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5.1 An event with a large weight, of > 106, which contributes to-
wards the n = 4 cross section. The object values column uses the
‘reference functions’ detailed in Algorithm 4, to indicate which
part of the shower contributes the corresponding weight at the
nth multiplicity. The total weight, 1.41074× 106, can be obtained
by multiplying together all of the sampling weights WEn , Wαn ×
Wα†

n
and Wαn+1 ×Wα†

n+1
, the matrix elements [αn|VE,E′ |αn−1〉,〈

α†
n−1

∣∣VE,E′
∣∣α†

n
]

and [αn+1|DE |αn〉 ×
〈
α†

n
∣∣D†

E

∣∣α†
n+1
]
, the final

scalar product matrix element, 〈25134| 34215〉 = N2
c , and the di-

rection sampling weights from all emissions, WΦn+1 ← 24× (1−
c0)

4. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 236
5.2 The fixed values of the kinematic and physical-constant coef-

ficients (see the text for details). The variables i and j denote
particle numbers, whilst k specifies the multiplicity at which the
coefficients are used. Labels a and b denote the primary partons
in the processes V → qq̄ and H → gg. . . . . . . . . . . . . . . . 248
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tion of super-leading logarithms. It includes Coulomb exchanges and applies
to generic hard-scattering processes involving any number of coloured par-
tons, resumming soft gluon effects to all orders. To exemplify this algorithm,
we perform a calculation of the hemisphere jet mass non-global logarithmic
contributions, and show how the algorithm reproduces the well-known Banfi-
Marchesini-Smye (BMS) equation. In addition, we explore the colour struc-
tures encountered when solving the evolution equations, using the colour flow
basis; in preparation of a Monte Carlo implementation. Handling large colour
matrices presents a significant challenge to numerical implementations, and
we present a means to expand systematically about the leading colour approx-
imation. We subsequently discuss the formulation of our amplitude evolu-
tion as a parton branching algorithm, and its implementation into a Monte
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colour suppressed terms can significantly contribute to this cross-section, and
find agreement with the results of other authors.
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Introduction

‘We are at the very beginning of time for the human race. It is not unreasonable that
we grapple with problems. But there are tens of thousands of years in the future. Our
responsibility is to do what we can, learn what we can, improve the solutions, and pass
them on.’2

It is in this vein, that particle physics and its participants, attempt to under-
stand the universe in terms of its most fundamental constituents. Our un-
derstanding to-date is encompassed in the Standard Model (SM) of particle
physics; the theory describing three of the four known fundamental forces in
the Universe: the electromagnetic, weak and strong forces. Its current formu-
lation was conceived around the same time as the experimental validation of
quarks. Since then, it has been given further credence by the discovery of the
W and Z bosons [1, 2], the top quark [3, 4], the tau neutrino [5], and most re-
cently, the Higgs boson [6, 7] at the Large Hadron Collider (LHC) at CERN in
Switzerland.

Despite these successes, it is known that the SM leaves some phenomena unex-
plained, falling short of being a complete theory of fundamental interactions.
One major deficit is in its inability to incorporate the theory of gravitation, as
described by general relativity. Moreover, cosmological findings indicate an
accelerating expansion of the Universe, propelled by dark energy and slowed
by dark matter, and a baryon asymmetry; explanations for which the SM does
not provide. Furthermore, neutrinos are regarded as massless in the SM, which
is in contradiction to the experimental observation of neutrino oscillations [8,
9]. New theoretical models are continuously developed, in an attempt to ex-
plain such phenomena Beyond the Standard Model (BSM). And on the other
side of the seesaw, experiments such as the LHC, increasingly probe higher
energy particle interactions to validate or disprove such models.

Any mathematical model needs to first be converted into numerical data, to

2Richard P. Feynman, What Do You Care What Other People Think?
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be compared with measured experimental results. It is the realm of general-
purpose event generators (GPEGs), such as Herwig [10–12], Pythia [13–15] and
Sherpa [16], which provides the keystone to this phenomenological bridge be-
tween theoretical prediction, and experimental validation. GPEGs employ
Monte-Carlo techniques to model particle collisions based on the SM and BSM
models; tools which have decades of progress in the areas of perturbative cal-
culation and phenomenological models behind them.

In any particle collision at the LHC, typically hundreds of particles are pro-
duced, with a wide range of momentum scales. There are relatively few parti-
cles at the highest scales, with the evolution from high to low scales mediated
by perturbative Quantum Chromodynamics (QCD). In order to compare ex-
perimental data with theoretical models, a GPEG must be able to faithfully
describe the flurry of final-state particles produced in a collider. To achieve
this, one would generally rely on perturbative calculations, such as matrix
element calculations. However, these calculations become increasingly diffi-
cult, the more particles we wish to describe. Due to the high-multiplicity of
particles that are produced in collider interactions, an approximation to the
usual matrix-element calculations is required. Correspondingly, GPEG’s em-
ploy parton shower algorithms which allow us to approximately account for
the most dominant contributions to these matrix-element calculations. Being
an approximation, there has been a continual effort to improve the accuracy of
parton showers since their inception [11, 13, 15, 17]. As an example of where
improvements can be made, current parton showers do not include all sub-
leading colour contributions. It has been shown that such contributions are
relevant in order to accurately describe certain observables, and with recent
analyses at the LHC frequently limited by theoretical uncertainties, the inclu-
sion of subleading colour corrections is becoming increasingly important.

One such observable that requires subleading colour corrections, is the ‘gaps
between jets’ observable. The series of works [18, 19] explored the ‘gaps be-
tween jets’ cross section and were based on a colour-evolution algorithm. Cor-
roborated and extended by [20, 21], this algorithm constitutes a general frame-
work that can be used as a basis for the full-colour calculation of soft-gluon
corrections to all orders. This thesis focuses on the development of this frame-
work, such that it can be implemented in a Monte-Carlo parton shower, and
addresses the challenges faced in this implementation.

The thesis is divided into five chapters: the first provides a review of the theo-
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retical underpinnings of QCD. Subsequently in Chapter 2, we write down the
aforementioned evolution algorithm, in a form that is suited to the calculation
of multiple soft-gluon contributions in a fully-differential way. We also focus
on the colour structures encountered when solving the evolution equations.
Chapter 3 explores some of the Monte Carlo methods used in GPEGs. The
results of Chapter 2 and 3 have been implemented into a Monte Carlo code,
CVolver, which was introduced in [22], and which we present in Chapter 4
for two implementation variants. The results of both variants are presented in
Chapter 5, alongside a number of validating cross-checks.
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1.1 A Brief History

A slew of hadrons (further classified as mesons and baryons) were discov-
ered in the early particle scattering experiments at Brookhaven (BH) National
Laboratory [23] and the Bevatron [24], with a significant effort made to under-
stand and classify them. Into the 1960’s, the Gell-Mann-Nishijima formula led
to the Eightfold Way organisation of these hadrons into multiplets, octets and
decuplets [25, 26], famously predicting the existence of the spin-3

2 Ω− baryon
(discovered at BH).

The picture of strong interactions at the time focused on general principles of
scattering amplitudes, which could be developed without an understanding of
any fundamental constituents. This paved-way for the development of many
areas of study, such as Regge theory [27, 28].

Concurrently, the Eightfold Way was developed into the quark model [29, 30],
which strongly suggested that hadrons were made up of more-fundamental
constituents (dubbed ‘quarks’ by Murray Gell-Mann, and ‘aces’ by George
Zweig), adding weight to hadron spectroscopy. It was with the advent of ac-
celerators that could reach the ∼ 10 GeV energy range, such as at SLAC, that
the point-like substructure of hadrons was first shown [31].

However, with the discovery of hadrons such as the spin-3
2 ∆++ baryon, the

quark model was unable to explain its apparent violation of Fermi-Dirac statis-
tics. As a remedy to this, Moo-Young Han and Yoichiro Nambu suggested the
existence of three triplets of quarks [32, 33] - the quarks were given a new
quantum number, named colour.

Extending the global colour model [34, 35], to a gauge theory (which had
already been done successfully for Quantum Electrodynamics (QED)), was
heavily encouraged after it was shown that one could quantise gauge theo-
ries in a unitary and renormalisable way in studies of Yang-Mills theory [36–
39]. This gauge theory was named Quantum ChromoDynamics (QCD). It was
shown that QCD could also satisfy the requirement of asymptotic freedom [40–
42], necessary to reconcile the observed confined nature of strong interactions
at low-energy, and the almost-free, point-like behaviour of hadron constituents
(quarks) at high energies. This latter point is what makes it possible to give a
perturbative description of QCD processes (referred to as pQCD). The former
notion of confinement is tied to the breakdown of pQCD and is consistent with
the fact that we do not observe free quarks, but only their colourless bound
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states.

In this chapter we review the theory of QCD. The structure shall be as follows:
in Section 1.2 we recall the properties of the SU(3) gauge group, gauge invari-
ance and their implications for the free quark Lagrangian. Subsequently, we
present the Feynman rules for QCD and their diagrammatic representations
in Section 1.3. These rules are the building blocks for calculating the invariant
squared matrix elements at each order of perturbation theory. In Section 1.4 we
shall utilise them to showcase the e+e− → qq̄g calculation, in-part to highlight
the intrinsic infrared divergences present. Finally in Section 1.5, we discuss
one representation of the QCD colour sector, which is particularly useful for
Monte Carlo calculations of QCD processes.

1.2 Quantum Chromodynamics

Yang-Mills theories are a generalisation of QED, with multiple spin-1 mass-
less gauge bosons (the single one in QED being the photon) that can inter-
act among themselves. Akin to QED, the Yang-Mills Lagrangian is heavily
constrained by the necessity of gauge invariance, so-called non-Abelian gauge
invariance, which is called non-Abelian due to the group generators not com-
muting with each other. As such, Yang-Mills theories are often referred to
as non-Abelian gauge theories and are based on the special unitary group,
SU(N). It is this non-Abelian nature that enables self-interaction among the
gauge bosons. QCD is a non-abelian gauge field theory of the SU(Nc) gauge
symmetry group, with Nc = 3 associated colour charges. This describes the in-
teractions between quarks, mediated by gluons, which are generically referred
to as partons.

1.2.1 SU(Nc) Group

Lie groups are fundamental to describing the Standard Model (SM). Examples
of Lie groups are the unitary and special unitary groups, which are used to de-
scribe different sectors of the SM. The SM is a gauge theory with the symmetry
group U(1) × SU(2) × SU(3). This is composed of the electroweak sector, de-
scribed by the chiral gauge group SU(2) × U(1), in which the U(1) symmetries
of QED are embedded, and the Quantum Chromodynamics sector described
by SU(3).

The group SU(Nc) consists of Nc × Nc complex matrices, satisfying the rela-
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tions U† = U−1, i.e. that they are unitary, preserving the complex inner prod-
uct and det(U) = +1. These constraints reduce the number of degrees of
freedom to specify a group element from 2N2

c to N2
c − 1. In its defining rep-

resentation, the SU(Nc) group has a basis of N2
c − 1 generators (and as such

we say the dimension of the group, dim(G) = N2
c − 1), denoted by Ta, where

a = {1, . . . , N2
c − 1}. This is such that any group element can be written as

U = exp (iθaTa) 1 ' 1 + iθaTa, (1.1)

where θa are real numbers. One can show that Ta are both Hermitian and
traceless matrices. The generators of the Lie group form an algebra, called its
Lie algebra, defined through its Lie bracket

[
Ta, Tb

]
= i f abcTc, (1.2)

where f abc are the structure constants for the algebra. It is totally anti-
symmetric under the exchange of any two indices (analogous to the Levi-
Civita tensor in the case of SU(2)). The defining characteristic of a non-Abelian
Lie group is a non-zero structure constant ( f abc being equal to 0 if the group is
Abelian). When the generators and structure constant are specified in a matrix
representation, Eq. 1.2 becomes a commutation relation, fixing the Lie algebra.
It automatically follows that

[
Ta,
[
Tb, Tc

]]
+
[
Tb, [Tc, Ta]

]
+
[
Tc,
[
Ta, Tb

]]
= 0 (1.3)

which is the Jacobi identity. This identity has also been written in terms of the
structure constants:

f abe f ecd + f ace f edb + f ade f ebc = 0. (1.4)

The representation of a Lie algebra can be constructed by attributing matri-
ces to each generator. Two of the most important representations are the fun-
damental and adjoint representations. The fundamental representation is the
smallest non-trivial representation of the algebra; the aforementioned set of
Nc × Nc Hermitian matrices. In the case of SU(3), one such representation is
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given by the Gell-Mann matrices,

λ1 =




0 1 0
1 0 0
0 0 0


 , λ2 =




0 −i 0
i 0 0
0 0 0


 , λ3 =




1 0 0
0 −1 0
0 0 0




λ4 =




0 0 1
0 0 0
1 0 0


 , λ5 =




0 0 −i
0 0 0
i 0 0


 , λ6 =




0 0 0
0 0 1
0 1 0


 (1.5)

λ7 =




0 0 0
0 0 −i
0 i 0


 , λ8 =

1√
3




1 0 0
0 1 0
0 0 −2


 ,

which are written in a standard basis Ta = 1
2 λa. It will occasionally be useful

to write the row and column indices of the generators in this work. When this
is necessary, they will be denoted by Latin letters, e.g. Ta

ij. The normalisation
of the generators is a choice: a common convention in particle physics is to
normalise the structure constants such that

∑
c,d

f acd f bcd = TAδab, (1.6)

where TA = Nc = 3. This implies (through Eq. 1.2) that the generators of the
SU(Nc) group in the fundamental representation are normalised such that

Tr
(

TaTb
)
= TFδab, (1.7)

where TF = 1
2 , as per the Gell-Mann matrices in Eq. 1.5. The structure con-

stants themselves satisfy the Lie bracket and provide a representation of the
group. This is called the adjoint representation, in which the matrices are in-
stead (N2

c − 1) × (N2
c − 1). The generators of the adjoint representation are

given by (
Ta

adjoint

)
bc
= −i f abc, (1.8)

and are the representation in which the gauge fields transform. Within the
SU(Nc) Lie group there are Casimir operators, which characterise the repre-
sentations. These operators commute with the generators, and the quadratic
Casimirs are defined such that

∑
a

Ta
RTa

R = CR1, (1.9)
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where R labels the representation. That this operator is always proportional to
the identity of the representation is a consequence of Schur’s lemma [43]. This
can be seen explicitly by writing

[
(TaTa) , Tb

]
= Ta

[
Ta, Tb

]
+
[
Ta, Tb

]
Ta

=
(

i f abcTc
)

Ta + Ta
(

i f abcTc
)
= 0, (1.10)

where the last equality is obtained by exploiting the anti-symmetric nature of
the structure constants. In order to determine the Casimir invariant, we also
write the inner product for the generators in a general representation as

Tr
(

Ta
RTb

R

)
= TRδab, (1.11)

where from Eq. 1.7 and 1.6, TF = 1/2 and TA = Nc respectively. QCD calcu-
lations often require manipulation of the fundamental and adjoint representa-
tion generators. As such it is useful to write

Tr
([

Ta
R, Tb

R

]
, Tc

R

)
= i f abdTr

(
Td

RTc
R

)
= i f abcTR, (1.12)

to relate the generators of the adjoint representation to those of the fundamen-
tal one:

f abc ≡ − i
TF

Tr
([

Ta
F, Tb

F

]
Tc

F

)
. (1.13)

The trace of Ta
RTa

R then results in an equation which relates the Casimir to the
normalisation of the representation, TR, dimension of representation, dim(R)
and dimension of the group, dim(G):

CR =
TRdim(G)

dim(R)
. (1.14)

The dimension of the representations are dim(F) = Nc and dim(A) = N2
c − 1,

whilst the dimension of the group is fixed and equal to the number of gener-
ators, dim(G) = N2

c − 1. Thus the Casimirs for the fundamental and adjoint
representations are

CF =
N2

c − 1
2Nc

=
1
2

Nc −
1

2Nc
, CA = Nc. (1.15)

Calculations in QCD will contain factors of CF and CA and it is worth not-
ing that the Casimir of the adjoint representation is exactly twice that of the
fundamental Casimir in the large-Nc limit. The values of these Casimirs have
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been experimentally validated at the Large Electron-Positron Collider (LEP),
by for example measuring the ratio of production between hadrons and muon-
antimuon pairs [44].

An arbitrary Nc × Nc hermitian matrix, M, can be written as a linear combina-
tion of the SU(Nc) generators (and the identity element). In the fundamental
representation this is

M = m01 + ∑
a

maTa, (1.16)

where m0 and ma are real coefficients. Using Eq. 1.2 and the traceless property
of the generators, one can determine these coefficients: m0 = 1/NcTrM and
ma = 2Tr (MTa). If M represents the commutator of the generators in the fun-
damental representation, then we reproduce Eq. 1.13. However, if one chooses
M to have one non-zero component such that Mk

l = δ
j
l δ

k
i , where i and j are

fixed indices, one yields the relation

(Ta)l
k (T

a)
j
i =

1
2

(
δk

i δ
j
l −

1
Nc

δk
l δ

j
i

)
, (1.17)

which is the Fierz identity for SU(Nc); a very useful tool in QCD calculations.
Considering k as the colour index of a quark and l as the colour index of an an-
tiquark we can see that the physical interpretation is of a decomposition of N2

c

colour states of a qq̄ system into the colour octet and colour singlet parts. Alter-
natively, it can be represented pictorially in Figure 1.1. Figure 1.1 represents a

= 1
2

k

lj

i

− 1
2Nc

k ki i

j jl l

FIGURE 1.1: A graphical representation of the Fierz identity, re-
lating the colour structure of a one-gluon exchange between a
quark and anti-quark pair to quark and anti-quark colour lines.

one-gluon exchange between two quarks, or a quark and antiquark, expressed
as quark lines (we shall discuss these particles in more detail in the next sec-
tion). In group theory parlance, one can combine a fundamental colour with a
fundamental anticolour to produce an adjoint colour and a colour singlet. In
the limit that Nc becomes infinitely large and αsNc is fixed, Figure 1.1 suggests
that the colour structure of a gluon becomes that of a quark and antiquark
(modulo a factor of 2, as per Eq. 1.15) if we neglect the singlet component. This
is more widely known as the large-Nc limit. This approximation was first in-
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troduced by ’t Hooft in [45] and limits the number of Feynman diagrams which
contribute to a specific process. Each diagram is decomposed, using Eq. 1.17,
into a set of delta functions between fundamental colours; the so-called colour
flow of a diagram. ’t Hooft found that only topologically planar diagrams, i.e.
those for which the fundamental colours can be drawn in a single plane with-
out crossing, contribute to leading order in Nc, whilst the contributions from
non-planar diagrams are suppressed by 1/N2

c for each colour-connection that
comes out of the plane. This approximation is used in several different aspects
of event modelling: for instance, the generation of the hard scattering process
[46–48], parton showers [49, 50] (e.g. the dipole shower [51–53] in Herwig [10])
and hadronisation models [54].

1.2.2 Gauge Invariance

Having discussed Lie groups in Section 1.2.1, we now move onto the concepts
of gauge symmetry and gauge invariance, in which they are involved. We shall
use QED as our exemplary focus for simplicity.

A natural starting point is to discuss the equations governing the behaviour of
quarks, or more generally, fermions. Fermions have two spin states, ±1

2 . The
equation of motion governing the field of a free fermion (or anti-fermion) of
mass m, ψ ≡ ψ(xµ), is the Dirac equation [55]:

(
iγµ∂µ −m

)
ψ = (i/∂ −m)ψ = 0. (1.18)

Here we have used four-vector notation, where a point in space-time is de-
scribed by a contravariant vector xµ =

(
x0, x1, x2, x3); the x0 term describes

the temporal component, whilst x1, x2 and x3 describe the spatial components.
The ‘distance’ measure of space-time is known as the space-time interval, and
is encoded into the metric tensor. For the purposes of particle physics, the
geometric structure of space-time is assumed to be flat, which we denote as
ηµν = diag (1,−1,−1,−1); the so-called Minkowski metric. It is this that re-
lates contravariant four-vectors to their covariant counterparts: xµ = ηµνxν.
The repeated Lorentz-indices have an implicit sum over their values, as per
the Einstein summation convention and we have used the common Feynman
slash notation, /x = γµxµ. The inverse metric, ηµν, has the same form as ηµν,
such that they obey the relation ηµρηρν = δ

µ
ν . In Eq. 1.18 we have also adopted

natural units, where the speed of light in a vacuum and the reduced Planck
constant are equal to unity.
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There is a strong connection between Lorentz invariance and spin: it turns out
that Pauli matrices naturally come out of the representations of the Lorentz
group (which can be constructed from representations of SU(2)), describing
spin-1

2 particles which transform in spinor representations. This informs the
structure of the 4× 4 γ-matrices (the Dirac matrices) in Eq. 1.18:

γµ =

(
0 σµ

σ̄µ 0

)
, (1.19)

where σµ = (1,~σ), σ̄µ = (1,−~σ), 1 = diag(1, 1), and~σ are the Pauli matrices:

σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
. (1.20)

The Dirac matrices satisfy the definition of a Clifford algebra, expressed in the
anti-commutation relation

{γµ, γν} = 2ηµν, (1.21)

and the representation of the γ-matrices in Eq. 1.19 are the simplest which
fulfill this condition. This particular representation of the Dirac matrices is
known as the Weyl representation, where γµ are traceless, and obey hermiticity
conditions: γ0 is Hermitian, whilst γi are anti-Hermitian.

Since the γ-matrices are represented as 4× 4 matrices, the quark fields are ac-
cordingly four-dimensional complex vectors, commonly referred to as Dirac
spinors. These four degrees of freedom correspond to the up and down spin
of the quark and anti-quark, which solve the Dirac equation. It is also worth
noting that if we act on the Dirac equation with (i/∂ + m), we find that ψ sat-
isfies the Klein-Gordon equation, implying on-shell spinor momenta obey the
energy-momentum relation p2 = m2.

Free fermions can be included in the description of the SM through the Dirac
Lagrangian 1,

LDirac = ψ (i/∂ −m)ψ, (1.22)

describing a free fermion (ψ) and anti-fermion (ψ) with an associated mass m.
The Dirac adjoint, ψ = ψ†γ0 2, ensures that our Lagrangian obeys Lorentz

1This is actually a Lagrangian density, but we use the two terms interchangeably through
this work, where the Lagrangian is just the integral of the density over a space-measure.

2Here and throughout this work, the dagger notation, †, is used to denote the complex-
conjugate transpose.
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invariance. Each fermionic species can be described by including their own
equivalent term in the Dirac Lagrangian.

The Dirac Lagrangian has a global symmetry under the transformation

ψ(x)→ ψ′(x) = Uψ(x), ψ(x)→ ψ
′
(x) = ψ(x)U−1 (1.23)

where U is a unitary object, which forms part of a group of transformations.
In order to construct a locally invariant theory, we require that the Lagrangian
also be invariant under local transformations (such as those in Section 1.2.1),
where U becomes a function of some space-time point xµ, U = U(x). The
transformation now has the form

ψ(x)→ ψ′(x) = U(x)ψ(x), ψ(x)→ ψ
′
(x) = ψ(x)U−1(x), (1.24)

which no longer leaves the Dirac Lagrangian invariant, due to the action of
the derivative, ∂µ, which introduces additional terms. In order to compensate
for these terms, we can define a new covariant derivative operator, Dµ, which
transforms as

Dµ → D′µ = U(x)DµU−1(x). (1.25)

To determine the form of Dµ, we first review QED and the photon.

The free photon is a quantum of the electromagnetic field in a vacuum, and
is the force carrier of the electromagnetic force. It is a massless spin-1 gauge
boson with two degrees of freedom and can be mathematically represented
by a vector field, Aµ, which has four. This discrepancy in degrees of freedom
is surprising at first, however it is reconciled by the fact that massless spin-1
fields exhibit gauge invariance. That is, they are invariant under local gauge
transformations, e.g.

Aµ(x)→ A′µ(x) = Aµ(x)− ∂µα(x), (1.26)

where α(x) is a real-valued function of space-time and e is a constant. Both
Aµ(x) and A′µ(x) give equivalent descriptions of the photon and the field is
said to be gauge invariant. The extra degrees of freedom in Aµ are removed
by this gauge invariance through a procedure known as gauge-fixing and the
kinetic Lagrangian,

Lkin = −1
4

FµνFµν ≡ −1
4
(

Fµν

)2 , where Fµν = ∂µ Aν − ∂ν Aµ, (1.27)
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is invariant under this gauge transformation. The object Fµν is the electromag-
netic field-strength tensor encountered in classical electromagnetism, and is
written in terms of our vector field Aµ.

Going back to the form of the covariant derivative, we know that the quark is
electrically charged and so couples to the photon. In order for the Aµ field to
interact with matter, the interactions have to also preserve the gauge symme-
try. This can be achieved by defining the form of Dµ to be

Dµ = ∂µ + ieqeAµ(x), (1.28)

and identifying U(x) in Eq. 1.24 as a group element of the local Abelian U(1)
symmetry group,

U(x) = exp
(
ieqeα(x)

)
, (1.29)

so that the Dirac Lagrangian is invariant under the simultaneous transforma-
tions of ψ(x), Aµ(x) and Dµ. It is worth pointing out that the photon-quark
interaction is included in the covariant derivative. Crucially, it is the require-
ment that our Lagrangian remain invariant under a local transformation that
leads to the presence of such interactions. This enables us to identify the e con-
stant as the strength of the electric charge, or the interaction strength; eq is the
flavour-dependent electric charge of the quark.

The field tensor can be written in terms of the covariant derivative: as Dµψ(x)
transforms in a locally gauge-invariant way, then so will DµDνψ(x). It is then
possible to construct the Lorentz structure

[
Dµ, Dν

]
= −ieqe

(
∂µ Aν − ∂ν Aµ − ieqe

[
Aµ, Aν

])
= −ieqeFµν. (1.30)

For an Abelian theory the group elements (and therefore the gauge field Aµ)
commute. Then, the third term in Eq. 1.30 vanishes and we recover the QED
field strength tensor definition in Eq. 1.27. Whilst this relation between the
field strength tensor and covariant derivative commutator still holds for a non-
Abelian theory, the gauge fields no longer commute. We shall see later that this
leads to self-interaction of the gauge field, characterising the crucial difference
between QED and QCD. Eq. 1.30 also shows that the field strength tensor, Fµν,
transforms in the same way as the covariant derivative:

Fµν → F′µν = U(x)FµνU−1(x). (1.31)
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Taking all of this together, the QED Lagrangian reads

LQED = ψ (i /D−m)ψ− 1
4
(

Fµν

)2 , (1.32)

where the first term encapsulates the kinetic term associated with the quark
and its interaction with the photon, the second term gives the mass of the
quark and the last term describes the kinetics of the photon. There is no equiv-
alent mass term for the photon as such a contribution would violate gauge
invariance.

1.2.3 QCD Lagrangian

Section 1.2.1 reviewed the group which governs the description of QCD, this
being SU(Nc) = SU(3) [35, 56]. As is the case with QED, we would like to
study the impact on the Dirac Lagrangian of a local transformation, but this
time under the SU(3) group. We have seen in Section 1.2.1, that the elements
of SU(3) are represented by 3× 3 matrices. And so, the quark fields are repre-
sented by a triplet,

qi =




qr

qb

qg


 (1.33)

where each of the three new degrees of freedom are referred to as ‘colours’
(which play the same role as the electric charge in QED). Each colour contains
a fermionic field, and are mnemonically referred to as red (r), blue (b) and
green (g). These colours represent indices of the degree of the group, i.e. i =
{1, 2, 3} = {red, blue, green}. From the group perspective, the quark spinor
is associated with the fundamental representation of SU(3), whilst the anti-
quark spinor is associated with the anti-fundamental representation (denoted
r̄, b̄ and ḡ). The local transformations for the components of the quark field can
be expressed as [57]

ψi(x)→ ψ′i(x) = Uij(x)ψj(x), (1.34)

where
U(x) = exp (igsθ

a(x)Ta) (1.35)

is the group element for the transformation at the space-time point xµ, and
Ta are the generators of the SU(Nc) group written in Eq. 1.1. In a non-Abelian
group, it is convenient to represent the gauge field as a Lie-algebra-valued field
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by writing,
Aµ(x) = Aa

µ(x)Ta. (1.36)

There is an implicit sum over a = 1, . . . , 8, where each index corresponds to a
gluon colour. Each component of the gauge field transforms as

Aa
µ(x)→ Aa

µ
′(x) = Aa

µ(x)− gs f abcθb(x)Ac
µ(x)− ∂µθa(x). (1.37)

It is worth noting that this relation contains only the structure constant gener-
ators. As such, gluons are said to transform under the adjoint representation.
The gs constant is the coupling constant in QCD that determines the strength
of interactions in the coloured sector of the SM and the covariant derivative in
Eq. 1.28 can then be written,

(Dµ)ij = δij∂µ + igs Aa
µTa

ij. (1.38)

Expanding the gauge field in the definition of the field strength tensor in
Eq. 1.30, we find

Fa
µν = ∂µ Aa

ν − ∂ν Aa
µ − gs f abc Ab

µ Ac
ν, (1.39)

where the field strength tensor Fµν = Fa
µνTa. In the Abelian case f abc = 0 and

Fa
µν reduces to the electromagnetic field strength. This term being non-zero for

QCD (due to its non-Abelian nature) corresponds to self-interactions between
the corresponding gauge bosons. This can be seen if one fully expands the
kinetic term associated with the gluon:

−1
4

(
Fa

µν

)2
= −1

4

(
∂µ Aa

ν − ∂ν Aa
µ

) (
∂µ Aa

ν − ∂ν Aa
µ

)

+ gs f abc (∂µ Aa
ν

)
Aµ,b Aν,c − g2

s
4

f abc f ade Aµ,b Aν,c Ad
µ Ae

ν. (1.40)

We can see that the gluon kinetic term is composed of a ‘pure’ kinetic term plus
two interaction terms. The first of these interaction terms represents a three-
gluon interaction, whilst the second represents a four-gluon interaction. Each
component of the gluon field strength tensor transforms as

Fa
µν → Fa

µν
′ = Fa

µν − f abcθb(x)Fc
µν (1.41)

under a gauge transformation. It is worth noting once again that this equation
only contains structure constants and as such, whilst the component decom-
position of the gluon field strength tensor was originally written in terms of
generators in the fundamental representation, the gluon kinetic term naturally



48 Chapter 1. QCD Preliminaries

transforms in the adjoint representation.

Combining all of the aforementioned results, we are able to write down the
classical QCD Lagrangian:

LQCD = −1
4

(
Fa

µν

)2
+∑

f

Nc

∑
i,j=1

ψi

(
δiji/∂ − gs /AaTa

ij −m f δij

)
ψj, (1.42)

where f is the sum over different quark flavours and we have left the covariant
derivative, /Dij, in its expanded form for use in Section 1.5. Additionally, m f is
the mass of the fermion species f . We shall work in the massless limit when
performing QCD calculations and shall henceforth set m f = 0.

We have so far been talking of our QCD Lagrangian essentially in the purview
of a classical field theory. Quantum field theories such as QCD, extend classic
field theories: the fields are promoted to operators (which act on states in Fock
space), i.e. they are canonically quantised (in a similar manner to how posi-
tion or momentum are thought of as operators in first quantisation) [58]. The
fields can be written as a continuous function of momentum, p. For each (in-
finite number of) p, the fields describe a quantum mechanical system, where
the nth excitation of the system is interpreted as having n particles [59]. The
Lagrangian, being a function of fields, also becomes an operator. Briefly put,
the Lagrangian operator can be split into a free part (containing terms bilinear
in the fields), describing the free propagation of particles, and an interacting
part, which can be calculated using perturbation theory [60] - something we
shall discuss further in the next section.

In order to carry out calculations in QCD, there must exist a propagator for
each particle - for instance, the gluon propagator. This is achieved by exam-
ining the bilinear terms of the gauge boson field in momentum space and in-
verting the kinetic term. For the Lagrangian as is written in Eq. 1.42, this is
not possible, which is a manifestation of gauge invariance, meaning the field
Aa

µ is degenerate. To remedy this, we add a new non-propagating field that be-
haves like a Lagrange multiplier, which when extremised resolves to the gauge
constraint ∂µ Aµ = 0, the Lorenz gauge:

Lgauge-fix = − 1
2ξ

(
∂µ Aa

µ

)
(∂ν Aa

ν) . (1.43)
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This means the kinetic terms of the gluon field can be inverted to find,

∆µν,ab (p) =
iδab

p2 + iε

(
−ηµν + (1− ξ)

pµ pν

p2 + iε

)
, (1.44)

which is the gluon propagator in covariant or Rξ-gauges. In these gauges,
each choice of ξ is a different Lorentz-invariant gauge: ξ = 1 is the Feynman
gauge, whilst ξ = 0 is the Landau or Lorenz gauge. The Lorentz indices,
µ, ν correspond to the polarisation of the gluons whilst a, b are colour indices
(in the adjoint representation). Unlike in QED, the gluon fields by their (non-
Abelian) nature can self-interact which means any covariant gauge-fixing must
be accompanied by unphysical ghost particles [37, 61] that cancel unphysical
propagating modes in a gauge invariant way. These ghosts are described by
the Lagrangian

Lghost =
(
∂µ c̄a) (δac∂µ + gs f abc Ab

µ

)
cc, (1.45)

where ca and c̄a are anticommuting Lorentz scalars, the Faddeev-Popov ghosts
and anti-ghosts. There is one of these for each gauge field. Their inclusion is
related to the global symmetry called BRST invariance [62] and ensures the
renormalisability of QCD. An alternative to using covariant gauges (and as
a consequence, including ghosts), are non-covariant gauges such as the axial
gauges. One can instead use a gauge-fixing term

Lgauge-fix = − 1
2ξ

(
nµ Aa

µ

)
(nν Aa

ν) , (1.46)

where nµ is an arbitrary four-vector, satisfying the constraint nµ Aµ = 0. The
gluon propagator following this modification reads

∆µν,ab (p) =
iδab

p2 + iε

(
−ηµν +

pµnν + nµ pν

p · n −
(

n2 + ξ p2
) pµ pν

(p · n)2

)
. (1.47)

If nµ is a light-like vector and ξ = 0, then Eq. 1.47 reduces to a special case
called the lightcone gauge. Whilst such gauges have the advantage of not re-
quiring ghost particles, in practice, unless there is a context with a preferred
direction for nµ, the additional terms in the gluon propagator lengthen a cal-
culation considerably. In particular, when conducting numerical calculations,
it is difficult to ensure that the singularities (as p · n become infinitely small)
cancel as they would analytically. Following the form of the QCD Lagrangian
in Eq. 1.42, the corresponding Feynman rules and connection to observable
quantities is outlined in Section 1.3.
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1.3 Feynman Rules

In order to make predictions, we must calculate the scattering amplitudes that
describe the evolution from an initial state |i〉 to a final state | f 〉, using the
Hamiltonian (or equivalently, the Lagrangian). This evolution occurs from a
time ti in the past to a time t f in the future.

Having discussed the QCD Lagrangian density in Section 1.2.2, we can decom-
pose it schematically as

L = L0 + Lint, (1.48)

whereL0 is the free part of the Lagrangian density, usually containing all terms
which are bilinear in fields, i.e. kinetic terms, and Lint is the interaction part of
the Lagrangian density, including all remaining terms of the full Lagrangian
[55].

The interaction picture is the default picture for quantum field theories in
which responsibility for time dependence is placed on both the particle states
and an evolution operator. This time evolution operator is built from the inter-
action Lagrangian [62]:

U(t f , ti) = T
{

exp
[

i
∫ t f

ti

d4xLint(x)
]}

, (1.49)

where T{. . .} indicates a time-ordered product of the fields contained in the
exponent, i.e. the fields are arranged so that they act in chronological order.

In the limit that we evolve the initial and final momentum eigenstates from a
long time in the past, ti = −∞, to a long time in the future, t f = +∞, this
evolution operator is called the scattering or S-matrix:

S ≡ lim
t f /ti→±∞

U(t f , ti), (1.50)

where the states |i〉 and | f 〉 are said to be asymptotic states (and assumed free
of interactions) at asymptotic times. It is not currently known how to calculate
the exponentiated form of the S-matrix. Instead, calculations are performed as
a perturbative expansion:

S f i = δ f i + i
∫

d4x1 〈 f | Lint(x1) |i〉

+ i2
∫

d4x1

∫
d4x2 〈 f | T{Lint(x1)Lint(x2)} |i〉+ . . . , (1.51)
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where S f i = 〈 f | S |i〉 is a matrix element of the S-matrix and the Kronecker
delta δ f i, one of the identity matrix. Perturbation theory is built on the basis
that the interacting part of the Lagrangian density, Lint, can be treated as small
perturbations and successive corrections to the free theory. The perturbative
expansion is then written as a power series in terms of the coefficients of these
interacting terms - the coupling constants.

The S-matrix elements are related to the transfer matrix elements, T f i, through

S f i = 〈 f | 1 + iT |i〉 = 〈 f | 1 |i〉+ iT f i, (1.52)

to remove the trivial non-interaction term, so that we only describe deviations
from the free theory. The transfer matrix element is related to the invariant
matrix element as

iT f i = (2π)4 δ(4)

(
∑

i
pi −∑

f
p f

)
iM f i (1.53)

where M f i is an invariant matrix element for a given transition |i〉 → | f 〉.
Since the S-matrix should vanish unless the initial and final states have the
same total four-momentum, a momentum-conserving delta function has been
factored. The momenta pi and p f are the four-momenta of incoming or out-
going particles and the summations in the four-dimensional delta function are
over all particles in the initial (i) and final ( f ) state.

In general, the experimentally measurable quantities that are predicted by
quantum field theories are differential probabilities, known as cross sections.
The differential cross section is given by [58]

dσ =
1
F
∣∣M f i

∣∣2 dΠLIPS, (1.54)

where

dΠLIPS = ∏
pj∈p f

d3pj

(2π)3
1

2Epj

δ(4)
(
∑ pi −∑ p f

)
, (1.55)

is the differential Lorentz-invariant phase space (LIPS). The product is over all
particles pj in the final state, and by integrating over this factor we sum over all
possible outgoing momenta. The factor F is a flux factor describing the initial-
state particles, whilst the object

∣∣M f i
∣∣2 is the invariant matrix element squared

which has been averaged over initial state and summed over final state spin,
colour and polarisation.
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The invariant matrix element,M f i, is calculated at each order in perturbation
theory using a set of Feynman rules. Each rule corresponds to a segmented
part of the scattering process: the external particles, vertices and internal prop-
agators, which are diagrammatically represented as Feynman diagrams. There
may be a number of possible arrangements for the rules representing the scat-
tering process, each with its own Feynman diagram.

The Feynman rules for QCD [58, 63] are presented in Tables 1.1, 1.2 and 1.3.
Table 1.1 summarises the rules for external particles, in particular for spinors
and polarisation vectors. The interaction vertex Feynman rules are presented
in Table 1.3 and the rules for the propagators in a covariant gauge in Table 1.2.

Incoming

Diagram Feynman Rule

p→
i

ui(p, s)

i

p→
vi(p, s)

p→

a, µ
εµ(p)

Outgoing

Diagram Feynman Rule

i

p→
ui(p, s)

i

p→
vi(p, s)

a, µ

p→
εµ,∗(p)

TABLE 1.1: Feynman rules for external particles in QCD, namely
quark and anti-quark spinors and the gluon polarisation vectors.
Quarks are represented as solid lines and gluons as coiled lines.
The i index labels the spinor components, µ a Lorentz index and
a is a colour label. The arrows on the fermion lines denote charge

flow, whilst the momenta of the fermion is illustrated below.



1.4. Basic features of QCD radiation 53

Diagram Feynman Rule

a, µ

p→
b, ν ∆µν,ab (p) = iδab

p2+iε

(
−ηµν + (1− ξ) pα pβ

p2+iε

)

i
p→

j ∆ij (p) = iδij(/p+m)
p2−m2+iε

a
p→

b ∆ab (p) = iδab

p2+iε

TABLE 1.2: Feynman rules for propagators in QCD in a covari-
ant gauge. Quarks are represented as solid lines, gluons as coiled
lines and ghosts as dashed lines. The µ, ν indices label Lorentz
indices, whilst i, j are colour indices in the SU(3) fundamental
representation and a, b are colour indices in the adjoint represen-

tation.

1.4 Basic features of QCD radiation

Now that we have reviewed the QCD Lagrangian and written down the rules
for calculating Feynman graphs, we shall put them to good use to show some
of the most basic elements of calculations in perturbative QCD and to intro-
duce the eikonal approximation. Perturbative calculations of QCD observables
contain divergences in both the Ultraviolet (UV) and Infrared (IR) limit in gen-
eral [64]. The UV divergences are removed by a process known as renormali-
sation. Whilst this won’t be used (and will not be covered) in this work, suffice
it to say that QCD is a renormalisable theory [36, 65, 66]. This means that all
UV divergences can be reabsorbed into a finite number of redefinitions of pa-
rameters in the Lagrangian density: the coupling, the masses and the fields
[64, 67, 68]. We now wish to examine the perturbative structure of QCD emis-
sions from outgoing partons which contain IR divergences in the soft and / or
collinear limits. To this end, we consider the calculation of the γ∗ → qq̄ cross
section to explore these divergences.

1.4.1 Born Amplitude

We shall begin our discussion by calculating the matrix element and subse-
quently the cross section for the e+e− → qq̄ process. Since we are interested
in the high-energy limit, we will consider all fermions to be massless. Using
the Feymnan rules in Section 1.3, we can write down the matrix element cor-
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Diagram Feynman Rule

a, µ

j

i

−igsTaγµ

a, µ
p→

c

b

gs f abc pµ

←
k 1

a, µk2 →
b, ν

←
k

3

c, σ

−gs f abc [(k1 − k2)
σ ηµν + (k2 − k3)

µ ηνσ

+ (k3 − k1)
ν ησµ

]

a, µb, ν

c, σ d, ρ

−ig2
s

[
f abe f cde (ηµσηνρ − ηµρηνσ)

+ f ace f bde (ηµνησρ − ηµρηνσ)

+ f ade f bce (ηµνησρ − ηµσηνρ)
]

TABLE 1.3: Feynman rules for QCD vertices. Quarks are repre-
sented as solid lines, gluons as coiled lines and ghosts as dashed
lines. The indices i, j label colour indices in the SU(3) fundamen-
tal representation, a, b, c, d in the adjoint representation, whilst
µ, ν, σ, ρ are Lorentz indices. Note the momenta in the three-

gluon vertex are defined as incoming, i.e. k1 + k2 + k3 = 0.

responding to Figure 1.2 as

M(0)
0 = ui(p1, s1)γ

µHµvj(p2, s2)δij, (1.56)
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p1

p2

FIGURE 1.2: Feynman diagram of the Born amplitude for the
γ∗ → qq̄ process.

where ui(p1, s1) and vj(p2, s2) are the Dirac spinors corresponding to a quark
of momentum p1 and spin s1, and anti-quark of momentum and spin of p2

and s2. The object Hµ contains all the information about the colour neutral
vertex represented by the dashed line in Figure 1.2, and the process which
created the final-state quark-antiquark pair. Also note the colour-conserving
δij which is include to ensure that the qq̄ is a colour singlet (as the photon is
colour blind). In the case that the initial colour singlet arises from electron-
positron annihilation with a subsequent photon exchange,

Hµ = −ieqv (pb, sb) (−ieγν) u (pa, sa)
−iηνµ

(pa + pb)
2 . (1.57)

The Born-level matrix element squared is then

∑
∣∣∣M(0)

0

∣∣∣
2
= Nce2

q
(4παem)

2

s
Tr
(
/pbγµ/paγν

)
Tr
(
/p1γµ

/p2γν
)

= Nce2
q

32 (4παem)
2

s2 ((pa · p1) (pb · p2) + (pa · p2) (pb · p1)) ,

(1.58)

where the sum in front signifies a sum over final-state colour and spin, with an

averaging over initial-state spin and
√

s =
√
(pa + pb)

2 is the centre-of-mass
energy of the e+e− system. The cross section then reads

σ0 =
1
8s

∫
∑

∣∣∣M(0)
0

∣∣∣
2 d3p1

2E1 (2π)3
d3p2

2E2 (2π)3

(2π)4 δ4 (pa + pb − p1 − p2) , (1.59)
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which produces the result

σ0 = Nce2
q

4πα2
em

3s
, (1.60)

where eq is the electric charge of the quark and αem is the electroweak cou-
pling, αem = e2/4π. The Born cross section, σ0, does not exhibit any IR diver-
gences - these begin to appear in the cross sections involving one or more real-
emissions (at order αs). We shall compute these contributions in Section 1.4.3.
Firstly however, we shall review the eikonal approximation.

1.4.2 Eikonal approximation

As we shall see, one source of IR divergences is when emitted gluons have
vanishing energy, known as the soft limit. These singularities show up after
integrating over an emitted gluon momentum, k, as contributions that are sin-
gular as the gluon momentum becomes infinitely small. In particular, that all
components of the gluon momentum are much smaller than the largest com-
ponent of the momentum of the parton from which it is emitted. This limit can
be parametrised by rescaling the gluon momentum by a scalar, λ, such that

kµ → λkµ. (1.61)

The leading behaviour of an amplitude containing soft gluons can be captured
by taking the limit λ → 0, whilst only retaining terms leading in λ. This is the
eikonal approximation [51, 69].

In order to exhibit the property of soft factorisation and determine an effective
Feynman rule for soft gluons, we begin by considering an arbitrary amplitude,
Mn({pn}). This amplitude consists of n external hard partons whose set of
momenta are signified by {pn}. If we denoteM f

n+g as the amplitude for the
same hard process with an additional gluon emission (with momentum k) off



1.4. Basic features of QCD radiation 57

an outgoing quark (with momentum p), one obtains the following amplitude

M f
n+g = ui (p)

[(
−igsTa

ijγ
µε∗aµ (k)

) i (/p + /k + m)

(p + k)2 −m2 + iε

]

×Mn,j ({p1, . . . , p + k, . . . , pn})

= ui (p)

[(
−igsTa

ijε
∗a
µ (k)

) i (2pµ + 2kµ − /kγµ)

(p + k)2 −m2 + iε

]

×Mn,j ({p1, . . . , p + k, . . . , pn}) . (1.62)

The spinor associated with the quark has been explicitly extracted from the
amplitude, Mn,j ({p1, . . . , p + k, . . . , pn}). Additionally, here and throughout
this work the high energy limit is assumed, whereby the momenta of quarks
are much greater than their masses. As such, we make the approximation
mi ' 0, although the results of this section still hold true for the case of on-
shell massive quarks. The second line of Eq. 1.62 utilises the standard Dirac
matrix Clifford algebra in Eq. 1.21, and exploits the Dirac equation, ui (p) /p =

/pvi (p) = 0. Implementing Eq. 1.61 and taking the λ→ 0 limit, one arrives at

M f
n+g =

ui (p)
λ

ε∗aµ (k)

[
gsTa

ij p
µ

p · k + iε

]
Mn,j (p1, . . . , p, . . . , pn)

+O
(

λ0
)

. (1.63)

We see that the soft gluon emission factorises. It is also worth pointing out that
we have not specified a gauge in doing this. The term in square brackets can
be thought of as an effective Feynman rule composed of a scalar propagator
between the leading order amplitude and an effective vector vertex with the
rule, −2igs pµTa

ij. This is known as the eikonal Feynman rule, with

pµ

p · k , (1.64)

the so-called eikonal factor. The gluon has dissociated from the emitter becom-
ing insensitive to spin, and is now associated with the entire hard process. The
reason being, that such a gluon has an infinite wavelength and can therefore
no longer resolve details of the hard interaction. Whilst we have considered
a soft gluon emission from an outgoing fermion line, the same factor results
modulo a sign difference, for an outgoing anti-fermion line. Indeed, the same
effective Feynman rule would result had we considered emission from a scalar
or vector particle.
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Considering a soft gluon emission from an outgoing vector boson external leg,
ε∗β (with momentum p), connected to an arbitrary leading order amplitude
Mµ,c

n . The gluon propagator in the axial gauge is

∆µν,ab (p + k) =
iδab

(p + k)2 + iε

(
−ηµν +

nµ (p + k)ν + (p + k)ν nµ

(p + k) · n

)
. (1.65)

This is simply Eq. 1.47 with the choice ξ → 0 and n2 = 0, i.e. the lightcone
gauge [70]. The resulting amplitude reads

Mg
n+g = ε

∗,β
b (p) ε∗,αa (k)

×
(
−gs f abc

(
(2p + k)α ηβγ + (−p− 2k)β ηαγ + (k− p)γ ηαβ

))

×
i
(
−ηµγ +

nµ(p+k)γ+nγ(p+k)µ

n·(p+k)

)

(p + k)2 + iε
Mµ,c

n (p1, . . . , p + k, . . . , pn) ,

= ε
∗,β
b (p) ε∗,αa (k)

(
−gs f abc2pαηβγ

)

×
i
(
−ηµγ +

nµ pγ

n·p
)

2λp · k + iε
Mµ,c

n (p1, . . . , p, . . . , pn) +O
(

λ0
)

. (1.66)

We have exploited both gauge invariance, represented by the relationMµ(p +
k, . . . , pn)(p + k)µ = 0, the property of the axial gauge, pβ

i ε∗bβ = 0, and taken
the soft limit to arrive at the last line of Eq. 1.66. This reduces to

Mg
n+g =

ε
∗,γ
b (p) ε∗,αa (k)

λ

[
gsi f abc pα

p · k + iε

]
Mγ,c

n (p1, . . . , p, . . . , pn) +O (λ) , (1.67)

where once again, the term in the square brackets can be thought of as an ef-
fective Feynman rule. Replacing the structure constant with a generator using
Eq. 1.8, highlights the shared eikonal factor for both fermion and vector emit-
ters. The important part is that these eikonal factors appear for any number of
soft gluons and the factorisation they exhibit does not depend on the internal
structure of the amplitude. We shall use these rules in the following sections
to calculate the O(αs) corrections to the cross section for the γ∗ → qq̄ process
including soft corrections, i.e. emission and one-loop corrections.

