+

[
1

2ξ(N)
+
λ(N)2

3
− 10− 5H ′(N)

H(N)

]
Ψ(N)− 3ε(N)Ψ(N) (5.20)

and equation (5.18) can be re-expressed as

Φ′′(N) + Ψ′′(N) +

[
4 +

H ′(N)

H(N)

]
[Φ′(N) + Ψ′(N)]

= −R
′(N)ξ(N)

H(N)2
Ψ′(N)

−
[
6 +

3H ′(N)

H(N)

]
[Φ(N)−Ψ(N)]− ε(N) [Φ(N)− 3Ψ(N)] . (5.21)
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Three parameters have been introduced in order to reduce the apparent complex-

ity of these equations. They are ξ(N), ε(N) and λ(N) defined as follows:

ξ(N) =
3H(N)2FRR[R(N)]

FR[R(N)]
, (5.22)

ε(N) =
f [R(N)]

2H(N)2 (1 + fR[R(N)])
, (5.23)

λ(N) =
k

aH(N)
=
k e−N

H(N)
. (5.24)

In order to introduce a degree of symmetry into equation (5.20) we replace ξ(N)

with ζ(N) defined by

1

ζ(N)
=

1

ξ(N)
+ λ2(N). (5.25)

This changes (5.20) into

Ψ′′(N) +

[
3 +

H ′(N)

H(N)
+
R′(N)ξ(N)

H(N)2

]
Ψ′(N)

+

[
1

2

(
1

ζ(N)
− λ(N)2

3

)
− 10− 5H ′(N)

H(N)
− 3ε(N)

]
Ψ(N)

−
[

1

2

(
1

ζ(N)
+
λ(N)2

3

)
− 6− 3H ′(N)

H
− ε(N)

]
Φ(N) = 0, (5.26)

while (5.21) is re-written as

Φ′′(N) + Ψ′′(N) +

[
4 +

H ′(N)

H(N)

]
[Φ′(N) + Ψ′(N)]

+

[
6 +

3H ′(N)

H(N)

]
[Φ(N)−Ψ(N)] + ε(N) [Φ(N)− 3Ψ(N)]

= −R
′(N)ξ(N)

H(N)2
Ψ′(N). (5.27)

Equations (5.26) and (5.27) are the two differential equations we shall attempt

to solve algebraically. We also notice that they are homogeneous and that at

early times ε(N) ∼ 0, λ(N) ∼ 0 and ζ(N) ∼ 0, which suggests, by inspection

of equation (5.26), the possibility of high frequency oscillations in Ψ(N) and,

therefore, also in Φ(N). If there are oscillations, their frequency could be of

order 1/
√
ζ(N) . There will also be solutions for Φ(N) and Ψ(N) which do not

oscillate.
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Because (5.26) and (5.27) are homogeneous, oscillating solutions will be inde-

pendent of non-oscillating solutions. Thus we can set Φ(N) and Ψ(N) each to be

the sum of an oscillating component and a non-oscillating component. We shall

express Φ(N) and Ψ(N) as follows:

Φ(N) = Φosc(N) +

(
1

ζ(N)
− λ(N)2

3

)
ζ(N)Φ0(N) + ζ(N)Φ2(N), (5.28)

Ψ(N) = Ψosc(N) +

(
1

ζ(N)
+
λ(N)2

3

)
ζ(N)Ψ0(N) + ζ(N)Ψ2(N). (5.29)

Φosc(N) and Ψosc(N) are the oscillating components while Φ0(N) and Φ2(N) are

non-oscillating components of Φ(N) and similarly for Ψ(N). The Φ0(N) and

Ψ0(N) terms are zero-th order in ζ(N), at early times. Using (5.25), the Φ0(N)

term migrates to 2/3 × Φ0(N) at late times while the Ψ0(N) term migrates to

4/3×Ψ0(N). The reason for expressing these terms in this way will become clear

in subsection 5.3.2. The Φ2(N) and Ψ2(N) terms are first order in ζ(N).

5.3.1 Oscillatory solution

Wishing to keep the expressions for Φosc(N) as simple as possible, we write

Ψosc(N) = Ψ1(N) sinω(N), (5.30)

where Ψ1(N) is a function of N to be determined. Inspection of (5.26) shows that

Φ(N) is a linear function of Ψ′′(N), Ψ′(N) and Ψ(N), which means that Φ(N)

could contain both sine and cosine terms. It also means that the frequency of

Φ(N) will be the same as Ψ(N). We therefore write

Φosc(N) = Φ1(N) sinω(N) + Φ3(N) cosω(N). (5.31)

The expressions for Φosc(N) and Ψosc(N) contain four unknown functions, viz,

Φ1(N), Ψ1(N), Φ3(N) and ω(N). Taking the sine and cosine components of
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equations (5.26) and (5.27) gives four independent equations. Unfortunately,

because of the unknown frequency, and its integral with respect to N , ω(N),

they are not linear and are, therefore, intractable. Therefore we must adopt a

series approach and find expressions for the unknowns in terms of some variable

which remains small throughout the history of the Universe.

Possibilities for this variable at early times are ζ(N), ξ(N) and 1/λ(N)2 but

how small do they remain? At early times in the matter era, λ(N)2 ∝ a

so it increases with time but we are dealing with subhorizon scales for which

k/aH(N) = λ(N) � 1 which is why 1/λ(N)2 might be a contender. k = 0,

however, means that 1/λ(N) does not even exist. Figure 5.2 shows an example

using Model 1 of the Erf Model of Chapter 2 with k = 0.1hMpc−1. The graphs

of ζ(N), ξ(N) and 1/λ(N) are plotted.

-1.5 -1.0 -0.5
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Ζ, Ξ, 1�Λ
2

(a)

-1.5 -1.4 -1.3 -1.2 -1.1
N

0.002

0.004

0.006

0.008

0.010

0.012

Ζ, Ξ, 1�Λ
2

(b)

Figure 5.2: Graphs of ζ(N) (continuous, blue), ξ(N) (dashed, green) and 1/λ(N)2

(dot-dashed, mauve) against N . (b) shows early detail.

We see that ζ(N) is tangential to ξ(N) at early times, as can be seen also from

(5.22) - (5.24), but at much later times it becomes closer to 1/λ(N)2. As the

parameters of an f(R) model are changed, or as we change the model itself, the

numerical values of these three variables will change but not their relation with

respect to one another. Thus the variable which remains smallest is ζ(N). At

early times it is vanishingly small. This is on account of the requirement for

F (R) to pass the Solar System test (see subsection 1.4.8). In the Solar System,
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ζs ≈ ξs ≈ RsFRR(Rs) < 10−23. At early times, any series expansion in ζ(N) will

require very few terms in ζ(N) to be accurate, whereas, at later times, judging

from Figure 5.2, it is possible that more terms would be required, with k → 0

posing a problem. For any particular model, however, ζ(N) will be smallest, at

late times, when k is largest.