1.4.3 Emission contribution

We begin our discussion of the O(αs) soft corrections to the γ∗ → qq̄ cross
section by considering the emission of a real gluon with momentum k, colour
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p1

p2

k

p1

p2

k

FIGURE 1.3: Feynman diagrams for the O(αs) real emission cor-
rections to the total hadronic cross section in γ∗ → qq̄.

index c and polarisation λk from either leg of the qq̄ pair, as depicted in Figure
1.3. The amplitude for a soft-gluon emission from the quark can be written as

M(0),1
1 = gsTa

ijγ
αε∗,aα (k, λk)

pα
1

p1 · k
ui(p1, s1)γ

µHµvj (p2, s2) . (1.68)

An equivalent amplitude,M(0),2
1 , holds for a soft-gluon emission off the anti-

quark, with the only difference being an additional minus sign as noted in
Section 1.4.2. Summing the two contributions gives

M(0)
1 =M(0),1

1 +M(0),2
1

' gsTa
ijγ

αε∗,aα (k, λk)

[
pα

1
p1 · k

− pα
2

p2 · k

]
ui(p1, s1)γ

µHµvj (p2, s2)

= ε∗,aα (k, λk)Aα,aM0. (1.69)

The object Aα,a is the eikonal current. It’s interesting to note that if we sub-
stitute ε∗,aα (k, λk) with kα and contract with Aα,a, we get a null result, which
is a result of gauge invariance. This is a consequence of colour conservation
and can be generalised to an arbitrary number of coloured final-state external
legs [71, 72]. SquaringM(0)

1 and summing over final-state spins, colours and
polarisations we have

∑
λk

∣∣∣M(0)
1

∣∣∣
2
= ∑

λk

ε∗,cα (k, λk)ε
d
β(k, λk)Aα,c A†,β,d |M0|2 , (1.70)

where the sum and trace over the SU(Nc) generators in the fundamental rep-
resentation, are

∑
i,j,a

Ta
ij

(
Ta

ij

)∗
= CFTr (1) = CFNc. (1.71)
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Taking all of these results together, we can write the cross section for qq̄ pair
production, with the emission of a soft-gluon as

σ
(0)
1 =

2αs

π
CF

∫
dEk
Ek

dΩ
4π

E2
k

p1 · p2

(p1 · k) (p2 · k)
dσ0, (1.72)

where dσ0 is the differential Born cross section for creating the quark-antiquark
pair. From Eq. 1.72, we can glean that the cross section for emitting a gluon
is divergent in three regions: when the gluon is collinear to the quark, i.e.
p1 · k → 0, when the gluon is collinear to the anti-quark, p2 · k → 0 and when
the gluon momentum approaches zero, k → 0. We can specify the back-to-
back kinematics for the quark-antiquark pair, for a centre-of-mass energy, Q,
(and generally pick the azimuth of the emitted gluon to be 0) as:

p1 =
Q
2
(1, 0, 0, 1)

p2 =
Q
2
(1, 0, 0,−1)

k = Ek (1, sin θ, 0, cos θ) , (1.73)

where θ is the polar angle between the emitted gluon and the quark. We can
then see that the aforementioned divergent limits correspond to the collinear
(with the quark) limit θ → 0 (p1 · k → 0), the anti-collinear limit θ → π (p2 ·
k → 0) and soft limit, Ek → 0. The first two divergences are called collinear
divergences, whilst the last is called a soft divergence. These are collectively
termed infrared divergences. Physically, the γ∗ → qq̄ process with a gluon
that is either soft, or collinear with the quark or anti-quark, is indistinguishable
from the process in which no gluon was emitted.

Alone, these real emission contributions would lead to an infinite, and unphys-
ical cross section. There are further diagrams that contribute to the γ∗ → qq̄
cross section at this order however. They are the one-loop virtual corrections
to the Born amplitude and shall be discussed in the next section, where we will
see that with their inclusion, the infrared divergences cancel.

1.4.4 Virtual Contribution

Physically, the infrared divergences in Eq. 1.72 would indicate that the cross-
section is sensitive to long-distance effects. However the cross-section con-
taining one emission at O (αs) is not the only contribution at this order. The
emission of a virtual gluon exchanged between the quark-antiquark final state
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p1

p2

k

p1k

p2
k

FIGURE 1.4: Feynman diagrams for the O(αs) one-loop correc-
tions to the Born cross section for γ∗ → qq̄.

particles in the Born amplitude (known as the vertex correction), contributes
toM0 at O (αs). This is depicted in the top diagram of Figure 1.4 and we shall
denote this contribution asM(1)

0 .

There are two additional diagrams in Figure 1.4, containing self-energy gluon
exchanges of the quark and anti-quark. However, it can be shown that these
contributions can be consistently set to 0, and so we won’t consider them here.
One way to see this is with the dimensional regularisation (DR) scheme [65],
where both infrared and ultraviolet divergences are regularised, performing
calculations in d = 4 + ε dimensions. In the DR scheme the self-energy correc-
tions vanish if we adopt the Landau gauge (where we set ξ = 0 in the gluon
propagator). Moreover, using the DR scheme, one can show that we can treat
these self-energy corrections as equal to zero, for any value of ξ and ε, pro-
vided we are dealing with massless fermions [73].

It is therefore sufficient to examine only the vertex correction Feynman dia-
gram in the Feynman gauge. In order to calculate the effects of this contribu-
tion to the cross section, we must again calculate |M0|2, where it is the inter-
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ference terms in

|M0|2 =
∣∣∣M(0)

0

∣∣∣
2
+M(0)

0 M
†,(1)
0 +M(1)

0 M
†,(0)
0 , (1.74)

which ultimately contribute to the cross section atO (αs). TheM(1)
0 amplitude

for a soft-gluon exchange is given by

M(1)
0 = −4iCFg2

sM(0)
0

∫
d4k
(2π)4

(p1 · p2)

(k2 + iε) (2 (p1 · k) + iε) (2 (p2 · k)− iε)
,

(1.75)

where we have an explicit integral over the loop four-momentum, k. We
have once again explicated the four momenta inner products by specifying
the centre-of-mass frame of reference. To make note of an interesting result
we can write the exchanged gluon in terms of its transverse and longitudi-
nal momentum components, which exposes poles at Ek = ± (kz − iε) and
Ek = ± (|k| − iε):

M(1)
0 = −4iCFg2

sM(0)
0

∫
d4k
(2π)4

p1 · p2

(Ek + |k| − iε)

× 1
(Ek − |k|+ iε) (Ek + kz − iε) (Ek − kz + iε)

. (1.76)

Closing this contour in the lower plane, the relevant poles are Ek = kz and
Ek = |k|, and applying the residue theorem we find,

M(1)
0 = CFg2

sM(0)
0

∫
d3k

2Ek(2π)3

(
− p1 · p2

(p1 · k) (p2 · k)
+

Ek

(kz − iε) k2
T

)
, (1.77)

where the second term in this integral results in an imaginary contribution,
commonly referred to as the Coulomb gluon contribution. Integrated out, this
results in

M(1)
0 = CFg2

sM(0)
0

(
−
∫

d3k
2Ek(2π)3

p1 · p2

(p1 · k) (p2 · k)
+ iπ

∫
dkT

(2π)2kT

)
. (1.78)

This imaginary term always cancels when considering physical cross-sections
in Abelian theories to all orders. However for non-abelian gauge theories such
as QCD, this is not the case. Indeed, the Coulomb gluon can have measurable
effects in the presence of a high enough number of coloured legs [74–76]. And,
they have been shown to introduce super-leading logarithms [77, 78].
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The interference terms of interest for the cross section are

2<
(
M(0)

0 M
(1),∗
0

)
= CFg2

s

∣∣∣M(0)
0

∣∣∣
2

×
(
−2
∫

d3k

Ek (2π)3
p1 · p2

(p1 · k) (p2 · k)
+ iπ

∫
dkT

(2π)2 kT
− iπ

∫
dkT

(2π)2 kT

)

= −2CFg2
s

∣∣∣M(0)
0

∣∣∣
2
∫

d3k

Ek (2π)3
p1 · p2

(p1 · k) (p2 · k)
. (1.79)

It is clear that the first contribution to this squared amplitude has an identically
divergent structure to that of Eq. 1.69 - the squared amplitude correspond-
ing to real gluon emission - with opposite sign, and that in this particular in-
stance, the Coulomb contributions cancel. Constructing the cross section from
Eq. 1.79, we find that at O (αs)

σ
(0)
1 + σ

(1)
0 = 0, (1.80)

i.e. there are no corrections to the Born cross section from eikonal emission.
Had we performed the full O(αs) calculation without taking the eikonal ap-
proximation, we would have found [79]

σ
(
e+e− → qq

)
= σ0

(
1 +

αs

π

)
, (1.81)

resulting in an additional finite term.

The crucial point for both the eikonal and full calculation being, in combining
all virtual and real-emission contributions at O (αs), the soft and collinear di-
vergences exactly cancel. Infact, this pattern of divergence cancellation carries
to all orders in αs: we have witnessed the lowest-order manifestation of the
Bloch-Nordsieck (BN) theorem (proven for QED) [80], which was generalised
to non-Abelian theories by the Kinoshita-Lee-Nauenberg (KLN) theorem [81,
82]. This states that in a theory consisting of massless fields, the transition
rate is free of infrared divergences at each order of perturbation theory pro-
vided the summation over all initial and final degenerate states is carried out.
The degenerate state in this context being a final state consisting of a massless
quark-antiquark pair, which is indistinguishable from the same state with an
arbitrary number of collinear and/or soft gluons.

Whilst we have noted that the fully inclusive cross section corrections in the
soft limit cancel entirely, what happens if we place restrictions on the emission
phase-space? We still want our observables to remain unaffected by infrared
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and collinear divergences, i.e. to not spoil the BN or KLN theorems. An ob-
servable that respects this condition is called InfraRed and Collinear (IRC) safe.

Remembering the exhibited factorisation of the real and virtual contributions
in the soft limit, we can schematically write the NLO distribution of an ex-
clusive observable ρ by introducing an observable (or measurement) function
un({k}n). This can be written

σ(ρ) = g2
s CF

∫
dσ0

∫
d3k

Ek(2π)3
p1 · p2

(p1 · k) (p2 · k)
× [u3 ({p1, p2, k})− u2 ({p1, p2})] . (1.82)

From this we can see that for an observable to be infrared and collinear safe,
the measurement function must satisfy

un+1
(
{. . . , ki, k j, . . .}

)
→ un

(
{. . . , ki + k j, . . .}

)
, if ki ‖ k j

un+1 ({. . . , ki, . . .})→ un ({. . . , ki−1, ki+1, . . .}) , if ki → 0. (1.83)

We shall discuss a particular soft measurement function in more detail in Sec-
tion 2.1.1. In the case un({k}n) = 1 this is our fully inclusive observable and
the cancellation between real and virtual contributions is complete, as we have
already shown. If our observable is exclusive to some degree, the above con-
straints ensure the IRC singularities cancel. However, the kinematic depen-
dence can cause the cancellation of non-singular terms to be incomplete.

This miscancellation can leave behind a finite, but potentially large logarithmic
contribution, making the perturbative expansion unreliable. The logarithms
spoil the perturbative expansion in the strong coupling and must be resummed
to all orders to regain reliable theoretical predictions. We shall examine this
procedure for the simple case in which we set the non-Abelian generators to
unity, effectively restricting ourselves to the Abelian gauge theory, QED. We
shall show that for the one-loop exchange of a soft photon between the quark-
antiquark pair in Figure 1.4, contributions from this graph exponentiate.

1.4.5 Resummation

We have observed the factorisation of soft photon (gluon) physics at the one-
loop level. We could schematically write the amplitude of this diagram (where
we neglect the integral over the loop momentum k and ignore coupling con-
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(A) (B)

FIGURE 1.5: Two diagrams which contribute atO(αn) with n soft
photon exchanges. The left-hand diagram is the completely un-
crossed graph, whilst the right-hand diagram is an example of a

graph with a single crossing.

stants) as

M(1)
0 =M(0)

0

(
− pµ

1
p1 · k

)(
pν

2
p2 · k

)
∆µν(k), (1.84)

where ∆µν(k) denotes a photon propagator. If we consider an equivalent Feyn-
man graph to the one-loop exchange in Figure 1.4, but with n uncrossed pho-
ton exchanges, we would find the contribution toM(n)

0 to be

M(n)
0,uncrossed =M(0)

0 ×
n

∏
i=1

∆µiνi(ki)

×
(

(−1)n pµ1
1 . . . pµn

1 pν1
2 . . . pνn

2
(p1 · k1) . . . (p1 · (k1 + . . . + kn))(p2 · k1) . . . (p2 · (k1 + . . . + kn))

)
,

(1.85)

which is pictorially depicted in Figure 1.5a. There are of course other diagrams
at this order which contribute. They involve all possible permutations of the
ordering of the photon exchanges with regards to the quark and anti-quark
line. An example of one such diagram is illustrated in Figure 1.5b. Including
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all such diagrams, one can write the fullM(n)
0 amplitude as

M(n)
0 =M(0)

0

(
(−1)n pµ1

1 . . . pµn
1 pν1

2 . . . pνn
2

(p2 · k1) . . . (p2 · (k1 + . . . + kn))

) n

∏
i=1

∆µiνi(ki)

×∑
π

1
(p1 · kπ1) . . . (p1 · (kπ1 + . . . + kπn))

, (1.86)

where π here labels a permutation of the list (1, 2, . . . , n) such that it maps to
(π1, π2, . . . , πn). The second denominator can be related to a much simpler one
through the use of the eikonal identity

∑
π

1
(p1 · kπ1) . . . (p1 · (kπ1 + . . . + kπn))

= ∏
i

1
p1 · ki

. (1.87)

The first denominator still has a complicated dependence on the photon mo-
menta, where the photons depend on all other photons lying between itself
and the original final-state quark-antiquark pair. Noting that the momenta
of the photon loops will inevitably be integrated over, the photon momenta
ki are dummy variables. Then one can replace the particular combination of
photon momenta in the first denominator with a sum over all permutations of
these momenta (modulo a 1/n! symmetry factor). Using Eq. 1.87, one can then
rewrite Eq. 1.86 as

M(n)
0 =M(0)

0
1
n!

n

∏
i=1

d4ki

(2π)4

(
− pµi

1
p1 · ki

)(
pνi

2
p2 · ki

)
∆µiνi(ki). (1.88)

One may then explicitly compute the sum of all diagrams involving any num-
ber of soft photon emissions, to all orders in perturbation theory and find

M =M0 exp

[∫
d4k
(2π)4

(
− pµ

1
p1 · k

)(
pν

2
p2 · k

)
∆µν(k)

]
. (1.89)

This is the exponential of the one-loop graph in Eq. 1.84, where we have rein-
stated the loop integral over the photon momentum. A few comments are in
order. The one-loop graph in the exponent contains IR divergences as already
outlined. This means that there is a pattern of IR singularities that appear
order-by-order as one expands the exponential. We shall see in Chapter 2 that
these divergences cancel against those from real emission contributions at each
order (as they did for the first order in Sections 1.4.3 and 1.4.4). Eq. 1.89 was
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derived, only assuming soft photons with no restriction on the ordering with
which they attach to the hard external legs. However, had we assumed en-
ergy ordering, Q � k0

1 � k0
2 � . . . � k0

n where Q is the energy of the hard
process, we would have found the same result. Resummation in QCD is more
complicated as each Feynman graph can carry the colour matrices, Ta, which
weight the graph and do not commute. Despite this, using approximations like
the soft limit and energy-ordering, the process of resumming logarithmically-
enhanced terms at all orders to restore the predictive power of perturbative
QCD is a well-known technique [83–90], to the point that it has been auto-
mated for a number of observables [88, 91–95].

Consider a global IRC safe observable,

Σ(ρ) =
∫ ρ

0

1
σ

dσ

dρ′
dρ′. (1.90)

This is the integrated distribution, i.e. the probability for the observable to take
on a value smaller than ρ. If its logarithmically-enhanced terms exponentiate,
Σ(ρ) can be written in the resummed form [83],

Σ(ρ) ∝

(
1 +∑

n

Cn

( αs

2π

)n
)

exp (Lg1(αsL) + g2 (αsL) + . . .) , (1.91)

valid for small ρ. In the above equation L = ln(1/ρ) is a logarithm involving
ρ and the terms resummed by Lg1(αsL) are referred to as leading (or ‘dou-
ble’) logarithms (sourced from both collinear and soft divergences). Next-to-
leading (or ‘single’) logarithms are resummed by g2 (αsL), and so forth. Whilst
Eq. 1.91 looks straightforward, there are a number of ‘catches’. One being: for
observables with emissions that are only sensitive to a limited ‘patch’ of phase-
space, it was shown [96] that there are additional classes of next-to-leading
logarithmic terms that do not exponentiate. These so-called non-global loga-
rithms shall be our focus in Chapter 2.

1.5 Colour Flow Representation

We saw in Section 1.2 that quarks and antiquarks come in three colours, whilst
gluons come in eight. There are then many amplitudes with different colour
arrangements that must be computed and summed in order to determine the
invariant matrix element,M f i, in Eq. 1.53. Each Feynman graph contributing
to this calculation can be factorised into a kinematical and colour amplitude.
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With a view to introducing a general evolution algorithm (in Chapter 2) and
discussing its implementation into a Monte-Carlo code (in Chapter 4), we need
an efficient and automated way to calculate colour-dependence.

In typical calculations, the colour amplitude consists of a string of Ta and f abc

tensors, contracted over all internal indices. The ‘outermost’ tensors carry ex-
ternal colour indices which are summed over when calculating the squared
invariant matrix element. Commonly, the structure constants in the adjoint
representation are rewritten into the fundamental representation (using for ex-
ample Eq. 1.13).

The colour-flow representation is one in which the basis of the fundamental
representation, Ta, is eliminated. It is conventional to decompose the gluon
field using the fundamental-representation matrices as

(
Aµ

)i
j = Aa

µ (T
a)i

j . (1.92)

Instead, the QCD Lagrangian and corresponding Feynman rules can be writ-
ten in terms of individual matrix elements of the Nc × Nc gauge matrix fields,(

Aµ

)i
j. Expressing calculations in this way is beneficial for both automated

colour computation and interfacing to the components of existing event gen-
erators: parton showers, matrix element generators and hadronisation models.
Resulting amplitudes describe colour connections, or colour flows, through a
weighted-sum of products of Kronecker-deltas.

One can then rewrite the QCD Lagrangian to account for this change, as

LQCD = −1
4
(

Fµν

)i
j (Fµν)

j
i + ψ̄iγ

µ

(
i∂µδi

j +
gs√

2

(
Aµ

)i
j

)
ψj

+ Lgauge-fix + Lghost, (1.93)

where

(
Fµν

)i
j = ∂µ (Aν)

i
j − ∂ν

(
Aµ

)i
j − igs

(
Aµ

)i
k (Aν)

k
j + igs (Aν)

i
k
(

Aµ

)k
j . (1.94)

We have expressed the QCD Lagrangian for just one massless fermion species
for brevity, although the generalisation to multiple species is the same as in
Eq. 1.42. The indices on the gauge field matrix elements follow the conven-
tions of [97, 98], where upper indices transform under the fundamental repre-
sentation of SU(Nc) and the lower indices transform in the anti-fundamental
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representation. Additionally, the coupling constant has been renormalised,
gs → gs/

√
2, so that the gauge matrix field is canonically normalised.

The tensor product of the fundamental and anti-fundamental representation
is isomorphic to the adjoint representation of U(Nc). This is the equivalence
employed in ’t Hooft’s double line notation [45], mentioned in Section 1.2.1.
Written in this way, the colour part of the SU(Nc) gluon propagator can be split
into a U(Nc) gluon propagator and a U(1) gluon propagator,

∆µν,ab(p) ∝ δi
lδ

k
j −

1
Nc

δi
jδ

k
l (1.95)

such that the usual algebraic constraints of hermiticity and tracelessness are
satisfied (just as they are when Aµ is decomposed in the fundamental repre-
sentation, see Eq. 1.36). The U(1) gluon interacts only with quarks and acts as
a ‘photon’, i.e. it takes no part in the colour flow. It is unphysical and carries a
factor of 1/Nc.

The correspondence between the standard QCD Feynman rules (expressed in
the fundamental and adjoint representations) and the Feynman rules in the
colour-flow representation, for propagator and vertex factors, are presented in
Tables 1.4 and 1.5. An upper index represents a colour line, whilst a lower
index represents an anti colour line, where there are Nc different colours cor-
responding to the values each index can take. An arrow on each line indicates
whether it is a colour (directed to the right) or anti colour (to the left) line and
the arrows track the flow of colour from lower to upper indices. Gluons are
represented by double lines, one for the colour and one for the anti colour,
flowing in opposite directions. Similarly, fermion (anti fermion) propagators
are represented by a single directed colour (or anti colour) line. The vertex
colour factors are a product of Kronecker deltas, which correspond to colour
lines continuing through the vertex. As we can see from Eq. 1.93, the basic
coupling is gs/

√
2 in the colour-flow formalism. Aside from this rescaling, all

Lorentz and momentum factors in the colour flow Feynman rules retain their
original form and so are omitted from Tables 1.4 and 1.5. It is worth noting
that since ghosts carry colour, they would also have a corresponding Feynman
rule in the colour flow representation. However, they are not used in this work
and so will not be discussed here.

As an example of using the colour flow representation, let’s look at the ex-
change of a gluon between fermion lines. Figure 1.6 illustrates a one-gluon
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=

k

lj

i k ki i

j jl ln

m

(
− 1

Nc

)(
1√
2
δji

) (
1√
2
δkl

)(
1√
2
δmi δ

j
n

)(
1√
2
δkmδ

n
l

)
(Ta)ji δ

ab
(
Tb

)k

l

FIGURE 1.6: An illustration of the calculation of colour structures
using the Feynman rules in the colour flow representation for the

qq̄→ qq̄ process.

exchange between two quark-antiquark pairs, where the left hand side repre-
sents the process in ordinary QCD. In the colour flow representation on the
right hand side, we have two diagrams: one for the double-line gluon and the
other for the U(1) singlet gluon. This corresponds to the sum

∑
a
(Ta)

j
i (T

a)k
l =

1
2

(
δk

i δ
j
l −

1
Nc

δ
j
i δ

k
l

)
, (1.96)

which is just the Fierz identity in Eq. 1.17.
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QCD Propagator Colour-flow representation

a

δab

b i k
l

δi
kδl

j

j
i
j − 1

Nc
δ

j
i δ

k
l

k
l

i p→
δij

j i
δ

j
i

j

jp→
δij

i j
δi

j

i

TABLE 1.4: Correspondence between the Feynman rules for
propagators in QCD and those Feynman rules in the colour-flow
formalism. Arrows directed to the right represent colour lines,
whilst those to the directed to the left represent anti-colour lines.
The Kronecker delta functions constraining the colour in both the
standard QCD Feynman rules and in the colour flow representa-
tion are presented, whilst the Lorentz and momentum factors are

omitted as they retain their original form.
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QCD Propagator Colour-flow representation

a, µ

Ta

j

i i

k
l

δk
i δ

j
l

j

a, µb, ν

f abc

c, σ

i
j k

l

δm
l δi

nδk
j

mn
a, µb, ν

c, σ d, ρ
i

δn
o δ

p
i δ

j
l δ

k
m

p

l j

m

k

on

TABLE 1.5: Correspondence between the Feynman rules for ver-
tices in QCD and those Feynman rules in the colour-flow formal-

ism.
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Amplitude Evolution
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In this chapter, we shall bring together concepts from Chapter 1 and the works
[18–21, 78] to present a general framework that can be used as basis for auto-
mated resummations. We consider algorithmic, recursive definitions of QCD
amplitudes for the radiation of an arbitrary number of soft gluons including
virtual corrections to all orders. This chapter is based on work performed in
reference [99] which was produced in collaboration with R. Ángeles Martínez,
J. R. Forshaw, S. Plätzer and M. H. Seymour.

The works [18, 19, 74, 75] focused on one particular observable, namely the
gaps-between-jets cross section. This is the cross section for producing a pair
of jets with a restriction on the transverse momentum (such that kT is less than
some veto scale Q0) of any additional jets in the rapidity region between the
two leading jets (of extent Y), the so-called in-gap region. This is depicted in
Figure 2.1.

Y

y > 0y < 0 y = 0

φ

FIGURE 2.1: Depiction of the gaps-between-jets observable. The
dark circles represent the two primary jets and any subsequent
emission in the in-gap region is constrained to have a transverse

momentum smaller than Q0.

In the original calculations of the gaps-between-jets cross section [74, 75], a cut
Q0 on the transverse momentum of any particle in the inter-jet region is im-
posed. All those terms which go as∼ αn

s lnn(Q/Q0), where Q is the transverse
momentum of the primary jets, that can be obtained from dressing the low-
est order 2 → 2 scattering in all possible ways with soft virtual gluons, were
summed. Furthermore, they argued that one need only consider the subset of
virtual corrections with transverse momentum Q0 < kT < Q, to capture all of
the leading logarithms. This followed the rationale: knowing that the contri-
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butions arising from real gluon emission cancel with a corresponding virtual
correction, as per Eq. 1.82, it seems a consequence of the Bloch-Nordsieck The-
orem that the only region in phase-space where real-virtual cancellation would
not occur is the region where the real emissions are forbidden, i.e. within the
gap and where the transverse momentum is above Q0. However, the work [96,
100] discovered additional single-logarithm contributions to observables such
as gaps-between-jets, which they termed non-global.

These non-global contributions arise due to the subtlety that whilst the real and
virtual contributions cancel exactly at the level of the cross section in the case
we dress the primary jets with a single soft-gluon, this cancellation does not
survive subsequent dressing. If we consider an emission above Q0, it is nec-
essarily out of the gap. The virtual corrections to this five-parton amplitude
which occur out-of-gap or in-gap, with kT < Q0, always have an emission to
cancel against. However, due to the phase-space constraint, the out-of-gap real
emission is forbidden from radiating back into the gap with kT > Q0 and those
virtual corrections in-gap with kT > Q0 have nothing to cancel against. We
then have total cancellation in both the in- and out-gap regions below Q0, but
it is necessary to include the emission of any number of soft gluons, be them
real or virtual, outside of the gap, dressed with any number of in-gap virtual
gluons. The work [18] calculated the non-global contribution coming from one
real or virtual gluon being emitted in the out-region dressed with an arbitrary
number of in-gap virtual gluons. Their approach was generalised to use the
colour basis-independent notation [51, 101, 102] in [19], keeping the full colour
structure and setting out the basis of a framework to systematically calculate
non-global contributions. The authors also retained the imaginary part of the
virtual loop integrals, the so-called Coulomb gluon contributions. It turned
out that these terms give rise to an additional source of real-virtual miscancel-
lation, leading to towers of super-leading logarithms. It is this framework that
forms the basis for the general algorithm outlined in the following section.

2.1 The General Algorithm

In this section we describe the general evolution algorithm in a form that is
suited to the calculation of multiple soft-gluon contributions to any observ-
able in a fully-differential way. We then proceed to reformulate this algorithm
such that the cancellation of infrared divergences is manifest at each order and
use this in an explicit calculation of the non-global contribution to the hemi-
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sphere mass in electron-positron collisions to order α3
s . We begin by stating the

differential cross section for emitting n soft gluons. This is

σ0 = Tr
(

Vµ,QH(Q)V†
µ,Q

)
≡ TrA0 (µ)

dσ1 = Tr
(

Vµ,E1Dµ
1 VE1,QH(Q)V†

E1,QD†
1µV†

µ,E1

)
dΠ1

≡ TrA1 (µ)dΠ1

dσ2 = Tr
(

Vµ,E2Dν
2VE2,E1Dµ

1 VE1,QH(Q)V†
E1,QD†

1µV†
E2,E1

D†
2νV†

µ,E2

)
dΠ1dΠ2

≡ TrA2 (µ)dΠ1dΠ2

... (2.1)

In Eq. 2.1, H(Q) is the hard scattering matrix for a process at some hard scale,
Q, where H = |M〉 〈M|. The vector |M〉 represents a fixed-order matrix ele-
ment in colour and spin, although only the colour shall be considered in this
work. Eq. 2.1 presents the first three steps in a Markovian process, that builds
upon the hard scattering matrix with virtual evolution operators (V), which
preserve the representation of H in colour space and emission (D) operators
which increase the dimension. For n soft-gluon emissions, there are n emis-
sion operators and n + 1 virtual evolution operators. The last virtual operator
evolves down to an infrared cutoff scale µ. The amplitude operators An satisfy
the recurrence relation

An (E) = VE,En Dµ
nAn−1 (En)D†

nµV†
E,En

θ (E ≤ En) , (2.2)

where θ (E ≤ En) is a Heaviside step function which constrains each subse-
quent emission to be at a lower or equal energy to the last. At each step in this
recursion the emission operators add a new particle, whilst the virtual evolu-
tion operators (the so-called Sudakov operators) encode loop corrections to all
orders. It is worth noting that we have ordered successive emissions in energy.
This is a valid assumption for processes that are insensitive to Coulomb gluon
exchanges, such as those used throughout this work, but not otherwise [20, 92,
99]. The amplitude operators, An, contain fixed-order infrared divergences.
The cancellation of these between real emission and virtual contributions only
occurs in the sum over n after integration over the real emission phase-space.
The emission operator for the ith gluon with energy Ei and four-momentum
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qi, Dµ
i , in the eikonal approximation is

Dµ
i = ∑

j

TjEi
pµ

j

pj · qi
, (2.3)

where the sum over partons j in Eq. 2.3 is context-specific: the summation runs
over all partons in the hard scattering and any prior soft-gluon emissions that
have occurred in previous iterations of the process. Likewise, the colour charge
operators, Tj, are in a context-specific representation of SU(3)c. The associated
phase-space element, dΠi, is defined as

dΠi = −
αs

π

dEi

Ei

dΩi

4π
, (2.4)

where αs is the QCD coupling constant and dΩi = sin θidθidφi. Here, θi and
φi are the polar angle and azimuth of the emitted gluon respectively. The soft-
gluon anomalous dimension operator describes the dressing of all pairs of par-
tons in the cascade at any given time with a single soft-gluon exchange and
forms the basis of the Sudakov operator. The anomalous dimension operator
is

Γ =
αs

π ∑
i<j

(
−Ti · Tj

) {∫ dΩk
4π

ωij(k̂)− iπδ̃ij

}
. (2.5)

The object δ̃ij in Eq. 2.5 is defined such that δ̃ij = 1 if the partons i and j are
both in the initial or both in the final state and equal to zero otherwise. This is
the term corresponding to Coulomb exchanges. The carat on the momentum k
signifies that the dipole factor (defined below) is dependent only on the direc-
tion of the vector k. The sum in the soft-gluon anomalous dimension matrix is
also context-specific, running over any prior soft gluon emissions and partons
in the hard scattering process. Akin to the colour charge operators, the colour
charge products in Eq. 2.5 are in a context-specific representation of SU(3)c.
The Sudakov operator, Va,b, is the path-ordered exponential of the soft-gluon
anomalous dimension matrix integrated over the ordering variable:

Va,b = P exp


−αs

π

∫ b

a

dEk
Ek

∑
i<j

(
−Ti · Tj

)

×
{∫

dΩk
4π

ωij(k̂)− iπδ̃ij

}]
, (2.6)
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where the dipole factors are defined as

ωij(k̂) = E2
k

(
pi · pj

)

(pi · k)
(

pj · k
) . (2.7)

The path-ordering, P, in the definition of Va,b is not actually needed in this
work, because the expression in curly brackets in Eq. 2.6 is independent of the
ordering variable and we shall henceforth drop it. Physically, the Sudakov
operator expresses the non-emission at the intermediate scales between two
subsequent emissions.

A general observable, Σ, can be computed using

Σ (µ) =

∫
∑

n

dσn (µ) un({k}n), (2.8)

where the un are the measurement functions which define the observable and
depend on the set of momenta for all soft-gluons, {k}n, at a given multiplicity
n. We suppress dependence on the hard partons and integration over their
phase-space. In terms of the amplitude operators this is

Σ (µ) =

∫
∑

n

(
n

∏
i=1

dΠi

)
TrAn (µ) un({k}n). (2.9)

The cutoff scale µ is an infrared regulator and one should take the limit that
µ tends to 0. If we are interested in a specific observable we know to be in-
clusive of real emissions below some scale, ρ, then we instantiate the rationale
of Bloch-Nordsieck cancellation to fix µ = ρ. The real emission phase-space
should then be integrated over energy values E > ρ. This can be shown if we
make use of the identities [99]

V†
a,bVa,b − 1 = −αs

π

∫ b

a

dE
E

dΩk
4π

V†
E,bD2(k̂)VE,b,

1
2

D2(k̂) = ∑
i<j

(
−Ti · Tj

)
ωij(k̂), (2.10)

where we have defined D2(k̂) ≡ Dµ(k)Dµ(k). We can write the observable for
n real emissions as

dσn =

(
n

∏
m=1

dΠm

)
Tr
(

VEn,0An(En)V†
En,0

)
. (2.11)
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Making use of the identities in Eq. 2.10, and exploiting the cyclic property of
the trace, this can be written as

dσn =

(
n

∏
m=1

dΠm

)
Tr
(

An(En)−
∫

dΠn+1An+1(En+1)

)
, (2.12)

where it should be understood that E0 = Q, such that A0(E0) = H. It follows
that

σ = TrH +

∞

∑
n=0

∫ (
n+1

∏
m=1

dΠm

)
Tr (An+1(En+1))

× (un+1({k1, . . . , kn+1})− un({k1, . . . , kn})). (2.13)

In the case that un+1({k1, . . . , kn+1}) = un({k1, . . . , kn}) for En+1 < ρ, then
the scale ρ can be set as the lower bound on the energy integrals for both real
emissions and virtual exchanges.

The algorithm as written in Eq. 2.1 is systematic to all orders in colour and
accounts for the leading soft logarithms. Using the emission transverse mo-
mentum, kT, as their ordering variable the authors of [20, 21] analytically veri-
fied this algorithm for a general hard process dressed with up to two soft real
emissions and one loop. In addition, this framework has since been extended
in [103] to account for the leading soft and/or collinear logarithms.

The iterative form of the algorithm is well suited to a Monte Carlo implemen-
tation to generate partonic events, which has been carried out and will be de-
tailed in Chapter 4. We shall adopt the use of the colour flow basis to represent
the operators in Eq. 2.1 and efficiently calculate multi-parton amplitudes [97].

Firstly however, we discuss a manifestly infrared-finite version of the algo-
rithm, such that the infrared divergences arising in the eikonal approximation
cancel at each iteration of the algorithm. This will enable us to calculate the
non-global contribution to the hemisphere mass observable for e+e− collisions
to order α3

s , which we can compare with the known results [96, 104, 105]. It is
useful to consider a generalised measurement function in the soft gluon limit
as follows

un({k1, . . . , kn}) = u(ki, {k1, . . . , ki−1, ki+1, . . . , kn})
un−1({k1, . . . , ki−1, ki+1, . . . , kn}), (2.14)
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where u(ki, {k1, . . . , ki−1, ki+1, . . . , kn}) goes to 1 as gluon i approaches the limit
of having zero energy. Motivated by the work of [18, 19], general observables
may be defined by dividing the total angular phase-space into two comple-
mentary regions. We refer to these regions as the "in" and "out" regions, where
there is total inclusivity of the observable in the latter. The in-region places
exclusionary constraints on radiation, e.g. disallowing radiation above some
veto scale ρ. We can then write the measurement function as

u (k, {q}) = Θout (k) + Θin (k) uin (k, {q}) , (2.15)

where the Heaviside functions Θin(k) and Θout(k) are defined to be unity if the
emission k is in the in- or out-region respectively and zero otherwise. The set
{q} corresponds to all other real emissions. If the out-region is of zero extent,
then the observable is referred to as a global observable and so Θout(k) = 0
in which case u(k, {q}) = uin(k, {q}). Otherwise, the observable is known as
a non-global observable. In order to make the soft and soft-collinear diver-
gences manifest and expose the infrared cancellation, it is useful to break the
virtual loop-integral in the soft-gluon anomalous dimension matrix into two
parts: that which is destined to cancel against a corresponding real emission
contribution, and the remainder. We define

Γ = Γu + Γu, (2.16)

where the bar indicates virtual exchanges in the in-region and

Γu =
αs

π

∫
dΩk
4π

u(k, {q})D2
k

2
,

Γu =
αs

π



∫

dΩk
4π

(1− u(k, {q}))D2
k

2
+ iπ∑

i<j

δ̃ijTi · Tj


 ,

Va,b = P exp

(
−αs

π

∫ b

a

dE
E

Γu

)
. (2.17)

As discussed in the introduction to this chapter, only the in-gap virtual glu-
ons are summed to all orders. One can also see that V does not contain any
soft singularities in the real part (as 1− u(k, {q}) → 0 as Ek → 0). The imag-
inary Coulomb gluon contribution does, although these divergences cancel at
the level of the cross section due to the cyclic property of the trace and they
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combine into the identity matrix [101]. After expanding,

Va,b = Va,b −
∫

dΠ1u(k1, {q})Va,1
D2

1
2

V1,b

+ (−1)2
∫

dΠ1dΠ1u(k1, {q})u(k2, {q})Θ(E2 < E1)Va,2
D2

2
2

V2,1
D2

1
2

V1,b + . . . ,

(2.18)

the observable, Σ, can be written as

Σ (µ) =

∫
∑

n

(
n

∏
i=1

dΠi

)
TrBn (µ)Φn({q}n). (2.19)

The operators Bn satisfy a recurrence relation analogous to that of Eq. 2.2:

Bn(E) = VE,En

(
Dµ

nBn−1(En)D†
n,µδR

n

−
{

Bn−1(En),
D2

n
2

}
δV

n u(qn, {q})
)

V†
E,En Θ(E ≤ En), (2.20)

with B0(E) = VE,QH(Q)V†
E,Q and where δR

i = 1 if parton i is a real emission
and δV

i = 1 if i is virtual. The two are related by δR
i = 1− δV

i . Provided that the
measurement function is infrared safe, the infrared regulator, µ, can be safely
set to 0, leaving Σn finite. In Eq. 2.19, Φn({q}n) contains the measurement on
the phase-space of real particles and is defined in [99]. In the case of two real
emissions,

Φ2(q1, q2) = δV
1 δV

2 + u1(q1)δ
R
1 δV

2 + u1(q2)δ
V
1 δR

2 + u2(q1, q2)δ
R
1 δR

2 . (2.21)

Written in this form, each Bn is explicitly infrared finite. We shall now use this
machinery to compute the non-global contribution to the hemisphere mass
observable, showing how the cancellation of infrared poles occurs explicitly.

2.1.1 Non-global Contribution To The Hemisphere Jet-Mass

In this work we shall focus on two non-global observables: the Hemisphere
Mass, which we shall calculate in this current section and the Gaps-Between-
Jets, which shall be used as an exemplary observable in Chapters 4 and 5. The
measurement function for these observables vetoes real emissions into some
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region of phase-space, with the single-emission measurement function

u1(q) = Θout(q) + Θin(q)Θ(ρ > E), (2.22)

where ρ is the minimum energy scale of any real emission and in the lead-
ing logarithm approximation, many (including these) observables can be com-
puted with a factorisable measurement function,

un({k}n) =
n

∏
i=1

u1(ki). (2.23)

In the case of such observables, their inclusivity for energies less than the veto
scale, ρ, leads to a complete cancellation of the real emission and virtual ex-
change contributions as described in Eq. 2.13. We can therefore set µ = ρ in
Eq. 2.19 in addition to setting u(k, {q}) to Θout(k) for the integration over the
phase-space of real emissions (see Eq. 2.21). In other words, Σn is the contri-
bution from n gluons, be them real or virtual, in the out-region. Using Eq. 2.19
and 2.21, we can write

Σ0 = Tr
(

Vρ,QHV†
ρ,Q

)
,

Σ1 =

∫

out
dΠ1Tr

(
ΣR

1 + ΣV
1

)
,

Σ2 =

∫

out
dΠ1

∫

out
dΠ2Tr

(
ΣVR

2 + ΣVV
2 + ΣRR

2 + ΣRV
2

)
, (2.24)
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where

ΣR
1 = Tr

(
Vρ,E1Dµ

1 VE1,QHV†
E1,QD†

1µV†
ρ,E1

)

ΣV
1 = −Tr

(
Vρ,QHV†

E1,Q
D2

1
2

V†
ρ,E1

+ Vρ,E1

D2
1

2
VE1,QHV†

ρ,Q

)

ΣRR
2 = Tr

(
Vρ,E2Dν

2VE2,E1Dµ
1 VE1,QHV†

E1,QD†
1µV†

E2,E1
D†

2νV†
ρ,E2

)

ΣVR
2 = −Tr

(
Vρ,E2Dν

2VE2,QHV†
E1,Q

D2
1

2
V†

E2,E1
D†

2νV†
ρ,E2

+Vρ,E2Dν
2VE2,E1

D2
1

2
VE1,QHV†

E2,QD†
2νV†

ρ,E2

)

ΣRV
2 = −Tr

(
Vρ,E1Dµ

1 VE1,QHV†
E1,QD†

1µV†
E2,E1

D2
2

2
V†

ρ,E2

+Vρ,E2

D2

2
VE2,E1Dµ

1 VE1,QHV†
E1,QD†

1µV†
ρ,E1

)

ΣVV
2 =

(
Vρ,QHV†

E1,Q
D2

1
2

V†
E2,E1

+ Vρ,E1

D2
1

2
VE1,QHV†

E2,Q

)
D2

2
2

V†
ρ,E2

+ Vρ,E2

D2
2

2

(
VE2,QHV†

E1,Q
D2

1
2

V†
ρ,E1

+ VE2,E1

D2
1

2
VE1,QHV†

ρ,Q

)
. (2.25)

This is the out-of-gap expansion used in [18, 19] to derive the super-leading
logarithmic contribution to the gaps-between-jets observable. We now use this
reformulation to show that the Σn are indeed separately infrared-finite at each
order and to compute the fixed-order expansion of the non-global logarithmic
contribution to the hemisphere jet mass observable. This shall be carried out
to the non-trivial order of α3

s to compare with known-results. As in [96], we
compute the lowest order non-global correction to the cumulative event shape
where the jet mass is required to be less than ρ. This can be achieved by taking
the out-region of our algorithm to be the region of phase-space that does not
contribute to the hemisphere jet mass (the left hemisphere in [96]). We shall set
H = 1

Nc
1 as we are considering a two-jet e+e− event shape. The 1/Nc factor

cancels the lowest-order cross section colour factor. We wish to calculate

Σ1(ρ) =
1
σ

∫ ρ

0

dσ

dρ
dρ =

1
Nc

∫

out
dΠ1

[
Tr
(

Vin
ρ,E1

Dµ
1 Vin

E1,QVin,†
E1,QD†

1µVin,†
ρ,E1

)

−Tr
(

Vin
ρ,E1

D2

2
Vin

E1,QVin,†
ρ,Q

)
− Tr

(
Vin

ρ,QVin
E1,Q

D2

2
Vin

ρ,E1

)]
, (2.26)
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where to the lowest order, we expand the in-gap Sudakov operator as

Vin
a,b ≡ Va,b ' 1− αs

π

∫ b

a

dEk
Ek

∑
i<j

(−Ti · Tj)

∫

in

dΩk
4π

ωij. (2.27)

Additionally, we shall layout some useful definitions and results before pro-
ceeding with the calculation. The particle four-momenta are defined as

pa =
Q
2
(1, 0, 0, 1)

pb =
Q
2
(1, 0, 0,−1)

q1 = x1
Q
2
(1, 0, sin θ1, cos θ1)

q2 = x2
Q
2
(1, sin θ2 sin φ2, sin θ2 cos φ2, cos θ2)

k = xk
Q
2
(1, sin θk sin φk, sin θk cos φk, cos θk)

(2.28)

to assist comparison with [96] and the dipole factors are

ωab (q1) =
2

sin2 θ1

ωab (q2) =
2

sin2 θ2

ωab (k) =
2

sin2 θk

ωaq1 (k) =
(1− cos θ1)

(1− cos θk) (1− sin θ1 sin θk cos φk − cos θ1 cos θk)

ωbq1 (k) =
(1 + cos θ1)

(1 + cos θk) (1− sin θ1 sin θk cos φk − cos θ1 cos θk)
...

etc. (2.29)

The relevant traces over colour factors for the Σ1 calculation are

Tr
(

T0
a · T0

bT0
a · T0

b

)
= NcC2

F

Tr
(

T1
a · T1

bT0
a · T0

b

)
= −CF

2

Tr
(

T1
a · T1

qT0
a · T0

b

)
= Tr

(
T1

b · T1
qT0

a · T0
b

)
= NcC2

F +
CF

2
, (2.30)
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where the notation Ti
a denotes that the colour-charge operator, acts on a (2+ i)-

parton object. Lastly, we write the result of the integral over the azimuthal
angle of the virtual exchange

∫ 2π

0

1
(1− sin θ1 sin θ2 cos φ− cos θ1 cos θ2)

dφ

2π
=

1
|cos θ1 − cos θ2|

. (2.31)

Expanding out Eq. 2.26 gives

Σ1(ρ) =
1

Nc

(αs

π

)2
∫

in

dΩk
4π

∫ Q

ρ

dE1

E1

∫

out

dΩ1

4π

[

− 4ωab(q1)

∫ E1

ρ

dEk
Ek

Tr
(

T0
a · T0

b

(
T1

a · T1
q1

ωaq1(k)

+T1
b · T1

q1
ωbq1(k) + T1

a · T1
bωaq1(k)

))

− 4ωab(q1)

∫ Q

E1

dEk
Ek

ωab(k)Tr
(

T0
a · T0

bT0
a · T0

b

)

+ 2ωab(q1)

∫ E1

ρ

dEk
Ek

ωab(k)Tr
(

T0
a · T0

bT0
a · T0

b

)

+ 2ωab(q1)

∫ Q

E1

dEk
Ek

ωab(k)Tr
(

T0
a · T0

bT0
a · T0

b

)

+ 2ωab(q1)

∫ Q

ρ

dEk
Ek

ωab(k)Tr
(

T0
a · T0

bT0
a · T0

b

) ]
, (2.32)

reducing to

Σ1(ρ) = −
4

Nc

(αs

π

)2
∫ Q

ρ

dE1

E1

∫

out

dΩ1

4π

dEk
Ek

∫

out

dΩk
4π

× Tr
[
ωab (q1)T0

a · T0
b

(
ωaq1 (k)T1

a · T1
q1
+ ωbq1 (k)T1

b · T1
q1

+ωab (k)
(

T1
a · T1

b − T0
a · T0

b

))]
. (2.33)
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We employ the colour traces and azimuthal integral to arrive at

Σ1 (ρ) = −NcCF

(αs

π

)2
∫ Q

ρ

dE1

E1

∫ 0

−1

d cos θ1

sin2 θ1

∫ E1

ρ

dEk
Ek

∫ 1

0

d cos θk

sin2 θk

×
[

Tr
(

T1
a · T1

q1
T0

a · T0
b

) (1− cos θ1) (1 + cos θk)

cos θk − cos θ1

+Tr
(

T1
b · T1

q1
T0

a · T0
b

) (1− cos θk) (1 + cos θ1)

cos θk − cos θ1

+2Tr
((

T1
a · T1

b − T0
a · T0

b

)
T0

a · T0
b

)]
(2.34)

= −NcCF

(αs

π

)2
ln2
(

Q
ρ

) ∫ 0

−1
d cos θ1

∫ 1

0
d cos θk

× 1
(1− cos θ1) (1 + cos θk) (cos θk − cos θ1)

, (2.35)

which gives

Σ1 (ρ) = −
NcCF

2

(αs

π

)2
ln2
(

Q
ρ

)
ζ (2) , (2.36)

where ζ(x) is the Riemann zeta function,

ζ(x) =
∞

∑
n=1

n−x (2.37)

such that ζ(2) = π2/6 and ζ(3) ' 1.20205, the so-called Apéry’s constant. The
result in Eq. 2.36 is equal to the result presented in [96]. The same methodology
can be used to compute both Σ2 and Σ1 at order α3

s with their summed result
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giving the non-global contribution. They are as follows

Σ2(ρ) =
1

Nc

∫

out

αs

π

∫ Q

ρ

dE1

E1

dΩ1

4π

∫

out

αs

π

∫ E1

ρ

dE2

E2

dΩ2

4π

αs

π

∫

in

dΩk
4π

∫ E2

ρ

dEk
Ek

[

− 4C2
AC2

F
(
ωab(q1)ωab(q2)ωaq1(k) + ωab(q1)ωab(q2)ωbq1(k)

)

− 2CACF
(
ωab(q1)ωab(q2)ωaq2(k) + ωab(q1)ωab(q2)ωbq2(k)

)

+ 2C3
ACF

(
ωab(q1)ωab(q2)ωab(k)−ωab(q1)ωaq1(q2)ωaq1(k)

+ ωab(q1)ωaq1(q2)ωaq2(k) + ωab(q1)ωaq1(q2)ωq1q2(k)

− ωab(q1)ωbq1(q2)ωbq1(k) + ωab(q1)ωbq1(q2)ωbq2(k)

+ωab(q1)ωbq1(q2)ωq1q2(k)
)
]

= −N2
c CF

3!