Therefore, ζ(N) will be chosen as the variable with which to express Φ1(N),

Ψ1(N) and Φ3(N). Accuracy will reduce, as N increases, unless the number of

terms in ζ(N) increases. Accuracy also reduces as k becomes smaller.

The sine component of (5.26) gives

ω′(N)2 =
1

2ζ(N)
− λ(N)2

6
−
(

1

2ζ(N)
+
λ(N)2

6

)
Φ1(N)

Ψ1(N)
. (5.32)

All the terms on the right hand side of (5.32) are numerically much greater than

unity. In finding (5.32), terms of order 1 or smaller have been ignored. These are

Φ1(N)/Ψ1(N), H ′(N)/H(N), Ψ′1(N)/Ψ1(N) and Ψ′′1(N)/Ψ1(N). Similarly, the

sine component of (5.26)+(5.27) gives

ω′(N)2 =
1

2ζ(N)
+
λ(N)2

6
−
(

1

2ζ(N)
− λ(N)2

6

)
Ψ1(N)

Φ1(N)
, (5.33)

plus other terms of order 1 and also terms of uncertain order, at this stage, viz,(
4 +

H ′(N)

H(N)
+
ω′′(N)

ω(N)

)
Φ3(N)ω′(N)

Φ1(N)
+ 2

ω′(N)Φ′3(N)

Φ1(N)
. (5.34)

The cosine component of (5.26) gives

3

2
+
H ′(N)

2H(N)
+
ξ(N)R′(N)

2H(N)2
+

Ψ′1(N)

Ψ1(N)
+
ω′′(N)

2ω′(N)

=
1

4

(
1

ζ(N)
+
λ(N)2

3

)
Φ3(N)

Ψ1(N)ω′(N)
, (5.35)

in which the other terms:(
3 +

ε(N)

2
+ 3

H ′(N)

H(N)

)
Φ3(N)

Ψ1(N)ω′(N)
(5.36)

have been discarded as being of smaller value.
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Since 1/ω′(N) ∼
√
ζ(N) , we can see from (5.35) that Φ3(N)/Ψ1(N) is of order

ζ(N)ω′(N) ∼
√
ζ(N) so that the terms in (5.34) are of order ζ(N)ω′(N)2 ∼ 1

and need not appear in (5.33).

Equating (5.32) and (5.33), gives Φ1(N) = −Ψ1(N) or

(1/ζ(N) + λ2(N)/3) Φ1(N) = (1/ζ(N)− λ2(N)/3) Ψ1(N). The second of these

gives ω′(N) = 0, which we reject, while the former gives

ω′(N) =
1√
ζ(N)

. (5.37)

We already have the cosine component of (5.26) as (5.35). The cosine compo-

nent of (5.27) gives,

3

2
+
H ′(N)

2H(N)
+

Ψ′1(N)

Ψ1(N)
+
ω′′(N)

2ω′(N)
=

1

4

(
1

ζ(N)
+
λ(N)2

3
− 2ω′(N)2

)
Φ3(N)

Ψ1(N)ω′(N)

=
1

4

(
− 1

ζ(N)
+
λ(N)2

3

)
Φ3(N)

Ψ1(N)ω′(N)
. (5.38)

The term ξ(N)R′(N)/ (2H(N)2) of equation (5.35) varies from O(ζ(N)) at early

times to O(10−1), today, say, so should not be discarded.

From (5.35) and (5.38), it is deduced that

Φ3(N) =
√
ζ(N) Ψ1(N)

ξ(N)R′(N)

H(N)2
, (5.39)

Ψ1(N) = Ψ1(Ni)e
−3(N−Ni)/2

√
H(Ni)

H(N)

(
ζ(N)

ζ(Ni)

)1/4

e−ν(N), (5.40)

where ν(N) =

∫ N

Ni

(
1− λ(n)2ζ(n)

3

)
ξ(n)R′(n)

4H(n)2
dn. (5.41)

Ni is some initial value for N . For much of the history of the Universe, e−ν(N)

is close to 1 and increases very slowly. For example, for Erf Model 1, with

k = 0.1hMpc−1, it rises from around unity at z = 1 to achieve a value of 1.14,

today. When k = 0, today’s value rises with this model to around 1.22.

Thus, there are oscillations from some early time in the matter era, to date,

with frequency approximated by equation (5.37). Oscillations at early time have
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been studied by Song et al. in [119] and Starobinsky in [78]. Starobinsky looked

at the oscillating nature of R, at high curvatures only, and concluded that it

possessed an oscillating component with a frequency equivalent to 1/
√
ξ(N) but

the amplitude of these oscillations grew into the past. The same effect has been

studied in [120] and is discussed further in Chapter 6.

5.3.2 Non-oscillatory solution

The non-oscillatory terms of Φ(N) and Ψ(N) are expressed in terms of two non-

oscillatory functions, respectively, of N as

Φn(N) =

(
1

ζ(N)
− λ(N)2

3

)
ζ(N)Φ0(N) + ζ(N)Φ2(N), (5.42)

Ψn(N) =

(
1

ζ(N)
+
λ(N)2

3

)
ζ(N)Ψ0(N) + ζ(N)Ψ2(N). (5.43)

The reason for the rather complicated looking coefficients of Φ0(N) and Ψ0(N)

is to simplify the relation between Φ0(N) and Ψ0(N) , as will be seen.

Applying these expressions to (5.26) and (5.27) and adopting a series approach,

gives Φ0(N) = Ψ0(N) satisfying

Ψ′′0(N) +

(
4 +

H ′(N)

H(N)

)
Ψ′0(N)

−
[
λ(N)2ζ(N)

(
2 +

H ′(N)

H(N)

)
+ ε(N)

(
1 +

2λ(N)2ζ(N)

3

)]
Ψ0(N) = 0,

(5.44)

which is algebraically soluble when |λ(N)2ζ(N)| � 1 and |ε(N)| � 1. Under

ΛCDM, (5.44) is the same as equation (5.19).

From (5.26), an expression for
(

1 + λ(N)2

3
ζ(N)

)
Φ2(N)−

(
1− λ(N)2

3
ζ(N)

)
Ψ2(N)

(see equation (5.52)) is found in terms of Ψ0(N) and derivatives. Note that this

approximates to Φ2(N) − Ψ2(N) at early times but could be markedly different

at late times.