(αs

π

)3
ln3
(

Q
ρ

)
ζ (3) . (2.38)

and

Σα3
s

1 (ρ) =
1
N

∫

out

αs

π

∫ Q

ρ

dE1

E1

dΩ1

4π

∫

in

αs

π

∫ E1

ρ

dE2

E2

dΩ2

4π

αs

π

∫

in

dΩk
4π

∫ E2

ρ

dEk
Ek

[

CACF
(
ωab (q1)ωab (q2)

(
ωaq1 (k) + ωbq1 (k)−ωab (k)

)

+ ωab (q1)ωab (k)
(
ωaq1 (q2) + ωbq1 (q2)−ωab (q2)

))

+ C3
ACF ωab (q1)

(
ωab (q2)ωab (k)−ωa1 (q2)ωaq1 (k)

− ωbq1 (q2)ωbq1 (k)−ωbq1 (q2)ωaq1 (k)−ωaq1 (q2)ωbq1 (k)
) ]

=
2N2

c CF

3!

(αs

π

)3
ln3
(

Q
ρ

)
ζ (3) . (2.39)

This result is in agreement with the work of Delenda & Khelifa-Kerfa [104,
105]. Having outlined our general algorithm in Eq. 2.1 and validated its ability
to compute the non-global contributions to the Hemisphere Jet-Mass observ-
able, we shall proceed to explore the groundwork for its implementation into
a Monte Carlo code. We begin by discussing the colour flow basis.

2.2 Colour Mechanics

In practical calculations, the colour algebra becomes rapidly intractable for
only a handful of real gluon emissions. To automate the calculation of the algo-
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rithm in Eq. 2.1, we must first identify a basis which is well-suited to a Monte
Carlo implementation. One such basis is the colour flow basis [98]. In addition
to being similar to the way in which colour is treated in dipole parton shower
algorithms [106–108], it has led to efficient implementations of tree-level am-
plitudes [97, 109] and constitutes the initial condition to other aspects of event
generators such as hadronisation models [54, 110]. The colour flow basis is
also well-suited to sampling over colour assignments (where each basis tensor
describes a single colour assignment) if the number of external partons is large
[97], removing the need for computationally-intensive matrix multiplications.

We shall review the colour flow basis and use it to present a systematic proce-
dure to calculate the colour traces that result from Eq. 2.1. Moreover, we deter-
mine the colour structures encountered in calculating this trace. Using these
results we identify the leading-colour contributions and re-derive the Banfi-
Marchesini-Syme equation [92]. Our formalism is more general than this how-
ever and can systematically perform summation of contributions enhanced by
the ’t Hooft coupling, αsNc ∼ 1 [45], providing successive approximations
which are parametrically suppressed by powers of 1/Nc. We subsequently
discuss the first subleading-colour corrections.

2.2.1 Colour Flow Basis

In Section 1.5 we laid out the colour flow representation for QCD, whereby
instead of decomposing the gluon field using the fundamental-representation
matrices, we work directly with an Nc × Nc matrix field to describe the gluon.
As such, the colour part of the SU(Nc) gluon propagator can be split into a
U(Nc) gluon propagator (with an associated colour and anti-colour index) and
a U(1) gluon propagator. Quarks have an associated colour index, whilst anti-
quarks have an associated anti-colour index.

And so, the colour part of QCD calculations becomes a matter of manipulating
the flow of colour between colour and anti-colour indices. To this end, we
begin this section by collating some key results regarding the colour flow basis.
Firstly we assign a colour or anti colour index, ci or c̄i, to each external leg
i of an arbitrary scattering amplitude. Whilst outgoing quarks carry colour
(with an associated index), incoming quarks carry anti colour and vice versa
for anti-quarks. The colour indices are labelled from 1 to n and are assigned to
the first n colour-carrying partons. We denote the colour index of a particle, i,
which only carries anti colour, as ci = 0. A corresponding labelling holds for
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anti colour indices, where ci = 0 if i only carries colour. An example of this
labelling for a four-parton amplitude containing the partons qggq̄ is illustrated
in Table. 2.1.

i ci c̄i λi λ̄i

1 1 0
√

TR 0
2 2 1

√
TR

√
TR

3 3 2
√

TR
√

TR
4 0 3 0

√
TR

TABLE 2.1: The specifications of the correspondence between the
external leg indices, i, and their colour (ci) or anti colour (c̄i) lines
for the four-parton amplitude containing the partons qggq̄, de-

picted in Figure 2.2.

The objects ci and ci act as mappings between the external leg index i, and the
corresponding colour or anti colour index. The inverse of this operator, c−1

α , re-
lates the colour index, α, back to the corresponding leg index. This convention
shall be used throughout this work.

We denote the set of all basis tensors in the colour flow basis as {|σ〉}. Each
basis tensor is labelled by a permutation, σ, of the anti colour indices relative
to the colour indices:

|σ〉 =
∣∣∣∣∣

1 · · · n
σ(1) · · · σ(n)

〉
= δα1

ᾱσ(1)
· · · δαn

ᾱσ(n)
(2.40)

where the α1...n and ᾱ1...n are fundamental and anti-fundamental indices as-
signed to the colour and anti colour legs. They take values in the actual num-
ber of colours 1, . . . , Nc and there are n = nq + ng = nq̄ + ng possible colour
and anti colour lines. Each colour line connects to an anti colour line to form
a colour flow, of which there are n! potential colour flow arrangements (corre-
sponding to n! basis tensors). This is a natural way to decompose QCD am-
plitudes, based on the flow of colour, giving a simple physical interpretation.
Our convention is to keep the ordering of colour indices fixed (on the top row
of Eq. 2.40). As such, we will often use a more compact notation, e.g.

∣∣∣∣∣
1 2 3
2 1 3

〉
≡ |213〉 . (2.41)
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Inner products of basis tensors are given by

〈σ|τ〉 = δα1
ᾱσ(1)
· · · δαn

ᾱσ(n)
δ

ᾱτ(1)
α1 · · · δᾱτ(n)

αn = Nn−#(σ,τ)
c , (2.42)

where #(σ, τ) is used as shorthand to denote the number of transpositions by
which the permutations σ and τ differ. Defining a swap to be the exchange
of two anti colour indices in σ, the number of transpositions is the minimum
number of consecutive swaps that map σ onto τ. This is equivalent to the num-
ber of colour flows, n, minus the number of "loops" formed when contracting
the Kronecker deltas in Eq. 2.42. This is also diagrammatically illustrated in
the lower pane of Figure 2.2.

1

2

3

4

1

2

3

1̄

2̄

3̄

|123〉 |213〉 |312〉

〈123|123〉 〈123|213〉 〈123|312〉
FIGURE 2.2: Diagrammatic representation of the colour flow ba-
sis tensors and their inner products. The top half of the fig-
ure presents a four-parton amplitude with qggq̄ leg content and
three out of the six possible basis tensors which describe poten-
tial colour arrangements. Grey arrows indicate how the external
leg indices, i = 1, . . . , 4 are mapped onto colour and anti colour
indices. The lower pane of this figure pictorially represents the
contraction of the Kronecker deltas in the calculation of inner
products between basis tensors. These are elements of the scalar
product matrix described later and are equal to Nc to the power of
the number of colour flows, n, minus the number of loops formed

after contraction. Figure modified from [99].
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As an example, Figure 2.2 presents three of the six possible colour arrange-
ments representing the four-parton state on the left-hand side, involving a
quark, anti-quark and two gluons. In anticipation of the results in subsequent
sections, we introduce the binary variables λi and λi. They take the values:
λi =

√
TR, λ̄i = 0 for an outgoing quark; λi = 0 λ̄i =

√
TR for an outgoing

anti-quark and λi =
√

TR, λ̄i =
√

TR for a gluon. The value of TR is equal
to 1/2 in the case of QCD. These variables and the correspondence between
external leg and colour indices are summarised in Table. 2.1.

2.2.2 Working In A Non-Orthogonal Colour Basis

A colour operator, O, can be written as O = ∑τ,σOτσ |τ〉 〈σ| in any partic-
ular basis. In the context of the colour flow basis our basis tensors are non-
orthonormal and as such, the coefficients Oτσ, are not the matrix elements of
the operator O.

We wish in general to compute objects of the form outlined in Eq. 2.1:

Tr (O) = 〈H|R†R |H〉 (2.43)

where O = RHR†, H = |H〉 〈H| and R represents an operator which evolves
the colour flow (this could be an emission or Sudakov operator, or a chain of
them). |H〉 represents the hard scattering process.

As we want to represent these objects in the colour flow basis, which is non-
orthonormal, we can introduce dual basis tensors, [α|, such that

〈α| β] = [α |β〉 = δαβ, (2.44)

with an identity operator

∑
α

|α〉 [α| = ∑
α

|α] 〈α| = 1. (2.45)

Using Eq. 2.45, we can now write our operator, O, as

∑
σ,τ

[σ|O |τ] |σ〉 〈τ| (2.46)

leading to a form for Eq. 2.43 of

Tr (O) = ∑
σ,τ

Tr ([σ|O |τ] 〈τ| σ〉) . (2.47)
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We reiterate that O can be a chain of successive soft-gluon evolution operators.
As such we can evaluate these matrix elements by evolving inwards from the
external states towards the hard scattering. Firstly we can make manifest, the
outermost evolution operators, by writing O as

O = R1O′R2. (2.48)

Here, Ri are the constituent colour charge (or colour charge product) operators
within any given evolution operator, the so-called colour line operators, which
constitute a unique map from one basis tensor to another. In this case, only one
term in the sum in Eq. 2.45 contributes, which means

R2 |α〉 = Cα,β
R2
|β〉 , (2.49)

for example, where the coefficient factor has the form Cα,β
R2

= [β|R2 |α〉. A
similar relation holds true for R1. The computational objects of interest to us,
are the matrix elements [σ|O |τ] and using Eq. 2.48 we find:

[σ|R1O′ |τ] = ∑
α

[σ|R1 |α〉 [α|O′ |τ] ,

= ∑
α

[σ| β〉Cα,β
R1

[α|O′ |τ] ,

= ∑
α

δσβCα,β
R1

[α|O′ |τ] ,

= Cα,σ
R1

[α|O′ |τ] , (2.50)

where we have suppressed the concomitant contribution from R2 for nota-
tional brevity, although it follows a similar logic. One can see that it is possible
to recursively perform this operation to strip-off evolution operators from O,
leaving coefficients and reduced matrix elements in their place. Anticipating
the pattern of this process, one can also act in reverse and build an evolution
cascade around the hard scattering, multiplying by operator matrix elements
in the amplitude and conjugate and summing over their identifying basis ten-
sors. This is discussed in more detail in Section 4.1.

2.3 Amplitudes And Matrix Elements

In the last section, we discussed how to compute the trace of an arbitrarily long
chain of evolution operators. The key result is that by employing a dual basis,
one can insert unit operators between each evolution operator leaving behind
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a coefficient factor. It is the focus of this section to calculate these coefficient
factors for the operators relevant to Eq. 2.1. We express amplitudes as

|A〉 = ∑
σ

Aσ |σ〉 , (2.51)

where σ labels a sum over the individual basis tensors in the set {σ}, at a given
dimension in colour space. A basis-independent operator can be written as

A = ∑
τ,σ
Aτσ |τ〉 〈σ| , (2.52)

where the coefficients Aτσ are not matrix elements of the operators A as the
colour flow basis is non-orthonormal. However,

Aτσ ≡ [τ|A |σ] , (2.53)

and the evolution and traces in colour space can be performed in terms of com-
plex matrices with elementsAτσ. Eq. 2.47 for the trace of operators represented
by A is then

Tr (A) = Tr (AS) = ∑
τ,σ

[τ|A |σ] 〈σ| τ〉 , (2.54)

where S is the scalar product matrix with elements Sτσ = 〈τ| σ〉.

The two important colour operators in Eq. 2.1 are the colour charge operator,
Ti, in the emission operator and the colour charge products, Ti · Tj, in the soft-
gluon anomalous dimension operator. We shall decompose the colour charge
operator associated with an external leg i as

Ti = λitci + λitci −
1

Nc

(
λi − λi

)
s, (2.55)

where the effect of each colour-line operator t, t̄ and s on a basis tensor is
defined as follows. Starting with tci :

tci |σ〉 = tci

∣∣∣∣∣
1 . . . ci . . . n

σ (1) . . . σ (ci) . . . σ (n)

〉
(2.56)

=

∣∣∣∣∣
1 . . . ci . . . n n + 1

σ (1) . . . n + 1 . . . σ (n) σ (ci)

〉
, (2.57)

i.e. a new colour and anti colour line, labelled by n + 1, are added. The anti
colour lines σ(ci) and n + 1 are then swapped. An illustration of this is pre-
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sented in Figure 2.3a. Emitting off an anti colour line with operator t̄ is equiv-
alent to emitting off the colour line to which it is connected with an operator t.
Therefore, we can write

tc̄i |σ〉 = tσ−1(c̄i)
|σ〉 , (2.58)

where the inverse of the basis tensor σ−1 is defined such that ci = σ−1 (σ (ci)).
The colour-line operator s is the U(1) contribution to the gluon propagator and
is unphysical, carrying a 1/Nc factor. Its action on a basis tensor is

s |σ〉 = s

∣∣∣∣∣
1 . . . . . . n

σ (1) . . . . . . σ (n)

〉
=

∣∣∣∣∣
1 . . . . . . n n + 1

σ (1) . . . . . . σ (n) n + 1

〉
, (2.59)

pictorially represented in Figure 2.3b.

n+ 1
n+ 1
ci

ci

σ(ci)

ci

σ(ci)

(A)

n+ 1
n+ 1
cici

σ(ci)σ(ci)

ci

(B)

FIGURE 2.3: Pictorial representation of the tci and t̄c̄i operators in
(A) and the s operator in (B). Figure from [111].

It is worth noting here, that the t and t operators can be written as a combina-
tion of two operations:

tα |σ〉 = sα,n+1s |σ〉 , (2.60)

where sαβ exchanges the anti colour indices σ(α) and σ(β) in a basis tensor.
Eq. 2.60 represents the creation of a new colour flow, n + 1, with a subsequent
swapping of the new anti colour line with another, σ(α). This is instructive as
it shows that we cannot map any two distinct basis tensors onto the same basis
tensor through the action of any of the colour-line operators.

With a view to categorising emission contributions in both the amplitude and
conjugate-amplitude, it is useful to explore the behaviour of combinations of
colour-line operators acting on two tensors, |σ〉 and |τ〉which differ by n trans-
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positions. If we act on both |σ〉 and |τ〉 with an s operator, the two resultant
tensors will still differ by the original n transpositions, but collect a 1/N2

c pref-
actor. Acting on either |σ〉 or |τ〉 with an s operator and acting on the other
with tα, the resultant tensors will differ by n + 1 transpositions and have a
prefactor of 1/Nc. Lastly the action of tα |σ〉 and tβ |τ〉, where α 6= β, will re-
sult in tensors which differ by the original n transpositions if σ(α) = τ(β). In
the case that σ(α) 6= τ(β), the new tensors will differ by n + 2 transpositions.

The colour charge products in the soft-gluon anomalous dimension operator
require the description of colour-line products. These are s · tα = tα · s = 1
and s · s = Nc1. The same results are true if we replace t by t̄ due to relation
in Eq. 2.58. The product tα · tβ is equal to tβ · tα and can take two values. If
we define σαβ to denote swapping the elements α and β in the permutation

σ, then tα · tβ |σ〉 =
∣∣∣σ(αβ)

〉
. This result also holds true when we replace t

by t̄. However, there is another subtle case in which α = σ−1(β̄) for colour
reconnectors, necessarily of the form tα · t̄β̄. In this scenario tα · t̄β̄ |σ〉 = Nc |σ〉.
These results are summarised diagramatically in Figure 2.4.

We recall the result in Eq. 2.49, that

R |σ〉 = [τ|R |σ〉 |τ〉 (2.61)

and use the defined behaviour of the colour-line operators to write the coeffi-
cient factor for the colour charge operator:

[σ|Ti |α〉 = δα,σ\n

(
λiδciσ−1(cn)

− λiδciσ−1(cn)
− 1

Nc

(
λi − λi

)
δcnσ−1(cn)

)
, (2.62)

where the colour and anti colour line associated with the emitted particle, n,
is labelled by cn and cn respectively. δci,σ−1(c̄n)

constrains the colour line corre-
sponding to particle i to form a colour flow with c̄n. The object σ\n denotes the
permutation in which cn and c̄n are removed and their colour flows merged,
i.e. their connecting anti colour and colour lines now form their own colour
flow. More explicitly,

(
1 . . . cn . . . σ−1 (cn) . . . m

σ (1) . . . σ (cn) . . . cn . . . σ (m)

)
\n

=

(
1 . . . σ−1 (cn) . . . m

σ (1) . . . σ (cn) . . . σ (m)

)
. (2.63)
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tα · tβ = =

(A)

tα · t̄β̄ = = Nc

(B)

s · s = = Nc

(C)

tα · s = =

(D)

FIGURE 2.4: Pictorial representation of the tα · tβ colour reconnec-
tor in (A), the tα · t̄β̄ colour reconnector in the case that α and β̄
are colour connected (B), the s · s colour reconnector in (C) and

tα · s colour reconnector in (D). Figure from [111].

Considering the colour evolution of an emission operator and its conjugate on
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an amplitude A, and using Eq. 2.50, we must evaluate terms of the form

[σ|TiATj |τ] = ∑
α,β

[σ|Ti |α〉 〈β|Tj |τ] [α|A |β] . (2.64)

Using Eq. 2.62, we find

[σ|TiATj |τ] =
{(
−λiλjδciσ−1(cn)

δcjτ(cn) − (i, σ↔ j, τ)
)

+ λiλjδciσ−1(cn)
δcjτ−1(cn)

+ λiλjδciσ(cn)δcjτ(cn)

− 1
Nc

(
λiδciσ−1(cn)

− λiδciσ(cn)

) (
λj − λj

)
δcnτ−1(cn)

− (i, σ↔ j, τ)

+
1

N2
c

(
λi − λi

) (
λj − λj

)
δcnσ−1(cn)

δcnτ−1(cn)

}

× [τ\n|A |σ\n] . (2.65)

The matrix element of the colour charge product, Ti · Tj, for i 6= j is

[τ|Ti · Tj |σ〉 =− Ncδτσ

(
λiλjδci,σ−1(cj)

+ λjλiδcj,σ−1(ci)

)

− Ncδτσ

N2
c

(
λi − λi

) (
λj − λj

)

+ ∑
(ab)

δτ(ab),σ

(
λiλjδ(ab),(cicj)

+ λiλjδ(ab),(σ−1(ci)σ−1(cj))

−λiλjδ(ab),(ci,σ−1(cj))
− λjλiδ(ab),(cj,σ−1(ci))

)
. (2.66)

The notation of Eq. 2.66 requires some explanation: (ab) denotes an ordered
pair of indices, i.e. (ab) becomes ba if a > b. Each of the four terms within the
summation over ordered pairs, (ab), can be written without summation after
implementing the Kronecker deltas which constrain their colour flows. In this
sense, the summation is cumbersome, but it ensures that none of the summed
terms contribute in the case that the particles i and j are colour-connected in
the tensor σ. By colour-connected we mean that the colour or anti colour line
corresponding to particle i forms a colour flow with the anti colour or colour
line corresponding to j. More precisely, ci = σ−1(cj) or cj = σ−1(ci). It is an
important point that the off-diagonal elements in Eq. 2.66 are non-vanishing
only if the permutations τ and σ differ by at-most one transposition.
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2.3.1 Leading-Colour Contributions

Having stated the effects of colour line operators on a basis state, we have so
far explored their products, and determined the matrix elements for the colour
charge and colour charge product operators in Eq. 2.65 and 2.66. These are the
key operators which determine the colour evolution of the emission and soft-
gluon anomalous dimension matrix operators. In this section we shall turn our
attention to organising the cross section as a series of leading powers in Nc, so
that we can extract the strict-leading colour contributions and corrections to
them. Firstly, we define an operation

Leading(l)
τσ[A] =

l

∑
k=0

Aτσ|1/Nk
c

δ#(τ,σ),l−k, (2.67)

where
Aτσ|1/Nk

c
(2.68)

denotes those terms in the element Aτσ that are suppressed by a factor of Nk
c

relative to the leading power present inAτσ. To be more explicit, for any given
amplitude described by the operator A, which can exist at any given point in
an emission cascade, this operation recursively searches the chain of operators
contained in A to find the overall explicit 1/Nk

c contribution. Upon taking
the trace of A, there will be an additional 1/Nl−k

c suppression from the scalar
product matrix due to σ and τ differing by l − k transpositions. The latter is
what is represented by the δ#(τ,σ),l−k term. In other words, if A is an operator
in the colour space of n colour lines, then

Tr
[
Leading(l) [A]

]
∝ Nn−l

c . (2.69)

The traces originating from the soft-gluon evolution in Eq. 2.19 can be broken
down into two types:

Tr
[
VnAnV†

n

]
,

Tr
[
DnAn−1D†

n

]
, (2.70)

where we have subscripted the Sudakov and emission operator by the contex-
tual multiplicity in which they act. As our focus is on the colour evolution, we
subsume all physical constants and kinematic dependence in Eq. 2.3 and 2.6



2.3. Amplitudes And Matrix Elements 99

into coefficients, so that

Vn = exp

(
∑
i,j

Ω(n)
ij Ti · Tj

)
where Ω(n)

ij =
αs

2π

∫ b

a

dEk
Ek

∫
dΩk
4π

ωij(k),

Dn = ∑
i

ω
(n)
i Ti where ω

(n)
i = Ei

pµ
i

pi · qn
. (2.71)

The leading-colour contributions of the virtual evolution operators are

Leading(0)
τσ δτσ

[
VnAnV†

n

]
= δτσ

∣∣∣V(n)
σ

∣∣∣
2

Leading(0)
τσ [An] , (2.72)

where

V(n)
σ = exp


−Nc ∑

i,j cc in σ

λiλj

(
Ω(n)

ij + Ω(n)
ji

)

 . (2.73)

The phrase cc in the summation over external legs i and j in Eq. 2.73 means
‘colour-connected’. Precisely, we only sum over external leg indices for which
ci = σ−1(cj) or cj = σ−1(ci). Eq. 2.72 arises by considering only the leading di-
agonal terms in Eq. 2.66 and ignoring those terms which carry an explicit 1/Nc

suppression. These are the [σ| tα · t̄β̄ |σ〉 contributions to the soft anomalous
dimension matrix depicted in Figure 2.4b, where α = σ−1(β̄). The two terms
Ω(n)

ij and Ω(n)
ji account for the fact that the contribution results from both Ti ·Tj

and Tj · Ti in the unordered sum of Eq. 2.71.

Likewise, the leading-colour contribution to an emission operator acting in the
amplitude and conjugate is

Leading(0)
τσ

[
DnAn−1D†

n

]
= −δτσ×

∑
i,j cc in σ\n

λiλj2Re
(

ω
(n)
i

(
ω

(n)
j

)∗)
Leading(0)

τ\n,σ\n [An−1] . (2.74)

The leading-colour emission contributions arise from colour-line operators act-
ing in the amplitude and conjugate of the form

δci,σ−1(c̄j)
tci |σ〉 〈σ| t̄c̄j , (2.75)

where the colour index corresponding to parton i and the anti colour index
corresponding to j are colour-connected in σ. The additional contribution with
a t̄ operator in the amplitude and t in the conjugate is equivalent and accounts
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for the factor

ω
(n)
i

(
ω

(n)
j

)∗
+ ω

(n)
j

(
ω

(n)
i

)∗
= 2Re

(
ω

(n)
i

(
ω

(n)
j

)∗)
, (2.76)

in Eq. 2.74. These matrix elements correspond to terms in the first line of
Eq. 2.65. Matrix elements of the form tci |σ〉 〈σ| tcj (and the t̄ equivalent) do
not contribute to Eq. 2.74 as they will always act to introduce a transposition
between the tensor in the amplitude and conjugate, inducing a 1/Nc suppres-
sion from the scalar product matrix. Note that the sum over gluon polarisa-
tions yields an additional minus sign, which is accounted for in the definition
of the phase-space element in Eq. 2.4.

In the case of a single-gluon exchange (used in the out-of-gap gluon expansion
discussed in Section 2.1), we are interested in traces of the form

Tr
[
γnAn + Anγ†

n

]
, (2.77)

where

γn = ∑
i,j

γ
(n)
ij Ti · Tj and γ

(n)
ij =

αs

2π

∫
dΩk
4π

ωij(k). (2.78)

The leading colour contribution for single-gluon exchange is then

Leading(0)
τσ

[
γnAn + Anγ†

n

]
= −Ncδστ×

∑
i,j cc in σ

λiλj2Re
(

γ
(n)
ij + γ

(n)
ji

)
Leading(0)

τσ [An] . (2.79)

We now have all of the ingredients necessary to compute traces in the large-Nc

limit. Firstly, we note that in the large-Nc limit the basis tensors denoting the
operator matrix elements in the amplitude and conjugate-amplitude are kept
the same. Therefore we should set σ = τ in Eq. 2.54. This instructs us that we
must sum over diagonal basis tensor contributions, Aσσ, and for each, multi-
ply by Nc raised to the power of the number of colour lines present in σ, i.e.
the scalar product matrix element 〈σ| σ〉. This power is equal to the number
of colour flows in the hard process plus the number of real emissions. Each of
the contributions Aσσ can be calculated by recursively generating the leading
contributions in Eq. 2.72, 2.74 and 2.79, working inwards from the outer-most
matrices (multiplied from the left and right) towards the hard process matrix at
the heart of the chain of operators (see Eq. 2.1). One must account for the hard
process contribution by multiplying by the square of the corresponding ampli-
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ci

c̄j

ci

α

ᾱ ᾱ

α

ci

c̄j

cn

c̄n

c̄j

c̄j

cn

c̄n

ci

[σ| |σ][σ\n| |σ\n]

H

FIGURE 2.5: An illustration of one contribution to the leading-
colour calculation for the qq→ qq scattering process. We consider
the case of one real emission and one virtual correction to the
hard process [σ\n|H |σ\n]. The dashed lines indicate the basis

tensors at each stage of the evolution. Figure from [99].

tude, |Mσ|2. In summary, starting from the outermost operators, this recursive
generation goes as follows: for each pair of evolution operators VnAnV†

n mul-
tiply by

exp
(
−2NcRe

(
Ω(n)

ij + Ω(n)
ji

)
λiλ̄j

)
, (2.80)

for each colour connected dipole (i, j) in σ. For a virtual gluon insertion γnAn +

Anγ†
n multiply by

− 2Ncλiλ̄jRe
(

γ
(n)
ij + γ

(n)
ji

)
, (2.81)

and sum over colour connected dipoles (i, j) in σ. Finally for a pair of emission
operators DnAn−1D†

n, combine the dipoles (i, n) and (n, j) in the basis tensor σ,
leaving behind a dipole (i, j) in the tensor σ\n and multiply by the factor

− λiλ̄j2Re
(

ω
(n)
i

(
ω

(n)
j

)∗)
. (2.82)

This procedure has been illustrated in Figure 2.5 for one contribution to the
leading-colour result in the case of soft-gluon evolution of the qq → qq hard
scattering.
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2.3.2 BMS Equation

The work [112] considered a pair of jets produced by e+e− annihilation with
an exclusion region Cout, separated from the jet axis by large angles. They
considered the interjet distribution where the total energy of radiation emitted
into Cout is smaller than E0, where E0 is much less than the hard scale of the
process Q. As such, this calculation renders large logarithmically-enhanced
terms associated with the successive ordered emission of soft-gluons (ordered
in energy) that must be resummed. This radiation occurs at larger and larger
angles with respect to the thrust axis within the allowed (complementary re-
gion), Cin. They derived an evolution equation which resums all single loga-
rithmic contributions for this interjet distribution, the Banfi-Marchesini-Smye
(BMS) equation:

∂Gab(t)
∂t

= −
∫

Cout

dΩk
4π

ωab(k)Gab(t)

+

∫

Cin

dΩk
4π

ωab(k)[Gak(t)Gkb(t)− Gab(t)], (2.83)

where Gab(t) denotes the probability to deposit a total energy lower than E0

into Cout and t = (Ncα/π) ln(E/E0). Eq. 2.83 is formulated in the limit of
large-Nc. Labelling the two partons of the primary process as a and b, the
emission of a soft gluon, k, can be viewed as a splitting of the colour dipole
(ab) into two new dipoles (ak) and (kb) as indicated by the Gak(t)Gkb(t) term of
the second equation on the RHS of Eq. 2.83 whilst the −Gab(t) term describes
virtual emission. These splittings can subsequently develop their own evolu-
tion, underpinning the iterative nature of this equation. One can also see that
soft-collinear singularities cancel in the second term on the RHS of Eq. 2.83. For
instance, if k becomes collinear with a, Gak(t)→ 1 and Gkb(t)→ Gab(t) so that
the sum of all terms vanishes. It is also important to note that ωab(k) in Eq. 2.83
only depends on the directions of the three partons and not their energies and
following our labelling of partons, the hard partons have momenta pa and pb.
Whilst it was derived for a particular interjet distribution, the BMS equation
can also be used to determine any distribution in e+e−, where the observable
is defined by a product of theta functions which restrict each individual emis-
sion, i.e. of the form ∏k Θ(Ek − Q0). In Section 2.3.1 we established a set of
simple, dipole-type rules for calculating the leading-colour contribution to the
colour evolution of a hard scattering. We shall now show how the rules of the
preceding section give rise to the BMS equation.
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We start by considering e+e− scattering in Eq. 2.24, so we can take H = 1/Nc1.
The correspondence between the phase-space regions in Eq. 2.83 and our own
work is as follows: Cout is what we coin the in-gap region whilst Cin is our out-
gap region. We shall use the in-gap and out-gap conventions henceforth. The
coefficient factors in the leading-colour rules of the previous section take the
form

Ω(n)
ij = Ω(n)

ji = −1
2

∫

in
dΠkΘ(En+1 < E < En)ωij(k̂)

γ
(n)
ij = γ

(n)
ji = −1

2
ΘoutΘ(En < En−1)ωij(q̂n) (2.84)

ω
(n)
i

(
ω

(n)
j

)∗
= ΘoutΘ(En < En−1)ωij(q̂n)

(2.85)

and the evolution with the in-region anomalous dimension contributes a factor

VEn+1,En
ij = exp

(
−Ncαs

π

∫ En

En+1

dE
E

∫

in

dΩk
4π

ωij(k̂)

)
(2.86)

per colour flow. These expressions have a simple diagrammatic interpretation
that is illustrated in Figure 2.6. Each double line in the figure corresponds to
a Sudakov factor of the form in Eq. 2.86, VEn+1,En

ij , where i and j label the di-
rections associated with the corresponding colour and anti colour lines. The
shaded circles correspond to a factor ωij(k̂), and the vertical dashed line indi-
cates the associated energy. The arguments, En and En+1 of the Sudakov are
determined by these vertical dashed lines. We can see how the algorithm maps
onto a classical dipole shower at leading-colour. The evolution of dipoles is
universal, i.e. the process dependence solely enters in through the selection of
an initial colour flow weighted by the modulus squared of the corresponding
amplitude |Mσ|2.
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FIGURE 2.6: The pictorial representation of the out-of-gap expan-
sion (see Eq. 2.24) in the leading-Nc limit. This corresponds to

Eq. 2.87. Figure modified from [99].



2.3. Amplitudes And Matrix Elements 105

The leading-colour contribution to the non-global logarithms (from Eq. 2.24) is
then

Σ0 = Vρ,Q
ab

Σ1 =

∫

out
VE1,Q

ab ωab (q̂1)
[
Vρ,E1

a1 Vρ,E1
b1 −Vρ,E1

ab

] dΩ1

4π
dt1

ΣRR
2 =

∫

out
VE1,Q

ab ωab (q̂1)
[
VE2,E1

a1 Vρ,E1
b1 ωa1 (q̂2)Vρ,E2

a2

+Vρ,E1
a1 VE2,E1

b1 ωb1 (q̂2)Vρ,E2
b2

]
Vρ,E2

12
dΩ1

4π

dΩ2

4π
dt1dt2

ΣVR
2 = −

∫

out
VE2,Q

ab ωab (q̂1)ωab (q̂2)Vρ,E2
a1 Vρ,E2

b1
dΩ1

4π

dΩ2

4π
dt1dt2

ΣRV
2 = −

∫

out
VE1,Q

ab ωab (q̂1)
[
VE2,E1

a1 Vρ,E1
b1 ωa1 (q̂2)Vρ,E2

a1

+Vρ,E1
a1 VE2,E1

b1 ωb1 (q̂2)Vρ,E2
b1

] dΩ1

4π

dΩ2

4π
dt1dt2

ΣVV
2 =

∫

out
Vρ,Q

ab ωab (q̂1)ωab (q̂2)
dΩ1

4π

dΩ2

4π
dt1dt2, (2.87)

where we label the hard partons a and b and ti = (Ncα/π) ln(Ei/ρ). These
Σn can also be obtained by iteratively solving the BMS equation, where our
observable corresponds to

Σ(ρ) = Gab(tQ), (2.88)

where tQ = (Ncαs/π) ln(Q/ρ). As in [112], we first note that the distribution
can be factorised into two pieces

Gij(t) = Vρ,E
ij gij(t). (2.89)

The first is the Sudakov factor given by bremsstrahlung emission from the pri-
mary hard partons, whilst the second is the result of successive soft emission.
Rewriting the BMS equation in terms of the latter, we have an evolution equa-
tion

∂gab(t)
∂t

=

∫

out

dΩk
4π

ωab(k)

[
Vρ,E

ak Vρ,E
kb

Vρ,E
ab

gak(t)gkb(t)− gab(t)

]
, (2.90)

where the initial condition Gab(0) = 1 means that gab(0) = 1. We can see that
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Eq. 2.90 returns Σ1 if we set g(0)ij (t) = 1 and integrate over the range 0 < t < tQ,

∫ tQ

0

∂g(1)ab (t1)

∂t1
dt1 =

∫ ∫

out

dΩ1

4π
ωab(q̂1)

[
Vρ,E1

a1 Vρ,E1
1b

Vρ,E1
ab

− 1

]
dt1. (2.91)

The next iteration gives Σ2 if we substitute gij(t) on the RHS of Eq. 2.90 by

g(1)ij (t):

∂g(2)ab (t1)

∂t1
=

∫

out

dΩ1

4π
ωab(q̂1)

[
Vρ,E1

a1 Vρ,E1
1b

Vρ,E1
ab

(
g(1)a1 (t1)g(0)1b (t1)

+g(0)a1 (t1)g(1)1b (t1)
)
− g(1)ab (t1)

]
, (2.92)

where we have left g(0)ak = g(0)kb = 1 explicit for clarity. Inserting the form of
g(1)ij (t) into Eq. 2.92, we find

G(2)
ab (tQ) = Vρ,Q

ab

∫

out
ωab(q̂1)ωa1(q̂2)

Vρ,E1
a1 Vρ,E1

1b

Vρ,E1
ab

[
Vρ,E2

a2 Vρ,E2
21

Vρ,E2
a1

− 1

]

+ ωab(q̂1)ω1b(q̂2)
Vρ,E1

a1 Vρ,E1
1b

Vρ,E1
ab

[
Vρ,E2

12 Vρ,E2
2b

Vρ,E2
1b

− 1

]

−ωab(q̂1)ωab(q̂2)

[
Vρ,E2

a2 Vρ,E2
2b

Vρ,E2
ab

− 1

]
dΩ1

4π

dΩ2

4π
dt1dt2,

(2.93)

where by splitting contributions appropriately and using the identity

VE3,E2
ij ×VE2,E1

ij = VE3,E1
ij , (2.94)

we can see that Vρ,Q
ab g(2)ab (tQ) = ΣRR

2 + ΣVR
2 + ΣRV

2 + ΣVV
2 . We have shown that,

at leading-colour, our algorithm generates the iterative solution to the BMS
equation.

2.3.3 Subleading-Colour Contributions

Subleading-colour contributions are substantially more difficult to compute
and describe in a systematic way, particularly as corrections to the leading-
colour result. In this section we shall discuss the first subleading-colour cor-
rections. We begin by collating our knowledge of colour-charge products dis-
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cussed in Section 2.3. Using Eq. 2.66 one can write a general form for the
anomalous dimension matrix element, [τ| Γ |σ〉, as

[τ| Γ |σ〉 = −NcδτσΓσ + Στσ +
1

Nc
δτσρ, (2.95)

where

Γσ = −αs

π ∑
i<j

∫ (
λiλjδci,σ−1(cj)

+ λjλiδcj,σ−1(ci)

)
ωij(k̂)

dΩk
4π

,

ρ =
αs

π ∑
i<j

∫ (
λi − λi

) (
λj − λj

)
ωij(k̂)

dΩk
4π

, (2.96)

and

Στσ = −αs

π ∑
i<j

∫
∑
(ab)

δτ(ab),σ

(
λiλjδ(ab),(cicj)

+ λiλjδ(ab),(σ−1(ci)σ−1(cj))

−λiλjδ(ab),(ci,σ−1(cj))
− λjλiδ(ab),(cj,σ−1(ci))

)
ωij(k̂)

dΩk
4π

. (2.97)

As we shall be considering multiple insertions of these operators in the follow-
ing discussion, it is worth noting that each of the contributions to the anoma-
lous dimension matrix element, Γ, Σ and ρ are of order αs.

The leading colour contributions in the Sudakov operator are contained in the
Γσ factor and are enhanced by powers of αsNc. Owing to the fact that this term
is diagonal (as indicated by the δτσ in Eq. 2.95) it can be accounted for to all
orders in an exponential. This evolution does not induce additional transpo-
sitions between the basis tensors in the amplitude and conjugate-amplitude.
These terms are depicted in the light-blue boxes of Figure 2.8. If only this term
is considered in each invocation of the Sudakov operator, and supplemented
by those contributions in the emission operator that also leave colour struc-
tures in both the amplitude conjugate intact, we recover the leading-Nc results
of Section 2.3.1. In particular, this corresponds to the first row of real emission
contributions in the light-blue section of Figure 2.8b.
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×Sτσ

[τ ′| |σ′]

Hτ σ

|σ][τ |
FIGURE 2.7: Depiction of the general structure of a calculation
which can involve subleading-colour contributions. Figure 2.5 is
a specific example involving leading-colour contributions. Figure

from [99].

There are subleading-colour contributions arising from numerous sources:
the hard scattering matrix, terms explicitly 1/Nc and 1/N2

c suppressed in the
emission operator and anomalous dimension matrix operator and from off-
diagonal matrix elements in the scalar product matrix (see Eq. 2.42). Figure 2.7
illustrates the general structure of a calculation involving subleading-colour
contributions. In order to calculate a correction of order 1/Nk

c we must con-
sider final colour arrangements σ and τ which differ by k − l transpositions,
where 0 ≤ l ≤ k. This accounts for the colour suppression resulting from the
scalar product matrix, we must then determine the remaining terms which
contribute 1/Nl

c corrections from the soft-gluon evolution and hard scattering
matrix. As an example, an insertion of a Σ contribution is accompanied by
a factor of 1/Nc relative to the leading-colour contribution. In addition to
this it results in a relative single flip between the colour arrangements in the
amplitude and conjugate amplitude, inducing an additional factor of 1/Nc.
It is worth noting that purely 1/Nc corrections (i.e. after the scalar product
matrix element and soft-gluon evolution have been accounted for) can only
originate from the hard scattering matrix via interference contributions.
Hence, such contributions shall be ignored in the following discussion and
can be easily accounted for in any case. Figure 2.7 indicates the intermediate
colour arrangements after the action of an operator by dashed lines. We
keep track of the number of transpositions (or flips) by which the colour
arrangements in the amplitude and conjugate differ in the table of Figure 2.8b.
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1

Γ

Σ

ρ1

Γ2

Γ3

ΣΓ

ΣΓ2

Σ2Γ

Σ2

ρΓ2

ρΓ

Σ3

ρΣΓ

ρΣ

ρ21

ρ2Γ

ρ2Σ

ρ31

ρΣ2

α0
s α1

s α2
s α3

s

N3

N2

N1

N0

N−1

N−2

N−3

(A)

(0 flips)× 1× (αsN)n

(1 flip)× αs × (αsN)n

(0 flips)× αsN
−1 × (αsN)n

(t[...]t|0 flips)
r

(t[...]t|0 flips)
r−1 t[...]s|1 flip ×N−1

(t[...]t|0 flips)
r

(t[...]t|0 flips)
r−1 t[...]s|1 flip ×N−1

(t[...]t|0 flips)
r−1 s[...]s|0 flips ×N−2

(0 flips)× α2
s × (αsN)n (t[...]t|0 flips)

r

(t[...]t|0 flips)
r−1 t[...]t|2 flips × 1

virtuals reals

(2 flips)× α2
s × (αsN)n (t[...]t|0 flips)

r−1 t[...]t|2 flips

(B)

FIGURE 2.8: The next-to-leading colour contributions at varying
powers of Nc and αs. Each box in (A) corresponds to a contribu-
tion from the virtual evolution operator with increasing powers
of αs from left to right and decreasing powers of Nc from top to
bottom, with N0

c in the middle. The effect of r real emissions and
the 1/Nk

c suppression resulting from the scalar product matrix
(indicated by the number of flips) is presented in the reals col-

umn of the table in (B). Figure modified from [99].
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We begin our discussion with the subleading contributions, suppressed by
1/N2

c relative to the leading contribution, originating from the real emission
operator. They arise as a result of three possibilities. Firstly are contributions of
the form [σ| tαAtβ |τ], where σ(α) 6= τ(β). This induces two flips, one in both
the amplitude and conjugate-amplitude, accompanied by no explicit 1/Nc fac-
tor, leading to an overall 1/N2

c suppression from the scalar product matrix.
Secondly, are contributions of the form [σ| tαAs |τ] and [σ| sAtα |τ] which in-
duces one flip and an explicit factor of 1/Nc through the use of an s operator.
Lastly are terms of the type [σ| sAs |τ] which simply induce an explicit factor of
1/N2

c with no flips. When these contributions act alongside the leading colour
virtual contributions (only the Γ term in the anomalous dimension matrix el-
ement), they all contribute to the first overall subleading-colour corrections
(see the light-blue row of Figure 2.8b). We remark that emissions never reduce
the number of flips by which the colour arrangement in the amplitude and its
conjugate differ.

Our discussion now continues onto subleading virtual corrections. An inser-
tion of a perturbation Στ,σ induces a flip between the amplitude and conjugate-
amplitude colour arrangements. This leads to a 1/Nc suppression in the scalar
product matrix element. However, the fixed-order Στ,σ contribution, when
combined with the all-order summation of contributions from Γ is suppressed
by a factor of αsNc/Nc relative to the leading-colour contribution. If this is
accompanied by a leading emission contribution, there is an overall factor of
1/N2

c . The flip can also undo a transposition that has already been induced
by an emission operator, i.e. from terms like [σ| tαAs |τ] and [σ| sAtα |τ]. How-
ever, due to the presence of an s operator in such terms, an additional 1/Nc fac-
tor is introduced. Therefore, both of these fixed-order contributions are 1/N2

c

suppressed relative to the leading contributions. They correspond to the dark
orange boxes in Figure 2.8.

Two Στσ insertions are proportional to α2
s and are therefore suppressed by at

least 1/N2
c relative to the leading contributions. If these insertions combine

in such a way that the net number of flips is zero, and are accompanied by
the leading emission contributions, they will contribute to terms exactly sup-
pressed by 1/N2

c . Additionally, each Σ can induce a flip which exactly coun-
teracts that induced by a real emission term of the form [σ| tαAtβ |τ], when
σ(α) 6= τ(β). The net result is that the amplitude and its conjugate differ
by zero transpositions and there is no additional suppression from the scalar
product matrix. These two possibilities are pictorially represented in the dark
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green boxes in Figure 2.8.

The ρ terms in Eq. 2.95 come with a factor of (αsNc)/N2
c relative to the leading

contributions and so are suppressed by 1/N2
c at each order of αs. They describe

singlet-gluon contributions and so have no effect on the colour arrangement.
This in-turn means they generate zero flips and lie on the colour diagonal. A
single ρ perturbation accompanied by a Γ insertion for each order of αs above
one, and the leading contribution to the emission operator, contributes at the
same order as the contributions discussed above. These contributions are il-
lustrated by the light-orange boxes in Figure 2.8. It is worth noting that due
to their residence on the colour diagonal, ρ terms can also be exponentiated
to all orders. This shall be discussed further in Chapter 4. The remaining grey
boxes lead to a factor of (αsNc)2/N4

c and are beyond the next-to-leading colour
approximation.

In this chapter we have presented a general evolution algorithm which de-
scribes the full-colour recursive definitions of QCD amplitudes in the soft ap-
proximation. We have reviewed the colour flow basis, and used it to explore
the colour structures encountered when solving the evolution equations. Us-
ing these equations, we expressed the evolution algorithm in the leading-Nc

limit and showed its equivalence with the well-known BMS equation. Lastly,
we presented some initial steps towards a systematic approach of including
1/Nk

c corrections to the leading colour result, discussing in particular the first
subleading-colour corrections. In Chapter 4 we shall study a Monte Carlo im-
plementation of the general evolution algorithm, which will include the full-
colour emission operator dependence, and provide a systematic way of ex-
panding the Sudakov operator by ‘colour order’. Whilst the author has not
endeavoured in this, we note that it would be an interesting project to write a
Monte Carlo implementation of the general evolution algorithm, including just
the organised leading and sub-leading contributions discussed in this chapter.
It may reveal that the first subleading colour corrections offer a substantial
improvement at little extra computation cost.
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A Monte Carlo method is one of a broad class of computational algorithms
which make use of repeated random sampling (a facet which led to the ‘Monte
Carlo’ name) to obtain numerical results. Monte Carlo methods were histor-
ically introduced in studies of neutron diffusion (as far back as 1946) [113];
where it seems natural to employ random numbers to describe random pro-
cesses. The numerical results were in fact ‘deterministic’ and could be solved,
in principle, via integration. However, this proved difficult using conventional
mathematical methods and Monte Carlo methods were utilised.

In more modern times, there are many fields of physics which rely upon Monte
Carlo methods. In particle physics, Monte Carlo techniques are used to evalu-
ate hard cross sections, simulate radiation, model hadronisation, and simulate
the response of the detector to name a few applications. These tasks fall under
the remit of general purpose event generators, such as Herwig [10–12], Pythia
[13–15] and Sherpa [16]. To highlight the prevalence of Monte Carlo methods,
we list just some of the main event generator-related projects:

• Fixed-order matrix element generation and matching; GoSam [114, 115],
MadGraph [116], NJet [117, 118], OpenLoops [119], VBFNLO [120], HJets [121]

• Parton showers; angular-ordered shower [122], dipole shower [52, 53]

• Non-perturbative modelling (e.g. hadronisation) [54, 123–125]

A more comprehensive list of projects can be found on HEPForge [126].

In this chapter, we shall give an introduction to Monte Carlo methods, begin-
ning with a probabilistic formulation of integrals in terms of averages, and
their associated certainties. Subsequently, we discuss strategies for sampling
from probability distributions and techniques for reducing the variance and
improving the convergence of Monte Carlo integrals. Lastly, we briefly con-
sider an angular-ordered parton branching algorithm, or basic parton shower,
and outline the veto and competition Monte Carlo algorithms used to solve it.

3.1 Integration and Variance

We wish to employ Monte Carlo techniques to solve the integral

I =
∫ x2

x1

f (x)dx, (3.1)
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for a function f (x) in the domain (x1, x2). The principle behind the Monte
Carlo approach is to substitute the issue of performing a numerical integration
with one of calculating the expectation of the integrand. The expectation of a
function f (x) is defined as the average value of the function:

〈 f (x)〉 =
∫

f (x′)dG(x′), (3.2)

where G(x′) is a distribution function describing the uniform distribution of x
between x1 and x2, so that dG(x′) = dx′/(x2 − x1) (we shall discuss this more
later). The expectation can be written more explicitly as

〈 f (x)〉 = 1
(x2 − x1)

∫
f (x′)dx′ =

1
(x2 − x1)

I. (3.3)

So if we take enough values of x, distributed on the domain (x1, x2), the aver-
age value of f (x) is a reasonable estimator for our integral, I. This estimator is
written as

〈 f (x)〉 ' 1
N

N

∑
i=1

f (xi), (3.4)

where xi is a uniformly sampled value over the domain and N is the number
of values of x we evaluate. The law of large numbers (LLN) tells us about
the behaviour of the sum of a large number of random variables, as in Eq. 3.4.
Specifically, it tells us that if xi are the values of N independent and identically
distributed random variables, their average (on the RHS of Eq. 3.4) converges
to the exact value of 〈 f (x)〉 (and therefore of I) as N → ∞.

In reality, our integral in Eq. 3.1 is often over a multi-dimensional phase space
(as we have seen in Chapter 2) and Eq. 3.4 can be extended to an arbitrary
number of dimensions, d. Suppose that we write f (x) now as f (x) to denote a
matrix element-squared which is a function of a d-component vector x, which
we wish to integrate over a region V of x-space. Then, Eq. 3.1 becomes [127]

I =
∫

V
f (x)dΦ, (3.5)

and the expectation of f (x) is given by

〈 f (x)〉 = 1
Φ(V)

∫

V
f (x)dΦ ' 1

N

N

∑
i=1

f (xi), (3.6)

where Φ(V) is the volume of V and each evaluation of f (x) now requires the
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sampling of d-components.

Since we are practically restricted to computing with finite N, we are naturally
led to the question: ‘how accurate is our Monte Carlo estimator for a given,
finite N?’. To answer this, we turn to the central limit theorem (CLT). The
CLT tells us approximately how our Monte Carlo estimate is distributed for
a large number of samples. It establishes that the sum of a large number of
independent and identically distributed random variables is itself a random
variable, whose distribution converges to a normal distribution, provided N
is ‘sufficiently large’. This statement relies on the individual random variable
distributions having finite expectations and variances.

The variance of a random variable, X, is a measure of the expected deviation
from the mean, or, expected value:

var(X) =
〈
(X− 〈X〉)2

〉
=
〈

X2
〉
− 〈X〉2 . (3.7)

In order to compute the variance of our Monte Carlo estimator, we can rewrite
Eq. 3.4 in terms of the independent random variables, Xi (which are distributed
according to the G(x) distribution), as

fN =
1
N

N

∑
i=1

f (Xi), (3.8)

where fN denotes the estimator for N samples. If we identify the values of xi as
the random variate from each of the identically distributed random variables,
Xi, we can see that, 〈 f (Xi)〉 = 〈 f (x)〉, and the estimator has the same expecta-
tion value as that of the function, i.e. 〈 fN〉 = 〈 f (x)〉. Our estimator also has a
variance, which by virtue of the CLT, will tend to a Gaussian with a standard
deviation:

σ2
MC = var ( fN) = var


 1

N

N

∑
i=1

f (Xi)


 . (3.9)

We can compute the variance of the sum over random variables using the iden-
tity

var




N

∑
i=1

aiZi


 =

N

∑
i=1

a2
i var(Zi) + 2∑

i<j

aiajcov(Zi, Zj), (3.10)

where cov(Zi, Zj) denotes the covariance between the random variables Zi and
Zj, and ai, aj are the corresponding numerical coefficients. If the covariance is
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positive, Zi and Zj are said to be positively correlated, and if negative, Zi and
Zj are negatively correlated. Most importantly, if the two random variables are
independent cov(Zi, Zj) = 0; which is indeed the case for f (Xi). Additionally,
each of the f (Xi) share a common variance, var ( f (Xi)) = var ( f (x)) = σ2

f . As
such, we can write

σ2
MC =

1
N2

N

∑
i=1

var ( f (xi)) =
1

N2

N

∑
i=1

var ( f (x)) =
σ2

f

N
. (3.11)

The standard error σMC is a measure of discrepancy between the value of the
estimator and the true mean. As the estimator approaches a Gaussian for suf-
ficiently large N, as per the CLT, σMC adopts a probabilistic interpretation: that
the quantity 〈 fN〉 ± σf /

√
N represents the value of our integral with a con-

fidence interval of 68.3% (or 95.4% and 99.7% within two and three standard
deviations respectively).

This advertises a big selling point of Monte Carlo techniques: for a d-
dimensional integral, the convergence rate is still governed by the CLT and
so the expected error does not depend on the dimension of the integral at all,
only on the number of sampling points, as 1/

√
N. This is in stark contrast

to alternatives such as the trapezium and Simpson’s rule (which rely on
variations of Eq. 3.4). These quadrature rules converge as N−2/d and N−4/d

respectively [128]. We can see that the convergence rate of Monte Carlo
integration grants us an advantage for integrals with dimensions above d = 4
and d = 8; dimensions which are rapidly reached in the phase space integral
for a reaction producing as few as three or four particles.

A second practicality of Monte Carlo techniques is in their flexibility. Whereas
alternative numerical integration methods set out to calculate an integral - and
that integral only - Monte Carlo methods can produce any desired distribution
from a set of phase-space points. We simply ‘book’ a histogram for the quantity
in question as a function of a phase-space variable, with the numerical value
of the integrand evaluation (typically multiplied by a weight, corresponding
to the particular techniques used in sampling the integrand) [129].

With this generality in-mind, and given that we seldom know the analytic form
of σf , the variance of the Monte Carlo integration can be estimated using the
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sample values themselves, with

σMC '
1√
N

√√√√ 1
N

N

∑
i=1

f (xi)2 −
(

1
N

N

∑
i=1

f (xi)

)2

. (3.12)

It should be noted however, that whilst this formula is simple enough, it can
lead to numerical difficulties, particularly when σMC � |I|. In this case there
can be large round-off errors from ‘catastrophic cancellation’, where one sub-
tracts two nearly equal numbers.

3.1.1 Hit-or-Miss Monte Carlo

The Hit-or-Miss Monte Carlo method is the simplest Monte Carlo integration
technique. In essence, we estimate the area under a function f (x) by integrat-
ing over some other function, ck(x) (where c is a constant), with a larger but
known area - usually a hyperrectangle. These functions need only satisfy the
condition

0 < f (x) ≤ ck(x), (3.13)

for all values of x in the domain of integration. In order to show how hit-or-
miss integration works, we first note that

I =
∫ x2

x1

f (x)dx =

∫ x2

x1

∫ f (x)

0
dydx. (3.14)

Thus, sampling x according to the density f (x) is the same as a uniform se-
lection of (x, y) in the area x1 < x < x2, 0 < y < f (x). If we randomly
choose uniformly distributed (x, y) points such that they lie under the curve
y = ck(x), then a fraction of these points will also lie under y = f (x). This
fraction will be equivalent to the ratio of the areas under f (x) and ck(x). If we
identify ck(x) with the maximum value of f (x), max( f (x)) ≡ fmax, we have

I =
∫ x2

x1

∫ f (x)

0
dydx =

∫ x2

x1

∫ fmax

0
Θ ( f (x)− y)dydx, (3.15)

where Θ ( f (x)− y) is the Heaviside step function, constraining f (x) to be
larger than y. We have therefore rephrased our original integration of f (x), to
be a two-dimensional integration of a Heaviside step function over the region
(x1, x2) × (0, ck(x) = fmax). Then, using Eq. 3.6, we can estimate I by deter-
mining the volume of our sampling region and 〈Θ ( f (x)− y)〉. The volume of



3.1. Integration and Variance 119

our sampling region is simply the area under the curve ck(x),

∫ x2

x1

∫ fmax

0
dydx = (x2 − x1) fmax. (3.16)

The expected value of our Heaviside step function is

〈Θ ( f (x)− y)〉 =
Naccepted

N
≡ H, (3.17)

where Naccepted is the number of sampled points, (x, y), for which the argu-
ment of our Heaviside step function is satisfied and N is the number of ‘at-
tempted’ points. Then we can write down the estimate for the integral, I, along
with its associated error, as

IHM = (x2 − x1) fmax

[
H ±

√
H − H2

N

]
, (3.18)

where we have used the fact that

〈
Θ ( f (x)− y)2

〉
= 〈Θ ( f (x)− y)〉 . (3.19)

As an example let’s consider the integral [130]

I =
∫ 1

0

4
1 + x2 dx =

[
4 tan−1 (x)

]1

0
= π, (3.20)

where f (x) = 4/
(
1 + x2), on the domain x ∈ [0, 1], which integrates to π.

With this integrand we can rewrite Eq. 3.18 as

IHM = (x2 − x1)


〈 f (x)〉 ±

√
(x2−x1) fmax
(x2−x1)

〈 f (x)〉 − 〈 f (x)〉2

N


 ,

= π ±
√

fmaxπ − π2

N
' 3.14± 1√

N
1.64 (3.21)

where we have used the relation,

H =
(x2 − x1)

(x2 − x1) fmax
〈 f (x)〉 , (3.22)

to replace the expected value of our Heaviside step function with that of the
integrand. We can see that the accuracy of the hit-or-miss integration technique
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depends not only on the expectation of the integrand, but on the area of our
overestimate, ck(x). This is clearly not an efficient way to calculate the value
of π, as roughly 100 times more samples are needed to reduce the error of our
estimate by one decimal place. We shall see in the next section, that the Crude
Monte Carlo method has an improved accuracy.

3.1.2 Crude Monte Carlo

Crude Monte Carlo is a more direct application of Eq. 3.3 and Eq. 3.4. If we
once again consider the integral in Eq. 3.20, we can see

I =
∫ x2

x1

4
1 + x2 dx = (x2 − x1)

∫ x2

x1

4
1 + x2

1
(x2 − x1)

dx

= (x2 − x1)
∫

f (x)g(x)dx = (x2 − x1) 〈 f (x)〉

' (x2 − x1)
1
N

N

∑
i=1

f (xi), (3.23)

where g(x) is the probability density function (PDF) corresponding to the G(x)
distribution function introduced in Eq. 3.2, f (x) = 4/

(
1 + x2) and x1 = 0,

x2 = 1. From this we can see that Crude Monte Carlo integration of Eq. 3.20
involves repeatedly sampling values of x randomly and uniformly across the
domain of integration, and subsequently taking the average of all integrand
evaluations. The Crude Monte Carlo estimate for the integral, with its associ-
ated error, is

ICMC = (x2 − x1)


〈 f (x)〉 ±

√
〈 f (x)2〉 − 〈 f (x)〉2

N




= π ±
√

2 (2 + π)− π2

N
' 3.14± 1√

N
0.64. (3.24)

It is important to note that unlike with the hit-or-miss Monte Carlo technique,
the Crude Monte Carlo error only depends on the integrand itself. We can see
from Eq. 3.21 and Eq. 3.24 that the Crude Monte Carlo technique will be more
efficient than the hit-or-miss method if fmax > 2(2+π)/π. This is indeed true,
and furthermore we see from the definition of our overestimate in Eq. 3.13,
that for a rectangular integration area, fmax is the minimum value that ck(x)
can take. For this particular integral, the Crude Monte Carlo method requires
a factor of about 6.5 fewer samples to reach the same accuracy.
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3.2 Sampling

In the previous section we discussed calculating integrals using Monte Carlo
methods, and in particular, the notion of recasting an integral as the average
of its integrand. During this discussion we spoke loosely of sampling, i.e. gen-
erating points according to a distribution (see for instance Eq. 3.2). With this
in-mind it is instructive to write the f (x) mean with the sampling distribution,
p(x), made explicit:

〈 f (x)〉 =
∫

f (x)dP(x) =
∫

f (x)p(x)dx, (3.25)

where p(x) = dP(x)/dx. The basic building block of Monte Carlo methods is
a reliable source of uniform random numbers on the domain [0, 1], which we
shall denote as R throughout this work. Accordingly, the rest of this section
will be concerned with utilising such a source to explore sampling strategies,
in particular to acquire non-uniform random variables. We will focus on sam-
pling by inversion, acceptance-rejection sampling and sampling from discrete
distributions.

3.2.1 Sampling by Inversion

The method of sampling by inversion is a way to generate values according to
a probability density function (PDF), such as p(x) [131]. This is achieved by
integrating the PDF and inverting the corresponding cumulative distribution
function (CDF), P(x).

The PDF of a continuous variable is related to the CDF by

P(x) =
∫ x

−∞
p(x′)dx′ = P (X ≤ x) , (3.26)

where the distribution of the random variable X is completely specified
through its CDF and P (X ≤ x) is the probability that X is less than or equal to
x. For a proper distribution, P(∞) = 1 and P(−∞) = 0, which results if p(x)
is appropriately normalised and by its nature as a PDF, p(x) satisfies p(x) ≥ 0
for all values of x. It follows from these stipulations that P(x) is monotonically
non-decreasing. If we generate a random number R and put X = P−1(R),
then

P(X ≤ x) = P(P(P−1(R)) ≤ P(x)) = P(R ≤ P(x)) = P(x), (3.27)
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i.e. the random variable X has the same distribution as p(x), and by exten-
sion, P(x).

More generally, one can generate the distribution of a p(x) which is not ex-
plicitly normalised to unity. We first notice that if p(x) is defined for x in the
domain [x1, x2], and is positive-definite, the probability P(x1 ≤ X < x) should
be a fraction of the total probability P(x1 ≤ X < x2)

1. Then, we can determine
x using [13]

∫ x

x1

p(x′)dx′ = R
∫ x2

x1

p(x′)dx′ = R(P(x2)− P(x1)) = P(x)− P(x1), (3.28)

which can be solved for x in terms of the inverse of the CDF:

x = P−1 (P(x1) +R [P(x2)− P(x1)]) . (3.29)

It is clear that through this Monte Carlo procedure of randomly generating an
x value, the normalisation (which makes p(x) a true PDF) is implicit in the
result. Namely, P(x2) − P(x1) normalises p(x). If we write the normalised
form of P(x) in Eq. 3.28 as P(x) = (P(x)− P(x1)) / (P(x2)− P(x1)), i.e. P (x)
is a proper cumulative distribution, then we see that

x = P−1 (P(x1) +R [P(x2)− P(x1)]) = P−1
(R), (3.30)

such that we obtain a sample for x distributed according to p(x).

We have already seen one example of a normalised distribution in Eq. 3.2, with
the PDF

g(x) =
1

x2 − x1
, (3.31)

defined on the interval x2 to x1, such that g(x) = 0 everywhere else. The CDF,
G(x), has the form

G(x) =
∫ x

x1

g(x′)dx′ =
x− x1

x2 − x1
, (3.32)

and is equal to unity if we integrate g(x) over the entire interval. This result
can be inverted (after setting G(x) = R as per Eq. 3.27) to obtain x,

x = G−1
(R) = x1 +R(x2 − x1), (3.33)

1Another way of phrasing this, is that we can construct a distribution from any positive-
definite function, which are commonly encountered when performing an integration.
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so that we can use R to sample values from a uniform distribution between
[x1, x2]. This shows that uniform distributions are related by a rescaling and
subsequent translation (asR is itself a uniform distribution on [0, 1]). It is also
worth noting that in the aforementioned discussions, we can equally replace
R by 1−R, which is useful for inverting some distributions.

3.2.2 Rejection Sampling

Whilst the technique of sampling by inversion may at first seem all-
encompassing, it relies on our PDF having an invertible integral. Often,
finding an explicit formula for x = F−1(R), for the CDF of a density f (x),
is not possible. Rejection sampling can be viewed as an extension to the
hit-or-miss Monte Carlo method, where we do not specify ck(x) = fmax,
but allow ck(x) to take a more general form. The target and overestimate
distributions must satisfy Eq. 3.13:

f (x) ≤ ck(x), (3.34)

with c ≥ 1; this condition on the constant, c, arises as a result of the target and
overestimate density normalisations2. In practice we would like k(x) to be
‘close’ to f (x) and for c to be as close to unity as possible for efficiency. Akin to
hit-or-miss Monte Carlo, rejection sampling chooses a value for x according to
the overestimate, k(x), and ‘accepts’ this value with a probability f (x)/ck(x).
It is the action of accepting / rejecting the generated value which corrects the
sampling to our target distribution, f (x). The rejection sampling algorithm to
generate x, distributed as f (x), is stated in Algorithm 1 below.

Algorithm 1: Rejection Sampling Algorithm
1 Generate a random variable, X, according to the PDF, k(x), usingR1
2 ifR2 ≤ f (x)/ck(x) then
3 Accept x as sampled value

4 else
5 Goto line 1

In order to prove the validity of Algorithm 1, we must show that the condi-
tional distribution of X, given the sampled value of x is accepted, reproduces

2We could just set c = 1, however we would rather maintain that k(x) be a PDF in the true
sense, with a normalisation equal to unity.
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the distribution of our target PDF, F(x). In other words, that

P
(

X ≤ x
∣∣∣R2 ≤

f (X)

ck(X)

)
= F(x). (3.35)

Using Bayes‘ theorem, this is equal to

P
(

X ≤ x
∣∣∣R2 ≤

f (X)

ck(X)

)
=
P
(
R2 ≤ f (X)

ck(X)

∣∣∣X ≤ x
)
P (X ≤ x)

P
(
R2 ≤ f (X)

ck(X)

) . (3.36)

Looking at Algorithm 1, the number of times, Naccepted, that lines 1 and 3 need
to be iterated, is itself a random variable which follows a geometric distribu-
tion: P(Naccepted = n) = p × (1− p)n−1, where we define p to be the prob-
ability that we accept the sampled x-value, p = P (R2 ≤ f (X)/ck(X)). This
probability can be obtained by first conditioning on X = x. Then, integrating
to obtain the marginal distribution, we find

p = P
(
R2 ≤

f (X)

ck(X)

)
=
∫ ∞

−∞

f (x′)
ck(x′)

k(x′)dx′ =
1
c

. (3.37)

Following a geometric distribution, the random variable Naccepted has an ex-
pectation value of 1/p, which highlights the associated inefficiency with this
approach; that one typically has to cycle through c iterations of Algorithm 1
before accepting a sampled value. It is then clearly advisable to choose our
overestimate density, k(x), so as to minimise the constant c whilst retaining its
invertibility. Furthermore, one can show that

P
(
R2 ≤

f (X)

ck(X)

∣∣∣X ≤ x
)
=

F(x)
cK(x)

, (3.38)

where F(x) and K(x) are the CDFs corresponding to f (x) and k(x) respec-
tively. Using Eq. 3.36, we find

P
(

X ≤ x
∣∣∣R2 ≤

f (X)

ck(X)

)
= P

(
R2 ≤

f (X)

ck(X)

∣∣∣X ≤ x
)
× K(x)

1/c

= F(x), (3.39)

proving that the recipe of Algorithm 1 recovers the desired distribution.
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3.2.3 Sampling Discrete Distributions

A commonly encountered situation when using Monte Carlo methods is the
need to sample one of a finite set of elements. We stated in Section 3.2.1 that a
given CDF is related to its corresponding PDF through

P(x) =
∫ x

−∞
p(x′)dx′, (3.40)

for a continuous variable. The situation of a discrete distribution is contained
in this as a special case. If we say the variable X takes discrete values x1, . . . , xn

and that X = xi with probability pi, then we can write

p(x) =
n

∑
i

piδ(x− xi). (3.41)

Then the probability that X is below or equal to a value xk is

P(X ≤ xk) ≡ Pk =
k

∑
i=1

pi, (3.42)

where Pk is the discrete analogue of the cumulative distribution function. In
the case that pi are normalised, their sum is equal to unity, and each element
of the set xi can be chosen with a corresponding selection weight, pi. Conse-
quently, a method for sampling a given element from this set is to attribute a
portion of the range [0, 1] to each element, with a size directly proportional to
its weight. Then using a uniform random number, R, we can choose one of
these portions. Specifically, if we represent the portion i by Ri, we can iterate
through all of the portions using

Ri+1 = Ri − pi+1, (3.43)

where R0 = RPn, until Ri+1 < 0. It is then the (i + 1)-th element that is
selected. Written another way, we choose i such that

Pi

Pn
< R <

Pi+1

Pn
, (3.44)

which corresponds to an R generated within the portion associated with the
(i + 1)-th element. Written in this form, Eq. 3.44 holds even for cumulative
distribution functions with unnormalised weights (where Pn = 1 if they are
normalised).
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The ability to sample from discrete distributions is especially pertinent in the
context of Section 2.3. We saw that the trace of the amplitude operator can be
written as a sum of complex matrix elements. Each term of this sum can be
identified by a pair of colour flow basis tensors. As the total number of basis
tensors increases factorially with each emission, the set of tensors over which
we sum quickly becomes intractable, and we can approximate the summation
using Monte Carlo methods, as we shall discuss further in Chapter 4.

3.3 Importance Sampling

In Section 3.1.1 and 3.1.2 we reviewed the hit-or-miss and Crude Monte Carlo
methods. We noted how, at least for the example function f (x) = 4/(1 + x2),
the Crude Monte Carlo method was superior with a lower variance.

The integral we considered was simple, however other functions can have
large variations in their value, which lead to a large uncertainty in the Monte
Carlo estimate. The issue with large variations in the value of our function
is tied to our sampling density. If we consider a function f (x) with multiple
peaks, then in uniformly sampling x values, we spend a great deal of time
sampling regions which do not contribute significantly to the total integral es-
timate. On the other hand, if we sample from a density which closely describes
f (x), we will choose a large number of points in regions of the sampling space
where the function is largest.

Doing this mathematically corresponds to a change of integration variables. If
we consider Eq. 3.25, we can write

〈 f (x)〉p =

∫
f (x)p(x)dx =

∫
f (x)p(x)

k(x)
k(x)dx = 〈w(x) f (x)〉k , (3.45)

where w(x) = p(x)/k(x) and the subscript on our averages denotes the chosen
sampling distribution. In other words, we can recast the expectation of our
integrand according to a different distribution. Then, by choosing k(x) wisely,
we will sample more points in regions where f (x) is largest, which is then
compensated for by reducing the function values in these regions. Ideally,
these reweighted function values are close to a constant value, for which we
would have zero variance. But at the very least, we have to choose k(x) in such
a way that the product of the Jacobian (of our change of integration variable)
and the integrand itself, result in a smaller variance than the Crude Monte
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Carlo method.

The estimate function k(x) must fulfill certain conditions to be of practical use.
Firstly, k(x) must be non-negative everywhere in the integration region, when-
ever f (x)p(x) 6= 0. Looking at Eq. 3.45, one would be concerned about the
eventuality that k(x) = 0, however as our change of variables indicates that
we sample x according to g(x), these points are never generated. There is
however, still the risk that k(x) is very small in a region where f (x)p(x) is
not, which results in large contributions to the average and in general to the
variance as well.

Secondly, the integral of k(x) (its CDF) must be known analytically and be in-
vertible. The class of functions which satisfy this need is quite small - mainly
trigonometric functions, exponentials, logarithms and low-degree polynomi-
als. Failing this, we must be able to use alternate methods to generate random
numbers according to the distribution of k(x). However, in doing so, one must
be careful not to introduce a large variance as a consequence. All of this serves
to highlight the problem-dependent art of choosing a sensible form for k(x).

The variance of our importance-sampled average is

var (w(x) f (x))k =
〈
(w(x) f (x))2

〉
k
− 〈w(x) f (x)〉2k , (3.46)

where from Eq. 3.45 we can see 〈w(x) f (x)〉2k = 〈 f (x)〉2p. This demonstrates
that in order to obtain better accuracy using importance sampling, we require〈
(w(x) f (x))2〉

k <
〈

f (x)2〉
p.

The importance-sampled estimate for the integral, with its associated error, is

IIS = (x2 − x1)


〈w(x) f (x)〉k ±

√
〈(w(x) f (x))2〉k − 〈w(x) f (x)〉2k

N


 (3.47)

Returning once again to our example integration - where we wish to integrate
f (x) = 4/(1 + x2) between x1 = 0 and x2 = 1 - we can choose a sampling
function with the form k(x) = 1

3(4− 2x), which is a reasonable estimate of the
shape of f (x). Indeed,

〈
(w(x) f (x))2〉

k <
〈

f (x)2〉
p, and with this choice, the

integral and estimate are given by

IIS = 3.14± 1√
N

0.08. (3.48)



128 Chapter 3. Monte Carlo Methods

This is a substantial improvement on the hit-or-miss and Crude Monte Carlo
methods, requiring a factor of 64 fewer points to achieve the same accuracy as
Crude Monte Carlo.

3.4 Random Number Generators

Thus far in our discussion of Monte Carlo methods, we have repeatedly used
a source of uniform random numbers, R. However, we have done so without
defining how it can actually be implemented. One way of obtaining random
numbers is to use natural random processes, for example measuring radioac-
tive particle emission or thermal noise - a fun example being Cloudflares’ lava-
lamp wall used for LavaRand [132]. Measurements of such processes would
have to be subject to the removal of any detection biases. And any remaining
biases could be sufficient to cause the resulting physical numbers to fail tests
for randomness. In addition to this, the rate of producing a stream of random
numbers in this way is sufficiently slow that they are not really practical for
Monte Carlo purposes. Owing to these setbacks, pseudorandom sequences
are used in practice.

These sequences of numbers are generated by pseudo-random number gen-
erators (PRNG) and are deterministic, by their nature of being produced in
software. The quality of randomness in the number sequences can be assessed
by tests: two examples being the frequency test and gap test [133]. There is no
one standard assessment to check this, and the requirements of a PRNG can
depend greatly on the context in which they are used. A basic definition of a
random number sequence, is that it is uniformly distributed over all possible
values with each number being independent of those generated before it [134].
In the context of Monte Carlo techniques, the deterministic nature of PRNG’s
is actually one of their key assets. It means we can produce reliably fast and re-
producible sequences of numbers. The latter point is vital in developing tools
which rely on a source of randomness, whilst still allowing the user to dis-
tinguish internal errors. The majority of modern random number generators
take a seed value as input (which is what enables the aforementioned repro-
duciblity) and are based on recursions using modular arithmetic. One of the
simplest and well-known forms of PRNG are the Linear Congruential Gener-
ators (LCGs). These are defined by the recurrence [135]

xi = (a + b× xi−1)modM. (3.49)
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This algorithm determines a sequence of at most M random numbers (known
as the PRNG’s period, whereafter the sequence starts to repeat itself), where
the values of a, b and the modulus, M, specify the algorithm. The value of
x0 is the chosen seed; which is the only source of randomness in an LCG. If
the a, b and M parameters are poorly chosen (with a particularly illustrative
example being RANDU [136]), the period can be significantly less than M. Never-
theless, this algorithm badly violates the independence of successive groups of
random numbers, i.e. there is a high degree of correlation between successive
elements and its use has been heavily discouraged. This approach has since
been surpassed and there are a number of very good and thoroughly tested
generators. They quickly produce many random numbers and have portable
implementations. One such PRNG is the Mersenne Twister [137], MT19937,
which has a period of P = 219937 − 1. This is the random number generator
used by CVolver, which we shall discuss in Chapter 4.

3.5 Parton Showers

Event generators play a key role in particle physics, acting as the phenomeno-
logical bridge between the theoretical ideal and experimental reality. To do
this, they make heavy use of the Monte Carlo methods we have outlined thus
far.

The large phase space at the LHC can typically lead to the creation of O(100)
particles. With their aim of simulating such processes, event generators must
produce high multiplicity final states. Indeed, a fundamental component of
event generators is their parton shower, which does just this, by performing
approximate calculations of cross sections in the most dominant regions of
phase space. To exemplify this, we shall briefly review the phenomenon of
angular ordering, which gives rise to a parton branching process. Moreover,
we shall outline the Monte Carlo algorithms used to simulate this branching
process.

3.5.1 Angular Ordering

We showed in Section 1.4 how, in the soft limit, the terms associated with the
emission of a real gluon off a quark anti-quark pair factorised from the Born
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process, resulting in

dσ1 = dσ0
2αs

π

dEk
Ek

dΩk
4π

CFωqq̄(k), (3.50)

where dΩk is the solid angle element for the emitted parton with four-
momentum k and energy Ek. Furthermore, in Section 1.4.2 we showed that the
eikonal approximation is valid for both the q→ qg and g→ gg splittings with
the same effective vertex Feynman rule. The corresponding expression for the
one-emission cross section is identical, with a colour factor of CA instead of
CF. Consequently, the general differential cross section for a process with n
hard external partons, and a real eikonal gluon emission can be written as

dσn+1 = dσn
αs

π

dEk
Ek

dΩk
4π ∑

i,j

Cijωij(k), (3.51)

where we sum over all pairs of n coloured hard partons, {i, j} and Cij is the
colour factor associated with each pair. For three or fewer coloured particles,
these colour factors can be rewritten in terms of Casimir operators. We write
the dipole function as

ωij(k) =
1− cos θij

(1− cos θik)
(
1− cos θjk

) , (3.52)

where θab is the separating angle between partons a and b. Our dipole function
can be separated into two parts, each containing a leading collinear singularity,
by adding and subtracting pole-like terms:

ωij(k) = ω
[i]
ij (k) + ω

[j]
ij (k), (3.53)

where

ω
[i]
ij (k) =

1
2

(
ωij(k) +

1
1− cos θik

− 1
1− cos θjk

)
, (3.54)

and ω
[j]
ij (k) can be obtained by swapping the i and j parton labels in the above

equation. Suppose we substitute the dipole function in Eq. 3.51 with Eq. 3.52
and write the solid angle element in terms of the polar and azimuthal angles
with respect to the direction of parton i, dΩk = d cos θikdφik. Carrying out the
azimuthal integration first, we find

∫ 2π

0
ω

[i]
ij (k)

dφik
2π

=
1

1− cos θik
Θ
(
θij − θik

)
. (3.55)
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This means that each of the two terms, ω
[i]
ij and ω

[j]
ij , describe radiation which

is confined to a cone. The first is a cone centred on the direction of parton i,
which extends to parton j. After instead averaging over φjk, the term ω

[j]
ij is a

cone centered on j, extending to i. Using this we can rewrite Eq. 3.51 as

dσn+1 ' dσn
αs

2π

dEk
Ek

∑
i,j

Cij

[
d cos θik

1− cos θik
Θ
(
θij − θik

)

+
d cos θjk

1− cos θjk
Θ
(
θij − θjk

)
]

. (3.56)

We can see that the cross section possesses the property of angular ordering,
i.e. that the soft emission pattern from each leg i and j is confined to a cone
which has an angle less than their pairwise opening angle. This characteristic
ordering is an example of a coherence effect which is common to all gauge
theories (known as the Chudakov effect in QED [138]; the effect of decreased
ionisation losses for narrow electron-positron pairs). Angular ordering in QCD
is a direct result of colour coherence. In words, if we consider an emission off
a pair of coloured partons i and j which are close in angle, their azimuthally-
averaged incoherent radiation is limited to cones of half-angle θij. In the wide
angle limit, i and j give a coherent contribution proportional to the total colour
charge of the pair. The physical interpretation is that the emitted gluon does
not have sufficient resolving power to differentiate i and j, and hence can be
computed as if it were emitted from their parent parton.

Eq. 3.56 can be interpreted as arising from a parton branching process, where
the successive emission angles are ordered in a sequence of decreasing angles.
The factorised form of Eq. 3.56 means one can iteratively generate any number
of final-state emissions, accounting for the leading soft gluon enhancements to
all orders. This process is known as a parton shower.

One finds a similar pattern of factorisation, of the matrix and phase-space
elements, in the collinear limit. This can also be developed into a parton
branching formalism, albeit describing collinear enhancements to all orders.
In fact, one can show that these collinear enhancements can be incorporated
into Eq. 3.56 [49, 139], by considering a single leg, i or j, and replacing

dEk
Ek
→ CliPli(z)dz, (3.57)

where Pli(z) are the set of universal, but flavour-dependent, azimuthally-
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averaged unregularised Altarelli-Parisi (AP) splitting functions [140]. The
function Pli(z) reflects the collinear splitting of a parton i → l + k, where z
is defined as the energy fraction Ek/Ei, and Cli is the corresponding colour
factor. This results in the following differential distribution [141, 142]:

dσn+1 ' dσn
αs

2π

dξ

ξ
CliPli(z)dz, (3.58)

where ξ is an ordering variable, proportional to 1− cos θlk. So that each emis-
sion can be treated independently, it is necessary to strongly order in ξ. One
would naively expect a parton shower built on Eq. 3.58 to only accurately de-
scribe collinear radiation. However, using the opening angle between l and
k as our ordering variable, Eq. 3.58 treats both the leading-colour soft and
collinear enhancements correctly. Of course, extending the treatment of soft-
gluons to full-colour was the subject of Chapter 2 and its Monte Carlo imple-
mentation will be discussed in Chapter 4.

We notice that the integral over the dσn+1 differential cross section can con-
tain divergences in both ξ and z. In order to iteratively generate emissions,
we must tame such divergences to produce a well-defined probability distri-
bution. The singular regions occur where partons are infinitely collinear or
soft. But these scenarios are degenerate with the one in which an emission did
not occur at all. One can then introduce the notion of resolvable and unresolv-
able emissions, segregated by resolution criteria. Then the contribution from
resolvable radiation is finite, whilst the as-of-yet uncalculated virtual correc-
tions ensure that their combination with unresolvable emissions is also finite.
The two contributions are related through unitarity [142]:

P (resolvable) + P (unresolvable) = 1. (3.59)

Denoting the cutoff limits on z as z+ and z−, we can use Eq. 3.58 to write down
the probability that parton i will undergo a branching to l + k, within the range
ξ to ξ + dξ as

dPres = ∑
l

dξ

ξ

∫ z+

z−

αs

2π
CliPli(z)dz, (3.60)

which is the distribution for resolvable emissions. The sum, indexed by l, runs
over all possible branchings of particle i. The complement of dPres is the prob-
ability of no branching in an infinitesimal increment of the evolution variable.
In the limit that dξ → 0, this exponentiates and we can define ∆(ξ|ξH) as
the probability of no emission between ξH and ξ. This follows the differential
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equation
d∆(ξ|ξH)

dξ
= ∆(ξ|ξH)

dPres

dξ
. (3.61)

Solving the above equation gives us the form of the exponential function [13]:

∆(ξ|ξH) = exp

[
−
∫ ξH

ξ

dξ ′

ξ ′

∫ z+

z−

αs

π ∑
l

CliPli(z)dz

]
, (3.62)

which is the well-known Sudakov form factor [143]. Thus, to generate the first
emission we use the probability distribution in Eq. 3.61 to write the probability
that a branching occurs at ξ, as

dSP(ξ|ξH)

dξ
= −d∆(ξ|ξH)

dξ
= ∆(ξ|ξH)

dPres

dξ
. (3.63)

This is what we would intuitively expect: the probability that the first resolv-
able emission should occur at ξ is the product of the probability of no emission
between ξH and ξ, and the probability that an emission subsequently occurs
at ξ. One could then theoretically sample an emission according to this dis-
tribution, using the methods of Section 3.2. In particular, we could sample by
inversion, and solve:

∫ ξH

ξ

dSP(ξ
′|ξH)

dξ ′
dξ ′ = ∆(ξ|ξH) = R. (3.64)

However, in practice, obtaining a solution to the above equation is not straight-
forward as it requires the integrated splitting kernels in the exponent to be in-
verted. An alternative involves generating an emission according to a crude
Sudakov form factor, with an overestimated splitting kernel which is invert-
ible. To correct the sampling distribution back to the nominal Sudakov form
factor, we use rejection sampling methods. This process of sampling is the
Sudakov veto algorithm and shall be discussed in the next section.

3.5.2 Veto Algorithm

In the previous section, we started with the form for the soft gluon one-
emission cross section and showed how it could lead to a coherent parton
branching formalism, culminating in a statement of the Sudakov form factor
used in traditional partons showers. The formulation of these showers is
intrinsically Markovian, where each branching depends only on the emitted
parton and its parent, which as we have seen is well-suited to Monte Carlo
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techniques. We wish to generate an ordered sequence of values for the
evolution variable according to the Sudakov form factor distribution function.
The veto algorithm, a variant of the rejection sampling technique, is useful in
achieving this [13, 108, 144].

Written simply, we wish to generate emissions according to a distribution of
the form

Pf (q) = f (q) exp

[
−
∫ Q

q
f
(
q′
)

dq′
]
= f (q)∆ f (q|Q), (3.65)

where f (q) is the emission kernel, typically the AP splitting kernels, and q is a
generic evolution variable. Given a hard scale, Q, we wish to generate a value
q < Q. If f (q) has a primitive function with a known inverse, the problem
is straightforward, and we can simply adopt the methods of Section 3.2.1 to
obtain

q = F−1 (ln (R) + F (Q)) . (3.66)

Of course, life is rarely so simple and f (q) is often not invertible. In this case,
we adopt the approach of Section 3.2.2 and find an overestimate kernel, k(x)
(where we have set c = 1 for simplicity sake), which can be solved using the
inverse transform method, where

Pk (q) = k(q)∆k(q|Q), (3.67)

and f (q) ≤ k(q) for all q ≥ 0. However, a straightforward application of the
rejection sampling algorithm would not correctly take into account the effects
of the exponential in Pf (q). Instead, one can use the veto algorithm depicted
in Algorithm 2.

Algorithm 2: Veto Algorithm
1 i← 0
2 qi ← Q
3 Loop
4 i← i + 1
5 qi ← K−1 (ln (R) + K(qi−1)), i.e. according to k(q), but with the

constraint that Q > qi > qi−1
6 ifR ≤ f (x)/k(x) then
7 q← qi
8 return q

Considering the first few steps in this algorithm is instructive and will help us
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see that sampling in this fashion reproduces the distribution in Eq. 3.65. The
probability that q is accepted on the first sampling attempt, is given by

Pk,1 (q) = k (q)∆k (q|Q)
f (q)
k (q)

= f (q)∆k (q|Q) . (3.68)

This is simply the probability that a value of q is chosen according to the dis-
tribution Pk(q) multiplied by the probability, f (q)/k(q), that this value is ac-
cepted. If we now consider the case where one intermediate scale, q1, is re-
jected, we find

Pk,2 (q) =
∫ Q

q
k (q1)∆k (q1|Q)

[
1− f (q1)

k(q1)

]
k(q)∆k (q|q1)

f (q)
k(q)

dq1, (3.69)

which is the following probabilities multiplied together: the probability that q1

is the first selected value, the probability that q1 is subsequently rejected (the
terms in-between square brackets), the probability that q is selected starting
with a hard scale, q1, and the probability that q is accepted. We must also inte-
grate over all possibilities for the intermediate scale, q1. Utilising the identity,
∆k (q1|Q)∆k (q|q1) = ∆k (q|Q), Pk,2(q) simplifies to

Pk,2 (q) = Pk,1(q)
∫ Q

q
[k(q1)− f (q1)]dq1. (3.70)

More generally we have to consider n− 1 intermediate times, q ≤ qn−1 ≤ . . . ≤
q1 ≤ Q, where we write the result for Pk,n, as

Pk,n (q) = Pk,1(q)×
n−1

∏
i=0

∫ qi

q
[k(qi+1)− f (qi+1)]dqi+1

=
1

(n− 1)!

(∫ Q

q

[
k(q′)− f (q′)

]
dq′
)(n−1)

Pk,1(q). (3.71)

The last equality is due to the symmetry of the integrand, which allows us to
recast the limits of integration. We can see the simplest example of this by
considering Pk,3: the integral limits are q < q2 < q1 and q2 < q1 < Q. This
is equivalent to integrating over the region q < q2 < Q, q < q1 < Q and
including an over-counting symmetry factor of 1/2, such that the integrals
over q1 and q2 decouple and become equal. This extends to any value of n,
carrying a corresponding symmetry factor of 1/n!.
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Remembering that Pk,n is the probability to accept a sampled q value after the
nth attempt, the total probability to accept q at any iteration of the algorithm is
the sum over all possible n values. With the aforementioned generalisation to
hand, we can write the total probability as

P(q) =
∞

∑
i=1

Pk,i(q) = Pk,1(q)
∞

∑
i=1

1
(n− 1)!

(∫ Q

q

[
k(q′)− f (q′)

]
dq′
)(n−1)

= f (q) exp

[
−
∫ Q

q
k
(
q′
)

dq′
]

exp

[∫ Q

q

(
k
(
q′
)
− f

(
q′
))

dq′
]

= f (q)∆ f (q|Q) , (3.72)

showing that the veto algorithm samples q values according to the target dis-
tribution in Eq. 3.65. Whilst we have exhibited the veto algorithm for one vari-
able, f (q) is often a multivariable function, f (q, z). The methods described
here are easily generalised if one can find an overestimate function k(q, z)
which encapsulates both variables. The k(q) function used in Algorithm 2 can
be obtained as the marginal distribution of k(q, z).

3.5.3 Competition Algorithm

In the previous section, we laid down the Sudakov veto algorithm for a single
emission kernel, f (q). We can see from Eq. 3.60 that for each emission, its
progenitor can evolve down multiple branching channels, each characterised
by their own branching kernel, fi(q). Including competing processes in the
veto algorithm requires a modification known as the competition algorithm
[145].

The overall probability of branching at some scale q is the sum of these kernels:

f (q) = ∑
i

fi(q). (3.73)

One can then write a distribution for selecting the scale, q, of the next branch-
ing as

Pf (q) = ∑
i

fi(q) exp

[
−
∫ Q

q
∑

i

fi
(
q′
)

dq′
]

, (3.74)
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and each separate branching process follows the distribution

Pi
f (q) = fi (q) exp

[
−
∫ Q

q
fi
(
q′
)

dq′
]
= fi(q)∆ fi(q|Q), (3.75)

which has the same form as Eq. 3.65. The competition algorithm involves gen-
erating a scale, qi, for each competing process and selecting the highest. Show-
ering then proceeds, using this scale and emitting according to the process i.
Algorithm 3 summarises this process.

Algorithm 3: Competition Algorithm

1 Generate {q1, . . . , qm} from Pi
f (q), where i = 1, . . . , m, e.g. using the veto

algorithm
2 q← qj = max{q1, . . . , qm}
3 Evolve shower using the scale q and the process j

In order to see why Algorithm 3 produces the distribution in Eq. 3.74, we recall
that the Sudakov form factor, ∆ fi(q|Q), is the probability that an emission has
not occurred between the scales Q and q. Consequently, the probability that
we sample a scale qj from Pj

f (q), for each of m possible processes, and the i-th
process produces the highest scale, is

m

∑
i=1



∫ Q

0

m

∏
j=1

dqj f j(qj)∆ f j(qj|Q)


∏

k 6=i
Θ (qi > qk) δ (q− qi) , (3.76)

where the sum over m is present, as any one of the processes could produce
the largest sampled value of qi. This reduces to

m

∑
i=1

fi (q)∆ fi (q|Q)∏
j 6=i

∆ f j (q|Q)

= ∑
i

fi(q) exp

[
−
∫ Q

q
∑

i

fi
(
q′
)

dq′
]

= Pf (q), (3.77)

reproducing the target distribution for q.

Equipped with the knowledge of this chapter, we shall move on to discuss
CVolver: the Monte Carlo implementation of the general evolution algorithm
explored in Chapter 2.
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Chapter 2 presented a general evolution algorithm which encapsulates
algorithmic and recursive definitions of QCD amplitudes, describing the full-
colour radiation of multiple soft gluons, including virtual corrections to all
orders. Subsequently, we explored the colour structures one encounters when
solving the evolution equations, in the context of the colour flow basis. This
culminated in expressions for the matrix elements of colour charge and colour
charge product operators (for given external legs i and j, see Eq. 2.62 and 2.66)
that are essential in determining contributions from emission and Sudakov
operators. Using these results, the equivalence of the aforementioned general
evolution algorithm (in the leading-Nc limit) to the BMS equation was shown.
Furthermore, we organised contributions to the cross section into a series of
powers in Nc to make manifest the large-Nc limit and successive corrections
to it.

There have been numerous efforts in recent years to address subleading colour
contributions in the context of parton shower algorithms [146–152] in an ef-
fort to improve on the accuracy of existing simulations [10, 11, 15, 153]. The
work [146] for instance, modifies the leading-Nc dipole shower algorithm im-
plementation within Herwig [53] to include colour suppressed contributions
by an iterative use of so-called colour matrix element corrections. As opposed
to a leading-Nc dipole shower, any pair of partons are allowed to radiate. This
amounts to a correction of the emissions to include the exact colour correla-
tions and is performed for the first handful of emissions, resorting to a tradi-
tional leading-Nc shower afterwards.

In this chapter, we shall bring together the concepts and results established
in previous chapters, to present the practical implementation of a new Monte
Carlo code, CVolver1. This code simulates high-energy particle collisions in-
cluding colour correlations beyond the leading-colour approximation. It cur-
rently showers electron-positron collision events in the context of a specific
non-global observable: the ‘jet veto’ observable. However, the framework is
more robust and can be readily extended to more general observables.

We shall begin in Section 4.1 with a review of the general evolution algorithm
in Chapter 2 and describe how one can use Monte Carlo techniques to sample
over intermediate colour states, through the insertion of the unit operator be-
tween successive real emission and virtual correction operators. A great deal

1CVolver stands for Colour Virtual Evolver and originates from the studies first presented
in [154].
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of thought has been devoted to writing CVolver in a maximally modularised
fashion, largely to reflect the structure of the evolution algorithm itself, but
also with the view to generalising CVolver to a multi-purpose event generator.
As such, we will devote a good deal of time in Section 4.2 to reviewing the C++
class structure of CVolver and describing how the colour index book-keeping
in the colour flow basis of Section 2.2.1 is implemented (in Section 4.2.2). This
will form the basis for defining an archetype C++ class of a colour evolution
operator, e.g. a Sudakov or emission operator, in Section 4.2.3. These build-
ing blocks form the foundation for a shower evolution algorithm, which will
be outlined in its most general form in Section 4.2.4. Much of Section 4.2 will
be discussed in an observable-independent way, with the aim of providing
a broad overview of both the CVolver code, and the numerous challenges of
implementing the results of Chapter 2. These challenges are addressed an-
alytically, alongside their concrete implementations in subsequent sections.
In particular, the colour charge operator and colour product matrix elements
(pertaining to the anomalous dimension matrix and emission operators) from
Chapter 2 shall be reformulated into the colour flow basis in Sections 4.3.1
and 4.3.4. Most importantly, we shall review how the soft anomalous dimen-
sion matrix can be approximately exponentiated through the summation of
subsequent towers of large-Nc contributions in Section 4.3.1. There is an in-
herent need, when sampling over intermediate colour states, to perform this
in an efficient manner. We shall therefore dedicate Section 4.4 to discussing
how colour states are selected for Sudakov matrix elements. Lastly, after all of
the vital components of CVolver have been discussed, its two modus operandi
(denoted as Variant A and Variant B) are covered in-detail in Sections 4.5.3 and
4.5.4. Where code is directly commented on, the reader may find it useful to
refer to the CVolver UML diagrams provided in Appendix A.

In order to make the rest of this chapter more readable, we would like to re-
mind the reader of nomenclature. In the following, roman letters are used to
denote indices of external legs, whilst greek letters, those of colour or anti-
colour lines (the letters are barred in the latter case). When colour indices are
discussed in a context in which an anti-colour index would also be applica-
ble, only one will be described with the implications for the other left implicit.
If a distinction between a colour and anti-colour line is necessary, it will be
provided to the reader. The mapping operator, providing the correspondence
between an external leg, i, and a colour index, α, is written as ci, whilst the in-
verse mapping is c−1

α . The greek letters σ, τ and ρ are reserved to represent the
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colour state before and after the action of a colour operator. In the case where
amplitude and conjugate-amplitude matrix elements are discussed concomi-
tantly, these tensors will be barred to denote the latter. An example of this is
[τ|Ti |σ〉 〈σ̄|Tj |τ̄]. The object Nc is reserved to denote the number of colours,
whilst N and n are used in the context of summations to represent the number
of partons and the number of colour flows respectively. The values of these
context-dependent quantities will be specified where necessary.

4.1 Algorithmic Overview

In Chapter 2 we presented an iterative algorithm for summing the leading soft-
gluon logarithms to all orders for a general scattering process. We begin this
section by recapitulating the key results of Chapter 2. The differential cross
section for n soft-gluon emissions can be written as

dσn = TrAndΠn, (4.1)

where the operators An satisfy the recurrence relation

An(E) = VE,En Dµ
nAn−1(En)D†

nµV†
E,En

Θ(E ≤ En), (4.2)

and Θ(E ≤ En) denotes the Heaviside function imposing energy ordering. For
hard scattering processes with two or more coloured particles in both the initial
and final state, the inclusion of Coulomb exchanges is necessary. However, in
this chapter we only consider two-jet production off a colour singlet. As such,
the Sudakov operator takes on a simpler form (than Eq. 2.6) and is given by

Va,b = exp


−αs

π
ln
(

b
a

)
∑
i<j

(
−Ti · Tj

) ∫ dΩk
4π

ni · nj

(ni · nk)(nj · nk)


 , (4.3)

where the vector, ni, is light-like with a spatial part that is the unit vector in
the direction in which particle i travels. The integral is over the direction of
the, similarly light-like, vector nk. A subset of terms in the Sudakov exponent
is the soft anomalous dimension matrix:

Γ =
αs

π ∑
i<j

(
−Ti · Tj

) ∫ dΩk
4π

ni · nj

(ni · nk)(nj · nk)
. (4.4)
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The value of αs is taken to be fixed throughout this chapter and the real emis-
sion operator is identical to that stated in Eq. 2.3,

Dµ
i = ∑

j

Tj
nµ

j

nj · ni
(4.5)

and the phase-space element is

dΠn =

n

∏
i=1

(
−αs

π

dEi

Ei

dΩi

4π

)
. (4.6)

We remind the reader that the sum over partons in the operator definitions of
Va,b and Dµ

i are context-specific, running over all prior soft-gluon emissions
and the partons of the original hard scattering (the colour charge operator,
Tj, is in a representation of SU(3)c dependent on this multiplicity). The soft-
gluon evolution described by Eq. 4.2 proceeds iteratively, starting from the
hard-scattering operator H = |M〉 〈M|, such that

A0(E) = VE,QH HV†
E,QH

. (4.7)

We restate that the trace of the amplitude operator in colour-space, Eq. 4.1, is

TrAn = ∑
σ,τ

[τ|An |σ] 〈σ| τ〉 , (4.8)

and that a general observable, Σ, can be computed using

Σ(µ) =

∫
∑

n

dσnun({k}n), (4.9)

where n is the multiplicity of emitted soft-gluons and un are the observable-
dependent measurement functions with {k}n denoting the set of soft-gluon
momenta. Whilst we have adopted energy-ordering throughout this work,
the algorithm can be adapted to account for a different ordering variable. The
infrared regulator µ should be taken to 0 in Eq. 4.9, however we showed in
Section 2.1 that if the observable is fully inclusive over gluon emissions with
the ordering-variable less than some scale E < Q0, we can set µ = Q0.