5.3. Approximating algebraic solutions 117

There is another expression, a complicated second order differential equation

for Φ2(N) and Ψ2(N), which is obtained from (5.27). It is not symmetric in

Φ2(N) and Ψ2(N) and, even with the use the expression above in terms of Φ2(N)

and Ψ2(N), it could only be solved numerically. If we wanted to solve these

equations for Φ2(N) and Ψ2(N), separately, we run into the problem that we

can no longer assume ζ(Ni) = 0 because, in the expressions for Φ(N) and Ψ(N),

equations (5.28) and (5.29), Φ2(N) and Ψ2(N) appear as multiples of ζ(N). It

therefore seems better, instead of showing x(N) = Φ(N) − Ψ(N), as [79] does,

to show x(N) = (1 + λ(N)2

3
ζ(N))Φ(N) − (1 − λ(N)2

3
ζ(N))Ψ(N); see (5.54). This

approximates to Φ(N)−Ψ(N) at early times and means that contributions from

Φ2(N) and Ψ2(N) can be shown in the algebraic expression for x(N).

5.3.3 The combined algebraic solution

Putting the independent solutions from subsections 5.3.1 and 5.3.2 together gives

a suggested algebraic solution to equations (5.26) and (5.27), up to O(ζ(N)), as

Φ(N) = −Ψ1(N) sinω(N) + Φ3(N) cosω(N),

+

(
1

ζ(N)
− λ(N)2

3

)
ζ(N)Ψ0(N) + ζ(N)Φ2(N), (5.45)

Ψ(N) = Ψ1(N) sinω(N),

+

(
1

ζ(N)
+
λ(N)2

3

)
ζ(N)Ψ0(N) + ζ(N)Ψ2(N), (5.46)

ω(N) =

∫ N

Ni

1√
ζ(n)

dn+ ω(Ni), (5.47)

Φ3(N) =
√
ζ(N) Ψ1(N)

ξ(N)R′(N)

H(N)2
, (5.48)

ν(N) =

∫ N

Ni

(
1− λ(n)2ζ(n)

3

)
ξ(n)R′(n)

4H(n)2
dn, (5.49)

Ψ1(N) = Ψ1(Ni)e
−3(N−Ni)/2

√
H(Ni)

H(N)

(
ζ(N)

ζ(Ni

)1/4

e−ν(N), (5.50)
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in which Ni is a constant. Ψ0(N) solves

Ψ′′0(N) +

(
4 +

H ′(N)

H(N)

)
Ψ′0(N)

−
[
λ(N)2ζ(N)

(
2 +

H ′(N)

H(N)

)
+ ε(N)

(
1 +

2λ(N)2ζ(N)

3

)]
Ψ0(N) = 0.

(5.51)

The expression for
(

1 + λ(N)2

3
ζ(N)

)
Φ2(N)−

(
1− λ(N)2

3
ζ(N)

)
Ψ2(N), denoting

λ(N)2ζ(N)/3 by lz(N), is

2 [1 + lz(N)] Ψ′′0(N) +

[
2 (1 + lz(N))

(
3 +

H ′(N)

H(N)

)
+ 4lz′(N)

]
Ψ′0(N)

−
[
4 (1 + 4lz(N))

(
2 +

H ′(N)

H(N)

)
+ 4ε(N) (1 + 2lz(N))

]
Ψ0(N)

+

[
2lz′(N)

(
3 +

H ′(N)

H(N)

)
+ 2lz′′(N)

]
Ψ0(N). (5.52)

Because this is the only tractable connection between Φ2(N) and Ψ2(N) and

to emphasise the oscillations by removing Ψ0(N), we consider the “difference”

between Φ(N) and Ψ(N), x(N), as already mentioned, above, by defining it as

x(N) =

(
1 +

λ(N)2

3
ζ(N)

)
Φ(N)−

(
1− λ(N)2

3
ζ(N)

)
Ψ(N) (5.53)

At early times, λ(N)2ζ(N)� 1, so, then, x(N) ∼ Φ(N)−Ψ(N).

We define y(N) to be the sum of Φ(N) and Ψ(N). In it, we ignore any contri-

bution from Φ2(N) and Ψ2(N) because y is dominated by Ψ0(N), which approx-

imates to −1, and they are suppressed by the factor ζ(N).

In terms of their various components, x(N) and y(N) are given by

x(N) = −2Ψ1(N) sinω(N) +

(
1 +

λ(N)2

3
ζ(N)

)
ζ(N)Φ2(N)

−
(

1− λ(N)2

3
ζ(N)

)
ζ(N)Ψ2(N), (5.54)

y(N) = Φ3(N) cosω(N) + 2Ψ0(N). (5.55)

We now go on to apply initial conditions to these at some value of N we call Ni.
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5.3.4 Applying initial conditions to the algebraic approx-

imation

We apply the initial conditions at N = Ni at which time we assume there to be

only slight deviation from ΛCDM, for which ΦΛ(N) = ΨΛ(N) and Φ′Λ = 0. Here,

ζ(N) ∼ 0 so that x(N) ∼ Φ(N)−Ψ(N) and Φ3(N) ∼ 0. y(N) = Φ(N)+Ψ(N) ∼

2Ψ0(N). Near N = Ni , let Φ(N) = ΦΛ(N) + δΦ and Ψ(N) = ΦΛ(N) + δΨ. At

N = Ni,

x(Ni) = Φ(Ni)−Ψ(Ni) (5.56)

= δΦi − δΨi. (5.57)

To keep things simple, we’ll choose the phase of the oscillations so that x(Ni) = 0

but let us choose Ni to be so early that we may consider , δΦi = δΨi = 0. Let

x′(Ni) = x′i. y(Ni) = 2ΦΛ(Ni) = 2Φ0(Ni) ≈ −2 and y′(Ni) = 0.

x′i = δΦ′i − δΨ′i, (5.58)

yi = 2ΦΛ(Ni) + δΦi + δΨi, (5.59)

⇒ 0 = 2Φ′Λ(Ni) + δΦ′i + δΨ′i. (5.60)

Thus, δΦ′i = −Φ′Λ(Ni)+x′i/2 and δΨ′i = −Φ′Λ(Ni)−x′i/2 and the initial conditions

are

Φ(Ni) = ΦΛ(Ni), (5.61)

Ψ(Ni) = ΦΛ(Ni), (5.62)

Φ′(Ni) = x′i/2, (5.63)

Ψ′(Ni) = −x′i/2. (5.64)

The values for ΦΛ(N) and ΨΛ(N) can be found at N = Ni by solving the ΛCDM

equations of subsection 5.2.1.

We choose the value of Ni to be the value at which we can reliably start the

iterations which solve the original field equation, (1.75), for whichever model we
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are using. For values of N < Ni, F (R) is so close to ΛCDM that the difference

in not discernible although the oscillations are suppressed into the past. They

increase in frequency but their amplitude, given by Ψ1(N) in (5.50), dies away

to zero.