It was shown in Section 2.2.2 that by using a dual basis, such that 〈α|β] =

[α|β〉 = δαβ, we can insert the unit operator between successive real emission
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and virtual correction operators to calculate the trace in Eq. 4.8. Particularly
we showed R |α〉 = Cα,β

R |β〉, where R is a colour-line or colour-line product
operator, and Cα,β

R = [β|R |α〉. This result can be used recursively to strip-off
evolution operators leaving behind a string of C-coefficients and reduced ma-
trix elements. Anticipating this pattern, we can also act in reverse and build
an evolution cascade around the hard scattering matrix element by inserting
these C-coefficients. The real emission and virtual correction operators contain
multiple colour operators and as such, can map a given basis tensor to a mul-
tiplicity of others. One can then adopt Monte Carlo techniques to sample over
these potential colour states. Figure 4.1 illustrates this process.

|ρ〉 [ρ|D |τ〉 [τ |V |σ〉 [σ|H |σ̄] 〈σ̄|V † |τ̄ ] 〈τ̄ |D† |ρ̄] 〈ρ̄|

1

1̄
2

3
3̄

2

1̄

1

2̄
2̄

1

1̄

2

2̄

1

3̄
3

1̄
2

2̄

ρ = (312) τ = (21) σ = (12) σ̄ = (21) τ̄ = (21) ρ̄ = (231)

FIGURE 4.1: One contribution to the A1 operator, starting from
the |12〉 [12|H |21] 〈21| term in the qq̄ → qq̄ hard scattering. It
corresponds to a single gluon emission and a single virtual gluon
exchange in both the amplitude and conjugate-amplitude. The
vertical dotted lines identify the intermediate colour states. The
algorithm works iteratively outwards, starting from the hard pro-
cess in the middle and multiplying emission and Sudakov matrix

elements as it goes. Figure used in [155].

It is useful to walk through the evolution shown in Figure 4.1, working out-
wards from the hard process matrix element in the middle, to summarise the
CVolver evolution strategy. We begin by selecting initial colour flows, σ and σ̄

from the set of all possible basis tensors and compute the corresponding hard
scattering matrix element [σ|H |σ̄]. In the case of the qq̄→ qq̄ process depicted
in Figure 4.1, there are two potential colour arrangements in both the ampli-
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tude and conjugate amplitude,

|M〉 〈M| = |12〉 [12|H |12] 〈12|+ |12〉 [12|H |21] 〈21|
+ |21〉 [21|H |12] 〈12|+ |21〉 [21|H |21] 〈21| . (4.10)

After computing the hard scattering matrix element, the momentum of the first
real emission is chosen. In anticipation of inserting Sudakov operators that act
in both the amplitude and the conjugate (which evolve from the hard scale QH

down to the energy of the emitted gluon, E1), we choose two new colour flows
τ and τ̄. The flows τ and τ̄ are chosen from all possible tensors that can be ac-
cessed after the action of a Sudakov operator. Subsequently, the colour flows
ρ and ρ̄ are chosen from the set of all possible tensors that are accessible after
the action of an emission operator. The hard process, Sudakov and emission
matrix elements are then all multiplied together. This whole process repeats
until the evolution terminates, which can be after having reached a predeter-
mined maximum multiplicity or infrared cutoff2. One last Sudakov operator
evolves the last emission down to this cutoff scale. The final product of ma-
trix elements must be further multiplied by the scalar product matrix 〈σm| σ̄m〉,
where m labels the final colour flows.

One can rewrite Eq. 4.2 explicitly in terms of matrix elements, such that one
step in the evolution (as depicted in Figure 4.1) is determined by

Mρρ̄(E) = −αs

π

dE
E

dΩ
4π ∑

τ,σ
τ̄,σ̄

[ρ|DE |τ〉 [τ|VE,E′ |σ〉

×Mσσ̄(E′) 〈σ̄|V†
E,E′ |τ̄] 〈τ̄|D†

E |ρ̄] . (4.11)

In Eq. 4.11, E is the energy of the latest emission and E′ is that of the previous
one. This expression is the core of our implementation and it provides a map
from a pair of colour flows (σ,σ̄) to the pair (ρ,ρ̄). The starting amplitude (be-
fore any emission or virtual exchange takes place) is Mσσ̄ = [σ|H(QH) |σ̄] and
in the case of zero emissions,

Mρρ̄(µ) = [ρ|Vµ,QH |σ〉 [σ|H(QH) |σ̄] 〈σ̄|V†
µ,QH
|ρ̄] . (4.12)

In implementing Eq. 4.11 into a Monte Carlo code, there are a number of chal-

2It was shown in Section 2.1.1, that for certain observables, we can replace the infrared
cutoff with a veto scale. This is true for the jet veto observable we consider here.
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lenges that must be overcome. First, is the most obvious need to calculate
the real emission and virtual gluon correction matrix elements which involves
computing matrix elements of the forms [τ|Ti |σ〉 and [τ|Ti · Tj |σ〉. We have
already expressed such elements in Section 2.3. However it is more convenient,
for a code implementation, to express these matrix elements in terms of colour
and anti colour indices as opposed to external leg indices. This translation is
expressed analytically in Section 4.3. Secondly, is the challenge of computing
the Sudakov matrix elements, [τ|V |σ〉, which involves the exponentiation of
a possibly large and sparsely populated colour matrix. The evaluation can be
considerably simplified if we are prepared to sum terms accurate only to or-
der 1/Nd

c , where d is a positive integer, while keeping the leading diagonal
terms proportional to (αsNc)n to all orders, n. Larger values of d will lead
to more accurate calculations of the Sudakov matrix elements, at the cost of
taking longer to compute. This challenge, along with the rephrasing of the
anomalous dimension matrix elements as a sum over colour and anti colour
indices, is addressed in Section 4.3.1. Additionally, there are algorithmic chal-
lenges associated with the calculation of Eq. 4.11. One is the way in which
we choose the basis tensors that result from an evolution operator (be it a real
emission or virtual exchange), i.e. the matrix elements or C-coefficients we
wish to calculate. The set of all possible tensors that are accessible after the
action of a Sudakov or emission operator is determinable. However, given the
factorially increasing size of colour-space with the number of emissions, care
must be taken to sample from this set in an efficient way. Particularly, sampling
along the most important trajectories in colour-space. A method of sampling a
basis tensor, |τ〉, d swaps from |σ〉 is discussed in Section 4.4. As we shall see,
this is particularly useful in determining matrix elements of the Sudakov op-
erator, but is also used to determine emission matrix elements in Variant A of
CVolver. An alternative emission matrix element sampling, which forms part
of the Sudakov veto algorithm with competition, is presented for Variant B in
Section 4.5.4.

The jet veto cross section is an interesting observable containing non-global
logarithms, that is sensitive to wide-angle, soft-gluon production and thus pro-
vides a good test of the CVolver framework. It was the focus of [18, 19] and was
discussed in the introduction to Chapter 2: one vetoes events that have one or
more particles radiated into some fixed angular region with energy greater
than the veto scale, Q0. It is part of the class of observables discussed in Sec-
tion 2.1.1. Both Variant A and Variant B implementations focus on this observ-
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able for the production of either a qq̄ pair, or a pair of gluons (gg), with total
energy 2QH in their zero momentum frame (ZMF). In this work, we shall apply
the veto on particle production to the central in-gap region (−π/4 < θ < π/4)
in the zero momentum frame (ZMF) of the primary two-jet system. We refer
to these as V → qq̄ (production off a colour singlet gauge boson) and H → gg
(Higgs decay to gluons), throughout this work. It is worth noting that these
cross sections are independent of the details of the initial state, so long as it
is a colour singlet. And, that like most non-global observables, the summa-
tion of even the leading logarithms with full colour accuracy has not yet been
achieved in parton showers.

Before we move onto discussing solutions to the aforementioned challenges,
and the variant implementations, it is useful to take a detour and give a broad
overview of the CVolver code structure so that the implementations of these
solutions can be put into context.

4.2 CVolver Structure

Eq. 4.11 lies at the heart of our implementation and numerous challenges in
computing Eq. 4.11 have been highlighted. This section aims to provide a
broad overview of the CVolver structure so that solutions to these challenges
in subsequent sections can be contextualised. As such, this section will discuss
a number of representative functions without concrete definitions, with the
knowledge that they shall be defined in later sections, namely in discussions
of Variant A (in Section 4.5.3) and Variant B (in Section 4.5.4).

4.2.1 CVolver Overview

The CVolver code is a collection of C++ classes which implement colour flow
arithmetic and map the correspondence between the physical and colour flow
regimes. Suffice it to say, the physical regime refers to the paradigm of la-
belling objects with external leg indices, such as the operators Ti ·Tj in Eq. 4.3.
The colour flow regime on the other hand, regards each colour or anti colour
line as labelling an independent particle species and the colour charge prod-
ucts can be written as Tα · Tβ, i.e. each gluon has a colour and anti colour line
which can evolve independently. This correspondence shall be defined more
explicitly for these operators in Section 4.3.1. Moreover, the CVolver code des-
ignates classes which calculate matrix elements of the operators in Eq. 4.2, and
a class which drives the shower evolution, necessary to perform the colour
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evolution in Eq. 4.11. The components of CVolver can be grouped into two
sections, the Core and Implementation and both are needed to produce events.
One can broadly think of the Core as implementing the colour algebra, whilst
Implementation specifies kinematics and process-specific details. An example
is the Hemispheres3 implementation of the jet veto observable, which will be
discussed throughout this chapter.

Figure 4.2a provides a schematic overview of the components of CVolver which
shall be discussed in this section. The blue boxes encapsulate the class hierar-
chy of the AnomalousDimensionMatrix and EmissionMatrix operator classes. It
is the operator classes which tie Core to Hemispheres4, and as such we illustrate
the entire inheritance hierarchy of the Hemispheres::AnomalousDimensionMatrix
class in Figure 4.2b (which we shall discuss in more detail shortly). This in-
heritance hierarchy is typical of the class hierarchy for all four operator
classes: the AnomalousDimensionMatrix, EmissionMatrix, HardProcessMatrix

and ScalarProductMatrix classes (which shall be discussed in more depth in
Section 4.2.3). Core::ColourFlow and Core::ColourFlowCrossing are classes
associated with Core::ColourFlowMatrix. Core::ColourFlowMatrix delegates
the responsibility of keeping track of colour flow permutations and the
correspondence from the physical to colour flow regime to Core::ColourFlow

and Core::ColourFlowCrossing respectively. The orange classes represent
independent classes, for instance Core::EvolutionMatrix, which handles the
Sudakov colour expansion (discussed in Section 4.3.1). The EvolutionOrder-
ing box represents Hemispheres::EvolutionOrdering, which inherits from the
abstract base class Core::EvolutionOrdering, and carries out the evolution
scale selection (of which two variants are discussed in Section 4.5). The
arrows in Figure 4.2a represent the relationships between classes. A black
arrow represents an association, an open triangle denotes inheritance and an
open diamond indicates an aggregation association. We refer to the reader to
Appendix A for a more detailed discussion of these symbols.

The Core implements observable-independent functionality, utilising abstract
base classes to leave observable-dependent components as pure virtual
methods to be defined within Implementation. An example of this dynamic
polymorphism is exhibited in the Hemispheres::AnomalousDimensionMatrix

3This naming comes about, as the jet veto and (non-global part of the) hemisphere jet mass
cross sections can be computed using the same Implementation; the veto region needs to be
changed to 0 < θ < π/2 for the latter cross section.

4We shall distinguish classes sharing the same name in both Core and Hemispheres by using
their scope, e.g. Hemispheres::, where necessary.
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AnomalousDimensionMatrix EmissionMatrix

Core::Evolver

Core::ColourFlowMatrix Core::ColourFlowCore::ColourFlowCrossing

EvolutionOrderingCore::EvolutionMatrix

(A) The blue boxes denote the classes which represent the operators in Eq. 4.2 and their inher-
itance hierarchies. The beige and orange boxes represent independent classes which perform
specific tasks, whilst the red box highlights the class, Evolver, which collates instantiations of

all other classes, to conduct the shower evolution.

Hemispheres::AnomalousDimensionMatrix Core::AnomalousDimensionMatrix

Core::AnomalousDimensionMatrixBaseCore::ColourFlowMatrix

(B) The inheritance hierarchy of the Hemispheres::AnomalousDimensionMatrix class, repre-
sented by the AnomalousDimensionMatrix blue box in Figure (a). It is an example of the

inheritance structure used for all operator classes in Implementation.

FIGURE 4.2: An overview of the CVolver code.

class within Hemispheres, which we shall look at in more detail, to get across
the philosophy. Hemispheres::AnomalousDimensionMatrix, provides the defi-
nition for the pure virtual method evaluate(), which calculates the coefficients
of the colour charge operators (in the physical regime) in Eq. 4.4, which we
shall call Γij for a pair of external legs (ij) for the time being (and which
we will define in Section 4.3.1). Hemispheres::AnomalousDimensionMatrix

inherits from another class, Core::AnomalousDimensionMatrix, which de-
clares the pure virtual method evaluate() (as well as declaring all other
observable-dependent methods). This way, Core::AnomalousDimensionMatrix
has prototyped a necessary function to be defined in Hemispheres. The class
Core::AnomalousDimensionMatrix is itself an abstract-base class which inherits
from Core::AnomalousDimensionMatrixBase, defining observable-independent
functionality5. Core::AnomalousDimensionMatrix implements the computation

5The distinction between the Core::AnomalousDimensionMatrix and
Core::AnomalousDimensionMatrixBase classes has been highlighted here for
completeness-sake, to explain their exact inheritance hierarchy. Specifically,
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of soft-gluon anomalous dimension matrix elements and its components, Γσ,
ρ and Στσ (which were schematically defined in the physical regime in Eq.
2.95, and shall be redefined in the colour flow regime in Section 4.3.1). These
components are calculated by making use of the coefficients, Γij, which are
defined in Hemispheres::AnomalousDimensionMatrix.

The Core::AnomalousDimensionMatrix class inherits from ColourFlowMatrix;
which is also part of Core. The ColourFlowMatrix class defines a template for
all classes which represent an operator (such as the emission, Sudakov and
scalar product matrix operators in Eq. 4.2). In particular, it provides (to all de-
rived classes) the facility to make the correspondence between the physical and
colour flow regime. For instance, it enables Core::AnomalousDimensionMatrix

to make the correspondence between external leg indices and colour indices
when calculating the γαβ flow-decomposition coefficients (their relationship to
Γij is detailed in Section 4.3.1).

In addition to defining observable-dependent functionality, Hemispheres also
defines global physical parameters, such as the QCD coupling, αs (which we
fix at 0.118), the infrared cutoff, µ, and the collinear cutoff, λ, which shall be
placed into context in Section 4.5. Moreover, it specifies the event record (typed
EventRecordT) and the random number generator (typed RandomT) to be used
throughout the code. Additionally, the generation of new emission degrees
of freedom and subsequent phase-space mapping, along with their sampling
methods and the application of the measurement function are carried out in
Hemispheres::EmissionMatrix.

Figure 4.2 also depicts the Core::Evolver class. It is the work horse of CVolver,
driving the shower evolution. It collates instantiations of all the necessary
classes and delegates tasks to them in the process of calculating each evolu-
tion step (of Eq. 4.11). Section 4.2.4 provides a walk-through of this process,
denoting each task with a representative function. The point of this section
is to link these functions to aspects of the code, whereas the actual forms of
these functions shall be defined later in Sections 4.3.1, 4.3.4, 4.4 and 4.5 for two
implementations of the jet veto observable: Variant A and Variant B.

With the above overview in-mind, a more detailed description of the

Core::AnomalousDimensionMatrix builds on Core::AnomalousDimensionMatrixBase to template
the event record and random number generator class types, (EventRecordT and RandomT), and
to declare the evaluate() pure virtual method. As they are both part of Core, this distinction is
ultimately unnecessary and shall be dropped henceforth.
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ColourFlow and ColourFlowCrossing classes is carried out in the following
section. Subsequently, ColourFlowMatrix and its inheriting classes are detailed
in Section 4.2.3, whilst the shower evolution algorithm (of Evolver) is outlined
in Section 4.2.4.

4.2.2 Colour Flow Mapping And Arithmetic

In this section, we shall discuss the implementation of the ColourFlowCrossing

and ColourFlow classes in the Core of CVolver. They keep track of and
manipulate the correspondence between the colour flow and physical
regime, and of the colour arrangement as the shower evolves. As such, the
EvolutionMatrix, EvolutionOrdering, Evolver and all operator classes have
access to them through their respective crossing() methods. We will closely
follow the external leg, colour and anti colour index labelling conventions of
Section 2.2.1.

|M〉 = α + β

1
1̄

2
2̄

=

1

1̄

2

2̄

−p1

−p2

p3

p4

FIGURE 4.3: An example of the qq̄ → qq̄ process amplitude de-
composed in the colour flow basis. Outgoing particles are repre-
sented by arrows to the left of the blob with positive momenta.
Incoming particles are treated as if they were outgoing particles

with negative momenta. Figure used in [155].

ColourFlowCrossing deals principally with two tables, theReverseColourMap

and theReverseAntiColourMap. These tables map a particle index, i, to its cor-
responding colour (ci) and/or anti colour index (c̄i). The constructor of this
class takes two vectors of particle data as input, corresponding to incoming
and outgoing particles. This data is then used by the method fill(), to popu-
late these tables. To illustrate this process, Figure 4.3 depicts the amplitude for
the qq̄ → qq̄ hard scattering process in the colour flow basis. Focusing on the
blob-diagram, all particles are considered as outgoing, with negative momenta
indicating incoming particles. The particle with incoming momentum p1 is an
anti-quark, that with incoming momentum p2 is a quark whilst p3 and p4 label
an outgoing quark and anti-quark respectively. Quarks and anti-quarks are
represented by colour and anti-colour lines, whilst gluons are represented by
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a pair of colour and anti-colour lines. Those particles which are incoming are
treated as having a colour in the opposite representation, i.e. as pertaining to
an anti colour line for an incoming quark. To account for the negative momenta
of incoming particles, an appropriate crossing sign, si = −1 and /or s̄i = −1
for an incoming colour or anti colour line, is stored in theColourCrossingSigns

and / or theAntiColourCrossingSigns. We note that in this work we do not
consider initial-state radiation. The crossing signs are therefore always equal
to 1 and shall henceforth be disregarded.

The populated tables theReverseColourMap, theReverseAntiColourMap,
theColourCrossingSigns and theAntiColourCrossingSigns corresponding
to this process are listed in Table 4.1. Two additional tables contained
within ColourFlowCrossing, theColourMap and theAntiColourMap, are also
listed. These tables act as inverse mappings of theReverseColourMap and
theReverseAntiColourMap respectively.

theReverseColourMap theReverseAntiColourMap

i ci i c̄i

1 1 2 1
3 2 4 2

theColourCrossingSigns theAntiColourCrossingSigns

ci si c̄i s̄i

1 -1 1 -1
2 1 2 1

theColourMap theAntiColourMap

ci i c̄i i

1 1 1 2
2 3 2 4

TABLE 4.1: Illustration of the tables contained within the
ColourFlowCrossing class. They have been populated for the ex-
ample process qq̄ → qq̄ presented in Figure 4.3. The label i de-
notes an external leg index, whilst ci and c̄i specify the colour and
anti colour indices to which i maps. si and s̄i denote the crossing

sign attributed to a colour or anti colour index.

In order for external classes to interact with the mappings listed in Table 4.1,
ColourFlowCrossing has a number of public access methods. These are listed,
along with their function, in Table 4.2. As the shower evolves and gluons are
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Method Description of functionality

colourLeg() Return the external leg index corresponding to a
given colour index in theColourMap.

antiColourLeg() Return the external leg index corresponding to a
given anti colour index in theAntiColourMap.

colourLine() Return the colour index corresponding to a given ex-
ternal leg index in theReverseColourMap.

antiColourLine() Return the anti colour index corresponding to a given
external leg index in theReverseAntiColourMap.

coloured() Return true if the external leg index has a correspond-
ing colour line index in theReverseColourMap.

antiColoured() Return true if the external leg index has
a corresponding anti colour line index in
theReverseAntiColourMap.

TABLE 4.2: The public methods of the ColourFlowCrossing class,
used by external classes to access the colour maps.

emitted, external classes require the facility to modify the tables contained
within ColourFlowCrossing. This functionality is encoded through protected
members, summarised in Table 4.3.

Method Description of functionality

addColourCrossing() Add a new colour index cor-
responding to a new external
leg index in theColourMap,
theColourCrossingSigns and
theReverseColourMap.

addAntiColourCrossing() Add a new anti colour index
corresponding to a new external
leg index in theAntiColourMap,
theAntiColourCrossingSigns and
theReverseAntiColourMap.

addColourAntiColourCrossing() Add a new colour and anti colour
index, both corresponding to
the same new external leg in-
dex via addColourCrossing() and
addAntiColourCrossing().

TABLE 4.3: The protected methods of the ColourFlowCrossing

class, used by external classes to manipulate the colour maps.

The ColourFlow class is used to describe a basis tensor and perform colour flow
arithmetic on it. A basis tensor in the colour flow basis is labelled by a per-
mutation, i.e. stating how all colour and anti colour lines are connected. Each
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ColourFlow instantiation stores a permutation as a vector, thePermutation. This
permutation can be represented as

|σ〉 =
∣∣∣∣∣

1 · · · n
σ(1) · · · σ(n)

〉
, (4.13)

where the vector index of thePermutation corresponds to a colour line (top
row in Eq. 4.13) and the element contained at that vector index corresponds
to the anti colour line (bottom row). The two basis tensors that describe the
possible colour arrangements for the qq̄ → qq̄ hard process are illustrated on
the right-hand side of Figure 4.3. In the first term, the incoming anti-quark is
colour connected to the outgoing anti-quark and the incoming quark is colour
connected to the outgoing quark. The second term is the only other possible
colour arrangement. External classes utilise public methods in ColourFlow to
perform colour flow arithmetic and access thePermutation. These are outlined
in Table 4.4.

Method Description of functionality

scalarProduct() Determine the scalar product between the cur-
rent basis tensor, |σ〉, and another, resulting in
Nk

c . Return the power k.
colour() Return the colour index that is connected to the

given anti colour index in |σ〉.
antiColour() Return the anti colour index that is connected

to the given colour index in |σ〉.
swap() Swap the two given anti colour indices in the

permutation |σ〉.
getTranspositionOf() Return the two anti colour indices that must

be swapped to transform |σ〉 into a given basis
tensor (that differs by at-most, one transposi-
tion).

emitSinglet() Add another flow, labelled by n + 1, to |σ〉,
such that n + 1 = n + 1. See Figure 2.3b.

emitFromColour() Emit a gluon from specified colour line in |σ〉.
See Figure 2.3a.

emitFromAntiColour() Emit a gluon from a specified anti colour line
in |σ〉. See Figure 2.3a.

TABLE 4.4: The public methods of the ColourFlow class, used by
external classes to manipulate colour flows and carry out colour

flow arithmetic.

The ColourFlow class also provides comparison operators to test for equality
between two basis tensors, and the functionality to produce the entire set of
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basis tensors for a given number of colour flows.

4.2.3 Operator Classes

In the previous section we discussed the implementation of the ColourFlowCrossing
and ColourFlow classes. The ColourFlowMatrix class utilises them to keep track
of the correspondence between the physical colour flow regime and the colour
flow arrangement throughout the shower evolution. Figure 4.1 illustrates how
the operators in Eq. 4.11 can evolve this colour arrangement. Here, we will
outline the ColourFlowMatrix class and all of its derived operator classes.

As an archetype for all operator classes, ColourFlowMatrix contains the
method, crossing(), which is used to define (or access if it has already
been defined) an instantiation of ColourFlowCrossing. Another method
includeCrossingSigns() indicates whether crossing signs should be consid-
ered, i.e. if there are initial-state partons in the hard scattering.

Each operator in Eq. 4.11 has a corresponding abstract base class defi-
nition to enact the effect of the operator on colour flows. These are the
Core::AnomalousDimensionMatrix, Core::EmissionMatrix, Core::HardProcessMatrix
and Core::ScalarProductMatrix classes. They build on ColourFlowMatrix to
define observable-independent methods which calculate matrix elements.

Core::ScalarProductMatrix implements the exponent() method to calculate
the power, k, of the scalar product matrix element

Sσσ̄ = 〈σ| σ̄〉 = Nk
c . (4.14)

An additional method element() makes use of exponent() to return Nk
c itself.

The hard scattering process operator, H, is inherently process-dependent.
As such, Core::HardProcessMatrix only specifies pure virtual methods, to tem-
plate the functionality that the inheriting class, Hemispheres::HardProcessMatrix,
must define. These methods are initialFlows() = 0, initialKinematics() = 0
and element() = 0. initialFlows() sets the starting flows of the evolution
and element() calculates the initial matrix element corresponding to these
flows. The basis tensors σ and σ̄ and the matrix element, [σ|H |σ̄], in Figure
4.1 are an example of this. The method initialKinematics() generates the
degrees of freedom for the partons involved in the hard scattering. The pure
virtual methods (denoted by = 0) are templates of observable-dependent
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(and variant-dependent) functionality. Therefore, their precise forms will be
discussed and expressed in Section 4.5.

Method Description of functionality

omega() Return the flow-decomposition coefficient
for the given colour or anti colour lines
(see the γ coefficients in Eq. 4.19) using
ColourFlowCrossing.

Omega() Calculate Γσ (see Eq. 4.23) for a given colour
flow, σ.

rho() Calculate ρ (see Eq. 4.24).
Sigma() Calculate Στσ (see Eq. 4.25) for the given flows

τ and σ.
evaluate() = 0 Evaluate the coefficients, Γij, of each colour

charge product in the Sudakov operator (see
Eq. 4.16).

evaluateNoScale() = 0 Evaluate the coefficients of each colour charge
product in the anomalous dimension matrix.
These are the coefficients in evaluate(), with
the energy-dependent terms neglected.

nextFlows() = 0 Generate the basis tensors to which the anoma-
lous dimension matrix operator in the ampli-
tude and conjugate evolve, i.e. which anoma-
lous dimension matrix elements to calculate.

TABLE 4.5: The methods of the Core::AnomalousDimensionMatrix

class.

The observable-independent functionality of Core::AnomalousDimensionMatrix
and Core::EmissionMatrix is listed in Table 4.5 and 4.6. The analytic expres-
sions for the objects that these methods calculate, such as Γσ and ρ, are
postponed to Section 4.3.1 and 4.3.4 for a more in-depth discussion. Also
listed are the pure virtual methods templating the observable-dependent
functionality. Alike Hemispheres::HardMatrix, the precise forms for these
methods are variant-dependent, and so shall be expressed in Section 4.5.

The Core::AnomalousDimensionMatrix class is templated with the type
definitions for an event record, EventRecordT, and a random number
generator, RandomT. This allows the event record and number genera-
tor implementations to be defined in Hemispheres, and subsequently
specified in the Hemispheres::AnomalousDimensionMatrix derived class.
Core::EmissionMatrix, being an operator class, follows the same construction
as Core::AnomalousDimensionMatrix (the Core::EmissionMatrix class methods
shall be discussed in Section 4.3.4). In practice, a single ColourFlowCrossing
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instantiation is created to keep track of the colour maps in each event. This
single instantiation is accessible (and initially set) in all operator classes via
the inherited crossing() method from ColourFlowMatrix.

Method Description of functionality

omega() Return the flow decomposition coefficient in
Eq. 4.42 for the given colour or anti colour line.

omegaLR() Return the flow decomposition coefficient in
Eq. 4.44 for the given pair of colour or anti
colour lines.

element() Calculate the emission matrix element in
Eq. 4.40, in terms of flow decomposition coeffi-
cients, for the given colour flows σ and τ.

elementLR() Calculate the cross section level emission ma-
trix element in Eq. 4.45, in terms of flow decom-
position coefficients, for the given colour flows
σ, τ and σ̄, τ̄.

nextPhaseSpace() = 0 Generate the new degrees of freedom for the
next emission. If element() (and therefore
evaluate() and omega()) are used, i.e. we are
calculating amplitude-level matrix elements,
also generate the polarisation vector.

evaluate() = 0 Evaluate the coefficients of each colour charge
operator, ωj(i), in the emission operator (see
Eq. 4.42).

evaluateLR() = 0 Evaluate the coefficients of each colour charge
product, ωij(k), resulting from the contraction
of two emission operators at the level of the
cross section. See Section 4.44

nextFlowWeight() = 0 Return the sum of weights, ξij (see Eq. 4.94), for
a given dipole (ij) and pair of basis tensors (τ, τ̄
in Eq. 4.94) to emit from.

nextFlows() = 0 Generate the basis tensors to which the emis-
sion operator in the amplitude and conjugate
evolve i.e. which emission matrix elements to
calculate.

updateCrossing() = 0 Update the colour maps in the
colourFlowCrossing instantiation to reflect
the emission of a soft-gluon.

TABLE 4.6: The methods of the Core::EmissionMatrix class.

4.2.4 Shower Evolution

It is useful to pause and have a brief recap of the last two sections. With
reference to Figure 4.2 and 4.3, we have discussed how a basis tensor, |σ〉,
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is described by an instantiation6 of the ColourFlow class. Additionally, the
correspondence between the physical and colour flow regime is mapped
in an instantiation of the ColourFlowCrossing class. All operators in the
evolution of Eq. 4.11 have their own class and through their inheritance
from ColourFlowMatrix, can access a ColourFlowCrossing instantiation. Each
operator class follows an inheritance hierarchy similar to that illustrated
in Figure 4.2b for Hemispheres::AnomalousDimensionMatrix. We outlined
the observable-independent methods of Core::AnomalousDimensionMatrix,
which calculate matrix elements, and will be tied to analytic expressions in Sec-
tion 4.3.1 and 4.3.4. The observable-dependence in Hemispheres::AnomalousDimensionMatrix

will be detailed in Section 4.5.

In this section we shall discuss the Evolver class (the red box in Figure 4.2a),
which is responsible for performing the shower evolution. We shall use a num-
ber of ‘reference functions’, such as En, WEn and αn to denote separate tasks in
carrying out one step of the evolution in Eq. 4.11. These will be related to
class methods in this section, and to concrete implementations in subsequent
sections. With this in-mind, let’s proceed to discussing the Evolver class.

Like Core::AnomalousDimensionMatrix, Core::Evolver is templated with the
type definitions for the event record EventRecordT and a random number gen-
erator, RandomT. Evolver collates instantiations of the operator classes7 and
utilises their methods to multiply chains of matrix elements as in Figure 4.1. It
also orchestrates the sampling of kinematic parameters. The product of these
matrix elements is stored using currentAmplitude() method. The weights pro-
duced through the use of Monte-Carlo techniques - sampling colour flows,
scale generation or particle kinematics - is recorded in currentWeight(). A list
of the Evolver class methods is presented in Table 4.7. The event evolution is
conducted by two methods, evolve() and evolveFull(). The schematic outline
of these methods is illustrated in Algorithm 4 and 5 respectively.

6i.e. to create an object of a given class.
7e.g. the anomalousDimension() method sets, or returns (if one has already been set) an

instantiation of the Hemisphere::AnomalousDimensionMatrix class.
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Method Description of functionality

crossing() Set or access the crossing, an instantiation of
ColourFlowCrossing

hardProcessMatrix() Set or access the hard process matrix operator
class, an instantiation of HardProcessMatrix.

evolutionMatrix() Set or access the evolution matrix operator
class, an instantiation of EvolutionMatrix.

anomalousDimension() Set or access the soft-gluon anomalous dimen-
sion matrix operator class, an instantiation of
AnomalousDimensionMatrix.

emissionMatrix() Set or access the emission operator class, an in-
stantiation of EmissionMatrix.

scalarProductMatrix() Set or access the scalar product matrix operator
class, an instantiation of ScalarProductMatrix.

maxEmissions() Set or access the maximum number of emis-
sions.

currentEvent() Set or return the event record (of type
EventRecordT).

currentAmplitude() Set or return the event amplitude.
currentFlows() Set or return the outermost colour flows in

the amplitude and conjugate-amplitude, con-
sidered in the event.

currentWeight() Set or return the event weight.
evolve() Generate an event, sampling over colour flows

in Eq. 4.11, and return the resultant weight, am-
plitude and particle list.

evolveFull() Generate an event, performing the full sum-
mation over tensors in Eq. 4.11, using numer-
ical exponentiation of the soft-gluon anoma-
lous dimension matrix and return the resultant
weight, amplitude and particle list.

TABLE 4.7: The methods of the Core::Evolver class.
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Algorithm 4: Overview of the evolve() algorithm in the Evolver class.
Input: EventRecordT: {φ, w ∈ R, E′ ∈ R, E ∈ R, M ∈ C, σ, σ̄, τ, τ̄, ρ, ρ̄}

1 φ← φ0, {σ, σ̄} ← {α0(φ), ᾱ0(φ)}, Mσ,σ̄ ← [σ|H |σ̄], E′ ← QH, w← whard,
n← 0

2 while n ≤ nmax and un(φ) > 0 do
3 E← En(φ, E′, {σ, σ̄})
4 w← w×WEn(φ, E, E′, {σ, σ̄})
5 {τ, τ̄} ← {αn(φ, {σ, σ̄}), ᾱn(φ, {σ, σ̄})}
6 w← w×Wαn(φ, {σ, σ̄})×Wᾱn(φ, {σ, σ̄})
7 Mτ,τ̄ ← [τ|VE,E′ |σ〉 ×Mσ,σ̄ × 〈σ̄|V†

E,E′ |τ̄]
8 if n < nmax and E > ρ then
9 φ← Φn+1(φ,~g)

10 w← w×WΦn+1(φ,~g)

11 if n = nmax or un(φ) = 0 or E = ρ then
12 w← w× Re(Mτ,τ̄Sτ,τ̄)

13 return {φ, w}
14 {ρ, ρ̄} ← {αn+1(φ, {τ, τ̄}), ᾱn+1(φ, {τ, τ̄})}
15 w← w×Wαn+1(φ, {τ, τ̄})×Wᾱn+1(φ, {τ, τ̄})
16 Mρ,ρ̄ ← [ρ|DE |τ〉 ×Mτ,τ̄ × 〈τ̄|D†

E |ρ̄]
17 E′ ← E ;
18 σ← ρ, σ̄← ρ̄ ;
19 n← n + 1 ;

Output: {φ, w}

Algorithm 4 outlines the generation of an event using the evolve() method. In
addition to giving the reader a schematic overview of the event generation, the
‘representative functions’ take the place of method calls to conceal code. The
idea being, that their definitions are variant-dependent and can be discussed
in subsequent sections, unencumbered by code referencing. One cycle of Al-
gorithm 4 represents Eq. 4.11 and as such, closely follows its nomenclature.

It is instructive to walk through the algorithm, upto the first emission. We shall
explain what each function represents as we encounter it. Let’s begin: initially,
all variables in the event record are set to their default values. These are 0 for
the real-valued variables; w, E′ and E. Here, w is the event weight. It is used to
record the product of weights resulting from Monte Carlo sampling and repre-
sents the value accessed by the currentWeight() method. E and E′ correspond
to the scale of the latest emission (or the hard scale in the case of no emissions)
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and that of the previous one (just as in Eq. 4.11). In the case that no further
emissions are to occur, E takes the value of the infrared cutoff of the final Su-
dakov operator. The objects σ, σ̄, τ, τ̄, ρ, ρ̄ are placeholders for the tensors de-
scribing the Sudakov and emission matrix elements and φ denotes a collection
of particles: including the phase-space points which describe their momenta
and their corresponding colour representation. The variable n counts the emis-
sion multiplicity and Mκ,κ̄ is the multiplied chain of matrix elements with κ, κ̄

being the outermost tensors.

Before the action of any Sudakov or emission operators, the variables pertain-
ing to the hard process are defined in line 1. The phase space points for the
particles in the hard process are generated and their colour representations
determined (in initialKinematics() of the Hemispheres::HardProcessMatrix

class). This process, along with the initialisation of the mappings in
Core::ColourFlowCrossing is represented by φ0. The energy scale E′

is set to be that of the hard process, QH, and the emission multiplic-
ity, n, is set to 0. From the set of all possible colour arrangements of
the particles in the hard process, the flows σ and σ̄ are selected (in
Hemispheres::HardProcessMatrix::initialFlows()). These colour flows
are stored in Core::Evolver::currentFlows, which is generally represented
in the algorithm by two curly brackets, {, }. The functions α0, ᾱ0 represent
the sampling process according to which the initial basis tensors in the
amplitude and conjugate-amplitude are chosen. The weight associated
with this sampling, and the generation of the hard process kinematics
is whard and is stored in w. The amplitude, Mσ,σ̄, is set to the hard ma-
trix element corresponding to the sampled basis tensors σ and σ̄ (by
Hemispheres::HardProcessMatrix::element()). The details of this initial
selection process are shared across both Variant A and B of the CVolver code
and shall be discussed in Section 4.5. Specifically we will discuss the processes
V → qq̄ and H → gg.

We then enter the emitting loop. The next emission scale, E, is generated
using the sampling function En, representing the setNextScale() method in
Hemispheres::evolutionOrdering. In general, it can depend on φ, E′, and
the most recent colour arrangements, {σ, σ̄}. The resultant weight produced
in the process of this scale generation is denoted by WEn , which can also
depend on the newly generated scale. Throughout Algorithm 4, αi and ᾱi

denote the process according to which the basis tensors in the amplitude and
conjugate-amplitude are chosen, for the Sudakov and emission operators after



162 Chapter 4. CVolver

the ith emission. They correspond to the nextFlows() methods in both the
Hemispheres::AnomolousDimensionMatrix and Hemispheres::EmissionMatrix

classes. For instance, the colour flows to which the Sudakov operators
evolve, {τ, τ̄}, are selected by αn and ᾱn at a multiplicity, n. The weights
corresponding to this selection are Wαn and Wᾱn .

Subsequently, Mσ,σ̄ is multiplied by the corresponding Sudakov matrix
elements in the amplitude and conjugate-amplitude. The process accord-
ing to which the phase-space is mapped from φ to a new phase space
including another emission, is represented by Φn+1 (corresponding to
Hemispheres::EmissionMatrix::nextPhaseSpace()). This can depend on the
prior phase-space of all particles and the generated degrees of freedom
of the new emission, ~g. The weight generated by this process is WΦn+1

and contributes to w. A pair of colour flows, {ρ, ρ̄}, are chosen by αn+1

and ᾱn+1 with weights Wαn and Wᾱn . The corresponding emission ma-
trix elements multiply Mτ,τ̄ and the resultant element, Mρ,ρ̄, is multiplied
with the value held in Evolver::currentAmplitude(). This value will be
the product of matrix elements from previous evolution steps. The hard
scale, E′ of the next step of the evolution is set to be the current soft
scale, E, and the multiplicity of the event is incremented by 1. At this
stage the colour maps in the ColourFlowCrossing instantiation are up-
dated (using ColourFlowCrossing::addColourAntiColourCrossing() via the
updateCrossing() method of the Hemispheres::EmissionMatrix class) to reflect
the new soft-gluon. The details of the aforementioned sampling functions are
one subject of discussion in Sections 4.4 and 4.5.

Once in the emitting while-loop, the algorithm will continue progressing
through evolution steps until a termination criterion is met. This termination
criterion can be reaching a pre-determined maximum multiplicity, violating
the measurement function associated with the observable (described by un(φ))
or generating an energy scale below the shower cutoff. When this is the case,
the trace over the amplitude is taken, which for a product of matrix elements
means multiplying by the scalar product matrix element, Sτ,τ̄, and the event is
returned. Each event contains the information specified by the EventRecordT

class in Hemispheres: the particle four-momenta of the hard process partons
and any subsequent emissions, their colour representation (i.e. fundamental,
anti-fundamental or adjoint), the hardest and softest scale in the event and the
event-weight. This is the same as in a typical event generator such as Herwig

[10–12], Pythia [13–15] or Sherpa [16].
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Looking back to our discussions of Monte Carlo methods in Chapter 3.6, the
event-weight is an integrand evaluation (including additional weight factors
due to sampling strategies). The integration we are performing corresponds
to the observable we wish to calculate (which will be detailed in Section 4.5
for the jet veto cross section). When averaged over the number of attempted
points (or events), the sum of these event-weights approximates this integral.
Typically in ‘event generator’ mode, one would produce events, constraining
the particle phase-space only for reasons of IR control. Then, any desired
distribution can be produced from the set of phase-space points and event-
weights. This mode of CVolver is still under development however.

Instead, in this work we focus on using CVolver to compute the class of ob-
servables which restrict angular regions between hard jets by a veto on the
energy, as a testbed of the framework. We have tailored CVolver to be efficient
for this particular observable, by terminating the evolution when emitting into
the veto region. However, this is not a restriction on the general applicability
of our approach, and the framework is much more general.

Algorithm 5: Overview of the evolveFull() algorithm in the Evolver class.

Input: EventRecordT: {φ, w ∈ R, E′ ∈ R, E ∈ R, M ∈ Cm!×m!}
1 φ← φ0, w← whard, H← Hhard, E′ ← QH

2 while n 6= nmax and un(φ) > 0 do
3 E← En(φ, E′)
4 w← w×WEn(φ, E, E′)
5 M← VE,E′ ·M ·V†

E,E′

6 φ← Φn+1(φ,~g)
7 w← w×WΦn+1(φ,~g, E)
8 if n = nmax or un(φ) = 0 then
9 w← w× Tr [M · Sn] ;

10 return {φ, w} ;

11 M← DE ·M ·D†
E

12 E′ ← E ;
13 n← n + 1

Output: {φ, w}

Algorithm 5 presents the generation of an event using the evolveFull() method
of Evolver. The functions to generate the emission scale, phase space map-
ping, and their corresponding weights, are the same as those outlined in Algo-



164 Chapter 4. CVolver

rithm 4. Termination criteria are also the same. Instead of sampling basis ten-
sors and products of matrix elements, the full Sudakov and emission operator
matrices (represented in the colour flow basis) are used in each evolution step.
The Sudakov operators preserve the representation of the amplitude in colour
space and so are represented by m!× m! complex matrices (for an amplitude
with m colour lines), whilst the emission operators increase the dimension and
are represented by m!× (m + 1)! complex matrices. This enables one to cross-
check the colour sampling techniques used in αi and βi, the results of which
are presented in Chapter 5, at least for small numbers of emissions.

With the generalised shower algorithm of the Evolver class outlined, we
are able to discuss two specific implementations of the aforementioned
sampling functions in Section 4.5. Before we do this however, we will address
the challenges of computing the approximated Sudakov matrix element
in Section 4.3.1 and the full-Nc emission matrix element in Section 4.3.4.
Approximating the Sudakov matrix elements, creates the need to be able to
systematically sample a tensor |τ〉, d swaps from |σ〉 (through αn and ᾱn). The
solution to this issue is subsequently addressed in Section 4.4.

4.3 Computation of Matrix Elements

In Section 2.3, we presented the matrix elements of the emission and virtual-
exchange operators. Using these results we went on to begin a discussion of
subleading-colour corrections in Section 2.3.3 and presented some initial steps
towards systematically including 1/Nk

c corrections to the leading result. It is
convenient however, in a Monte Carlo code, to express these results not in
terms of external leg indices, but in terms of colour and anti colour indices; the
distinction between the physical and colour flow regime. We therefore show
the general form of the soft-gluon anomalous dimension matrix elements and
emission matrix elements, in terms of summations over colour indices, in Sec-
tions 4.3.1 and 4.3.4. It was noted in Section 4.1 that a key challenge in com-
puting Sudakov matrix elements, [τ|V |σ〉, is the exponentiation of large and
sparse colour matrices. Using the soft-gluon anomalous dimension matrix, we
present and discuss the result of [154], which approximates the exponentia-
tion of the anomalous dimension matrix by successive summation of towers of
large-Nc contributions, in a systematic way. We shall see this Sudakov matrix
element approximation also lends us a hand in solving the issue of sampling
matrix element basis tensors.
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4.3.1 Sudakov Matrix Elements

In this section we review the general form of the soft anomalous dimension
matrix in the colour flow regime. Subsequently we illustrate the result pre-
sented in [154], which approximates the full exponentiation of the soft gluon
anomalous dimension matrix.

Firstly, we remind the reader that in the following discussions, roman let-
ters indicate external leg indices whilst greek letters indicate colour lines and
barred greek letters, anti colour lines. The coefficients of the colour charge
products in the soft anomalous dimension matrix in Eq. 4.4 shall be written as

Γij =
αs

2π

∫ E′

E

dEk
Ek

∫
dΩk
4π

ni · nj

(ni · nk)(nj · nk)
, (4.15)

where the energy dependent terms (with a minus sign) in the Sudakov opera-
tor in Eq. 4.3 (and their integral limits) have been absorbed into the definition
of the anomalous dimension matrix coefficients with the hindsight that we
shall be performing a colour-expansion of the Sudakov operator. The coeffi-
cients in Eq. 4.15 appear in the context that

Γ = ∑
i,j

ΓijTi · Tj. (4.16)

Note that in Eq. 4.16, contrary to the ordered sum in Eq. 4.4, i and j run over
all external leg combinations. This is the reason for the factor of 1/2 in the
definition of Γij. Rather than work with the t and s color-line operators of Eq.
2.55, we wish to write an expression for Γ in the colour flow regime to facilitate
a comparison with [154] and its implementation in CVolver. As such, we adopt
a different notation here for the colour charge products, Tα · Tβ, where we
subsume the s operator contribution into their definition such that

Ti · Tj = λiλjTα · Tβ + λ̄iλ̄jTα · Tβ + λiλ̄jTα · Tβ + λ̄iλjTα · Tβ, (4.17)

where α = ci and ᾱ = c̄i denote the colour and anti colour line corresponding
to the external leg i whilst β = cj and β̄ = c̄j denote the colour and anti colour
line corresponding to j (reminding the reader that c and c̄ are the mapping
operators). In the case that parton i is a quark, ᾱ does not exist and the corre-
sponding colour charge products vanish (enforced by λ̄i = 0). Similarly, when
parton i is an anti-quark, terms involving α vanish. The same logic holds true
for parton j. The colour charge products in the colour flow basis can be written



166 Chapter 4. CVolver

as [156]

Tα · Tβ =

(
δ

β′
α δα′

β −
1

Nc
δα′

α δ
β′
β

)
,

Tα · Tβ = −
(

δ
β̄
α δα′

β̄′ −
1

Nc
δα′

α δ
β̄′

β̄

)
, (4.18)

which effectively describe one-gluon exchange between two colour or anti
colour lines or between a colour and an anti colour line (regardless of whether
they correspond to a quark, anti-quark or gluon). The prime notation in
Eq. 4.18 is used to distinguish a colour or anti colour index after the action of
a colour charge product operator, from the same colour or anti colour index
before its action. The reason for this distinction is clear if we look at the first
term in Tα · Tβ: the colour index initially associated with the ith particle,
α = ci, is exchanged to the colour index, β = β′, whilst the colour index
associated with the jth particle, β = cj, is exchanged to α = α′. Examining
the second term in Tα · Tβ, we see that ci = α = α′, i.e. this contribution to
the Tα · Tβ operator does not change the colour index associated with the ith
particle, and the same is true for the jth particle. An example of one-gluon
exchange between a quark and gluon is presented in Figure 4.4.

One can define flow-decomposition coefficients, γαβ, as

γα,β = Γc−1
α c−1

β
+ Γc−1

β c−1
α

,

γα,β = Γc−1
α c−1

β

+ Γc−1
β c−1

α
,

γα,β = Γc−1
α c−1

β

+ Γc−1
β

c−1
α

, (4.19)

where the c−1 operator in Eq. 4.19 was described in Section 2.2 and maps a
colour or anti colour index onto the corresponding external leg index, and the
Γij are the soft gluon anomalous dimension coefficients in the physical regime
(see Eq. 4.15). As an example, a selection of γ-coefficients in the case of the
qq̄→ qq̄ process presented in Figure 4.3 are

γ1,2 = Γ13 + Γ31,

γ1,2̄ = Γ14 + Γ41,

γ2̄,1̄ = Γ42 + Γ24. (4.20)

Using Eq. 4.18 and 4.19, one can write the soft-gluon anomalous dimension



4.3. Computation of Matrix Elements 167

=
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− 1
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α α′

β ′
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FIGURE 4.4: Illustration of the colour charge products in the
colour flow basis which contribute to a single-gluon exchange be-
tween a quark (represented by a colour line α) and a gluon (rep-

resented by a colour line β and an anti colour line β̄).

matrix in Eq. 4.16 as a sum over colour indices, as

Γ = ∑
α<β

(
γα,βTα · Tβ + γα,βTα · Tβ

)
+∑

α,β

γα,βTα · Tβ, (4.21)

where the sum over α < β denotes an ordered sum and that over α, β denotes
an unordered sum over all colour indices. We remind the reader of the general
form for anomalous dimension matrix elements stated in Eq. 2.95:

[τ|Γ|σ〉 =
(
−NcΓσ +

1
Nc

ρ

)
δτσ + Στσ. (4.22)

By grouping the terms in Eq. 4.21 into leading-colour diagonal terms (Γσ),
subleading-colour diagonal terms (ρ), and subleading-colour off-diagonal
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terms (Στσ), we can write expressions for the components of Eq. 4.22. The
diagonal leading-colour contributions, are

Γσ =
1
2∑

α

γ
α,σ(α), (4.23)

whilst the diagonal subleading-colour contributions can be written as

ρ =
1
2


∑

α,β

γα,β̄ −∑
α<β

(γα,β + γᾱ,β̄)


 . (4.24)

Finally the off-diagonal elements are given by

Στσ =
1
2∑

α,β

(
γα,β + γ

τ(α),τ(β)
− γ

α,τ(α) − γ
β,τ(β)

)

× δτ(α)σ(β)δτ(β)σ(α) ∏
κ 6=α,β

δτ(κ)σ(κ), (4.25)

where the Kronecker deltas serve to reduce the sum over all colour indices
down to one term and ensure that the basis tensors σ and τ differ by exactly
one transposition.

With a general form for the soft-gluon anomalous dimension matrix, we can
address the challenge of computing Sudakov matrix elements, [τ|V |σ〉, noted
in Section 4.1. The difficulty lies in exponentiating the soft-gluon anomalous
dimension matrix. This exponentiation in closed form is limited to processes in
which there are only two colour flows. Past this, one can use numerical expo-
nentiation methods, but they limit the production of high-multiplicity events
in a timely manner. However, there is some light. The evaluation of the Su-
dakov matrix elements can be simplified if we are prepared to sum terms ac-
curate only to an order 1/Nd

c , where d is a positive integer, whilst keeping the
leading diagonal terms proportional to (αsNc)n to all orders n. It is the result
presented in [154] which enables us to do this:

[τ|VE,E′ |σ〉 ' δτσR ({σ}) +
d

∑
l=1

(
− 1

Nc

)l

∑
{σ0,...,σl}

δτσ0δσl ,σ

×



l−1

∏
α=0

Σσα,σα+1


 R ({σ0, . . . , σl}) . (4.26)
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This equation is going to need some unpacking. In doing so, we shall first re-
view the structure of the contributions to the soft-gluon anomalous dimension
matrix and the consequences of exponentiating them. It is then instructive to
walk-through the form of Eq. 4.26 for the first two colour orders, d = 0 and
d = 1, as an illustrative example. We refer to the d = 0 approximation as
our leading colour virtuals (LC′V) approximation and d = 1 as next-to-leading
(NLC′V). We then finish with a more general discussion of the Sudakov matrix
element approximation and how it is implemented in CVolver.

We noted that the off-diagonal contributions of the soft-gluon anomalous di-
mension matrix, Στσ are only non-zero if #(σ, τ) = 1, whilst the contributions
Γσ are leading colour-diagonal and ρ are subleading colour-diagonal. In other
words, each virtual gluon exchange can either leave a basis tensor unchanged
or induce a single swap (through a Σ-contribution). Exponentiating this to
produce the Sudakov matrix element produces the possibility for many swaps.
Importantly, this is manageable since each swap comes at a price of a factor of
1/Nc. This is what allows us to truncate our sum over l, at a small colour or-
der d (meaning our NdLC′V approximation involves at most d swaps for each
application of the Sudakov operator).

When d = 0, we only consider colour-diagonal contributions, described by the
first term on the RHS of Eq. 4.26. The object

R({σ}) = exp
(
−NcΓ′σ

)
, (4.27)

is, suffice it to say for the time being, one example of a kinematic R function.
The primed notation, Γ′σ = Γσ− ρ/N2

c , indicates we have trivially summed the
Γσ and ρ contributions to all orders, so that we exponentiate the leading colour
contributions, improved by the colour-diagonal subleading terms.

Now, when d = 1, we sum over all contributions with a single swap between σ

and τ. This involves summing over chains of basis tensors in general, indicated
by lists of the form {σ0, . . . , σl}. The first and last tensors in this list identify
the matrix element in Eq. 4.26 and each tensor in this list is one swap away
from its adjacent tensors (corresponding to each swap by a Σ-contribution). In
the case d = 1 there is only one such list, {τ, σ}, that contributes. The NLC′V
Sudakov matrix elements are then

[τ|VE,E′ |σ〉 = δτσ exp
(
−NcΓ′σ

)
− 1

Nc
ΣτσR ({τ, σ}) , (4.28)
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where
R({τ, σ}) = exp (−NcΓ′τ)− exp (−NcΓ′σ)

Γ′τ − Γ′σ
, (4.29)

and if it is the case that Γσ = Γτ, then Eq. 4.29 reverts to its degenerate form

R({τ, σ}) = −Nc exp
(
−NcΓ′σ

)
. (4.30)

As a further illustrative example, all of the lists summed over, in the case d = 2
with σ = |312〉, τ = |123〉 are

{|123〉 , |132〉 , |312〉},
{|123〉 , |213〉 , |312〉}, (4.31)

{|123〉 , |321〉 , |312〉}.

It is important to point out that our NdLC′V approximation involves at most
d swaps for each application of the Sudakov operator and as such we have
managed to kill two challenges with one stone. As we only have to consider
basis tensors, τ, up to d swaps away from σ, the task of Monte Carloing over
accessible colour states is now a tractable one. This will be the focus of our
discussion in Section 4.4. However, before that we turn our attention back to
discussing the most general form of Eq. 4.26.

If we choose not to exponentiate the ρ contributions of Eq. 4.22 to all orders,
we can include them in our 1/Nc summation and write

[τ|VE,E′ |σ〉 ' δτσR ({σ}) +
d

∑
l=1

(−1)l

Nl
c

l

∑
k=0

(−ρ)k

k! ∑
{σ0,...,σl−k}

δτσ0δσl−k,σ

×



l−k−1

∏
α=0

Σσα,σα+1


 R ({σ0, . . . , σl−k}) . (4.32)

We refer to this as our unprimed, NdLCV approximation. Results for both our
primed and unprimed notation will be presented and compared in Chapter
5. In addition to the 1/Nc factor that occurs with each swap (i.e. with each
factor of Σ), another 1/Nc factor now appears for every occurrence of the di-
agonal subleading-colour contributions, ρ. Each 1/Nl

c subleading-colour con-
tribution is then a combination of k, ρ-contributions and l− k, Σ-contributions.
Of course, only the terms in which #(τ, σ) = l − k have a non-zero contribu-
tion.
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Let’s investigate Eq. 4.32 by looking back and comparing to our discussion of
the first 1/N2

c corrections in Section 2.3.3. To remind the reader, we considered
1/N2

c corrections to the leading-colour trace which arose from emission and
virtual contributions, treating ρ independently of Γσ. For the virtual contri-
butions we need to consider the next-to-next-to-leading colour approximation
(N2

c LCV) for the evolution operator

[τ|VE,E′ |σ〉 = δτσe−NcΓσ + δτσ
ρ

Nc
e−NcΓσ − 1

Nc
ΣτσR ({τ, σ})

+
1

N2
c

(

∑
{τ,ρ,σ}

ΣτρΣρσR ({τ, ρ, σ})

− ρΣτσR ({τ, σ}) + ρ2

2
e−NcΓσ δτσ

)
. (4.33)

The sum over {τ, ρ, σ} denotes a sum over all possible lists where ρ represents
a basis tensor such that #(τ, ρ) = #(ρ, σ) = 1. The 1/N2

c subleading correc-
tions which come from terms in Eq. 4.33 containing Σ factors, contribute when
σ and τ are identical or differ by a single flip. The latter case comes from the
term with a single Σ-contribution in Eq. 4.33 (in the first line) which can oc-
cur in either the amplitude or conjugate-amplitude. This term comes with an
explicit 1/Nc factor and induces an additional 1/Nc from the scalar product
matrix (due to the swap). It can also undo a flip induced by a previous real
emission (containing an s operator, and therefore a factor of 1/Nc) in either the
amplitude or conjugate. This accounts for the dark orange boxes in Figure 2.8.
Additionally, we may include either two Σ-contributions in the amplitude or
conjugate-amplitude (presented in the second line of Eq. 4.33) or one in each,
in such a way as to undo the effect of a two-flip real emission. In the case that σ

and τ are identical, we can have two flips (one from each Σ) which cancel each
other out. These contributions are represented by the green boxes in Figure
2.8. Lastly, the ρ term in Eq. 4.33 contributes to the 1/N2

c virtual corrections
(represented by the light-orange boxes in Figure 2.8) in the case that there is
no additional suppression from any emission contribution. The last line of
Eq. 4.33 is beyond the next-to-leading colour approximation at the level of the
cross section and account for a subset of the grey boxes in Figure 2.8.

The lists of basis tensors over which {τ, ρ, σ} sums was presented in Eq. 4.31,
when σ = |312〉 and τ = |123〉. It is the makeSummationSequences() method in
the EvolutionMatrix class which generates these sets of lists for general σ, τ

and l− k. Succinctly, it operates in a brute-force manner: if lists, {σ0, . . . , σl−k},
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of length l − k are required, it starts from σ0 = τ, and sequentially swaps
pairs of anti-colour indices. Each anti-colour index swap seeds a new list,
{σ0, σ0(ij), . . . , σl−k}, where ij denote the swapped anti-colour indices. This al-
gorithm then acts recursively on σ0(ij) in each list until the set of all lists of
length l − k are found. The lists in which each of the l − k tensors are only
one swap apart from their adjacent tensors are retained, and the rest are dis-
carded. This can obviously be very inefficient, particularly for larger l − k, i.e.
a larger colour order. In this work however, we focus on a maximum value of
l − k = 2. In Eq. 4.33, each of the {τ, ρ, σ} lists has a corresponding kinematic
function, R ({τ, ρ, σ}). We refer the reader to [154] for their derivation and
their explicit forms, up to the N3LCV approximation. It is these forms which
are implemented in CVolver.

Having finished our comparison with Section 2.3.3, we can see that Eq. 4.32
goes beyond the first 1/N2

c corrections to the leading-colour trace in the
N2

c LCV approximation, and in the context of full-Nc emission matrix elements.
Infact, we compare the primed (Eq. 4.26) and unprimed (Eq. 4.32) Sudakov
approximations in Chapter 5, and find remarkable accuracy using only the
LC′V approximation for the jet veto observable, in the case of the V → qq̄ hard
process. Before we get there however, let’s go back to our discussion of the
Sudakov approximation and its implementation in CVolver.

The approximation to the Sudakov matrix element in Eq. 4.26 and 4.32 is used
to calculate the matrix elements in the amplitude and conjugate amplitude in
Algorithm 4, line 7,

Mτ,τ̄ ← [τ|VE,E′ |σ〉 ×Mσ,σ̄ × 〈σ̄|V†
E,E′ |τ̄] . (4.34)

Whether we use the primed or unprimed form of the Sudakov approximation
is set in the lcPrime() method of the EvolutionMatrix class. The components of
the soft-gluon anomalous dimension matrix and correspondingly, the Sudakov
matrix element approximation, all depend (through the γ-coefficients) on the
Γij coefficients in Eq. 4.15. These are defined in Hemispheres and will be written
explicitly in Section 4.5, in the context of a collinear cutoff prescription.

We would also like to write a short comment on the topic of Coulomb gluons in
the context of CVolver: whilst much effort has been placed on the inclusion of
subleading-colour effects in recent years, often, attention has focused on pro-
cesses with no coloured particles in the initial state, not least to avoid Coulomb
gluon contributions that result in coherence-violation beyond the large-Nc ap-
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proximation. Coulomb exchanges are of particular interest due to the reali-
sation that they are the origin of the super-leading logarithms discovered to
exist in the gaps-between-jets observable [18, 19]. They also affect almost all
observables in hadron-hadron collisions [92, 157, 158] and are the origin of
the breakdown of collinear factorisation in hadron-hadron collisions [77, 78].
The work [20] showed their inclusion in Eq. 2.6 is correct up to two real gluon
emissions, to one-loop accuracy, using full Feynman-gauge calculations for the
Drell-Yan process, if we use the emission transverse momentum as our order-
ing variable. The work [103] went one step further to account for collinear
emissions in Eq. 2.1, where it was also showed that collinear factorisation oc-
curs below the scale of the last Coulomb exchange. We focus on colour-neutral
initial-state processes in this work (and can therefore neglect Coulomb gluon
contributions) to hone our colour machinery. However, the CVolver algorithm
can be readily adapted to account for different ordering variables, and the fa-
cility for the inclusion of Coulomb gluons has already been implemented with
[103] in-mind.

To summarise this section, we have presented the general form of the soft-
gluon anomalous dimension matrix elements in the colour flow regime in
Eq. 4.22. To tackle the key challenge of computing Sudakov matrix elements,
[τ|V |σ〉, we adopted the result of [154], which approximates the exponentia-
tion of the anomalous dimension matrix by successive summation of large-Nc

contributions. This approximation also helps us to develop a method for sam-
pling matrix elements, as our Nd

c LCV approximation limits us to basis tensors
τ that differ from σ by at most d swaps. This sampling will be discussed in
Section 4.4. However we shall first review the implementation of Eq. 4.26 and
4.32 in CVolver in the next section. We shall then outline the numerical expo-
nentiation methods alluded to at the beginning of this section and used by the
evolveFull() method.

4.3.2 Sudakov Operators

The calculation of the components of the soft-gluon anomalous dimension ma-
trix elements in 4.22 is carried out by the Core::AnomalousDimensionMatrix

class. The relevant public methods of this class were listed in Table 4.5.

The omega() method calculates the γ coefficients, in Eq. 4.19, for a given
pair of colour or anti colour lines. To do this, it accesses the crossing
maps of the ColourFlowCrossing instantiation, through its inheritance from
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ColourFlowMatrix, to determine the corresponding Γij coefficients. These
coefficients are defined in the Hemispheres::AnomalousDimensionMatrix class
using the evaluate() method. Their general form was written in Eq. 4.15.
However, this contains collinear divergences which must be tamed in any
numerical implementation. Accordingly, Γij coefficients with a collinear cutoff
prescription shall be defined in Section 4.5 for each variant.

The independent class, Core::EvolutionMatrix, handles the calculation of
Eq. 4.26 and Eq. 4.32. It has an aggregation association to an instantiation of
Hemispheres::AnomalousDimensionMatrix to which it delegates the calculation
of components of the soft-gluon anomalous dimension matrix elements, Γσ, ρ

and Στσ and through which it accesses a ColourFlowMatrix instantiation. The
public methods of EvolutionMatrix are listed in Table 4.8.

The calculation of the Sudakov matrix element to a given colour-order, d,
is carried out by the element() method in EvolutionMatrix. This method
provides three alternatives: lcPrimeElement(), which calculates Eq. 4.26 using
the primed ρ contributions; lcElement(), which calculates Eq. 4.32 using the
unprimed ρ contributions and exactElement(), which shall be discussed in
Section 4.3.3. For each l and k combination in Eq. 4.32 (where k is always 0 in
the case of Eq. 4.26), both lcElement() and lcPrimeElement() delegate the gen-
eration of lists of basis tensors and the onward calculation of Σ-contributions
and R functions to the sigmaSum() method. This method in-turn utilises
makeSummationSequences() to produce the tensor lists, as already discussed.
The product of Σ-coefficients multiplied by the corresponding R function, is
calculated by sigmaSummand() for each of these tensor lists. The R functions
are computed in the R() method. Their degenerate form is used if any two Γ
coefficients, Γσ and Γτ, are equal to within the value of cutParameter().

4.3.3 Numerical Exponentiation

In this section we shall outline the numerical exponentiation methods that are
used by the evolveFull() method, as a cross-check of the Sudakov matrix ele-
ment approximation in the previous section and of the colour flow sampling
method which shall be presented in Section 4.4.

The evolveFull() method (outlined in Algorithm 5) in the Evolver class pro-
vides an alternative shower evolution algorithm to that of evolve(). In partic-
ular, it removes the need to sample basis tensors, by multiplying together the
full Sudakov, emission and scalar product matrices represented in the colour
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Method Description of functionality

lcPrime() Return true if the primed resummation is
performed, i.e. if we adopt Γ′σ in Eq. 4.26.

defaultOrder() Return the colour order d to which we cal-
culate the Sudakov matrix elements.

element() Calculate the Sudakov matrix element
using primed (Eq. 4.26) or unprimed
(Eq. 4.32) ρ contributions for a given pair
of colour flows τ and σ and colour order
defaultOrder().

lcElement() Return the Sudakov matrix element us-
ing unprimed ρ contributions up to the
NdLCV approximation (see Eq. 4.32).

lcPrimeElement() Return the Sudakov matrix element using
primed ρ contributions up to the NdLC′V
approximation (see Eq. 4.26).

exactElement() Return the exact or numerically exponen-
tiatied anomalous dimension matrix ele-
ment (see Section 4.3.3).

sigmaProduct() Calculate the product of Σσα,σα+1 contribu-
tions (see Eq. 4.26 and 4.32).

sigmaSummand() Calculate the summand in the sum over
the list of flows. This is the product of
sigmaProduct() multiplied by the correp-
sonding R-function.

makeSummationSequences() Generate the lists of basis tensors,
{σ0, . . . , σl−k}, in Eq. 4.26 and 4.32.

sigmaSum() Calculate the sum over lists of basis ten-
sors, ∑{σ0,...,σl−k}, in Eq. 4.26 and 4.32, for
a fixed colour order defaultOrder().

R() Calculate the R-function with a provided
list of colour flows. This is carried out us-
ing hard-coded R-functions, presented in
[154].

cutParameter() The value below which two Gamma fac-
tors, Γσ and Γτ, are considered to be de-
generate.

nextFlows() Generate the next basis tensors for the Su-
dakov matrix elements in the amplitude
and the conjugate amplitude.

TABLE 4.8: The methods of the EvolutionMatrix class.

flow basis, as opposed to multiplying individual sampled matrix elements. It
thus provides a useful validation on the basis tensor sampling used by the
evolve() method.
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evolveFull() utilises the ExactEvolutionMatrix class, which inherits from
EvolutionMatrix, solely to implement the exactElement() method. The use
of this method is signified in CVolver when defaultOrder() (or the variable
d in the parlance of Section 4.4) is set to inf. In the case that the evolution
involves only one or two colour flows, analytic solutions are available and are
computed by exactElement(). These solutions are

exp (Γ) = exp
(
−NcΓ|1〉 +

ρ

Nc

)
, (4.35)

in the case of one flow, and

exp (Γ) =
exp (ρ/Nc) exp (−Nc

2 (Γ|12〉 + Γ|21〉))
κ

×
(
−∆ sinh κ

2 + κ cosh κ
2 2Σ|12〉,|12〉 sinh κ

2

Σ|12〉,|21〉 sinh κ
2 ∆ sinh κ

2 + κ cosh κ
2

)
, (4.36)

in the case of two [154], where

∆ = Nc(Γ|12〉 − Γ|21〉), κ =
√

∆2 + 4Σ|12〉,|12〉Σ|12〉,|21〉. (4.37)

Where the evolution involves more than two colour flows, the exactElement()
method populates a matrix container with the elements of the anomalous di-
mension matrix (using the methods in AnomalousDimensionMatrixBase to cal-
culate Eq. 2.95). This matrix is subsequently numerically exponentiated using
the Padé approximation [159, 160].

4.3.4 Emission Matrix Elements

This section shall focus on the calculation of the emission operator matrix ele-
ments at the level of both the amplitude and the cross section, expressing them
as a sum over colour indices. Unlike Sudakov matrix elements, real emissions
are sufficiently simple that we can always include their full colour dependence.
To remind the reader, the emission operator is

Dµ
i = ∑

j

Tj
nµ

j

nj · ni
, (4.38)

where the sum over j is context-specific, running over all prior soft-gluon
emissions and the partons of the original hard scattering. As it appears here,
each occurrence of an emission operator (in the amplitude and conjugate-
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amplitude) comes with a phase-space factor, which was written in Eq. 4.6.
This factor, contains a minus sign for each emission, which is a reflection of
having already summed over the emitted gluon polarisation states. However,
in Variant A, we insist on an amplitude-level description of operators, and
therefore use explicit polarisation vectors, εµ,i (in-place of this minus sign).
In the context of Eq. 4.38, this means the numerator would be replaced with
the inner-product, nj · εi. This added complication is necessary if we wish
to consider contributions beyond the soft-gluon approximation, including
collinear emissions, the inclusion of spin-dependence and kinematic recoil
effects. Variant B is an attempt to improve on the accuracy of Variant A cross
section results. As we only consider soft-gluon emissions in this work, we
can perform cross section-level contractions of the emission operators where
possible, removing the need for explicit polarisation vectors (which we shall
discuss below). In this case the minus sign in Eq. 4.6 is included explicitly.
This cross section-level contraction is done for Variant B, which grants the
additional benefit of more efficient sampling strategies (to be discussed in
Section 4.5.4).

The colour charge operator, associated to each leg j in Eq. 4.38, can be decom-
posed as

Tj = λjtcj − λ̄j t̄c̄j −
1

Nc

(
λj − λ̄j

)
s. (4.39)

These colour-line operators were discussed in Section 2.3. As a review: the
colour-line operator s acts to add a new colour flow, with a colour line labelled
n + 1 and anti colour line labelled n + 1, to a basis tensor, σ, with n existing
colour flows. tα acts first with an s operator, reconnecting the new colour
flow such that the colour line α is now connected to n + 1 and n + 1 to σ(α).
The action of the anti colour-line operator, t̄ᾱ, is defined through the relation
t̄ᾱ |σ〉 = tσ−1(ᾱ) |σ〉. Consequently, an emission operator, Tj, can do one of two
things: add a new colour line to a basis tensor, |σ〉, without changing any of the
existing colour connections, or add a new colour line and make a single swap.
On the level of the cross section, an emission in the amplitude and conjugate-
amplitude changes the number of transpositions by which the colour flows (in
the amplitude and conjugate) differ, by at most two, #(σn+1, σ̄n+1). The singlet
gluons from the s operator contributions are sub-leading in colour and inert
with respect to any subsequent evolution.

Rephrasing the sum over external legs in Eq. 4.38 to a sum over colour flows,
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the matrix elements, [τ|Di |σ〉, become

[τ|Di |σ〉 = ∑
j

[τ|Tj |σ〉ωj(i) =
(

1− δ|σ〉,|τ\n〉
) 1√

2

(
ωc−1(β)(i)−ωc̄−1(σ(β))(i)

)

− δ|σ〉,|τ\n〉∑
α

1√
2Nc

(
ωc−1(α)(i)−ωc−1(ᾱ)(i)

)
. (4.40)

The notation in Eq. 4.40 needs some explanation: the colour line β in Eq. 4.40
is defined such that |τ〉 = tβ |σ〉. The variable α is a dummy summation over
the number of colour flows in σ. The first contribution, ωc−1(β), corresponds to
an emission off the colour line β, whilst the second contribution, ωc̄−1(σ(β)), is
from an emission off the anti colour line which forms a colour flow with β in σ.
The sum over α corresponds to the possibility to emit a singlet gluon off every
colour flow in σ. Differing from Chapter 2 but using the same notation, the
object τ\n denotes the permutation in which the colour flow involving n and
τ(n) is removed. The Kronecker delta, δ|σ〉,|τ\n〉 acts as a switch and is equal to
1 if |σ〉 = |τ\n〉, i.e. if the latest emission is a singlet,

|σ〉 =
∣∣∣∣∣

1 . . . β . . . n− 1
σ(1) . . . σ(β) . . . σ(n− 1)

〉
= |τ\n〉

=

∣∣∣∣∣
1 . . . β . . . n− 1

τ(1) . . . τ(β) . . . τ(n− 1)

〉
, (4.41)

and 0 otherwise. The ωj factors are the kinematic part of Eq. 4.38, including
the explicit polarisation vectors, defined as

ωj(i) =
nj · ε±i
nj · ni

, (4.42)

where ± denotes the two possible helicities (±1) of the gluon. The explicit
form of the gluon polarisation vector, ε±i , is a matter of choice, upto respect-
ing the usual properties: ε±i · ni = 0 (transversality with respect to the gluon
momentum), (ε+i,µ)

∗ = ε−i,µ (reversal of helicity under complex conjugation),
ε+i · ε−i = −1 and ε+i · ε+i = 0. The representation used in Variant A is outlined
in Section 4.5.3.

Variant B adopts a cross section-level description of emission matrix elements.
As we have seen in Eq. 4.11, emission operators occur in pairs, one in the am-
plitude and the other in the conjugate-amplitude. If we contract the Lorentz
index in Eq. 4.40 with its conjugate counterpart, the object of interest at the
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cross section level is

[τ|Dµ
k |σ〉 〈σ̄|D†

µ,k |τ̄] = ∑
i,j

[τ|Ti |σ〉 〈σ̄|Tj |τ̄]ωij(k). (4.43)

This cross section level emission matrix element eliminates the need for gluon
polarisation vectors and the dipole factors are related by

ωij (k) = −∑
ε±k

ωi(k)
(
ωj (k)

)∗
=

ni · nj

(ni · nk)(nj · nk)
. (4.44)

The cross section level emission operator matrix elements can be written as a
sum over colour flows as

∑
i,j

[τ|Ti |σ〉 〈σ̄|Tj |τ̄]ωij(k) =
[
δ|σ〉,|τ\n〉δ〈σ̄|,〈τ̄vn|

× 1
2N2

c
∑
α,β

(
ωc−1(α),c−1(β) −ωc−1(α),c−1(β)

−ωc−1(α),c−1(β) + ωc−1(α),c−1(β)

)]

−
[
(1− δ|σ〉,|τ\n〉)δ〈σ̄|,〈τ̄\n|

× 1
2Nc

∑
α

(
ωc−1(ρ),c−1(α) −ωc−1(ρ),c−1(α)

−ωc−1(σ(ρ)),c−1(α) + ωc−1(σ(ρ)),c−1(α)

)]

− (ρ↔ γ, σ, τ ↔ σ̄, τ̄)

+
[
(1− δ|σ〉,|τ\n〉)(1− δ〈σ̄|,〈τ̄\n|)

×1
2

(
ωc−1(ρ),c−1(γ) −ωc−1(ρ),c−1(σ̄(γ))

−ωc−1(σ(ρ)),c−1(γ) + ωc−1(σ(ρ)),c−1(σ̄(γ))

)]
. (4.45)

The greek letters ρ and γ in Eq. 4.45 are defined such that |τ〉 = tρ |σ〉 and
〈τ̄| = tγ 〈σ̄| whilst the Kronecker deltas are defined just as in Eq. 4.41. They
act to isolate terms which originate from the gluon-singlet contributions in the
colour charge operators Ti and Tj. The object (ρ ↔ γ, σ, τ ↔ σ̄, τ̄) indicates a
repeat of the terms between the previous square-brackets, but with the colour
indices ρ and γ swapped and the basis tensors σ, τ exchanged with σ̄, τ̄.

The emission matrix element in Eq. 4.40 and 4.45 is used to calculate the matrix
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elements in the amplitude and conjugate amplitude in Algorithm 4, line 16:

Mρ,ρ̄ ← [ρ|DE |τ〉 ×Mτ,τ̄ × 〈τ̄|D†
E |ρ̄] . (4.46)

Whilst the calculation of these elements is carried out in Core::EmissionMatrix,
the dipole factors ωj(i) and ωij(k) are variant-dependent. Accordingly, they
are defined in Hemispheres and will be written explicitly in Section 4.5 when
we discuss the collinear cutoff prescription.

We have so far tackled two of the challenges discussed in Section 4.1: the
computation of the Sudakov and emission matrix elements. The operator
class Core::EmissionMatrix carries out the computation of the amplitude-
level matrix elements in Eq. 4.40 and the cross section-level elements in
Eq. 4.45 through the element() and elementLR() public methods respec-
tively. A list of all the Core::EmissionMatrix methods was presented in
Table 4.6. The external leg indices of the ωj(i) and ωij(k) factors in Eq. 4.42
and 4.44 are translated from the physical regime to the colour flow regime
using the omega() and omegaLR() methods. In order to do this, omega() and
omegaLR() have access to the crossing maps of the ColourFlowCrossing in-
stantiation, accessible to Core::EmissionMatrix through its inheritance from
ColourFlowMatrix. The evaluate() and evaluateLR() pure virtual methods
are declared in Core::EmissionMatrix. They are subsequently defined in
Hemispheres::EmissionMatrix and evaluate the ωj(i) and ωij(k) factors. Their
general form was written in Eq. 4.42 and Eq. 4.44, however these contain
divergences which are controlled in CVolver through the use of a cutoff pre-
scription. These shall be defined in Section 4.5.3 (for ωj(i)) and Section 4.5.4
(for ωij(k)). In the next section, we move on to solving the algorithmic issue
of sampling the basis tensors that result from an evolution operator, in an
efficient way.

4.4 Colour Flow Sampling

In this section we shall address the challenge of sampling the intermediate
colour states in Eq. 4.11. This sampling will be used to determine Sudakov
matrix elements in both Variant A and B of CVolver, and emission matrix ele-
ments in Variant A. As the Sudakov operator matrix is generally both large and
sparsely populated, it is crucial that non-zero matrix elements can be identified
and sampled efficiently. Beyond rendering the calculation of Sudakov matrix
elements tractable, our Nd

c LCV approximation in Section 4.3.1 has the advan-
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tage of limiting the set size of all basis tensors that can be reached after the
action of a Sudakov operator.

The key point is that the NdLC′V approximation involves at most d swaps for
each application of the Sudakov operator. Our task is then to find all distinct
basis tensors, τ, that are d transpositions away from σ.

3 2 1

4 3 2344

1 2 3

100 0 21

σ

12345

12345

12345
12345

12345

12345

FIGURE 4.5: A pictorial representation of the algorithm deter-
mining all basis tensors which are exactly two swaps away from
σ. In this example, |σ〉 = |12345〉, a tensor with five colour flows.

Figure used in [161].

Figure 4.5 presents a pictorial representation of the algorithm which deter-
mines all basis tensors which are exactly two swaps away from the tensor
|σ〉 = |12345〉. Let’s walk through this diagram layer-by-layer from top to
bottom. Note that in Figure 4.5 and for the following discussion, we adopt
C-counting, i.e. all indices run from 0. Firstly, we begin by considering the
basis tensor σ to be a list of numbers. This list denotes the permutation of anti
colour indices with respect to the colour line with which they form a colour
flow, i.e. the representation |σ〉 = |12345〉. The first layer of branches in Fig-
ure 4.5 shows a subset of the basis tensors which are one swap away from
σ. This subset consists of the intermediate tensors, which with the addition
of particular swaps, produce all accessible tensors that are two swaps from
σ (these particular swaps will be explained shortly). Each layer of swaps is
achieved by first picking an index i (denoted by the red numbers above each
branch) as the colour index (or position index) corresponding to one of the
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pair of anti colour indices we wish to swap. The values of i range from d′ − l
to il−1 − 1, where d′ is the target number of swaps, n is the number of colour
flows in σ and l denotes the layer of the branching we are on. il−1 indicates
the i value of the branch in the layer above the current one being considered
(where i0 = n− 1). The second of the pair of indices we wish to swap, i + k,
can take any value above index i (k takes a value in the range [1,n − 1− i]).
Each value of i results in a new branch in the current layer whilst the bubble
at the end of each branch in Figure 4.5 indicates the number of values that k
can take. For the first layer, the possible anti colour index swaps are indicated
explicitly next to each bubble, whilst for the second layer the black dots rep-
resent one of these single-swap permutations. This pattern continues down
the branches until we reach the d′-th layer, or in other words have found all
distinct permutations, τ, which differ from σ by exactly d′ swaps. Algorithm 6
outlines this process.

Algorithm 6: The level-swap algorithm, determining all basis tensors, d′

swaps away from σ (as depicted in Figure 4.5).
Input: basis tensor: σ, number of swaps to carry out: d′

1 n← number of colour flows in σ
2 L← d′

3 {}L ← initialise list of swapped tensors
4 i0 ← n− 1

5 // Recursive definition of level-swap

6 Function levelSwap(target level: L, current level: l, swap index: il−1, σ):
7 for il ← L− l to il−1 − 1 do
8 for k← 1 to n− il − 1 do
9 if L = l then

10 {}L ← σ(il ,il+k)

11 else
12 levelSwap(L, l + 1, il, σ(il ,il+k))

13 levelSwap(L, 1, i0, σ)
14 return {}L

In order to illustrate this process, Table 4.9 lists all of the basis tensors at each
layer of the algorithm for the left-most branch in Figure 4.5. The total multi-
plicity of tensors at the dth layer is the sum over k indices (the blue number in
each bubble) for each i index, multiplied by all k indices in the previous layer.
This particular branch produces 12 tensors, whilst totalling all branches results
in a total of 35 tensors that differ from σ by two swaps.
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|σ〉 tensors with one swap (first
layer)

tensors with two swaps
(second layer)

|12345〉 |13245〉 |31245〉
|23145〉
|43215〉
|53241〉

|14325〉 |41325〉
|34125〉
|24315〉
|54321〉

|15342〉 |51342〉
|35142〉
|45312〉
|25341〉

TABLE 4.9: A walk-through of the basis tensors which are gener-
ated at each layer along the left-most branch in Figure 4.5. Three
tensors result in the first layer, and from each those, a further four

tensors in the second layer.

In order to sample from the set of all basis tensors that can be reached after
d′ swaps in an unbiased manner, we must be able to determine the total mul-
tiplicity of permutations in each branch. This is achieved through summing
the total number of k values at each layer of the branch, and multiplying these
totals:

Mn,d′(l, il) =

il−1

∑
j=d′−l

(n− 1− j)×Mn,d′(l + 1, j), (4.47)

where Mn,d′(l, il) is the multiplicity of permutations d′ swaps away from σ in a
branch starting at a layer l and at an i index of il. This recursion follows down
each branch until it reaches Mn,d′(d′ + 1, j) = 1. Note the total multiplicity of
Figure 4.5 is determined by Mn,d′(1, n− 1), where n = 5 and d′ = 2. It is useful
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to show this explicitly:

M5,2 (1, 4) =
3

∑
j=1

(4− j)M5,2(2, j)

= 3×





0

∑
k=0

4M5,2(3, 0)



+ 2×





1

∑
k=0

(4− k)M5,2(3, k)





+





2

∑
k=0

(4− k)M5,2(3, k)





= 3× {4}+ 2× {4 + 3}+ {4 + 3 + 2} = 35, (4.48)

where the last line corresponds to the numbered bubbles in Figure 4.5. The
bubbles at each layer of each branch are summed together and multiplied
by the bubble in the layer above, totalling 35 tensors which differ from σ by
two swaps. This is equal to the magnitude of the Stirling number of the first
kind, |S(n, n− d′)|; a well-known result which counts permutations according
to their number of cycles [162, 163].

Armed with Eq. 4.47, one can recursively sample values of i and k to choose a
basis tensor at each layer depicted in Figure 4.5. At each layer we:

• Pick a value for i from the distribution

Pn,d′,l(i) =
(n− i− 1)Mn,d′(l + 1, i)

Mn,d′(l, il)
. (4.49)

• Choose k uniformly from the range of valid values: 1 to n− i− 1.

• Swap the indices i and i + k in σ, resulting in σ(i,i+k).

This process continues until a basis tensor is selected at the d′-th level. We call
this our level-swap algorithm.

Let’s take a moment to relate this sampling procedure to our shower evolu-
tion in Algorithm 4. We stated that the representative sampling functions for
the Sudakov matrix elements, [τ|V |σ〉 and 〈σ̄|V |τ̄], were αn(φ, {σ, σ̄}) and
βn(φ, {σ, σ̄}) respectively. These functions represent the selection of τ and τ̄

using the aforementioned sampling process. Since the level-swap algorithm is
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biased we must apply a weight, i.e.

Wαn(φ, {σ, σ̄})← Mnσ,d′(1, nσ − 1),

Wβn(φ, {σ, σ̄})← Mnσ̄,d′(1, nσ̄ − 1), (4.50)

where nσ = nσ̄ represents the number of colour flows in the tensors |σ〉 and
|σ̄〉.

This could be the end of the story for the sampling of our Sudakov matrix
elements. However, looking at the wider computation, our sampling of matrix
elements can be made more efficient by considering the effect of the scalar
product matrix. The scalar product matrix elements increasingly contribute
Nc-suppressed terms the further they are from the matrix diagonal. Owing to
this, we wish to more frequently sample those colour flows that result in matrix
elements closer to the colour-diagonal. To do this, we sample the number of
swaps that we wish to make between σ and τ (which we have so far been
referring to as d′), from an exponentially falling distribution

P(x) =
1− Ndmin−x

c

1− Ndmin−dmax
c

, (4.51)

where dmax = min(d, nσ) and dmin = 0. dmax is the minimum between the
colour order, d, to which we we wish to approximate the calculation of Su-
dakov matrix elements and the number of colour flows in σ. The need for this
upper limit is due to the following logic: the colour order, d, to which we cal-
culate our Nd

c LC′V approximation (for all Sudakov matrix elements) is in fact
a globally set value in CVolver (in the method defaultOrder() of the Evolver

class). However, for smaller numbers of emissions, this value can exceed the
number of colour flows in σ (which would place a limit on the number of
swaps we can make).

The distribution in Eq. 4.51 is continuous however, whilst a sampled colour
order, d′, must be of integer value. We set d′ = bxc, the floor of the sampled x
value. This modifies the distribution in Eq. 4.51 to be

P(d′) =
N−d′−1

c (Nc − 1)

N−dmin
c − N−dmax

c
. (4.52)

We sample the value of d′ according to the distribution in Eq. 4.52 before the
determination of τ and τ̄ through the level-swap algorithm. The process that
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αn(φ, {σ, σ̄}) and βn(φ, {σ, σ̄}) represent (i.e. the level-swap algorithm using
our newly sampled d′) now includes this initial step and the corresponding
sampling weights are

Wαn(φ, {σ, σ̄})← Mnσ,d′(1, nσ − 1)
P(d′)

,

Wβn(φ, {σ, σ̄})← Mnσ̄,d′(1, nσ̄ − 1)
P(d′)

. (4.53)

Beyond serving as a manageable way to calculate Sudakov matrix elements,
we can see that our Nd

c LCV approximation has the added advantage that it
limits the number of basis tensors that can be reached after the action of a
Sudakov operator.

The orchestration of determining dmax, sampling a value of d′ and subse-
quently sampling a basis tensor τ from σ using the level-swap algorithm is
executed by the nextFlows() method in the EvolutionMatrix class. The process
of sampling values for the i and k indices down a branch in the level-swap
algorithm, is carried out by an independent function randomLevelSwap().
In particular, the sampling over i indices according to the distribution in
Eq. 4.49 is conducted in nextILevel(). For this, the multiplicity of per-
muations described in Eq. 4.47 is implemented as a recursive function in
levelSwapMultiplicity(). The sampling of emission matrix element basis
tensors is determined by the nextFlows() method in the EmissionMatrix

class. The nextFlows() implementation differs for Variant A and B: Variant A
utilises the sampling method of this chapter, to ensure that the chosen basis
tensors for the amplitude and conjugate-amplitude differ by no more than
two transpositions. Variant B samples tensors according to the distribution
of emission matrix element values weighted by their scalar product matrix
elements. These will be explained in Section 4.5.

4.5 The Implementation

In Section 4.1 we recapitulated the iterative algorithm for summing the lead-
ing soft-gluon logarithms to all orders, introduced in Chapter 2. Outlining
how we could Monte Carlo over intermediate colour states, by inserting the
unit operator between successive real emission and virtual correction opera-
tors, we rewrote our iterative algorithm explicitly in terms of matrix elements.
This was expressed in Eq. 4.11 for one step in the evolution. A number of
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challenges in implementing this equation into a Monte Carlo code were noted.
Among them were, expressing the emisison and Sudakov matrix elements in
the colour flow regime (which was discussed in Section 4.3.1 and 4.3.4), com-
puting an approximation of the Sudakov matrix element (discussed in Sec-
tion 4.3.1) and sampling intermediate colour states along the most important
trajectories in colour space (discussed in Section 4.4). We outlined some of the
components necessary to implement Eq. 4.11 into a general shower evolution
algorithm, Algorithm 4 in Section 4.2.4, representing each of these components
by a ‘reference function’. The explicit forms of the matrix elements [τ|VE,E′ |σ〉
and [ρ|DE |τ〉 in Algorithm 4 were stated in Section 4.3.1 and 4.3.4, whilst the
reference functions αn, ᾱn, representing the sampling of Sudakov matrix el-
ements at a multiplicity n, were determined in Section 4.4. All of these im-
plementations reside in Core, with a dependence on Hemispheres for the exact
definition of Γij and ωi or ωij.

Hemispheres is an example of Implementation, which generates events cor-
responding to the jet veto cross section. In what follows, we will present
two implementations (Variant A and B) of the Hemispheres components.
In doing so, we shall elucidate the emission scale selection (represented
by the function En in Algorithm 4), the phase-space mapping (represented
by Φn+1) and the details of the shower initialisation, including the hard
process matrices. We shall also discuss the variant-dependent emission matrix
element sampling method (represented by αn+1 and ᾱn+1), implemented in
Hemispheres::EmissionMatrix. The development of variants A and B were
carried out in close collaboration with S. Plätzer, and as such parts of this
section are based heavily on unpublished notes from S. Plätzer, particularly
the direction sampling implemented in Variant B.

Variant A was our initial approach to implementing the evolution algorithm
in Eq. 4.11. It adopts an ‘ideal’ approach, which maintains an inherently
amplitude-level description, using the emission matrix element in Eq. 4.40
with explicit polarisation vectors, and a corresponding basis tensor sampling
scheme. In Chapter 5, we present jet veto cross section results for Variant A,
where we shall see that this implementation suffers from increasingly large
weights (at higher emission multiplicities), which contaminate the total cross
section result. In an attempt to remedy this, Variant B was developed. This
implementation performs cross section-level contractions of the emission
operators. Consequently, this enables us to utilise the Sudakov veto algorithm
with competition, in order to simultaneously sample the emission scale,
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emission matrix basis tensors, and to choose the parents of the emitted gluon,
which aids us in sampling emission degrees of freedom.

We begin our discussions by defining the implementations common to both
variants of Hemispheres. This shall begin with a definition of the V → qq̄
and H → gg matrix elements, followed by a discussion of the emission scale
sampling and termination criteria.

4.5.1 Hard Process Matrix Elements

We start this section by writing the hard process matrix for qq̄ production:

Hqq̄ = |1〉 [1|Hqq̄ |1] 〈1| , (4.54)

where [1|Hqq̄ |1] = 1 such that we neglect contributing factors from the initial
process, V (see Section 1.4.1 for the details of one possible form of V). The
basis tensor |1〉 corresponds to a single colour flow between the two final-state
primary jets. For gg production,

Hgg = |21〉 〈21| − 1
Nc
|12〉 〈21| − 1

Nc
|21〉 〈12|+ 1

N2
c
|12〉 〈12| . (4.55)

We shall denote the corresponding veto cross section as Σ(ρ) throughout the
rest of this work, where ρ = Q0/QH, i.e. we consider energies to be nor-
malised to the hard scale of the primary jets. The inclusive cross section is then
Σqq̄(1) = TrHqq̄ = Nc for qq̄ production and Σgg(1) = N2

c − 1 for gg produc-
tion.

The initial σ and σ̄ basis tensors in Algorithm 4, line 1 specify the hard process
matrix element. In the case of qq̄ production, the single colour flow between
the final-state primary partons means that we choose the tensor |1〉 in both the
amplitude and conjugate-amplitude with unit probability and unit weight, i.e.

{σ, σ̄} ← {α0 = |1〉 , ᾱ0 = 〈1|}, Mσ,σ̄ ← [1|Hqq̄ |1] , whard ← 1, (4.56)

where α0 and ᾱ0 are the reference functions in Algorithm 4 which represent the
process according to which we choose σ and σ̄. In the case of gg production,
there are two colour flows between the primary partons, |12〉 and |21〉. The
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basis tensors σ and σ̄ are selected at the same time, with a probability

PHgg(σ, σ̄) =
[σ|Hgg |σ̄] N2

c

(Nc + 1)2 . (4.57)

With σ and σ̄ chosen, the corresponding hard matrix element and weight, take
on the values

Mσ,σ̄ ← [σ|Hgg |σ̄] , whard ←
1

PHgg(σ, σ̄)
. (4.58)

CVolver has been designed with a view to being generalised into a multi-
purpose event generator. One example where this manifests itself is that we
sample the directions of the two primary particles for both the V → qq̄ and
H → gg processes8 in Hemispheres (represented by φ0 in Algorithm 4). In this
simple case, the direction of the first primary parton (e.g. a quark or gluon) is
sampled uniformly across the solid angle in the lab-frame: specifically, the az-
imuthal angle, φ1, is chosen uniformly between 0 and 2π and the polar angle,
cos θ1, between−1 and 1. The polar and azimuthal angles of the other primary
parton are cos θ2 = − cos θ1 and φ2 = Θ(φ1−π)(φ1−π)+Θ(π−φ1)(φ1 +π),
i.e. the two partons are back-to-back. We shall use the terms lab-frame and di-
jet ZMF interchangeably in the following discussions, as they are identical, up
to a rotation.

Whilst we have provided explicit expressions for the hard process matrix
elements, colour flow selection and initial kinematics of the hard partons,
the class methods implementing these could be readily interfaced to a
fully-fledged matrix element generator, such as MadGraph [116].

4.5.2 Observable Cross Section

In Eq. 4.9 we wrote the cross section for a general observable:

Σ(µ) =

∫
∑

n

dσnun({k}n). (4.59)

8For the purposes of this work, their corresponding matrix elements have no kinematic
dependence. But more generally, this sampling would amount to an integration over initial-
state particles.
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The jet veto cross section is part of the class of observables discussed in Sec-
tion 2.1.1. As such the measurement function can be written as

un({k}n) =
n

∏
i=1

ui(ki), (4.60)

where ui(ki) denotes the measurement function of parton i and depends on its
momentum ki,

ui(ki) = Θout(ki) + Θin(ki)Θ(ρ > Ei), (4.61)

where ρ is the veto scale of any real emission for the jet veto observable. The
Heaviside functions Θin and Θout, separate the observable phase-space into an
in- and out-of-gap region. We noted in Section 2.1.1, that for such observables,
their inclusivity for energies less than the veto scale, leads to a complete can-
cellation of the real emission and virtual exchange contributions. Thus, we can
set µ = ρ in Eq. 4.9 and set ui(ki) = Θout(ki). This is exactly the measurement
function, un, in Algorithm 4 for Hemispheres, and means we only sample emit-
ted gluon directions in the out-region. Unlike in Section 2.1, we do not split
apart the virtual loop-integral into two parts to perform an out-of-gap expan-
sion. We instead integrate the kinematic variables in the soft-gluon anomalous
dimension matrix over the entire angular phase-space.

In our shower evolution, we also wish to allow particles to freely cascade and
only stop once particular termination criteria are met: we want to be able to
limit the multiplicity of an event to a value nmax or sample evolution energy
scales until we reach our veto scale, ρ, whichever occurs first. It is then useful
to breakdown the total cross section, Σ(ρ), by multiplicity,

Σ(ρ) = ∑
n

Σn(ρ), (4.62)

where Σn(ρ) is the cross section after n emissions. This can be written explic-
itly, as

Σn(ρ) =
∫ 1

0
dEn+1

∫ 1

En+1

αs

π

dEn

En

∫

out

dΩn

4π
. . .
∫ 1

E2

αs

π

dE1

E1

∫

out

dΩ1

4π

×∑
σ,σ̄
ρ,ρ̄

[σ|VEn+1,En |ρ〉Mρ,ρ̄(En) 〈ρ̄|V†
En+1,En

|σ̄] 〈σ| σ̄〉 δ (En+1 − ρ) ,

(4.63)

where Mρ,ρ̄(En) is the recursively defined matrix element in Eq. 4.11. The re-
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cursive phase-space factors have been extracted and explicitly integrated over;
we have written the energies in units of QH, the hard process scale. Also note,
that we have neglected the minus sign in each phase-space factor. For Variant
A, these are accounted for by the completeness relation of the gluon polarisa-
tion vectors. In Variant B however, we calculate the emission operators in the
amplitude and conjugate-amplitude at the cross section-level. The minus signs
are then included in the definition of our dipole factors, ωij, as per Eq. 4.44.

Eq. 4.63 highlights the emission direction and scale sampling that takes place at
each evolution step, including the potential sampling of our veto scale (in the
integral over En+1). With both of our termination criteria in-mind, we adopt
a scale sampling strategy similar to the Sudakov veto algorithm, discussed in
Chapter 3. Succinctly, emission scales are sampled at each step according to
the distribution,

dSP(E|E′) = P(E) exp
(
−
∫ E′

E
P(q)dq

)
dE = P(E)∆P(E|E′)dE (4.64)

which is the probability for an emission to occur at E, given the last emis-
sion scale is E′. dE in the above equation represents each of the dEi (where
i = 1, . . . , n + 1) elements in Eq. 4.63, with E′ = Ei−1. P(E) represents the
emission probability, whilst the exponential is the Sudakov form factor, or the
non-emission probability. As is argued in [108], Eq. 4.64 alone is not sufficient
to sample energies in the presence of a lower cutoff scale, µ. The relevant prob-
ability density is

dSP(µ, E|E′) = ∆P(µ|E′)δ(E− µ)dE

+ Θ(E′ − E)Θ(E− µ)P(E)∆P(E|E′)dE, (4.65)

where we identify the cutoff µ, with our veto scale ρ for the jet veto observ-
able. In order to constrain our events to a maximum multiplicity, nmax, we can
extend Eq. 4.65 and write the density

dSP(ρ, E|E′) = ∆P(ρ|E′)δ(E− ρ)dE

+
(
1− ∆P

(
ρ|E′

))
δn,nmax δ(E− ρ)dE

+ P(E)∆P(E|E′) (1− δn,nmax)Θ(E′ − E)Θ(E− ρ)dE, (4.66)

where δn,nmax is a Kronecker delta which is equal to 1 if n = nmax and 0 other-
wise. One can see that Eq. 4.66 describes a density from which we can sample
emission scales, and which accounts for three scenarios:
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• When we have not yet reached our maximum multiplicity nmax, and we
have not emitted below our veto scale, ρ (third line).