Applying the initial conditions to the algebraic solution gives

ω(Ni) = 0, Ψ1(Ni) = −x′i
√
ζ(Ni) /2, Φ0(Ni) = ΦΛ(Ni) and Φ′0(Ni) = 0. The

value of Φ3(Ni) will be taken to be as defined by (5.48). This makes Ψ1(N), as

specified in (5.50), become

Ψ1(N) = −x
′
i

2
e−3(N−Ni)/2

√
H(Ni)

H(N)
ζ(Ni)

1/4ζ(N)1/4e−ν(N). (5.65)

From (5.54), the amplitude of the oscillations in x(N) is 2Ψ1(N).

5.4 Algebraic and numerical solutions compared

In this section we take three values of k for Erf Model 1 (subsection 3.2.1) and

compare the algebraic solutions of (5.54) and (5.55) to the equivalent solutions

found by solving equations (5.26) and (5.27), numerically.

The values of k we choose, to demonstrate the accuracy of the algebraic solu-

tions in relation to the numerical solutions, are k = 0.1hMpc−1, k = 0.01hMpc−1

and k = 0. For demonstration purposes in order to make the oscillations stand

out, x′i is initially taken to be 10 but is reduced to 1 in subsection 5.4.1 to see

what effect that has. In all the graphs it should be remembered that they show

a history and that today is represented by N = 0.

It should also be borne in mind that the amplitude today, for a given model,

depends not only on the value of x′i but also in the the value of Ni at which the ini-

tial conditions are applied. In practice, it is unrealistic to apply initial conditions

at z = 1000 as is stated in [79] “when the deviations from GR are small”. At this
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early value of z, however, the oscillation frequency will be extremely high then;

computing facilities would not be able to cope. In this thesis, initial conditions

are applied at a value of Ni so that the algebraic and numeric solutions can be

compared fairly. However, it should be noted that the earlier initial conditions

are applied, the smaller will be the amplitude of the oscillations, today. Putting

N = 0 into the expression for the amplitude of oscillations of x(N), derived from

(5.65), gives for the amplitude, today, of oscillations

x′i e
3Ni/2

√
H(Ni)

H0

ζ(Ni)
1/4ζ

1/4
0 e−ν0 (5.66)

= x′i e
3Ni/4ζ(Ni)

1/4 (Ωm,0 ζ0)1/4 e−ν0 , (5.67)

and e3Ni/4ζ(Ni)
1/4 is smaller the earlier Ni is. This is because, at early times,

3H(N)2 ≈ R(N) and FR(R(N)) ≈ 1, and, using (5.25) and (5.22), ζ(N) ≈

ξ(N) ≈ R(N) fRR(R(N)) ∝ e−3NfRR(R(N)) so that e3Ni/4ζ(Ni)
1/4 ∝ [fRR(R(Ni))]

1/4.

An earlier value of Ni gives a smaller value of fRR(R(Ni)). We have discounted

any changes in ν0, see (5.49), as ν(N) is close to zero for much of its history.

5.4.1 k = 0.1hMpc−1

We present the full range solutions, first, the algebraic solution in Figure 5.3 and,

secondly, the numerical solution in Figure 5.4. The corresponding solutions for

y(N) are given in Figure 5.5.

While Figures 5.3 and 5.4 look very similar there are some differences. The

main difference is that, when trying to plot the algebraic solution for x(N), it

was impossible to compute
∫ N
Ni

1/
√
ζ(n) dn for a sufficient number of values of

N in the range Ni ≤ N ≤ 0, so an interpolating function had to be used. While

this function agrees with
∫ N
Ni

1/
√
ζ(n) dn , initially, its derivative does not always

do so which makes the frequencies, and therefore the phase, appear to disagree

slightly as N increases. Fortunately these differences remain relatively small, as

is discussed, below, and illustrated in Figure 5.6.
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Figure 5.3: Algebraic solution, (5.54), for Erf Model Model 1 for k = 0.1hMpc−1.

numeric
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Figure 5.4: Numerical solution, as defined by (5.53), of equations (5.26) and (5.27)

for Erf Model 1, for k = 0.1hMpc−1.
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Figure 5.5: Algebraic and numeric solutions, y(N) = Φ(N) + Ψ(N), where Φ(N) and

Ψ(N) solve equations (5.26) and (5.27), for Erf Model 1, for k = 0.1hMpc−1. There

is close agreement between the two solutions for much of the history of the Universe

but, at later times, some separation is evident.
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Figure 5.6: Comparison between algebraic and numeric solutions for x(N) for Erf

Model 1 when k = 0.1hMpc−1 formed by overlaying them. That is, in (a) and (b),

both algebraic and numeric solutions for x(N) are plotted. (a) shows −1.56 < N < 1.5

while (b) shows 1.5 < N < 1.0. On these scales, the respective frequencies seem to be

very close, as do the envelopes.
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Figure 5.6 shows that the envelopes of the algebraic and numeric solutions are

very similar as are the frequencies. Note that these graphs do not go right down

as far as Ni. If we can assume the frequency is represented by 1/
√
ζ(N) and the

phases agree at N = N i, then the phase at all times is represented by

ω(N) =

∫ N

Ni

1√
ζ(n)

dn. (5.68)

It is unfortunate that, because of the very large value of 1/
√
ζ(N) at early times,

sine and cosine of ω(N) cannot be fairly computed for all values of N and that

an approximation has to be used in order to plot the algebraic graphs. This

introduces errors as shown in Figure 5.7(a) which shows the fractional difference

between the the frequency represented by 1/
√
ζ(N) and the approximating func-

tion; showing how closely they agree. Fractional differences when the frequency

is high are to be expected. Fortunately, the disagreement is not large as can be

seen from Figure 5.6. Since the disagreement in Figure 5.7(a) occurs at the same

value of N as that in Figure 5.7(b) and noting the general agreement between the

two pairs of curves in Figure 5.6, it seems reasonable to suppose that 1/
√
ζ(N)

does represent a good approximation to the oscillation frequency at any time.

Figure 5.8 shows how the frequency, as represented by 1/
√
ζ(N) , changes with

N . Initially, it is very high but falls to a minimum (in this case at around

N = −1.35) which corresponds to z ≈ 2.9 whereafter it increases to a local

maximum at N ≈ −0.7 (z ≈ 1).

The value x′i = 10 was chosen to make the oscillations highly visible. Let us

now see what the effect of reducing its value to unity is. See Figure 5.9. The

amplitude of the oscillations will be reduced but should enable the underlying

structure to be seen more clearly.

We see that the strange “jump” in the region −1.5 < N < −1.4 is still there.