• When we have reached our maximum multiplicity, and we therefore
evolve down to our veto scale, ρ (second line).

• And, when we have not yet reached our maximum multiplicity nmax, but
we terminate at fewer emissions because we have emitted below our veto
scale, ρ (first line).

It is the third line of Eq. 4.66 which conducts the ‘standard’ Sudakov veto al-
gorithm discussed in Chapter 3 and we can see that Eq. 4.66 reverts back to
Eq. 4.65 in the case that we do not wish to limit the multiplicity. Both variants
adopt the sampling density in Eq. 4.66: Variant A exploits the imposed cutoff
prescription (which shall be discussed in the next section) to isolate the colour-
diagonal terms of the Sudakov operator which are cutoff-dependent. These
terms are described by the kernel P(E) in Eq. 4.66 so that ∆P(E|E′) constitutes
the collinear part of the Sudakov operator. Eq. 4.66 can easily be extended to
include the competition algorithm as done in Section 3.5.3, by writing P(E) as
a sum over its constituent species:

P(E) = ∑
i,j

Pij(E), (4.67)

where each of the species is indexed by an ij pair. One can simultaneously
sample a scale E and choose a process ij using Algorithm 3. Variant B adopts
Eq. 4.66 with competition to sample emission scales at the same time as treating
the accessible emission matrix elements, indexed by the external particles ij, as
competing processes. The act of choosing two parent partons ij, also facilitates
a direction sampling strategy (which shall be discussed in Section 4.5.4).

In the rest of the chapter, we will discuss the Variant A and B implementa-
tions. For each, we shall present the phase-space mapping (represented by
Φn in Algorithm 4), the emission matrix element sampling (represented by
αn+1 and ᾱn+1), emission direction sampling, and a cutoff prescription used to
tame collinear divergences in the dipole factors (which instructs the form of
Γij, ωi and ωij). The evolution scale sampling for each variant (represented by
En) uses the density in Eq. 4.66 to sample evolution energy scales. However,
the exact form of the kernel, P(E), differs for both variants: in Variant A, the
kernel describes the cutoff dependent part of the Sudakov operator exponent
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after applying a collinear cutoff to the dipole factor. Variant B on the other
hand utilises the Sudakov veto algorithm with competition to simultaneously
sample evolution scales and the parent partons (ij) of the next emission.

4.5.3 Variant A

We begin with our first implementation of the shower evolution in Algo-
rithm 4, Variant A9. As our first attempt at implementing the general evolution
algorithm in Eq. 4.11, this variant adopts a strictly amplitude-level description.
In particular, it uses the amplitude-level emission matrix elements in Eq. 4.40.
In this section, we will express the form of ωi used in these, including the
cutoff prescription and explicit four-vector representation of the polarisation
vectors. Additionally, we explain the emission matrix element tensor sampling
and emission direction sampling procedures.

For the jet veto observable we consider in this work, there are only wide-angle,
soft logarithms. There still remain however intermediate collinear singular
terms, which whilst they cancel analytically, are numerically problematic. As
a stringent test that the algorithm correctly handles the cancellation of these
singular terms, and to facilitate numerical computation, we cut out small cones
in phase-space around each real emission:

ni · ε±k
(ni · nk)

→ ni · ε±k
(ni · nk)

Θcut(nk), (4.68)

where
Θcut(nk) = ∏

i
Θ (ni · nk − λ) . (4.69)

Specifically, we impose that n · ni > λ, where λ is a collinear cutoff, for each
parton i in the evolution, i.e. the emitted gluon resides outside a small conical
region, of extent λ, about each parton in the lab-frame. Correspondingly, for
the loop integrals we regulate using the replacement

ni · nj

(ni · n)(nj · n)
Θcut =

(
ni · nj

(ni · n)(nj · n)
− Sij − Sji

)
+
(
Sij + Sji

)
Θcut

− (1−Θcut)
ni · nj

(ni · n)(nj · n)
+ (1−Θcut)

(
Sij + Sji

)
, (4.70)

where the last two terms are collinear-finite, encapsulating the complementary

9Variant A is based on revision f5365a90d98d (the changeset signature within the CVolver

Mercurial repository) of the CVolver code.
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phase-space region within the cones about each parton. One would anticipate
that these terms cancel against corresponding real-emission contributions, and
so we disregard them in the ensuing discussions. The subtraction terms Sij and
Sji are defined as

Sij =
1

ni · n
− nj · n− ni · nj

(ni · nj)(ni · n)

Sji =
1

nj · n
− ni · n− ni · nj

(ni · nj)(nj · n)
, (4.71)

such that after the subtraction of these terms, the dipole factor remains finite
in the limit that either i or j are collinear with the emission, i.e. when ni · n or
nj · n approach 0. After integrating over solid angle,

∫ [(
ni · nj

(ni · n)(nj · n)
− Sij − Sji

)
+
(
Sij + Sji

)
Θcut

]
dΩ
4π

= ln
(

2
λ

)
+ ln

(
ni · nj

2

)
+O (λ) . (4.72)

It is worth noting that the finite integral involving the subtracted terms is sim-
ilar to that used to derive angular ordering [164], which we showed in Chap-
ter 3. Since the ln λ term is independent of i and j we can exploit colour con-
servation to write

∑
i<j

(−Ti · Tj) =
1
2∑

i

T2
i , (4.73)

which is colour diagonal. This leads to the well-known result that the collinear
region has trivial colour and it means that all of the collinear cutoff dependence
is in the abelian sector [103]. We can exploit this to extract the collinear cutoff
dependent terms of the Sudakov operator at each step of the evolution, in both
the amplitude and conjugate-amplitude, and use these contributions to sample
the evolution scale. As such we set the kernel, P(E), in Eq. 4.66 to be

P(E) =
1
E

αs

π ∑
i

Ci ln
(

2
λ

)
, (4.74)

resulting in

∆P(E|E′) = exp

(
−αs

π ∑
i

Ci ln
(

2
λ

)
ln
(

E′

E

))
, (4.75)

for the form of ∆P(E|E′). Here, i is a sum over all partons and Ci is the Casimir
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operator associated with parton i. That is, Ci = CA = Nc if i is a gluon and
Ci = CF = (N2

c − 1)/2Nc if i is a quark or antiquark. Algorithm 7 below rep-
resents the action of the scale generating function, En, in our shower evolution
(Algorithm 4) and corresponds to sampling by inversion from the probability
density in Eq. 4.66 with P(E) and ∆P(E|E′) as defined above. Provided we
have not reached the maximum multiplicity, nmax, and the energy sampled in
Algorithm 7 is not smaller than ρ, this act of sampling is as if we multiplied
the weight by

αs

π

1
E∑

i

Ci ln
(

2
λ

)
exp

(
−αs

π ∑
i

Ci ln
(

2
λ

)
ln
(

E′

E

))
. (4.76)

This is exactly the part of the phase-space factor, (αs/π)dE/E, in each evo-
lution step of Eq. 4.11, combined with the collinear part of the corresponding
Sudakov operators in the amplitude and conjugate-amplitude. The additional

∑
i

Ci ln (2/λ) factor is removed as a weight using the emission scale selection

weight, WEn (in line 12 of Algorithm 7). In the case that we have reached max-
imum multiplicity, or our sampled energy scale is below ρ, our event termi-
nates. In the former case, the collinear part of the final Sudakov operators is
included as a weight, WEn = ∆P(ρ|E′).

Algorithm 7: The modified Sudakov veto algorithm for Variant A, account-
ing for the presence of a lower cutoff, ρ, and a potential constraint on the
maximum multiplicity, nmax. It outlines the emission scale sampling, rep-
resented by En. This, the hard scale, E′, and the scale sampling weight, WEn

are introduced in Algorithm 4.
solveR = ∆P(E|E′)θ(E− ρ)

1 if E < ρ then
2 E← ρ
3 if n = nmax then
4 WEn(φ, E, E′, {σ, σ̄})← ∆P(E|E′)
5 return E

6 else
7 if n = nmax then
8 E← ρ
9 WEn(φ, E, E′, {σ, σ̄})← ∆P(E|E′)

10 return E

11 else
12 WEn(φ, E, E′, {σ, σ̄})← 1/ (∑i Ci ln (2/λ))
13 return E
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The remaining contributions to the Sudakov operator matrix elements are in-
cluded at each evolution step manually, as per line 7 in Algorithm 4,

Mττ̄ ← [τ|VE,E′ |σ〉Mσσ̄ 〈σ̄|V†
E,E′ |τ̄] . (4.77)

These matrix elements are approximated as discussed in Section 4.3.1, using
Eq. 4.26 or Eq. 4.32. They rely on the corresponding soft-gluon anomalous
dimension matrix coefficients, which are

Γij =
αs

2π
ln
(

E′

E

)
ln
(

ni · nj

2

)
, (4.78)

i.e. the part of the Sudakov exponent corresponding to the i, j dependent term
in Eq. 4.72.

We now move our discussion onto the sampling and evaluation of the emission
operator matrix elements in Algorithm 4, line 16,

Mρ,ρ̄ ← [ρ|DE |τ〉 ×Mτ,τ̄ × 〈τ̄|D†
E |ρ̄] . (4.79)

The sampling of the basis tensors, ρ and ρ̄, is represented by αn+1 and ᾱn+1

in line 14. The process according to which they are chosen, follows a similar
logic as was presented in Section 4.4, i.e. we choose tensors which differ by
at most d′ swaps, favouring smaller values of d′. Specifically, we know from
Section 2.3 that, 0 ≤ #(ρ, ρ̄) − #(τ, τ̄) ≤ 2, which constrains ρ, ρ̄ to being at
most two additional swaps from each other than τ, τ̄. Our sampling procedure
is then as follows:

• Choose either of the basis tensors post-emission, ρ or ρ̄, with equal prob-
ability.

• Set the chosen basis tensor, say ρ, to be one of the nq + ng + 1 tensors
that are accessible after the action of an emission operator (on τ) (nq and
ng are the number of quarks and gluons in the event). These tensors
are sampled with uniform probability. This choice is represented by the
function αn+1 in Algorithm 4, line 14. Note that the nq + ng + 1 tensors
come about due to the following logic: the colour charge operator maps τ

onto three other, unique tensors. They correspond to an emission off the
colour line (ci) corresponding to parton i, anti colour line (c̄i), or a singlet
gluon emission. The operator D sums over the colour charge operators
corresponding to all partons.
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• ρ̄ can then be sampled using the level-swap algorithm, starting
with ρ and determining a basis tensor d′ swaps away. This value
of d′ is itself sampled as outlined in Section 4.4, using a value of
dmax = min (nτ, nτ − #(τ, τ̄) + 2), where nτ is the number of colour
flows in the basis tensors τ and τ̄. Sampling of ρ̄ is represented by the
function ᾱn+1 in Algorithm 4.

The weights corresponding to the sampling of ρ and ρ̄ are then

Wαn+1 ← (nq + ng + 1)

Wᾱn+1 ←
1− N−dmax

c

N−d′−1
c (Nc − 1)

Mnτ ,d′(1, nτ − 1) (4.80)

where Mn,d′(1, nτ − 1) is the multiplicity of all permutations d′ swaps from
τ. If we had instead chosen ρ̄ in the first step, the overall resultant weight
Wαn+1 ×Wᾱn+1 would be the same, with

αn+1 ↔ ᾱn+1,

Wαn+1 ↔Wᾱn+1 . (4.81)

Having established which emission operator matrix elements are to be calcu-
lated, we turn our attention to their actual evaluation. Firstly, the phase-space
point for the next emission, k, is generated. Variant A is tailored to be efficient
for the jet veto observable and as such samples gluon directions uniformly in
the out-region. With the sampled emission scale, the momentum of k is defined
entirely by cos θk and φk which are sampled according to the distributions

dPcos θ(cos θk) =
1
2
(Θ(cos θk − c0) + Θ(−c0 − cos θk))

(cos θk − c0)
d cos θk,

dPφ(φk) =
1

2π
dφk, (4.82)

where c0 = cos(π/4). The emitted gluon azimuth, φk, is sampled uniformly
from the range of possible values [0, 2π]. We can see that these sampling dis-
tributions are exactly the normalised solid angle integrations for each emission
in Eq. 4.63, whilst the Heaviside step functions in dPcos θ constrain each emis-
sion to the out-region, ensuring our measurement function is always equal to
unity. This means that Variant A never terminates due to an emission into the
in-gap region, but only due to either evolving to a maximum multiplicity, nmax,
or sampling an emission scale below the veto scale, ρ. The direction sampling
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is performed (in general) by Φn+1, whilst the weight corresponding to this se-
lection is WΦn+1 ← (1− c0). Moreover, Φn+1 updates φ with the newly added
particle momenta and its colour representation. It is important to note that the
aforementioned sampling efficiency, in which we uniformly sample gluon di-
rections in the out-region, is not a restriction on the general applicability of our
approach and in general, Φn+1 would also represent the action of a kinematic
recoil prescription.

In Variant A we calculate the emission matrix elements using the amplitude-
level emission operators in Eq. 4.40, and must specify the form of the dipole
factors,

ωi(k) =
ni · ε±k
ni · nk

Θcut(nk). (4.83)

In particular, this means providing a representation for the emitted gluon po-
larisation vector. To do this we use the spinor-helicity formalism [165]. The
spinor representation for a gluon polarisation vector of definite helicity, ±1, is

ε±µ (k, q) = ±〈q
∓| γµ |k∓〉√
2 〈q∓| k±〉

. (4.84)

The γµ are the Dirac matrices (written explicitly in Chapter 1) and 〈q∓| k±〉
are Lorentz-invariant Weyl products. q is an auxiliary massless vector (the so-
called reference momentum), reflecting the freedom of on-shell gauge trans-
formations. It is light-like and not parallel to k, the gluon momentum. A po-
larisation vector defined in this way obeys the completeness relation of a gluon
in the light-cone gauge:

∑
λ=±1

ελ
µ(k, q)(ελ

ν (k, q))∗ = −ηµν +
kµqν + kνqµ

k · q . (4.85)

Using Eq. 4.84 and [166], the explicit four-vector representation of the polari-
sation vector can be written as

ε+µ (k, qx) =




k+

k+

−ik−

k−




, ε+µ (k, qz) =




k+

k−

−ik−

k+




, (4.86)

for a reference momentum along the x- and z-axis respectively. These two
forms of the polarisation vectors are related by the Schouten identity [166].
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The reference momenta, qx and qz, and gluon momenta, are defined as

qx = (1, 1, 0, 0) , qz = (1, 0, 0, 1) ,

nk = (1, sin(θ) cos(φ), sin(θ) sin(φ), cos(θ)) , (4.87)

whilst the k+ and k− variables have the form

sgn = 1− 2Θ (c0 − |cos (θ)|) ,

k+ =
1 + cos (θ) + cos (φ) sin (θ)− i sin (φ) sin (θ)√

2(1 + sgn cos (θ)− sgn cos (φ) sin (θ)− i sin (φ) sin (θ)
,

k− =
1 + sgn cos (θ)− sgn cos (φ) sin (θ) + i sin (φ) sin (θ)√
2(1 + sgn cos (θ)− sgn cos (φ) sin (θ)− i sin (φ) sin (θ)

. (4.88)

The Variant A Hemispheres implementation uses the ε+µ (k, qx) polarisation vec-
tor defined in Eq. 4.86, by default. They are determined in Φn+1, so that the ωi

factors can be subsequently evaluated in Hemispheres::EmissionMatrix::evaluate().
When using explicit polarisation vectors, one must sum over all helicities of
each soft-gluon emission to account for the minus-sign in the phase-space
element of Eq. 4.6, as per Eq. 4.85. As written in Eq. 4.86, these polarisation
vectors have +1 helicity, and are related to their −1 helicity counterpart
through complex conjugation, ε−µ (k, q) = (ε+µ (k, q))∗. The helicity sum is
handled in Variant A using Monte Carlo methods, by assigning each emitted
gluon a helicity of +1 or −1 with equal probability during the generation of
the gluon degrees of freedom. The event is weighted accordingly with a factor
of 2, i.e. WΦn+1 ← 2. Generally, we are free to choose a different reference
momentum for each gluon momentum in an amplitude, and by-default we
use one oriented along the x-axis, qx. However, one encounters numerical
instabilities in the case that the sampled emitted gluon direction is sufficiently
close to this axis. In such a case, we should adopt a different quantisation
axis, along the z-axis. Specifically, if the generated emission direction lay
outside a cone, of extent c0, about the xy-plane, Variant A uses ε+µ (k, qz) as
the polarisation vector for that emission instead of ε+µ (k, qx). This choice is
reflected in the sgn variable in Eq. 4.88.

As a check on the form of the polarisation vectors in Eq. 4.86, we see that they
obey the required transversality with respect to both the gluon and reference
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momenta,

ε±x (k, qx) · qx = ε±x (k, qx) · k = ε±x (k, qx) · ε±x (k, qx) = 0,

ε±z (k, qz) · qz = ε±z (k, qz) · k = ε±z (k, qz) · ε±z (k, qz) = 0,

ε±x (k, qx) · ε∓x (k, qx) = ε±z (k, qz) · ε∓z (k, qz) = −1. (4.89)

We have now described all of the components of Variant A. In Chapter 5 we
will present the Variant A individual-multiplicity jet veto cross section results
for both the evolve() and evolveFull() algorithms. For low multiplicities we
shall analytically calculate the jet veto cross section, adopting the cutoff pre-
scription in Eq. 4.68. These calculations show agreement with the results of
Variant A. Additionally, we compare the evolve() and evolveFull() algorithms,
which provides a validation of the emission and Sudakov matrix element sam-
pling implemented in evolve(). Lastly, we exhibit the total cross section, Σ(ρ),
in Section 5.1.6, with contributions from multiplicities up to 10 emissions. We
shall see that the Variant A total cross section contains large weight fluctu-
ations which dominate the results. In the next section, we shall outline our
attempt at ameliorating this issue, with Variant B.

4.5.4 Variant B

Variant B10 was designed with the large weight fluctuations of Variant A in-
mind. As such, Variant B performs cross section-level contractions of the emis-
sion operators where possible. This in-turn enables us to use the Sudakov veto
algorithm with competition to sample the emission scale, determine the par-
ents of the emitted gluon and to choose emission matrix elements, at the same
time. This ameliorates the issue of large fluctuating weights to some extent,
by only introducing two sources of sampling weights: the Sudakov matrix el-
ement sampling (as outlined in Section 4.4) and by dividing out exponential
factors related to the Sudakov veto algorithm.

Like in Variant A, we deal with the collinear region by cutting out small cones
around each real emission. By virtue of the Sudakov veto algorithm with com-
petition, we choose two parent partons, ij, from which we emit, at each step of

10Variant B is based on revision b8d7734d94d9 of the CVolver code.
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the evolution. We impose that n · ni,j > λ for emission off the ij pair:

ni · nj

(ni · n) (nj · n)
→ ni · nj

n · ni + n · nj

(
Θ(n · ni − λ)

n · ni
+

Θ(n · nj − λ)

n · nj

)
. (4.90)

The loop integrals are regulated using the same replacement, where

∫
dΩ
4π

ni · nj

n · ni + n · nj

(
Θ(n · ni − λ)

n · ni
+

Θ(n · nj − λ)

n · nj

)
≈ ln

ni · nj

λ
, (4.91)

after integration over the solid angle. As before, we ignore terms which are
suppressed by powers of the collinear cutoff, λ.

Similar to how standard parton showers describe the large-Nc emission proba-
bility through the use of the Sudakov veto algorithm with competition, Variant
B uses it to include the full-colour emission probability:

dR(Ek) =
α

π

dEk
Ek

∑
i,j

[ρ|Ti |τ〉 〈τ̄|Tj |ρ̄]ωij(k)
dΩk
4π

. (4.92)

In the above equation, the emission operators in the amplitude and conjugate-
amplitude for the kth emission, have been contracted as per Eq. 4.43. Also
included, are the phase-space element terms in Eq. 4.63 corresponding to the
kth emission. The sum over i, j runs over all external legs which do not form a
singlet-gluon in the colour arrangements τ or τ̄ respectively, i.e. τ(ci) 6= ci and
τ̄(cj) 6= cj. Such terms are excluded for efficiency purposes, as they inevitably
cancel for emitted gluons. It is convenient to rewrite Eq. 4.92 into the form

dR(Ek) =
αs

π

dEk
Ek

∑
i,j

ξijΩij ×
(

ωij(k)
Ωij

dΩk
4π

)

×
(

[ρ|Ti |τ〉 〈τ̄|Tj |ρ̄]∣∣[ρ|Ti |τ〉 〈τ̄|Tj |ρ̄]
∣∣

)
×
(
〈ρ| ρ̄〉
〈τ| τ̄〉

∣∣[ρ|Ti |τ〉 〈τ̄|Tj |ρ̄]
∣∣

ξij

)
, (4.93)

where Ωij =
∫

ωij(k)dΩk is the dipole factor integrated over the solid angle,
and the object ξij is defined as

ξij = ∑
ρ′,ρ̄′

〈ρ′| ρ̄′〉
〈τ| τ̄〉

∣∣[ρ′
∣∣Ti |τ〉 〈τ̄|Tj

∣∣ρ̄′
]∣∣ . (4.94)
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The sum ρ′, ρ̄′ is over all basis tensors that can be reached through the action of
the emission operators, and we have introduced a ratio of scalar product ma-
trices (corresponding to the tensors before and after the action of the emission
operator). Normalised quantities in Eq. 4.93 have been delimited by parenthe-
sis. Written in this way, we highlight the sampling densities for the direction
sampling (in the first pair of parenthesis) and emission matrix element sam-
pling (in the third), and expose the structure of the competition algorithm. We
shall move on to discuss this latter point.

Variant B uses the density in Eq. 4.66 (used for Variant A), extended by the
competition algorithm, to sample emission scales. The competing processes
are each of the terms contributing to the emission probability, i.e. the compe-
tition algorithm accounts for each i, j combination in the sum of Eq. 4.93. We
sample an energy Eij for each emission species, according to the distribution

dSPij(ρ, E|E′) = Pij(Eij)∆Pij

(
Eij|E′

)
dEij, (4.95)

where we identify the kernel as

Pij(Eij) =
αs

π

1
Eij

ξijΩij, ∆P = ∏
i,j

∆Pij (4.96)

which contains the first three terms of Eq. 4.93. Following the procedure of
the competition algorithm, and the density in Eq. 4.66, we sample Eij for each
kernel Pij, such that the chosen emission energy is E = max({Eij}, ρ). This
process also determines the parent partons, ij, of the emission. The chosen ij
will instruct the exact form of the parenthesised sampling densities in Eq. 4.66.
Eq. 4.95 corresponds to the last line of the density in Eq. 4.66. If the chosen E
is below ρ, or we have reached the maximum desired multiplicity, the shower
evolution is terminated (corresponding to the first and second line of Eq. 4.66
respectively), as discussed in Section 4.5.2.

Algorithm 8 below outlines the process of sampling evolution scales (in En of
Algorithm 4). Whereas in a typical shower, ∆P would encapsulate the non-
emission probability, we wish to use the Sudakov matrix element approxima-
tion outlined in Section 4.3.1, and therefore must divide ∆P out in the scale
sampling weight:

WEn ←
1

∆P(E|E′) . (4.97)

Following the density in Eq. 4.66, this only occurs when we have not reached
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Algorithm 8: The modified Sudakov veto algorithm with competition Vari-
ant B, accounting for the presence of a lower cutoff, ρ, and a potential con-
straint on the maximum multiplicity, nmax. It outlines the emission scale
sampling, represented by En. This, the hard scale, E′, and the scale sam-
pling weight, WEn are introduced in Algorithm 4.

for i, j in φ where τ(ci) 6= ci and τ̄(cj) 6= cj do
solveR = ∆Pij(Eij|E′)θ(Eij − ρ) for each Eij

{Eij} ← dSPij(Eij|E′)
E← max{Eij}

1 if E < ρ then
2 E← ρ
3 if n 6= nmax then
4 WEn(φ, E, E′, {σ, σ̄})← 1/∆P(E|E′)
5 return E

6 else
7 if n = nmax then
8 E← ρ
9 return E

10 else
11 WEn(φ, E, E′, {σ, σ̄})← 1/∆P(E|E′)
12 return E

maximum multiplicity and is one of only two sources of weight in Variant B.

Before proceeding to a discussion of the direction and emission matrix ele-
ment sampling, we turn our attention to the Sudakov matrix elements and the
second parenthesised quantity in Eq. 4.93. The approximated Sudakov ma-
trix elements are evaluated at each evolution step, identically to Variant A, as
per line 7 in Algorithm 4. We introduced a ratio of scalar product matrices in
Eq. 4.93 corresponding to the emission matrix elements, and must include a
complementary term to accompany the Sudakov matrix elements:

Mττ̄(E)← [σ|VE,E′ |τ〉Mσσ̄ 〈σ̄|VE,E′ |τ̄]×
〈τ| τ̄〉
〈σ| σ̄〉 . (4.98)

Just as in Variant A, the basis tensors τ and τ̄ are chosen (in αn and ᾱn respec-
tively) using the level-swap algorithm discussed in Section 4.4. This sampling
contributes a weight, Wαn ×Wᾱn , which is the second source of weights in Vari-
ant B. The anomalous dimension matrix element coefficients pertaining to the
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Sudakov matrix elements are

Γij =
αs

π
ln
(

E′

E

)
Ωij, (4.99)

where
Ωij =

1
2

ln
(

ni · nj

λ

)
Θ(ni · nj − λ), (4.100)

following the collinear cutoff prescription outlined in Eq. 4.91. In addition to
the ratio of scalar product matrix elements in Eq. 4.93 and 4.98, an additional
scalar product matrix element must be included in the hard matrix element,
e.g. Mσσ̄(QH) = [σ|H(QH) |σ̄] 〈σ| σ̄〉. This chain of scalar product matrix ele-
ments will multiply for each evolution step, and ultimately reduce to a single
element, Sσn,σ̄n , where n labels the final colour flows.

In order to compute the sum over emission matrix elements using the Sudakov
veto algorithm with competition, the emission kernels used, ξijΩij, must be
positive-definite. Consequently, the sign of the selected emission matrix ele-
ment (for the chosen ij), must be corrected. The second parenthesised object in
Eq. 4.93,

[ρ|Ti |τ〉 〈τ̄|Tj |ρ]∣∣[ρ|Ti |τ〉 〈τ̄|Tj |ρ̄]
∣∣ , (4.101)

corrects for this, to attain the right sign in each evolution step. This factor is
evaluated using the cross section-level emission matrix elements in Eq. 4.45.

Turning now to the emission matrix element sampling, we focus on the last
parenthesised quantity in Eq. 4.93:

P(ρ, ρ̄) =
1

ξij

〈ρ| ρ̄〉
〈τ| τ̄〉

∣∣[ρ|Ti |τ〉 〈τ̄|Tj |ρ̄]
∣∣ . (4.102)

It is with this probability that we select the basis tensors ρ and ρ̄, which deter-
mine the emission matrix element in Eq. 4.101, and the starting flows for the
next evolution step.

The selection of ρ and ρ̄ is represented in Algorithm 4, by αn+1 and ᾱn+1, as-
suming an amplitude-level implementation. This was carried out in Variant
A, whereby ρ was chosen randomly (from the set of tensors accessible after
the action of an emission operator), and ρ̄ was subsequently selected using
the level-swap algorithm, to be at-most two swaps away. Whilst functional,
this approach lacks the ability to choose tensors following the most important
trajectories in colour space, and can result in potentially large weights (for a
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larger sampled colour order, d′, in Wᾱn+1 of Eq. 4.80). A key advantage of the
Variant B cross section-level formulation, lies in the fact that both ρ and ρ̄ can
be sampled at the same time using Eq. 4.102. This cross section-level descrip-
tion is also what has enabled us to weight the probability of selecting a given
ρ and ρ̄, by the ratio of scalar product matrix elements. This helps to steer the
evolution of the shower along the most importance trajectories in colour space.

It also has the advantage of simplifying the sampling process: we can show
that the contributions to ξij, i.e. the weights by which we are choosing a
given emission matrix element in Eq. 4.102 (and therefore basis tensors ρ, ρ̄),
are largely determinable and result in factors of Nc or 1/Nc. Emitting off the
ij parton pair, chosen in the competition algorithm, a predetermined map of
accessible ρ, ρ̄ to their corresponding weights, greatly speeds up the sampling
process.

To see this, we can define each term of the sum in ξij by its identifying basis

tensors, as ξ
ρ′,ρ̄′
ij :

ξ
ρ′,ρ̄′
ij =

〈ρ′| ρ̄′〉
〈τ| τ̄〉

[
ρ′
∣∣Ti |τ〉 〈τ̄|Tj

∣∣ρ̄′
]
=
〈ρ′| ρ̄′〉
〈τ| τ̄〉 δτ,ρ′\n×

[(
λiλjδci,ρ′

−1 (c̄n)
δcj,ρ̄′

−1 (c̄n)
+ λ̄iλ̄jδc̄i,ρ′(cn)δc̄j,ρ̄′(cn)

)

+

(
−λiλ̄jδciρ′

−1 (c̄n)
δc̄j ρ̄′(cn) − λ̄iλjδc̄iρ′(cn)δcj ρ̄′

−1 (c̄n)

)

− 1
Nc

(
λiδciρ′

−1 (c̄n)
− λ̄iδc̄iρ′(cn)

)
(λj − λ̄j)δcn ρ̄′−1 (c̄n)

− 1
Nc

(
λiδciρ′

−1 (c̄n)
− λ̄iδc̄iρ′(cn)

)
(λj − λ̄j)δcn ρ̄′−1 (c̄n)

+
1

N2
c
(λi − λ̄i)(λj − λ̄j)δcn,ρ′−1 (c̄n)

δcn,ρ̄′−1 (c̄n)

]
δτ̄,ρ̄′\n. (4.103)

The right-hand side of Eq. 4.103 is just the expression for the matrix elements of
the colour charge operators, described in Eq. 2.65. It is a result of decomposing
each of the colour charge operators, Ti, into three colour-line operators: tci , t̄c̄i

and s, which emit off the colour line, ci (represented by each occurrence of λi),
off the anti colour line, c̄i (represented by λ̄i) and a singlet-gluon (represented
by λi − λ̄i). In order to efficiently sample ρ and ρ̄, i.e. our choice of emission
matrix element, we examine the values that ξ

ρ,ρ̄
ij can take for a given ij and

arrangement of colour flows in τ and τ̄. To do this, we shall study each of
the terms on the right-hand side of Eq. 4.103 in terms of their corresponding
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colour-line operators, t, t̄ and s. We henceforth write these operators without
the index subscript, understanding that any operator in the amplitude is off
the external leg i, and any operator in the conjugate-amplitude is off leg j. It
turns out that the values of all ξ

ρ,ρ̄
ij can be determined in five scenarios:

• The action of a t (or equally t̄) in both the amplitude and conjugate, acting
on the same colour flow in both.

• The action of a t (or equally t̄) in the amplitude and conjugate, acting on
differing colour flows, but the same colour line.

• The action of a t (or equally t̄) in the amplitude (or conjugate) and an s in
the other.

• The action of an s in both the amplitude and conjugate.

• The action of a t in the amplitude and conjugate, acting on two colour
flows which share no colour or anti-colour index.

The first four of these scenarios are determinable, in the sense that each sce-
nario unambiguously results in a factor of either Nc or 1/Nc. On the other
hand, the last scenario is not determinable: it can result in both Nc or 1/Nc

depending on the specific colour arrangement within τ and τ̄. The weight
corresponding to these contributions must be calculated as they are needed.

Let’s begin by examining the first of these scenarios. Figure 4.6 illustrates two
possibilities for the action of a t operator on both |τ〉 and 〈τ̄| in ξ

ρ′,ρ̄′
ij (in the

second and third lines of Eq. 4.103); the very same logic always holds for a t̄
operator due to the relation t̄c̄i = tσ−1(c̄i)

. Red lines denote the new colour flow
created by the t operators, whilst the grey boxes represent the wider context
of additional colour flows in |τ〉 and 〈τ̄|; we shall see that these contextual
flows are unaffected by emissions, except for the contributions illustrated in
Figure 4.8. In both Figure 4.6a and 4.6b, the t operators emit off the same
colour line (represented by the black dots). Figure 4.6a presents the scenario
in which the anti colour lines connected to these colour lines are also iden-
tical. The resultant scalar product matrix element, relative to any Nc factors
that would come from the contextual flows, are written below each diagram.
Figure 4.6b on the other hand represents the case in which the emitting colour
line in the amplitude and conjugate-amplitude are connected to different anti
colour lines. We find that both of these contributions to ξ

ρ′,ρ̄′
ij are proportional

to Nc.
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〈τ̄ |τ〉 = Nc 〈ρ̄|ρ〉 = N 2
c

τ
τ

τ̄
τ̄

(A)

〈τ̄ |τ〉 = 1 〈ρ̄|ρ〉 = Nc

τ
τ

τ̄
τ̄

(B)

FIGURE 4.6: Diagrammatic representation of the action of a t (t̄)
operator, acting on the same colour (anti colour) line (highlighted
by a black dot) in the amplitude and conjugate amplitude. Figure
(A) presents the case in which the same anti colour line is con-
nected to the emitting colour line in both the amplitude and con-
jugate, whilst in Figure (B) the connecting anti colour lines differ.
Newly emitted colour and anti colour lines are red. The Nc factor
contributed to the scalar product matrix element in contracting

the emitting flows is written below each diagram.

Figure 4.7 shows the colour flows that result from those terms in ξ
ρ′,ρ̄′
ij that con-

tain an s operator (in the fourth and fifth lines of Eq. 4.103). Figure 4.7a illus-
trates the case in which a t (or t̄) operator acts on a colour line in τ, whilst an s
operator is applied to τ̄. This combination of operators results in no change to
the relative scalar product matrix element. Figure 4.7b demonstrates the effect
of an s operator in both the amplitude and conjugate-amplitude. A relative Nc

factor in the scalar product matrix element results.

Using the results depicted in Figures 4.6 and 4.7, Table 4.10 presents a com-
prehensive list of contributions to ξ

ρ′,ρ̄′
ij . An important set of contributions that

are omitted, are those of the form [σ| t |α〉 〈β| t |τ] in which the emitting colour
flows in the amplitude and conjugate-amplitude have no colour or anti-colour
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〈τ̄ |τ〉 = 1 〈ρ̄|ρ〉 = 1

τ τ̄
τ τ̄

(A) The action of a t (t̄) operator in the amplitude and s op-
erator in the conjugate amplitude. Whilst it has been speci-
fied that the s operator acts on the first anti colour line in the
conjugate, it is agnostic to colour and anti colour indices and
results in the same new singlet-gluon colour flow regardless.

〈τ̄ |τ〉 = 1 〈ρ̄|ρ〉 = Nc

τ α βτ̄ τ τ̄

(B) The action of an s operator in both the amplitude and
conjugate amplitude.

FIGURE 4.7: Diagrammatic representation of the action of t (t̄)
and s operators. Newly emitted colour and anti colour lines are
coloured red. The black dots denote the colour line on which t or
s acts and the Nc factor contributed to the scalar product matrix
element in contracting the emitting flows is written below each

diagram.

lines in-common. Contributions of this type are illustrated in Figure 4.8, where
the bottom two diagrams show the pictorial representation of the arrangement
of colour flows in the scalar product matrix element, 〈τ̄| τ〉. The contributions
to ξij are still Nc or 1/Nc but are dependent on the contextual colour flow ar-
rangement. In particular, one can see that the relative difference in powers
of Nc, is dependent on how m, n̄, k and l̄ are connected: if the colour flow ar-
rangement in 〈τ̄| τ〉 connects the colour line m to the anti colour line n̄ and l to
k̄,

ξ
ρ′,ρ̄′
ij =

1
Nc

, (4.104)
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Operator α, β connections λi λj λ̄i λ̄j Contribution to
ξ

ρ′,ρ̄′
ij

t |α〉 〈β| t ci = cj, α(ci) = β(cj) 1 1 0 0 N2
c

Nc
× 1

c̄i = c̄j, α−1(c̄i) = β−1(c̄j) 0 0 1 1 N2
c

Nc
× 1

ci = β−1(c̄j), α(ci) = c̄j 1 0 0 1 −N2
c

Nc
× 1

c̄i = β(cj), α−1(c̄i) = cj 0 1 1 0 −N2
c

Nc
× 1

t |α〉 〈β| t ci = cj 1 1 0 0 Nc
1 × 1

c̄i = c̄j 0 0 1 1 Nc
1 × 1

ci = β−1(c̄j) 1 0 0 1 −Nc
1 × 1

c̄i = β(cj) 0 1 1 0 −Nc
1 × 1

t |α〉 〈β| s 1 1 0 0 1
1 × 1

Nc

1 0 0 1 −1
1 × 1

Nc

0 1 1 0 −1
1 × 1

Nc

0 0 1 1 1
1 × 1

Nc

s |α〉 〈β| t 1 1 0 0 1
1 × 1

Nc

1 0 0 1 −1
1 × 1

Nc

0 1 1 0 −1
1 × 1

Nc

0 0 1 1 1
1 × 1

Nc

s |α〉 〈β| s 1 1 0 0 Nc
1 × 1

N2
c

1 0 0 1 −Nc
1 × 1

N2
c

0 1 1 0 −Nc
1 × 1

N2
c

0 0 1 1 Nc
1 × 1

N2
c

TABLE 4.10: List of all possible colour-line operator combinations
in Eq. 4.103. Each of these is a contribution to a single term in
the sum of Eq. 4.94. The relevant colour-line operator matrix el-
ement in the amplitude and conjugate-amplitude are presented
with unspecified external leg indices. Conditions on the colour
arrangement in τ and τ̄ for each contribution are also listed. The

contribution itself is presented in the last column.

whilst if it connects m to l and n̄ to k̄,

ξ
ρ′,ρ̄′
ij = Nc. (4.105)

For an emission off any given parent partons, ij, we have therefore ascertained
all contributions to the sum in Eq. 4.94. In particular, we know all of the pos-
sible ρ, ρ̄ combinations which can be reached by an emission off partons i and
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τ τ̄ τ τ̄

〈τ̄ |τ〉 = 〈ρ̄|ρ〉 =

ττ̄ τ̄

m

n̄

k̄

l

m

n̄

k̄

l τ

FIGURE 4.8: Diagrammatic representation of the action of a t (t̄)
operator, acting in both the amplitude and conjugate amplitude.
In the top two illustrations, the colour flows on which t (t̄) act
share no colour or anti colour indices in common. Newly emitted
colour and anti colour lines are coloured red and the black dots
denote an example colour line on which t acts in the amplitude
and an anti colour line on which t̄ acts in the conjugate. The lower
two diagrams present the scalar product matrix elements before
and after the emission has occurred. n̄ and m denote the emitting
anti colour line in the conjugate and its connecting colour line,
whilst l and k̄ are the emitting colour line and connecting anti

colour line in the amplitude.

j, and the relative probabilities, ξ
ρ,ρ̄
ij /ξij, with which they occur; these are all

factors of Nc or 1/Nc.

It is the nextFlowWeight() method in the Core::EmissionMatrix class which
implements the results of Table 4.10. And where contributions of the type
presented in Figure 4.8 are encountered, nextFlowWeight() defers the ‘man-
ual’ calculation of the scalar product matrix to the scalarProduct() method
in Core::ColourFlow. nextFlowWeight() is used in both the scale sampling, En,



4.5. The Implementation 211

to calculate each ξij, and nextFlows() in Core::EmissionMatrix, to sample ρ and
ρ̄ (represented by αn+1 and ᾱn+1) according to the distribution in Eq. 4.102. As
this distribution is normalised, the weights corresponding to the sampling of
ρ and ρ̄, are unity:

Wαn+1 ← 1, Wᾱn+1 ← 1. (4.106)

Lastly, let us consider the first parenthesised quantity in Eq. 4.93,

dP(θk, φk) =
ωij(k)

Ωij

dΩk
4π

. (4.107)

Using this probability density, we sample the polar and azimuthal angles of
the gluon, emitted off the ij parent partons.

In Variant A we adopted a more rudimentary direction sampling, wherein we
chose the gluon direction uniformly in the out-region. This approach carries
with it three problems. First, we do not necessarily sample the regions of
phase-space which are most dominant to the cross section. Second, our sam-
pling density contributes a weight, WΦn+1 ← (1 − c0). And finally, as each
emission is in the out-region, the shower evolution always emits up to our
maximum multiplicity, nmax; this is in-contrast to a more general approach,
where the evolution terminates, only after emitting into the veto region. Vari-
ant B resolves these issues by sampling from the density in Eq. 4.107. Firstly,
Eq. 4.107 is a normalised quantity and so there are no weights associated with
sampling from it, i.e. WΦn+1 ← 1; minimising sampling weights was a key
focus in the formulation of Variant B. Secondly, sampling directions accord-
ing to a density describing the emission dipole factor, will focus on regions of
phase-space which more-significantly contribute to the cross section. Lastly,
sampling according to Eq. 4.107 is more general and allows the evolution to
emit into the in-region.

Sampling by inversion from Eq. 4.107 requires that it is integrable and invert-
ible. The form of ωij(k) makes this difficult to achieve. However, we can ex-
ploit the fact that we have selected a pair of parent partons ij, and sample the
emission direction in Φn+1, in the zero-momentum frame of the partons i and
j with a subsequent Lorentz boost back to the lab-frame. If we write the i and
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j momenta such that ni lies along the lab-frame z-axis, then

nµ
i = (1, 0, 0, 1)

nµ
j = (1, sin θij, 0, cos θij), (4.108)

where θij is the angle between partons i and j and we have oriented the parti-
cles such that the azimuthal angle is φij = 0. In the lab-frame, ni and nj will
typically not be oriented in this way and so a rotation matrix will be necessary
to correct any emission direction sampled in the ZMF. The momentum nj can
be rewritten as

nµ
j = (1,

√
−(ni · nj − 2)ni · nj, 0, 1− ni · nj), (4.109)

such that a Lorentz boost from the zero-momentum frame of the parent par-
tons i and j, back to the rotated lab-frame defined by Eq. 4.108, is

Λµ
ν (ni, nj) =




√
2

nij

√
(2−nij)

nij
0 0

√
(2−nij)

2 1 0 −
√

(2−nij)
2

0 0 1 0

− nij−2√
2nij

√
(2−nij)

2 0
√

nij
2




, (4.110)

where for notational brevity we have defined nij = ni · nj. Eq. 4.110 is such
that in the ZMF, the parent partons (ij) have the momenta

n̂µ
i =

√
nij

2
(1, 0, 0, 1) =

(
Λ−1(ni, nj)

)µ

ν
nν

i ,

n̂µ
j =

√
nij

2
(1, 0, 0,−1) =

(
Λ−1(ni, nj)

)µ

ν
nν

j , (4.111)

whilst that of the emitted gluon is

n̂µ
k = (1, sin θ cos φ, sin θ sin φ, cos θ). (4.112)

The dipole factor and integration measure in Eq. 4.107 in the lab-frame and
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ij-ZMF frame respect the relation

ω
(
nik, njk, nij

)dΩk
4π

=

ω

(
n̂ik

(Λn̂k)
0 ,

n̂jk

(Λn̂k)
0 , n̂i · n̂j

)
1

[
(Λn̂)0

]2
dΩ̂k
4π

, (4.113)

where we have made the dipole factor dot-product dependence explicit:

ωij(k) ≡ ω
(
nik, njk, nij

)
=

nij

nik + njk

(
Θ(nik − λ)

nik
+

Θ(njk − λ)

njk

)
, (4.114)

including the collinear cutoff prescription in Eq. 4.90. A careful analysis of the
integration over the first term in Eq. 4.114 in the ij-ZMF frame, shows that

∫ 1

−1

∫ 2π

0

n̂ij(
n̂ik + n̂jk

) 1
n̂ik

Θ

(
n̂ik

(Λn̂k)
0 − λ

)
1

[
(Λn̂k)

0
]2

d cos θ

2
dφ

2π

=

∫ 1

−1

1
1− cos θ

(
Θ (a− b) + Θ (b− |a|)

(
1− arccos

( a
b
)

π

))
d cos θ

2
,

(4.115)

where a and b are defined such that

a =
nij

2
(1− cos θ)− λ,

b = λ

√
1− nij

2
sin θ cos φ. (4.116)

The remaining integration over the polar angle of the emitted gluon, θ, in
Eq. 4.115 is then non-zero in three distinct regions of phase-space: cos θ ∈
[−1, c−], cos θ ∈ [c−, c1] and cos θ ∈ [c1, c+], and

c1 = 1− 2λ

nij
,

c± =

(
nij
)2 − 2nijλ± 2

√(
2− nij

)
(2− λ)λ3nij

(
nij
)2 − 2nijλ2 + 4λ2

. (4.117)
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In the limit that our collinear cutoff, λ, is sufficiently small,

c± ' c1 +O


(

λ

nij

)3/2

 (4.118)

and Eq. 4.115 reduces to

∫ c−

−1

(
1

1− cos θ

)
Θ
(
nij − λ

) d cos θ

2
' 1

2
ln
(

nij

λ

)
. (4.119)

The same logic follows for the second term of the dipole factor in Eq. 4.114 in
the ij-ZMF frame,

∫ 1

−1

∫ 2π

0

n̂ij(
n̂ik + n̂jk

) 1
n̂jk

Θ

(
n̂jk

(Λn̂k)
0 − λ

)
1

[
(Λn̂k)

0
]2

dΩ̂k
4π

' 1
2

ln
(

nij

λ

)
. (4.120)

All of this means we can sample the emitted gluon azimuth uniformly across
the interval φ ∈ [0, 2π] and the gluon polar angle can be sampled with a prob-
ability density

dP(cos θ) =

(
αs

π
ln
(

nij

λ

))−1 ( 1
1− cos θ

)
d cos θ. (4.121)

The sampled polar angle is then flipped, i.e. cos θ → − cos θ, with half-
probability. Finally, we must rotate our emitted gluon direction, so that the
azimuth is correct in the lab-frame:

nµ
i = (1, sin θi cos φi, sin θi sin φi, cos θi),

nµ
j = (1, sin θj cos φj, sin θj sin φj, cos θj). (4.122)

This is achieved using the following rotation matrix:

R(ni, nj) =




(nij−1)c̄isi+c̄jsj√
(2−nij)nij

cjsi s̄i−cisj s̄j√
(2−nij)nij

c̄isi

(nij−1)si s̄i+sj s̄j√
(2−nij)nij

ci c̄jsj−cj c̄isi√
(2−nij)nij

si s̄i

(nij−1)ci+cj√
(2−nij)nij

−
√
−c2

i−c2
j−2(nij−1)cicj−(nij−2)nij√

(2−nij)nij
ci




, (4.123)

where ck = cos θk, sk = sin θk, c̄k = cos φk and s̄k = sin φk. As is the case in
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Variant A, the direction sampling of each emitted gluon is performed by Φn+1

(but with a corresponding selection weight of WΦn+1 ← 1). Again, Φn+1 also
updates φ with a newly added particle momenta and its colour representation.
Unlike in Variant A however, we can see that the process of sampling the gluon
direction in the ij-ZMF and the subsequent Lorentz boost to the lab-frame, al-
lows for gluon emission into the in-gap region. Whereas the event evolution in
Variant A can terminate by either evolving to a maximum multiplicity, nmax, or
sampling an emission scale below the veto scale ρ, the Variant B evolution can
also terminate if the condition of the measurement function is violated (i.e. the
gluon emission is in-gap). In this sense, a Variant A event will always contain
nmax emissions (modulo the veto scale termination criteria), whilst Variant B
will contain n emissions, where n ≤ nmax.
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In the last chapter, we brought together the concepts and results of Chapters 2
and 3, to present a practical implementation into a Monte Carlo code, CVolver.
We outlined the CVolver code structure, including the general Core framework
which handles full-Nc colour manipulation of the hard process, emission and
scalar product operators in the colour flow basis, for a general observable. The
full-colour Sudakov operators are approximated according to the work [154].
In subsequent sections we outlined two implementations of the jet veto ob-
servable using this framework. These are denoted Variant A and Variant B.

Variant A was the initial ‘ideal’ approach to implementing the algorithm of
Chapter 2. It maintains an inherently amplitude-level description, to reflect
that of the general evolution algorithm, mainly by using amplitude-level emis-
sion matrix elements and a corresponding basis tensor sampling scheme. Such
a description will be useful for the future inclusion of collinear emissions and
spin dependence [103]. We shall see, in Section 5.1.6, that this implementation
suffers from increasingly large weights at higher multiplicities, which contami-
nate the total cross section result. To redress this situation, Variant B was devel-
oped, whereby cross section-level contractions of the emission operators have
been carried out, where possible. This facilitated an emission scale and direc-
tion sampling closer to that used in conventional showers, using the Sudakov
veto algorithm with competition. By treating the accessible (at any given stage
of the shower) emission matrix elements as our competing processes, we were
also able to develop a more efficient emission matrix basis tensor sampling
strategy.