It is clear that it is due to non-oscillating term in (5.54), namely,

ζ(N)

[(
1 +

λ(N)2

3
ζ(N)

)
Φ2(N)−

(
1− λ(N)2

3
ζ(N)

)
Ψ2(N)

]
(5.69)
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Figure 5.7: (a) The relative difference between frequency, in terms of the simpli-

fying interpolating function used to plot the algebraic curves, and the frequency as

represented by 1/
√
ζ(N) . (b) The difference between the algebraic solution, using

an interpolating function for the phase of the sinusoidal components, and the numeric

solution against N for Erf Model 1 when k = 0.1hMpc−1. The spike in the relative

frequency just before N = −1.4 has introduced a phase difference which makes ∆x

sinusoidal. Fortunately, the effect is small. Ni = −1.609.

-1.5 -1.0 -0.5
N

1

2

3

4

-log10 Ζ@ND

(a)

-1.4 -1.2 -1.0 -0.8 -0.6 -0.4 -0.2
N

205

210

215

220

225

1� Ζ@ND

(b)

Figure 5.8: How the frequency of the oscillations changes with N for Erf Model 1

when k = 0.1hMpc−1.
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Figure 5.9: Model 1: The equivalent of Figures 5.3 and 5.4 with k still being

0.1hMpc−1 but x′i changed from 10 to 1.

and shows up clearly in Figure 5.11(a). While the jump depends to some extent

on the common factor, ζ(N), it also depends heavily on the multiple of ζ(N) in

(5.69), as there is a change of sign involved. As is stated in subsection 5.3.2,

this multiple depends on Ψ0(N). Looking at the evolution of Φ(N) and Ψ(N)

separately gives a jump at the right place in the difference between them, as

shown in Figure 5.10. The difference in Φ(N) and Ψ(N) is not maintained in

F HNL

Y HNL

-1.5 -1.0 -0.5 N

-1.4

-1.2

-1.0

-0.8

-0.6

-0.4

-0.2

FHNL, YHNL

Figure 5.10: Model 1: The numeric solutions for Φ(N) and Ψ(N) when k =

0.1hMpc−1 and x′i = 10. The scale of the graphs makes the oscillations barely vis-

ible.

x(N) because, as can be seen from (5.53), while x(N) ≈ Φ(N)−Ψ(N), initially,

it becomes closer to 2 (2Φ(N)−Ψ(N)) /3 as ζ(N) ∼ 1/λ(N)2, at later times.
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The oscillating component of x(N) is shown in Figure 5.11(b) with x′i = 1. It

proportional to x′i and depends on the value of k. The non-oscillating compo-

nent is independent of x′i but does depend on k. Both components are model

dependent.
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Figure 5.11: Model 1: For the algebraic solution, (a) shows the non-oscillating com-

ponent of x(N). (b) shows the oscillating component of x(N) when x′i = 1. Both are for

Erf Model 1 when k = 0.1hMpc−1. The two components combine to give Figure 5.9(a).

5.4.2 k = 0.01hMpc−1

With a smaller value of k, we see larger discrepancies between the algebraic and

numeric solutions appear than when k was ten times larger. This is as expected

and as discussed in subsection 5.3.1. Algebraic and numeric solution curves for

x(N) are shown in Figure 5.12 with detail in Figure 5.13. In these graphs we

see how the effect of a much smaller value of k manifests itself by showing the

algebraic solution at later times to be insufficient. The corresponding solutions

for y(N) are given in Figure 5.14.

How the frequencies vary, again as represented by 1/
√
ζ(N) and to compare

with Figure 5.8, is shown in Figure 5.15. Cursory measurement of the last four

wavelengths of Figure 5.12 confirms, as N increases above N = −1.2, the fre-

quency continues to fall, then rises a little and then falls, as shown in Figure 5.15,

but that the mean frequency for N > −1.4 is overestimated by around 4%.
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Figure 5.12: Algebraic and numerical solutions for x(N) for Erf Model 1, when

k = 0.01hMpc−1 and x′i = 10 . Close agreement between the two solutions is now

prior to N = −1.4. 1/
√
ζ(N) remains a fair estimate of the oscillation frequency at

later times.

numeric

algebraic

-1.55 -1.50 -1.45 -1.40
N

-0.004

-0.003

-0.002

-0.001

0.001

0.002

0.003
x

Figure 5.13: Detail of Figure 5.12 for N < −1.4, showing good agreement almost up

to then and where the two curves diverge.
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Figure 5.14: Algebraic and numeric solutions for y(N)=Φ(N) + Ψ(N), for Erf Model

1, when k = 0.01hMpc−1. Compare Figure 5.5.
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Figure 5.15: How the frequency of the oscillations changes with N for Erf Model

1 when k = 0.01hMpc−1. It can be seen how the local minimum and maximum of

Figure 5.8 are being eroded.
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At later times, when N > −1.2, say, the frequency is around two orders of

magnitude lower than when k = 0.1hMpc−1 and x′i = 10.

The graphs equivalent to those shown in Figure 5.11 are shown in Figure 5.16.

x′i = 1 so as to compare them.
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Figure 5.16: For the algebraic soution, (a) shows the non-oscillating component of

x(N). (b) shows the oscillating component of x(N) when x′i = 1. Both are for Erf

Model 1 when k = 0.01hMpc−1.

5.4.3 k = 0

The algebraic and numeric solution curves when k = 0 for Erf Model 1 are

included, as Figures 5.17 and 5.18, just to see how the disagreement between the

two types of solution continues. The corresponding solutions for y(N) are given

in Figure 5.19.

With k = 0, the frequency, as represented by 1/
√
ζ(N) , continuously falls as

N increases. How it does so is shown in Figure 5.20.

The graphs equivalent to those shown in Figures 5.11 and 5.16 are shown in

Figure 5.21. Again, x′i = 1.

It is clear from all the graphs for x(N) that, for values of N less than some value,

say −1.5, for the Erf Model 1, that the expression for x(N) can be simplified for
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Figure 5.17: Algebraic and numerical solutions for x(N) for Erf Model 1, when k = 0

and x′i = 10. Again, For N > −1.4, say, the frequency of the oscillations of the algebraic

solution does seem to be slightly larger than for the numeric one.
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Figure 5.18: Detail of Figure 5.17 for N < −1.3.
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Figure 5.19: Algebraic and numeric solutions for y(N)=Φ(N) + Ψ(N), for Erf Model

1, when k = 0.
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Figure 5.20: How the frequency of the oscillations, as represented by 1/
√
ζ(N) ,

changes with N for Erf Model 1 when k = 0. The erosion of the local minimum and

maximum of Figure 5.8 is complete.
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all values of k. At early times, the non-oscillating component of x is suppressed

by the factor ζ(N) leaving x(N) to be virtually sinusoidal, namely,

x(N) ≈ −2Ψ1(N) sinω(N) (5.70)

where Ψ1(N) is defined in (5.65).
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Figure 5.21: For the algebraic soution, (a) shows the non-oscillating component of

x(N). (b) shows the oscillating component of x(N) when x′i = 1. Both are for Erf

Model 1 when k = 0.

5.4.4 Algebraic and numeric solutions for x(N) compared

for other models of chapter 3.

Before we leave this topic we should see how the results compare for the other

models studied in this thesis. Thus we shall consider the comparison between the

algebraic and numeric solutions for Models 2, 4 and 5 of Chapter 3. We shall

assume x′i = 1 and k = 0.1hMpc−1 for all of them.

5.4.4.1 Model 2

This is from the Erf model with parameters Λ∞ = 2H2
0 , c = 1.5 and log10 b =

−0.914. It is located in the de Sitter region of the contour plot, Figure 3.4.
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Figure 5.22: Algebraic (a) and Numeric solutions (b) for x(N) for Model 2 when

k = 0.1hMpc−1 and x′s = 1. Slight differences in the oscillation amplitude are apparent.

Considering how closely f(R) (Figure 3.1) cleaves to −2Λ∞ until very recently,

it is worth noting that the jump is still present. Some slight differences in oscil-

lation amplitude, especially at around N = −0.8, are becoming visible.

5.4.4.2 Model 4

This is from the AB model with parameters Λ∞ = 1.92H2
0 , b = 1.2. It is located

in the de Sitter region of the contour plot, Figure 3.10.
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Figure 5.23: Algebraic (a) and Numeric solutions (b) for x(N) for Model 4 when

k = 0.1hMpc−1 and x′s = 1. There is no noticeable difference between the two. The

corresponding graphs for y are also indistinguishable on these plotting scales.
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5.4.4.3 Model 5

This is from the HSS model with parameters n = 6, Λ∞ = 1.2H2
0 , log10 c = −2.34.

It is located in the Minkowski region of the contour plot, Figure 3.17.
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Figure 5.24: Algebraic (a) and Numeric solutions (b) for x(N) for Model 5 when

k = 0.1hMpc−1 and x′s = 1. There is reasonable agreement.

5.4.5 Comment

As is obvious from the graphs, above, there are differences between the algebraic

and numeric solutions but these are small, to first order in ζ(N). The differences

become more marked the smaller k is. Recall that ζ(N) = 1/ [1/ξ(N) + λ(N)2].

If ζ(N) is not sufficiently small then more terms would be needed in the algebraic

expression for x(N) and y(N) than are actually used. At early times, ξ(N) is

very small but rises with N , as we have seen. That leaves λ(N) to be “large”

when this happens. λ(N) = k/ (aH(N)) = k e−N/H(N) so the larger the value

of k the more easily this requirement is fulfilled.

It is noticeable from the graphs how reasonably accurate is 1/
√
ζ(N) as an

estimator of the true frequency of the oscillations, even at later times. It does

seem to be less accurate, however, the smaller k is. It is also noticeable how

the frequency at later times, say at N = −1, decreases as k decreases. At early

times, the frequency depends mainly on the value of ξ(N) which is a function
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of the model only. In the case of k = 0, since ζ(N) = ξ(N), and since ξ(N)

increases with N , then the frequency of oscillations decreases with N , given that

1/
√
ζ(N) remains a valid estimator of the oscillation frequency.

The jump in x(N), evident when k 6= 0 for N > −1.5, is caused by the non-

oscillating component of x(N) and the effect seems to increase in amplitude and

also spread out as k becomes smaller. Figure 5.25 shows the equivalent graphs to

those of Figures 5.11, 5.16 and 5.21 but with k = 0.005hMpc−1. One could also

claim, for a particular model, that the jump is moving to smaller values of N .

-1.5 -1.0 -0.5
N

-0.01

0.01

0.02

0.03

0.04

xnon-os

(a)

-1.5 -1.0 -0.5
N

-0.0005

0.0005

xos

(b)

Figure 5.25: For the algebraic soution, (a) shows the non-oscillating component of

x(N). (b) shows the oscillating component of x(N) when x′i = 1. Both are for Erf

Model 1 when k = 0.005hMpc−1.

5.5 Conclusion

This was an attempt to gain some insight into the size and nature of the os-

cillations in the perturbed FRW metric. In all fairness one could say there has

been partial success with very good accuracy when k is large and of the order

of 0.1hMpc−1, or higher. Over a wide range, that is, throughout the matter era

from equality right up to the present time in the vacuum era, the frequency of

the oscillations is well represented by 1/
√
ζ(N) . This contrasts with Starobinsky

in [78] and also Appleby in [101] who restricted themselves to the early matter
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era, where R ∝ a−3, and considered the oscillations inherent in δR; see (5.11)

which were termed δRosc. It was found that the frequency of these oscillations

was, in effect1, the same as 1/
√
ξ(N) which is what 1/

√
ζ(N) reduces to at

early times, as has been discussed. However, the amplitude of the oscillations de-

creases with time but becomes unbounded as R→∞. However, before that can

happen, as R grows into the past, the conditions for the validity of the defining

differential equation (equation (13) in [78]) are broken. It is clear, from that dif-

ferential equation, that FRR(R)→ 0 implies that δRosc → 0. At high curvatures,

FRR(R)→ 0 as R increases further, when F (R) gravity becomes more and more

indistinguishable from ΛCDM.

At early times, in the matter era, the amplitude of the oscillations, as rep-

resented in (5.45) and (5.46), is proportional to e−3N/2/
√
H(N) ξ(N)1/4, which

itself is proportional to R1/4 [RFRR(R)]1/4 and decreases into the past. In other

words, as N increases from Ni, the amplitude of the oscillations, as specified by

|Ψ1(N)| in (5.65), increases and continues to do so until λ(N)2 ∼ 1/ξ(N) when

what happens next depends on the value of k. If k = 0, the amplitude continues to

increase, as is shown in Figure 5.17. For larger k, the amplitude starts to decrease,

as is illustrated in Figure 5.12 when k = 0.01hMpc−1 and in Figure 5.4 when

k = 0.1hMpc−1. This a complicated effect and deserves more study. It depends

on the tension between e−3N/2, which decreases, between e−ν(N)/
√
H(N) , which

increases, and between ζ(N), which rises, falls and rises again, as N increases.

A feature which has not been seen before is the “jump” in x(N) which origi-

nates from the non-oscillatory solution. As k decreases, the cross-over value of

N2 increases and the numerical values of the local maximum and minimum on

either side of it also increase. The jump is, however, the result of the way x(N)

is constructed and due to the sudden divergence between Φ(N) and Ψ(N), as

1They considered functions of time.
2The value of N where x(N) = 0 between the negative local minimum and positive local

maximum of the non-oscillating component of x(N).
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explained in subsection 5.4.1. Had merely the difference, Φ(N) − Ψ(N), been

plotted rather than the expression for x(N) of (5.53) then this jump, now a step,

would have been missed and the oscillations rendered invisible as Figure 5.26(a)

shows.
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0.00007
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(b)

Figure 5.26: Erf Model 2: Both graphs show both the numeric and algebraic solutions,

Φ(N) − Ψ(N), superimposed on one another, for different ranges of N . Differences

between the algebraic and numeric graphs are indiscernible. In (a), which shows the

full range of N , the oscillations are invisible but the restricted range of (b) shows them

and also how the mean value of Φ(N)−Ψ(N) is increasing with N . The range of (b)

is of necessity restricted; a larger range renders the oscillations to be much less visible

because the algebraic and numeric graphs become steeper and, reducing the values of N

shown, means that the frequency becomes too large to be manageable. k = 0.1hMpc−1

and x′s = 1.

How large the oscillations could be, today, with any model, is debatable. If

the initial conditions are applied at around z = 1000, for which Ni ≈ −7, and

ζ(N) and the amplitude of the oscillations can be detected if they are of order

α, today, then we must have x′i ζ(Ni)
1/4 ∼ α104.5/ζ(N0)1/4 ∼ 106α, say, or larger,

which may or may not be realistic. If not then the oscillations are invisible. In

other words, the smaller ζ(Ni) is, the larger must be x′i. At the very outside for

all models, because of the Solar System constraint, ζ(Ni)� 10−23, see Chapter 3,

section 3.2.1 (3.5), so it is quite likely that ζ(Ni) will be considerably smaller.
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Thus a first attempt at quantifying the matter perturbations has been made

for all times in the post-radiation era. A brief comparison between this and work

done on perturbing the Ricci scalar by Starobinsky [78] and by Appleby, Battye

and Starobinsky [101], now follows.

5.5.1 Oscillations in δR

The oscillations in Φ and Ψ are the same as those found by authors who studied

perturbations of the Ricci scalar at high curvature. The result, as quoted in [101]

is

δR = Ca−3/2 [FRR(RGR)]−3/4 sin

[∫
1√

3FRR(RGR)
dt

]
, (5.71)

where C is a constant. This translates, using RGR = R = 3H2, R ∝ a−3,

ζN ≈ ξ(N) ≈ 3H2FRR(R), so that R now represents the non-oscillating part of

R, for simplicity, and dN/dt = H, into

δR = D
√
R [FRR(R)]−3/4 sin

[∫
1√
ζ(N)

dN

]
, (5.72)

where D is a constant. Using just the significant oscillatory components at high

R for Φ(N) and Ψ(N), namely,

Ψ(N) = A
e−3N/2ζ(N)1/4√

H(N)
sin

[∫
1√
ζ(N)

dN

]
(5.73)

= −Φ(N), (5.74)

where A is a constant, and substituting these expressions for Φ(N) and Ψ(N)

into the expression for δR in equation (5.11), gives as the most significant term

δR = −2A
√
R [FRR(R)]−3/4 sin

[∫
1√
ζ(N)

dN

]
. (5.75)

on the assumption that (k/a)2 Ψ(N) is not significant and that 0 < FRR(R) �

1/ (n2R) given that, at high R, fR(R) can be described by (4.16). There is

agreement.
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Chapter 6

Conclusions

6.1 Summary

This thesis is concerned with attempting to solve, often algebraically, some of

the equations which result after modifying gravity by replacing the Ricci scalar,

R, by F (R) in the action represented by equation (1.47). There has been a

good deal of success especially when one considers how complicated some of the

equations are. The areas looked at were: finding all F (R) for which the Universe

has a standard Einstein Gravity expansion history; introducing a new model and

exploring, for given Ωeff,0, how extreme the present value of the effective equation

of state parameter, weff,0, for this model, the AB model and the HSS model could

become; proving that the effective equation of state parameter for F (R) models

that tend to standard Einstein Gravity at high curvature must lie below the

phantom divide and continue to decrease throughout the radiation era and some

of the matter era; finding expressions for the oscillations of potentials Φ and Ψ

in the Newtonian gauge induced by perturbing the FRW metric.

141
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6.1.1 Models with standard Einstein Gravity expansion

history

The expansion of the Universe is measured by the scale factor a for which ȧ > 0

as it expands. The Hubble parameter, H = ȧ/a, the fractional rate of expansion,

is used to define the expansion history of the Universe. Standard Einstein gravity

has an expansion history given by equation (2.2), in which Λ is the cosmological

constant. The corresponding curvature at any value of a is given by equation

(2.3). The complete solutions for F (R) in the matter and vacuum eras are given,

as infinite power series, by equation (2.13), when R > 4Λ, and also at late time,

when 4Λ ≤ R ≤ 5Λ by (2.23); today is at R0 ≈ 4.4Λ. Application of the various

constraints suffered by F (R) models, of which the Solar System constraint is the

severest, restricts the coefficients of these solutions to such an extent that they

are barely discernible from the standard Einstein Gravity model, F (R) = R−2Λ.

In section 2.3, a series solution was found for F (R) in the radiation era but,

because of the very large value of R/Λ, we need only concern ourselves with the

solution F (R) = R + AΛρ0 (R/Λ)4/3. Constraints limit Aρ0 such that

0 ≤ Aρ0 � 10−25.

Concern has been shown in, for example, [78, 101] about the singularity in the

scalaron mass which occurs in cases where F (R) tends to R− 2Λ as R→∞; the

scalaron mass tends to infinity and can be very large at relatively low values of

R. An attempt has been designed to alleviate this problem by adding the term,

R2/ (6M2), to F (R), where M is some large mass scale. In [101], for example,

it is stated that if the quadratic term is to drive inflation then M ∼ 1012 GeV'

1054H0. This term is only significant at very high curvatures but limits the

scalaron mass to being of the order of M when the term is significant. While not

alleviating the problem, the solution F (R) = R+AΛρ0 (R/Λ)4/3 gives a scalaron

mass of order of R at high curvature.
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6.1.2 Extreme values generated by F (R) models

In Chapter 3, a new model, based on the error function and which we have

termed the Erf model, was used. The idea behind it was that we wished to

generate values of weff,0 which were further from the phantom divide than other

models in use. We needed a model which stuck closely to standard Einstein

Gravity as z decreased until comparatively recently, when z is of the order of a

few and when weff would still be very close to −1, and then swing away sharply

to give relatively larger values of |1 + weff,0| than had been seen before. The close

adherence to the phantom divide was necessitated by the stringent requirement

of the Solar System constraint. The Erf model was compared to the AB and HSS

models. In the past, restrictions on the parameters of a model caused by the

possibility of there being a late time de Sitter attractor solution, RdS, for which

RdS = 12H2
dS, have produced relatively small values of |1 + weff,0|. This was

discussed for each model and showed how allowing late-time Minkowski solutions

could greatly extend the range of |1 + weff,0|. We argued that, should there be

a problem beyond today, we could amend the particular F (R), by re-defining it

for the future, so that any problems caused by having a Minkowski solution are

evaded. For example, the HSS model has a problem with FRR(R) becoming zero

and going negative at some time in the future but it is generally saved by having

de Sitter attractor solutions.

One constraint that was applied to all models was that we insisted that to-

day’s value of the effective dark energy density parameter, Ωeff,0, was the same

token value of 0.7. Because weff,0 and R0 are connected by the relation, R0 =

3H2
0 (1− 3weff,0Ωeff,0), extreme values of weff,0 generate extreme and, therefore,

unrealistic values of R0, that is, outside the range for R0 given in section 3.2.

However, we never allowed R0 to go negative.

This aspect of F (R) gravity, of finding extreme values of measurable parameters

given certain constraints, is most interesting and points a way forward. See
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section 6.2.

6.1.3 Theorem

It is noticeable that, for all examples of F (R) models which have the property of

tending to standard Einstein Gravity as R → ∞, graphs show weff falling below

the phantom divide, as z decreases, and they continue to do so until they return

to cross the phantom divide in the recent past, now or, maybe, in the near future.

This has been discussed in relation to specific models in [47, 49, 68, 97]. It is one

property of F (R) gravity which may distinguish it from other types of model and

certainly from quintessence.

By assuming that f(R), where F (R) = R + f(R), can be approximated by

−2Λ + µ0a
n where µ0 is a positive constant and n is a very large number, we

prove the first part of this, namely that as a increases from 0, weff decreases

from −1 and continues to do so until the expression for f(R) ceases to be valid.

Because n is very large, which it has to be because of the Solar system constraint,

this will happen at a value of R within the matter or vacuum eras. To show that

weff then reaches a local minimum would require more knowledge of how f(R)

evolves with time.

6.1.4 Oscillations of the potentials of the perturbed FRW

metric

In Chapter 5, the perturbed FRW metric can be written, to first order in the

Newtonian gauge, as:

ds2 = − (1 + 2Ψ) dt2 + a2 (1− 2Φ) δijdx
idxj. (6.1)
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A total of seven relevant equations were distilled into two to produce a pair of

coupled, second-order, homogeneous, linear, differential equations for the poten-

tials Φ and Ψ in terms of the variable N = log a. These equations were solved

both numerically and algebraically with the same initial conditions. Algebraically,

both of the potentials were shown to consist of an oscillating component and a

non-oscillating component.

It was clear that both oscillating components had the same frequency and an

expression was found which appeared to be robust right from early times to the

present. This is in contrast to previous work ([78, 101, 117]), in which were

considered the oscillations of the perturbed Ricci scalar but only at early times.

When the units were changed so that the frequencies could be compared it was

found that our solutions agreed with them. The expression for the frequency

of our solutions was proportional to the reciprocal of the scalaron mass, at early

times, migrating to k/ (aH), at late times, around today, where k is the co-moving

wavenumber. How the oscillation frequency changed over time for a particular

model, Erf Model 1, was illustrated and how it depended on the value of k.

Approximations to the envelope of each waveform were determined, as were the

non-oscillating components up to order ζ(N), which is defined in equation (5.25).

Then initial conditions were applied and the phase of the oscillations chosen so

that the algebraic approximations could be given for Φ(N) and Ψ(N) in terms of

just one parameter, x′i.

In order to make the oscillations visible when plotting graphs, the variable x(N)

was formed which removes the largest of the non-oscillating terms of Φ(N) and

Ψ(N) and which approximates to Φ(N)−Ψ(N) at high z but to (4Φ(N)− 2Ψ(N)) /3

at recent times. In order to display the non-oscillating components the sum

y(N) = Φ(N) + Ψ(N) was formed which was dominated by the lowest order

non-oscillating components. To illustrate how accurate the algebraic solutions

were, the algebraic and numeric solutions for x(N) and y(N) were compared

graphically.
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This exercise was completed for four example models. There was always good

agreement at early times. At later times, near today, there was good agreement

when k was of the order of k = 0.1hMpc−1 but the algebraic solutions were less

accurate for smaller k with the greatest errors being when k = 0. The reason

for this is that at late times ζ(N) is proportional to 1/k2 while, at early times,

it is independent of k. The efficacy of the algebraic solution requires that ζ(N)

is always small, which puts a model-dependent condition on k. This explains

why, for a given value of k, different models gave slightly different disagreements

between the algebraic and corresponding numeric solutions.

One feature of the graphs of x(N) against N which was unexpected was the

appearance of a “jump” in x(N) at a value of N where the expression for ζ(N)

changes from being dominated from one expression, ξ(N), to being dominated

by another, 1/λ(N)2.

The oscillations in Φ(N) and Ψ(N) have been shown to be the same, at high

curvature, as those studied as perturbations in the Riccci scalar in [78, 101].

There remains the problem that the amplitude of the oscillations for Φ(N) and

Ψ(N) increase, initially, into the future (see Figure 5.11), whereas for δR the

amplitude of the oscillations increases into the past. The oscillations for Φ(N)

and Ψ(N) really start before the formation of the CMB so that they start at some

value of z � 103. The same should be true for δR; that they only recede into the

past as far as this point which would give the oscillations a maximum amplitude

which is finite. In Einstein Gravity δR = 0, so there could be no oscillations in

δR until this point when they suddenly “appear” with maximum amplitude to

decay over time. This gives credence to the suggestion, in [26], that all F (R)

functions should be modified by the addition of the R2/ (6M2) term mentioned

in subsection 6.1.1, above, which would at least limit the maximum amplitude

and frequency at high values of z.
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6.2 Outlook

1. The time has come for researchers to test F (R) models against parameters

determined from observations. Current results from Planck, assuming a

ΛCDM background and a flat FRW Universe, in effect constrain weff,0, w′eff,0,

H0, Ωeff,0, Ωm,0 and Ωr,0, the last being coupled to the previous via the value

of z at equality. It would be interesting to see how the tight variations in

these cosmological parameters constrain the parameters of all the successful

models proposed and what these models would then predict. What are their

similarities and how do they differ?

2. Is it possible to prove, for all viable F (R) models that weff reaches a local

minimum below the phantom divide sometime in the recent past?

3. An attempt could be made to find more complete algebraic solutions which

would represent better what happens today. Are oscillations in potentials,

Φ and Ψ, detectable and, if so, of what order might they be?
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