In this chapter we will present the jet veto cross section results using both
Variant A and Variant B. For Variant A we compare these results with an in-
dependently largely analytic fixed-order cross section calculation presented in
Section 5.1.1. We first compare these results, neglecting all Sudakov opera-
tors, providing a validation of Variant A components related to real emissions.
Then, we check the Sudakov basis tensor sampling strategy by comparing re-
sults of the two running modes of Variant A: evolve and evolveFull. Lastly,
we compare the jet veto cross sections for 0, 1 and 2 emissions, Σ0(ρ), Σ1(ρ)

and Σ2(ρ), against our analytic calculations and examine the total summed
cross section, Σ(ρ). This provides validation of all components of Variant A.
For Variant B, changes were made to the CVolver code, to allow for a general
value of Nc and to account for a 1/Nc-breakdown. Utilising this, we present
cross sections results for Variant B, which supplement those of Variant A to
further validate the shared Core colour machinery. In addition, these results
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verify Variant B as an alternative implementation. Furthermore, we compare
the Variant B 20-emission total cross section result with the work [167] and find
agreement.

The results presented in the following sections have been created using the his-
togramming package myStatistics, written by S. Plätzer as part of the Herwig
Collaboration [11]. They have been subsequently plotted using Gnuplot [168].

5.1 Variant A

In this section, we present numerical results of the CVolver Variant A imple-
mentation discussed in Section 4.5.3 for the jet veto observable. We shall use
the V → qq̄ process as a testbed to isolate and validate components of the
CVolver implementation.

To start, we carry out fixed order calculations of the jet veto cross section,
Σn(ρ), for the first two soft gluon emissions, n = 0, 1, 2, in Section 5.1.1. These
calculations adopt the same collinear cutoff as Variant A (as written in Eq. 4.68)
and have been implemented into an independent test code, FixedOrderA, to
make a straightforward comparison with CVolver. We subsequently show that
the total (summed) cross section, Σ(ρ), is independent of the aforementioned
cutoff, if we include all contributions upto order α2

s .

As an initial test of CVolver, we present the emission cross sections, ΣR
n (ρ), in

which all Sudakov matrix elements are set to unity, for n = 1, 2. We compare
these results with those of FixedOrderA, with each Sudakov operator set to
the unit matrix for two values of the collinear cutoff. This provides a good
test of the CVolver components related to emissions. Then, we compare the
CVolver cross sections produced by the two running modes evolve() and
evolveFull() in Section 5.1.4, which validate both the emission and Sudakov
basis tensor sampling. Further to this, we present the jet veto cross section
results of FixedOrderA and CVolver for the first two gluon multiplicities in
Section 5.1.5. Lastly, we show the emission spectra for the shower evolution,
including the first 20 emissions, in Section 5.1.6. Here, we observe the large
weight fluctuations that afflict the cross sections produced by Variant A, and
explore their cause.

CVolver Variant A was the first attempt to implement the results of Chapter 2.
To remedy the aforementioned weight fluctuations, Variant B was developed,
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which was then used to produce the results for [22].

5.1.1 Fixed Order Calculation

We shall begin by computing the V → qq̄ jet veto cross section explicitly in the
colour flow basis, for gluon multiplicities upto two emissions. The phase-space
integration and non-trivial matrix exponentiation, of the one and two-emission
cross sections, is carried out in an independent code, FixedOrderA.

To remind the reader, the hard scattering matrix is written as Hqq̄ = 1, whilst
the Sudakov operator can quite generally be written as

Va,b = exp


−αs

π
ln
(

b
a

)
∑
i<j

(−Ti · Tj)

∫
dΩk
4π

ωij(k)Θcut


 , (5.1)

where
ωij(k) =

ni · nj

(ni · nk)
(
nj · nk

) , Θcut = ∏
i

Θ (ni · n− λ) . (5.2)

We write the parton momenta of the hard partons q, q̄ and the first two emis-
sions as

nq = (1, 0, 0, 1) ,

nq̄ = (1, 0, 0, 1) ,

n1 = (1, 0, sin θ1, cos θ1) ,

n2 = (1, sin θ2 cos φ2, sin θ2 sin φ2, cos θ2) . (5.3)

The integration over solid angle of the kinematic terms in the Sudakov expo-
nent can be written as

∫
dΩ
4π

ni · nj

(ni · n)
(
nj · n

)Θcut ' ln
(

ni · nj

2

)
+ ln

(
2
λ

)
, (5.4)

where the only approximation is to ignore all terms of order the collinear cut-
off. The cross section for zero emissions is

Σqq̄,0(ρ) = Tr(Vρ,1V†
ρ,1S0). (5.5)

Note that in Eq. 5.5 and for the rest of this section, the operators are under-
stood to be matrices in the colour flow basis and therefore equivalent to their
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calligraphic counterparts in Eq. 2.54. Correspondingly, the scalar product ma-
trix corresponding to the relevant colour space dimensionality will be included
in the trace. In the case of zero emissions, the scalar product matrix and the
colour charge product are

T0
a · T0

b = −CF1,

S0 = Nc1, (5.6)

whilst the Sudakov factor in the amplitude and conjugate-amplitude combine
to give

Vρ,1V†
ρ,1 = exp

(
−2αs

π
ln
(

1
ρ

)
CF1 ln

(
2
λ

))
. (5.7)

In the context of zero emissions and a hard scattering with only a qq pair, there
is only one colour flow. The trace over the one-dimensional basis is trivial and
results in

Σqq̄,0(ρ) = Nc exp
(
−2αs

π
ln
(

1
ρ

)(
N2

c − 1
2Nc

)
ln
(

2
λ

))
. (5.8)

The one-emission cross section is

Σqq̄,1(ρ) = −
αs

π

∫ 1

ρ

dE1

E1

∫ dΩ1

4π
Tr(Vρ,E1Dµ

1 VE1,1V†
E1,1D†

1µV†
ρ,E1

S1)

= −αs

π

∫ 1

ρ

dE1

E1

∫ dΩ1

4π
Tr(Vρ,E1Dµ

1 D†
1µV†

ρ,E1
)

× exp
[
−2αs

π
ln
(

1
E1

)
CF ln

(
2
λ

)]
, (5.9)

where the second line of Eq. 5.9 incorporates the results of Eq. 5.8, and again
the trivial nature of the hard scattering means that an abelian factor can be
extracted. Combining the emission operators in the amplitude and conjugate-
amplitude, we find

Dµ
1 D†

1µ = ωqq̄(n1)
(

T1
qT1,†

q̄ + T1
q̄T1,†

q

)
. (5.10)

The outermost Sudakov operators can also be simplified to abelian factors after
exploiting colour conservation, where ∑i Ti = 0. We find T1

q · T1
q̄ = CA/2− CF
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and T1
q · T1

1 = T1
q̄ · T1

1 = −CA/2 and can therefore write

Vρ,E1 = exp
[
−αs

π
ln
(

E1

ρ

)((
CF +

CA

2

)
ln
(

2
λ

)

−CA

2
ln

(
4(

nq · n1
) (

nq̄ · n1
)
))]

. (5.11)

In the colour flow basis, the colour charge operators corresponding to the hard
partons and the scalar product matrix after one emission are represented as

T0
q =


−

1√
2Nc

1√
2


 ,

T0
q̄ =




1√
2Nc

− 1√
2


 ,

S1 =

(
N2

c Nc

Nc N2
c

)
, (5.12)

which enables us to evaluate the remaining trace:

Tr((T1
qT1,†

q̄ + T1
q̄T1,†

q )S1) = −2CFCA. (5.13)

The one emission cross-section is thus

Σqq̄,1(ρ) = 4CFCA
αs

π

∫ 1

ρ

dE1

E1

∫ 1−λ

c0

d cos θ1

1− cos2 θ1

× exp
[
−2αs

π

(
N2

c − 1
2Nc

)
ln
(

1
ρ

)
ln
(

2
λ

)]

× exp
[
−αs

π
Nc

(
ln
(

E1

ρ

)
ln
(

2
λ

)
− ln

(
4

1− cos2 θ1

))]
, (5.14)

where the angular phase-space region of integration is within the cone along
the positive thrust axis, c0 < cos θ1 < 1 − λ. An additional factor of 2 has
been included to account for gluon emissions into the cone centered about the
negative thrust axis.

Lastly, we wish to compute the two-emission cross section. As we shall see,
this provides a non-trivial test on colour charge products in the Sudakov ex-
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ponents. The cross section is

Σqq̄,2(ρ) =
(αs

π

)2 ∫ 1

ρ

dE1

E1

∫

out

dΩ1

4π

∫ E1

ρ

dE2

E2

∫

out

dΩ2

4π

× Tr(Vρ,E2Dν
2VE2,E1Dµ

1 D†
1µV†

E2,E1
D†

2νV†
ρ,E2

S2),

=
(αs

π

)2 ∫ 1

ρ

dE1

E1

∫

out

dΩ1

4π

∫ E1

ρ

dE2

E2

∫

out

dΩ2

4π

× Tr(Vρ,E2Dν
2Dµ

1 D†
1µD†

2νV†
ρ,E2

S2)

× exp

[
−αs

π
CA ln

(
E1

E2

)(
ln
(

2
λ

)
− ln

(
4(

nq · n1
) (

nq̄ · n1
)
))]

× exp
[
−2αs

π
CF ln

(
1
E2

)
ln
(

2
λ

)]
, (5.15)

where we have again subsumed the results of Eq. 5.14 into our current calcu-
lation. The relevant colour charge operators and scalar product matrix are

T2
q =




− 1√
2Nc

0

0 0
0 − 1√

2Nc

0 0
0 1√

2
1√
2

0




, T2
q̄ =




1√
2Nc

0

0 0
0 1√

2Nc

0 − 1√
2

0 0
− 1√

2
0




, T2
1 =




0 0
0 0
0 0
0 1√

2

0 − 1√
2

0 0




,

S2 =




N3
c N2

c N2
c Nc Nc N2

c

N2
c N3

c Nc N2
c N2

c Nc

N2
c Nc N3

c N2
c N2

c Nc

Nc N2
c N2

c N3
c Nc N2

c

Nc N2
c N2

c Nc N3
c N2

c

N2
c Nc Nc N2

c N2
c N3

c




. (5.16)

The chain of emission operators in both the amplitude and conjugate-
amplitude can easily be deduced using Eq. 5.16 and results in a symmetric
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matrix of the form

Dν
2Dµ

1 D†
1µD†

2ν = ωqq̄(n1)

×




ωqq̄

N4
c

0 −ωqq̄

N3
c

ωqq̄+ωq̄1−ωq1

2N2
c

ωqq̄+ωq1−ωq̄1

2N2
c

−ωqq̄

N3
c

· 0 0 0 0 0
· · ωqq̄

N2
c

−ωqq̄−ωq̄1+ωq1
2Nc

−ωqq̄−ωq1+ωq̄1
2Nc

ωqq̄

N2
c

· · · ωq̄1
ωqq̄−ωq1−ωq̄1

2
−ωqq̄−ωq̄1+ωq1

2Nc

· · · · ωq1
−ωqq̄−ωq1+ωq̄1

2Nc

· · · · · ωqq̄

N2
c




, (5.17)

where for notational brevity we have written all occurrences of ωij(n2) as ωij.
In the case of the outermost Sudakov operator, the colour algebra can no longer
be simplified to just abelian factors. However, rather than work with six dif-
ferent colour matrices, we can again exploit colour conservation to find

T2
q · T2

1 = T2
q̄ · T2

2,

T2
q̄ · T2

1 = T2
q · T2

2,

T2
1 · T2

2 = (CF − CA)1 + T2
q · T2

q̄,

T2
q · T2

2 = −CF1− T2
q · T2

q̄ − T2
q · T2

1, (5.18)

which greatly simplifies the exponent of the Sudakov factor. We choose to
express the entire exponent in terms of factors of T2

q · T2
q̄, T2

q · T2
1 and 1:

Vρ,E2 = exp

[
− αs

π
ln
(

E2

ρ

){
(CA + CF)1 ln

2
λ

+ T2
q · T2

1 ln

((
nq̄ · n1

) (
nq · n2

)
(
nq · n1

) (
nq̄ · n2

)
)
− T2

q · T2
q̄ ln

(
2 (n1 · n2)(

nq̄ · n1
) (

nq · n2
)
)

− CF1 ln

(
2 (n1 · n2)(

nq̄ · n1
) (

nq · n2
)
)
− CA1 ln

(
2

n1 · n2

)}]
. (5.19)

In the case of two emissions, these colour charge products have the following
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form

T2
q · T2

q̄ =




−N2
c−1

2Nc
0 −1

2 0 0 −1
2

0 −N2
c−1

2Nc
0 −1

2 −1
2 0

0 0 1
2Nc

0 0 0
0 0 0 1

2Nc
0 0

0 0 0 0 1
2Nc

0
0 0 0 0 0 1

2Nc




,

T2
q · T2

1 =




0 0 1
2 0 0 0

0 0 0 0 1
2 0

0 0 −Nc
2 0 −1

2 0
0 −1

2 0 −Nc
2 0 0

0 1
2 0 0 0 0

0 0 0 1
2 0 0




. (5.20)

We can see from the above that the Sudakov exponent in Eq. 5.19 cannot be
straightforwardly exponentiated. For this we will adopt numerical exponen-
tiation methods that we shall describe later. Firstly however, we turn our at-
tention to examining the order-by-order cancellation of the collinear cutoff pa-
rameter, λ.

5.1.2 Cutoff independence

Before presenting the FixedOrderA implementation of the cross sections calcu-
lated in the previous section, it is interesting to deviate and examine the order-
by-order results to confirm independence from our imposed collinear cutoff,
to order α2

s .

We therefore begin by denoting the order α
p
s contribution to the n-emission

cross section as Σ(p)
qq̄,n, such that

Σqq̄,n =
∞

∑
p=n

Σ(p)
qq̄,n, (5.21)

where the lowest order contribution of any σn is p = n due to the emission
phase-space factors. Whilst we expand the Sudakov operators, we shall undo
the angular integrals carried out in Eq. 5.8, 5.14 and 5.19 in order to make the
collinear cancellation between emissions and virtual exchanges more explicit.
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Expanding the zero-emission cross-section, Eq. 5.8, we find

Σ(0)
qq̄,0(ρ) = CA,

Σ(1)
qq̄,0(ρ) = −CA

(
αs

π
ln
(

1
ρ

))
2CF

∫ 1−λ

0
d(cos θ1)ωqq̄(n1),

Σ(2)
qq̄,0(ρ) = CA

(
αs

π
ln
(

1
ρ

))2

2C2
F

∫ 1−λ

0
d(cos θ1)ωqq̄(n1)

×
∫ 1−λ

0
d(cos θ2)ωqq̄(n2). (5.22)

The order αs and α2
s results in the case of one-gluon emission are

Σ(1)
qq̄,1(ρ) = CA

(
αs

π
ln
(

1
ρ

)) ∫ 1−λ

c
d(cos θ1)ωqq̄(n1),

Σ(2)
qq̄,1(ρ) = −CA

(
αs

π
ln
(

1
ρ

))2

CF

∫ 1−λ

c
d(cos θ1)

∫ 1−λ

−1+λ
d(cos θ2)

dφ

2π
ωqq̄(n1)

×
[

CA

2
(
ωq1(n2) + ωq̄1(n2)

)
−
(

CA

2
− 2CF

)
ωqq̄(n2)

]

×Θ (n1 · n2 − λ) . (5.23)

There is only one result in which Σ2(ρ) contributes at order α2
s . This is the case

in which there are two emissions with no virtual exchanges, the result of which
is

Σ(2)
qq̄,2(ρ) = CA

(
αs

π
ln
(

1
ρ

))2

CF

[∫ 1−λ

c
d(cos θ1)

∫ −c

−1+λ
d(cos θ2)

∫ 2π

0

dφ

2π
ωqq̄(n1)

×
[

CA

2
(
ωq1(n2) + ωq̄1(n2)

)
−
(

CA

2
− CF

)
ωqq̄(n2)

]
Θ (n1 · n2 − λ)

+
∫ 1−λ

c
d(cos θ1)

∫ 1−λ

c
d(cos θ2)

∫ 2π

0

dφ

2π
ωqq̄(n1)

×
[

CA

2
(
ωq1(n2) + ωq̄1(n2)

)
−
(

CA

2
− CF

)
ωqq̄(n2)

]
Θ (n1 · n2 − λ)

]
,

(5.24)

where we have used the result

Tr
(

Dν
2Dµ

1 D†
1µD†

2νS2

)
= 2CACFωqq̄(n1)

[
CA
(
ωq1(n2) + ωq̄2(n2)

)

− (CA − 2CF)ωqq̄(n2)
]

. (5.25)
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If we add all of the contributions together, order-by-order, we find

Σ(1)
qq̄,0 + Σ(1)

qq̄,1 = −CA

(
αs

π
ln
(

1
ρ

))
2CF

∫ c

0
d(cos θ1)ωqq̄(n1)

= −CA

(
αs

π
ln
(

1
ρ

))
2CF ln

(
1 + c
1− c

)
,

(5.26)

where we see cancellation of the collinear cutoff, and

Σ(2)
qq̄,0 + Σ(2)

qq̄,1 + Σ(2)
qq̄,2 = CA

(
αs

π
ln
(

1
ρ

))2

×
[

2CF

∫ c

0
d(cos θ1)

∫ c

0
d(cos θ2)ωqq̄(n1)ωqq̄(n2)

− CA

2

∫ 1−λ

c
d(cos θ1)

∫ c

−c
d(cos θ2)

∫ 2π

0

dφ

2π
ωqq̄(n1)

×
(
ωq1(n2) + ωq̄1(n2)−ωqq̄(n2)

)
Θ (n1 · n2 − λ)

]
. (5.27)

The second integral initially appears to have a residual cutoff dependence. We
can see this cancels as the integrand is zero in the limit that n1 → na. Indeed, if
we numerically integrate Eq. 5.27, we find cutoff independence below values
of λ = 10−3 [169]. We can therefore see that the veto cross section, given the
initial hard process V → qq̄ and using the cutoff prescription in Eq. 5.2, is
independent of this cutoff including contributions upto order α2

s .

We now explain the implementation of FixedOrderA. The code implements the
Σn(ρ) cross sections in Eq. 5.8, Eq. 5.14 and Eq. 5.15 (where n = 0, 1, 2). To
do this it utilises the GSL [170] implementation of the VEGAS Monte Carlo al-
gorithm [171] to perform the angular and energy integrations. The emission
and scalar product matrix operators are written as matrices represented in the
colour flow basis. Their manipulation is carried out using the Armadillo library
[172]. Whilst the colour structure of the Σqq̄,1 Sudakov exponents can be sim-
plified to Casimir operators, this is not true of the ultimate Sudakov operator
in Σqq̄,2. For this we employ numerical exponentiation methods implemented
in Armadillo.

5.1.3 Testing Real Emissions

As the first test of the Variant A implementation, we focus on its components
related to real emissions. In particular, we wish to validate the methods which
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carry out the amplitude-level emission matrix element calculation, the basis
tensor sampling which determines such matrix elements and the sampling of
emitted gluon directions. As such, we hone in on the emission cross section,
ΣR

qq̄,n, which results from setting all Sudakov matrix elements in CVolver to
unity. This is controlled by the no-virtuals run-time toggle (which we set to 1
in this case). In Section 4.5.3, we outlined how the collinear Casimir contribu-
tions to the Sudakov operators in the amplitude and conjugate-amplitude, at
each evolution step, factorise. Indeed, such contributions are used as the sam-
pling density from which we draw emission scales in Variant A. As we wish
to ignore all Sudakov operator contributions, the results of this section are in-
stead generated using emission scales sampled uniformly in the range [0, E′]
(with E′ being the previous emission scale, or the hard scale Q in the case of no
emissions). The emission cross sections produced using this setup of CVolver
can be validated against FixedOrderA.
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FIGURE 5.1: The jet veto emission cross section as a function of
the veto scale ρ, for V → qq̄. Figure (A) presents the cross sec-
tion for a gluon multiplicity of one and Figure (B) for two. The
solid curves pertain to those generated with CVolver for two val-
ues of the collinear cutoff, λ = 10−2 and λ = 10−3. The light-
blue shading indicates the error band for these results, whilst
the broken lines labelled ‘analytic’ correspond to the independent

FixedOrderA results (see text for details).

Figure 5.1 shows the jet veto emission cross section dependence on the veto
scale, ρ, for different gluon multiplicities, n = 1, 2. Each cross section is pre-
sented for two values of the collinear cutoff: λ = 10−2 and λ = 10−3. The
solid green and blue curves depict the results produced by Variant A, using
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the aforementioned setup and the errors on these results are represented by
light-green and light-blue shading around each curve. FixedOrderA results are
denoted by broken lines and labelled as ‘analytic’. We observe good agreement
between the CVolver and FixedOrderA curves. For n = 1, the λ = 10−2 results
are within 0.2% of each other and their ratio is consistent with unity to within
two standard deviations. Whilst for a cutoff value of λ = 10−3, the curves are
within 0.4% and their ratio is equal to one, within one standard deviation. In
the case of two emissions, the CVolver and FixedOrderA curves, for both cutoff
values, are within 2% and their ratios are equivalent to unity to within two
standard deviations.

The close agreement between CVolver and FixedOrderA provides a good vali-
dation of all of the components in CVolver related to emissions. This includes
the calculation of amplitude-level emission matrix elements, along with the
evaluation of the gluon polarisation vectors stated in Eq. 4.86. In addition, the
sampling strategy of the basis tensors identifying these matrix elements and
the emission direction sampling is verified.

5.1.4 Numerical Exponentiation

We shall now examine the full cross section to verify the sampling of Sudakov
matrix element basis tensors. In order to do this we will compare the jet
veto cross section generated by the two CVolver running modes, evolve() and
evolveFull(). The evolve run-time toggle chooses between the two modes (set
to 0 for evolve() and 1 for evolveFull()). The evolve() and evolveFull() meth-
ods carry out each evolution step according to Algorithm 4 and 5 respectively.
The latter conducts the full matrix multiplication of the emission, Sudakov and
scalar product operators decomposed in the colour flow basis. To carry out the
matrix multiplication and transposition (for conjugate operators) we use the
Boost uBlas library [173] matrix container classes.

These matrix containers are populated using the element() method in the re-
spective classes. The Sudakov operator matrix is calculated in one of two
ways: if the colour order, d, is set to a finite integer, each element of the Su-
dakov operator matrix is calculated using the primed or unprimed approxi-
mation outlined in Section 4.3.1. If instead d is set to inf, we utilise the nu-
merical exponentiation methods outlined in Section 4.3.3, which are contained
in the exactElement() method of the EvolutionMatrix class. For one or two
colour flows this method calculates hard-coded analytic expressions for ele-



230 Chapter 5. Results

ments of the exponentiated anomalous dimension matrix. In the case of addi-
tional colour flows, the anomalous dimension matrix is first determined and
numerically exponentiated (NE) using the Padé approximation [159, 160].

When the numerical exponentiation methods are used, we must adopt the
same uniform scale sampling as described in Section 5.1.3. The anomalous
dimension matrix coefficients, Γij, are then defined as

Γij =
αs

2π
ln
(

E′

E

)(
ln
(

ni · nj

2

)
+ ln

(
2
λ

))
, (5.28)

to account for the Casimir collinear terms. The reason being, that by default,
Variant A as outlined in Section 4.5.3, extracts the Casimir collinear part of the
Sudakov operators (the term proportional to ln (2/λ) in Eq. 5.28) in the ampli-
tude and conjugate-amplitude to be used as a density from which to sample
emission scales. As this contribution cannot be extracted from the numerically
exponentiated Sudakov operator matrix, we employ a flat sampling to avoid
double-counting the collinear part.
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FIGURE 5.2: The jet veto cross section dependence on ρ for the
V → qq̄ process. Gluon multiplicities are presented for upto two
emissions (n = 1, 2). The solid curves denote the results of the

evolve() method and the dashed curves to evolveFull().

Figure 5.2 shows the results of Variant A using the evolve() and the
evolveFull() methods, for gluon multiplicities up to two emissions n = 1, 2.
The solid green and blue curves denote the results of evolve() for two different
values of the collinear cutoff: λ = 10−2 and 10−3, at a colour order d′ = 1.
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One can see from Section 5.1.1 that calculating the Sudakov operator to this
colour order, is sufficient to determine all subleading-colour contributions to
the two-emission cross section. Also plotted in Figure 5.2, are the evolveFull()
results with dotted-dashed lines for d′ = 1 and dashed lines for d symbolically
set to inf. The red dashed curves correspond to a collinear cutoff value of
λ = 10−2, whilst the magenta dashed curves to λ = 10−3.

From Figure 5.2, we see good agreement between the evolve() and
evolveFull() methods. Specifically, the one-emission cross section results
agree to within 0.15% and 0.5% for the collinear cutoff values λ = 10−2 and
10−3 respectively. The ratio between the results of the two methods are equal
to 1 within two standard deviations. Similarly, the two-emission cross sections
agree to within 0.6% for a cutoff value of λ = 10−2. In the case that λ = 10−3,
the cross sections are within 1.5% down to ρ values of 0.01 and 4.5% below.
This larger uncertainty is caused by increasing weight fluctuations in the
evolve() method, which we can see worsen with a larger number of emissions
and a smaller collinear cutoff.

5.1.5 Fixed Order Validation

The self-consistency between the two running modes evolve() and
evolveFull() of CVolver provides a good check on the basis tensor sam-
pling for both the emission and Sudakov matrix elements, in addition to the
evaluation of these elements and the Sudakov approximation. We now want
to provide further validation of the n = 0, 1 and 2 cross sections, by comparing
them with the independent FixedOrderA code.

Figure 5.3 presents the veto cross section as a function of ρ for gluon multiplic-
ities up to n = 2, and for two collinear cutoff values, λ = 10−2 and λ = 10−3.
Each Sudakov matrix element occurrence is computed in the NNLC′V approx-
imation1. The Variant A results correspond to the solid curves, whilst the dot-
ted curves, denoted ‘analytic’, represent the results of FixedOrderA. We see that
for n = 0, 1, the Variant A and FixedOrderA cross sections are within 0.6% and
agree to within one standard deviation across the entire range of ρ. This is true

1We remind the reader that the NNLC′V approximation refers to the accuracy to which we
sum terms in each Sudakov matrix element (in both the amplitude and conjugate-amplitude).
The NdLCV approximation sums terms accurate only to order 1/Nd

c , where d is the specified
colour order (see Eq. 4.32). This approximation sums the leading colour-diagonal terms to all
orders. This summation can be improved by including the colour-diagonal subleading terms
to all orders, which we dub our primed notation (see Eq. 4.26). NNLC′V uses the primed
approximation with d = 2.
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FIGURE 5.3: The jet veto cross section dependence on ρ for the
V → qq̄ process. Gluon multiplicities are presented for upto
two emissions (n = 0, 1, 2). The solid curves denote the results
of the CVolver Variant A, where the shaded region on the green
and blue lines demarcates the corresponding errors. The dashed

curves present the results of FixedOrderA.

for both values of the collinear cutoff. In the case of the Σ2(ρ) cross sections,
Variant A and FixedOrderA agree to within 0.55% for λ = 10−2 and 3% for
λ = 10−3. Above ρ = 10−2, this reduces to ≤ 1%. The results are consistent to
within two standard deviations across the entire ρ-range. The larger band of
errors necessary for agreement of the Σ2(ρ) cross sections at a lower collinear
cutoff, is due to increasing weight fluctuations in the Variant A cross section.
In the next section, we shall see that such fluctuations worsen with increasing
multiplicity, rendering a comparison of the λ = 10−2 and λ = 10−3 total cross
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section results difficult. However, for n ≤ 2 they are sufficiently tame, that
Figure 5.3 provides an excellent validation for all components of Variant A at
low multiplicities.

5.1.6 Emission Spectra

In this section, we shall present the total cross section result, Σ(ρ), including
contributions from the first 10 emissions.

Figure 5.4a and Figure 5.4b show the total cross section, Σ(ρ), which results
from summing over contributions from the first ten emissions, for both cutoffs
λ = 10−2 and λ = 10−3 respectively. This summation is denoted by n ≤ 10.
The dashed curve exhibits the total full-Nc cross section, with all Sudakov op-
erators calculated in the LC′V approximation. Also displayed are the NNLC′V
total cross section results, and the cross sections for the first few contributing
multiplicities. The shaded region in each plot of Figure 5.4 represents the one
standard deviation Monte Carlo error (determined as per Eq. 3.11). Figure 5.4c
and Figure 5.4d show how the total cross section is built up from these indi-
vidual multiplicity cross sections, for λ = 10−2 and λ = 10−3 respectively.

The plots in Figure 5.4 exhibit some key features: the n = 0 curves are de-
scribed solely by an exponential function; these would be a straight line if we
plotted our cross section value logarithmically. Additionally, the n = 0 curves
for different cutoffs have the same values at ρ = 1, and the lower collinear
cutoff curve falls faster as ρ gets smaller. Figures 5.4a and 5.4b illustrate how
the n > 0 curves become more peaked closer to ρ = 1 for lower cutoff val-
ues, and how higher multiplicities contribute relatively little to the total cross
section at larger ρ, but have similar contributions (to lower multiplicites) at
smaller ρ. Therefore, a higher number of real emissions are necessary to reach
a convergent answer, given a smaller collinear cutoff. We would expect there
to be an ‘optimal’ combination of cutoff and number of emissions, which pro-
vide a good approximation to the limit of zero cutoff and an infinite number
of emissions. However, as can be seen from Figures 5.4b and 5.4d in particu-
lar, Variant A develops large fluctuations for higher multiplicities and smaller
cutoffs, which source from the event weights. This makes determining the
aforementioned point of convergence, impossible. If we present the total cross
section on a linear ρ scale, and for both cutoff values, as in Figure 5.5a, we wit-
ness apparent cutoff-independence for much of the ρ-range [0.1 : 1], although
this cannot be confirmed below ρ = 0.1.
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FIGURE 5.4: The jet veto total cross section (for n ≤ 10) for the
V → qq̄ process, using Variant A of CVolver. Results are shown
for d′ = 0, 2. The contributions from n = 0 up to 3 emissions are
also presented in (a) and (b), and summed over in (c) and (d). The

total cross section result is a summation over all emissions.

It is clear from Figure 5.4d, that the large weights, disrupting the stability of the
total cross section, begin to appear after four emissions. Figure 5.5b presents
the distribution of positive and negative event-weights which contribute to the
n ≤ 4 total cross section in Figure 5.4d, with the n ≤ 3 cross section for compar-
ison. We can see that with an increasing number of emissions, the weight dis-
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tributions broaden, with a higher population of larger weights. Importantly,
the positive and negative weight distributions become more ‘erratic’ at larger
weight-values, and there exist outlier event-weights which dominate the total
cross section.

Table 5.1 is an event with a large overall weight (W > 106), contributing to
the n = 4 cross section. The weights, matrix elements and sampled basis
tensors corresponding to each evolution step are shown, represented by the
‘reference functions’ in Algorithm 4. We see that the Sudakov operator matrix
elements (in the rows corresponding to [αn|VE,E′ |αn−1〉 and

〈
α†

n−1

∣∣VE,E′
∣∣α†

n
]
),

and the weights from their basis tensor sampling (in the row Wαn ×Wα†
n
), are

of O(1) - with an exception being the NLC′V approximation used for n = 4
in the conjugate-amplitude. This exception is highlighted by the blue cells in
Table 5.1. The basis tensor sampling weight is larger because of the choice to
induce a single swap in the conjugate-amplitude basis tensors, from |34512〉 to
|34215〉 (see Section 4.4 for a description of the colour order sampling process).
However, the largest contributions to the event-weights come from the emis-
sion matrix elements and their tensor sampling (in the rows corresponding to
Wαn+1 ×Wα†

n+1
and [αn+1|DE |αn〉 ×

〈
α†

n
∣∣D†

E

∣∣α†
n+1
]
).
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Object Value n = 0 1 2

WEn 0.0493364 0.0232171 0.0151804
Wαn ×Wα†

n
1 1.77778 2.08642〈

αn
∣∣ α†

n
〉

〈1| 1〉 〈21| 21〉 〈231| 312〉
[αn|VE,E′ |αn−1〉 1 1.04243 1.15778〈
α†

n−1

∣∣VE,E′
∣∣α†

n
]

1 1.04243 1.21939
Wαn+1 ×Wα†

n+1
2.66667 78 586.667〈

αn+1
∣∣ α†

n+1
〉

〈21| 21〉 〈231| 312〉 〈2413| 3421〉
[αn+1|DE |αn〉 ×

〈
α†

n
∣∣D†

E

∣∣α†
n+1
]

2.77721 2.02518 10.7231

n = 3 4

0.0112768 0.0451669
2.08642 62.5926

〈2413| 3421〉 〈25134| 34215〉
1.03913 1.39434
1.02595 -0.0428957
14520

〈25134| 34512〉
-29.684

TABLE 5.1: An event with a large weight, of > 106, which
contributes towards the n = 4 cross section. The object
values column uses the ‘reference functions’ detailed in Al-
gorithm 4, to indicate which part of the shower contributes
the corresponding weight at the nth multiplicity. The to-
tal weight, 1.41074 × 106, can be obtained by multiplying to-
gether all of the sampling weights WEn , Wαn ×Wα†

n
and Wαn+1 ×

Wα†
n+1

, the matrix elements [αn|VE,E′ |αn−1〉,
〈
α†

n−1

∣∣VE,E′
∣∣α†

n
]

and

[αn+1|DE |αn〉×
〈
α†

n
∣∣D†

E

∣∣α†
n+1

]
, the final scalar product matrix el-

ement, 〈25134| 34215〉 = N2
c , and the direction sampling weights

from all emissions, WΦn+1 ← 24 × (1− c0)4.

In order to improve on the large weights contaminating Variant A, Variant B
was devised. Primarily, the ambition of Variant A - to maintain an amplitude-
level description of our general evolution algorithm - is replaced with cross
section-level contractions, where possible. In particular, Variant B adopts the
cross section-level emission matrix element formula (in Eq. 4.43). This funda-
mental change enables us to utilise the Sudakov veto algorithm with competi-
tion, where the competing processes are the scalar-product-element-weighted
emission matrix elements. A further by-product of this algorithm is the se-
lection of the parent partons to each emission, which allows for a more ro-
bust direction sampling. As was previously outlined, the Variant A direction
sampling is constrained to the out-of-gap region, never triggering an in-gap
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emission, and termination of the shower cascade through the measurement
function. The shower can still of course terminate if it reaches a maximum
number of emissions, nmax, or if the sampled emission scale is below the veto
scale ρ. Variant B on the other hand implements a direction sampling which
permits us to emit into the in-gap region, and therefore introduces an addi-
tional termination criterion (compared with Variant A). Variant B emits up to
an arbitrary number of emissions, n, where n ≤ nmax. In practice this means,
that with Variant A, we generate each n-emission Σqq̄,n cross section separately
and sum the results. For Variant B however, we provide a maximum multi-
plicity, nmax, and the shower cascade simultaneously calculates the total cross
section (summing all of the Σqq̄,n contributions) and the individual n-emission
cross sections. The more complex nature of the Variant B direction sampling
warrants an analysis, which we carry out in Section 5.2.2.

We shall now progress the discussion onto verifying CVolver Variant B. In ad-
dition to changing the formulation of the shower for Variant B, many periph-
eral code changes were made. Among these, a generalised value for Nc was
implemented throughout CVolver, a second test-bed hard process, H → gg,
was added, and an accurate book-keeping of the 1/Nk

c -breakdown was in-
stated. This paved the way for a wider scope of analysis and cross-checks on
Variant B, which will be discussed in the following section. Of course, the
colour machinery of CVolver, the calculation of the Sudakov matrix element
approximation and the Sudakov basis tensor sampling implementations are
shared between the two variants. And so, the following cross-checks supple-
ment the validations of Section 5.1.

5.2 Variant B

In this section, we present numerical results of the CVolver Variant B imple-
mentation discussed in Section 4.5.4 for the jet veto observable. In particu-
lar, we shall isolate components of the CVolver implementation for both the
V → qq̄ and H → gg processes and compare their results with independent
cross-checks. This section is based on work carried out for [22].

Firstly, we compare the colour coefficients of the emission cross sections in
CVolver against analytic results in Section 5.2.1. Then, we examine the an-
gular correlations between emitted particles in Section 5.2.2, in order to vali-
date the sampling of particle directions and the calculation of emission matrix
elements. As an initial test of the inclusion of both emission and Sudakov
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operators, we present the value of the fully-inclusive cross section for nu-
merous colour order and veto scale combinations, with fixed emission (ωij)
and anomalous dimension matrix (Γij) coefficients, as a function of Nc in Sec-
tion 5.2.3. Subsequently in Section 5.2.4, we illustrate the jet veto cross sec-
tion upto two emissions, including both emission and Sudakov operators, and
compare with the fixed order calculation in Section 5.1.1 (modulo a change to
the appropriate cutoff prescription). In Section 5.2.5 we show and discuss the
Nc breakdown of the jet veto cross section for the first three emissions and we
culminate in the emission spectra for the shower evolution, including up to 20
emissions, in Section 5.2.6.

Throughout the ensuing discussions, we shall adopt the schema of writing the
cross section, subscripted by the multiplicity at which it is calculated. Addi-
tionally, we write the cross section, in terms of the different powers of Nc that
contribute, as

Σn(ρ) =

kmax
n

∑
k=kmin

n

Nk
c Σ(k)

n (ρ). (5.29)

The value of kmax
n is equal to n + 1 for qq̄ and n + 2 for gg production. It is

important to note here that the Σ(k)
n coefficients include the Sudakov R-factors,

as seen in Eq. 4.27 and 4.29. The exponents of which contain the leading di-
agonal entries in the anomalous dimension matrix and can also contain the
sub-leading diagonal ones. As a reminder to the reader, this is the distinc-
tion between what we coin our primed and unprimed NdLCV approximation.
Therefore, Eq. 5.29 is not a strict expansion in powers of Nc, but rather, it
keeps track of 1/Nc off-diagonal suppression that originates in the hard scat-
tering matrix, the real emission operators, the successive colour orders in Eq.
4.26 or Eq. 4.32 and the scalar product matrix.

Where we discuss strictly leading-colour results, they are denoted by LCV+R,
and are composed of the Nkmax

n
c contribution in Eq. 5.29, with Σ(kmax

n )
n calculated

in the d = 0 approximation.

5.2.1 Emission Colour Factors

We begin our series of validation tests by looking at the components of Variant
B that are related to emissions, namely, the calculation of cross section level
emission matrix elements and the correct inclusion of emission contributions
using the competition algorithm. In order to isolate the contributions to the
cross section which arise from the emission operators, we set the Sudakov op-
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erator matrix elements to unity. As such, we shall denote the cross section
contribution, Σ(k)

n , containing only emission contributions as ΣR,(k)
n . The su-

perscript (k) once again indicates that we are referring to the Nk
c contribution

and we understand that its exclusion refers to the sum over all Nk
c terms.

So that we can test the emission components independently of our chosen
emission direction sampling or cutoff prescription, we adopt a uniform emis-
sion direction sampling over all phase space. This unit radiation pattern has
the effect of setting our direction sampling density (in Eq. 4.93), ωijdΩk/Ωij,
to 1. In addition, whilst the Sudakov matrix elements are all unity, the non-
energy dependent part of their exponents (the coefficients Ωij) are still used
in the competition algorithm. The value of Ωij for all partons i and j is set to
αs/2π, so that CVolver will produce the emission cross section with all eikonal
factors equal to unity.

The results of this procedure for gluon multiplicities upto three emissions (n =

1, 2, 3) are presented in Figures 5.6a and 5.6b for the V → qq̄ and H → gg
processes respectively.

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0.01 0.1 1

Σ
n
R

(ρ
)

ρ

singlet → qq̄ emission colour factors

n = 1
n = 2
n = 3

analytic result

(A) Emission cross section in the case of 1, 2
and 3 emissions, for the process singlet →

qq̄.

0

1

2

3

4

5

6

7

8

9

0.01 0.1 1

Σ
n
R

(ρ
)

ρ

singlet → gg emission colour factors

n = 1
n = 2
n = 3

analytic result

(B) Emission cross section in the case of 1, 2
and 3 emissions, for the process singlet →

gg.

FIGURE 5.6: The inclusive emission cross section for the pro-
cesses V → qq̄ and H → gg. Gluon multiplicities are presented
upto three emissions (n = 1, 2, 3). The stepped results pertain
to those, generated using CVolver, with all Ωij set to αs/ (2π)
and adopting a uniform direction-sampling over the full angu-
lar phase-space. The broken curves correspond to the analytic

result described in the text.

For comparison, the analytic forms of the simplified emission cross section for
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each multiplicity, are plotted in Figure 5.6 with broken lines of the same colour.
Looking at Eq. 5.13 and 5.25, we can determine the analytic expressions for the
V → qq̄ emission cross sections by setting the Sudakov contributions to unity
and eikonal factors to 1. Carrying out the energy integrals, we find

ΣR
qq̄,1(ρ) =

(αs

π

) (
N2

c − 1
)

ln
(

1
ρ

)
,

ΣR
qq̄,2(ρ) =

(αs

π

)2
(

2N3
c − 3Nc +

1
Nc

)
1
2

ln2
(

1
ρ

)
, (5.30)

whereas the cross section for three emissions is

ΣR
qq̄,3(ρ) =

(αs

π

)3
(

6N4
c − 11N2

c −
1

N2
c
+ 6
)

1
6

ln3
(

1
ρ

)
. (5.31)

In the case of H → gg, there exists a general form for the emission cross section:

ΣR
gg,n(ρ) =

(αs

π

)n
(n + 1)!

(
N2

c − 1
)

Nn
c

1
n!

lnn
(

Q
ρ

)
, (5.32)

which is correct up to at least n = 4.

Figures 5.6a and 5.6b exhibit good agreement between Eq. 5.30 and 5.32 and
the CVolver results. In particular, the analytic and numerical qq̄ results are
within 0.1%, 0.9% and 0.9% for n = 1, 2 and 3. For gg, they are within 0.3%,
0.6% and 1% for n = 1, 2 and 3. The ratio between the analytic and numer-
ical results is consistent with unity to within two standard deviations for all
multiplicities.

This agreement serves to validate the methods in CVolver which calculate the
cross-section emission matrix element (outlined in Eq. 4.45) and its colour co-
efficients. Moreover, it is an affirmation that the sampling of basis tensors for
emission matrix elements, selected with probability

P(ρ, ρ̄) =
1

ξij

〈ρ| ρ̄〉
〈τ| τ̄〉

∣∣[ρ|Ti |τ〉 〈τ̄|Tj |ρ̄]
∣∣ , (5.33)

(as discussed in Section 4.5.4) is correctly performed. In particular, the
emission matrix elements of the form [ρ|Ti |τ〉 〈τ̄|Tj |ρ̄], in which the emitting
colour flows in the amplitude and conjugate share no common colour or anti
colour lines contribute for processes with ≥ 4 colour flows. This corresponds
to n = 3 for V → qq̄ and n ≥ 2 for H → gg and so we see Figure 5.6 validates
the inclusion of these contributions.
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Additionally, the correct description of the emission cross section ρ-
dependence, by CVolver in Figure 5.6, provides a good verification of
the scale sampling density and the competition algorithm that implements it
(discussed in Section 4.5.2).

5.2.2 Angular Correlations

In this section we continue our validation of CVolver components related to
real emissions. Specifically, we shall examine the direction sampling outlined
in Section 4.5.4 and the 1/Nc breakdown of the emission matrix elements, by
focusing on the emission cross section.

To remind the reader, generating emission directions in Variant B involves the
inverse transform sampling of the eikonal factor

ωij(k) =
ni · nj(

ni · nk + nj · nk
)
(

Θ (ni · nk − λ)

ni · nk
+

Θ
(
nj · nk − λ

)

nj · nk

)
, (5.34)

where the factor includes the cutoff prescription stated in Eq. 4.90, i.e. that
ni,j · n > λ for emission off the ij pair. This sampling is carried out in the ij zero-
momentum frame and the resulting parton momenta are subsequently boosted
back into the lab-frame. In inverting the normalised PDF, ωij(k)/

∫
ωij(k), two

approximations are made: to discard terms suppressed by powers of the cutoff
λ and to approximate the bounds of integration over cos θk in the small-λ limit.

In order to visualise the distribution of generated directions, we focus on the
angular correlations between partons, ni · nj. For each distinct pair of partons i
and j in an event, we book the event-weight (corresponding to the integrand of
ΣR

n (ρ)) into the bin representing the value of ξ = 1− ni · nj. This corresponds
to the distribution dΣR

n (ρ)/dξ. So that we can test the employed direction
sampling across the full angular phase-space, we remove the restriction of the
jet veto measurement function. The collinear cutoff is of course intrinsically
implemented in our sampling method and so is retained.

Figure 5.7 shows the angular correlation distributions for the two emission
cross section. It compares the resultant angular correlations between partons
i and j in CVolver (solid histograms) to those produced by an independent
test code, AngularCorrelations (dashed curves, labelled ‘analytic’). This code
performs a Crude Monte Carlo integration of the emission cross section over
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FIGURE 5.7: The inclusive emission cross section as a function of
the angular correlation between particles i and j, ξ = 1− ni · nj,
for V → qq̄ and H → gg. This cross section corresponds to a
gluon multiplicity of two. The stepped results pertain to those
generated with CVolver, whilst the broken lines to the indepen-
dent test code AngularCorrelations. The legend specifies which

ξ = 1− ni · nj each coloured curve corresponds to.

the full angular phase space. Specifically, it calculates

AR
2 =

∫
dΩ2

4π

∫
dΩ1

4π
Tr(Dν

2Dµ
1 HD†

1µD†
2νS2), (5.35)

where the form of the trace over operators depends on the hard process. In the
case of V → qq̄,

Tr(Dν
2Dµ

1 Hqq̄D†
1µD†

2νS2) =
(αs

π

)2
(

N2
c − 1
Nc

)
ωqq̄ (n1)

×
(

N2
c
(
ωq1 (n2) + ωq̄1 (n2)

)
−ωqq̄ (n2)

)
, (5.36)

and the eikonal factors include the cutoff prescription as written in Eq. 4.90
(in the lab-frame). The four momenta, ni, of each emission is fully determined
by cos θi and φi, which are sampled uniformly over the domains [−1, 1] and
[0, 2π] respectively. The same procedure is carried out for the H → gg process,
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but with the trace over operators equal to

Tr(Dν
2Dµ

1 HggD†
1µD†

2νS2) =
(αs

π

)2
2N2

c

(
N2

c − 1
)

ωgg (n1)

×
(
ωgg (n2) + ωg1 (n2) + ωg1 (n2)

)
. (5.37)

We have distinguished between the object calculated by AngularCorrelations,
AR

2 , and that calculated by CVolver, ΣR
2 (ρ). This is because there is no sampling

of emission energy scales in AngularCorrelations. However, as the angular
correlations between partons are uncorrelated with the emission energy, the
lack of such a sampling simply manifests itself as a difference in normalisation.

After normalising the results of AngularCorrelations, we find agreement be-
tween these and the distributions produced by CVolver for both processes
V → qq̄ and H → gg in Figure 5.7, in the central portion of the distribu-
tions. Across the central portion (−0.6 < ξ < 0.6), the distributions are within
1.2% of each other for both a qq̄ and gg final state. Outside of this region the
distributions are within 3.5% for V → qq̄ process and within 3% for H → gg.
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FIGURE 5.8: The ratio of inclusive cross sections between CVolver

and AngularCorrelations as a function of the angular correlation
between particles i and j, for V → qq̄ in (A) and H → gg in (B).
This ratio corresponds to gluon multiplicities n = 1, 2. The black

dashed line is for reference and takes a value of unity.

Figure 5.8 shows the ratio between the CVolver and AngularCorrelations

distributions. It illustrates the angular correlation distributions for the V → qq̄
and H → gg processes for the gluon multiplicities n = 1, 2. In the case of



244 Chapter 5. Results

the one-emission cross sections, we see that this ratio fluctuates about unity,
showing agreement between CVolver and AngularCorrelations. For the
V → qq̄ emission cross sections above n ≥ 1 however, we find that the angular
correlations involving emissions beyond the first, deviate from unity as we
approach values of ξ = −1 and 1. These differences also exist in the angular
correlation distributions for the H → gg process, although they are smaller.
For both processes, these differences increase in magnitude for higher-
emission cross sections. It is the case that CVolver and AngularCorrelations

adopt slightly different cutoff prescriptions: CVolver applies Eq. 5.34 in the
dipole-frame of the parent partons selected by the competition algorithm,
whereas AngularCorrelations applies Eq. 5.34 in the lab-frame. However, one
would expect any disparty between these regimes to be small, and Figure 5.8
points to an issue with our direction sampling method. One possible problem
could be in the validity of the series expansion, in terms of the collinear cutoff
λ, used in Eq. 4.118. To remind the reader, we sample the polar direction
of each emission according to Eq. 5.34, after azimuthal averaging in the
zero-momentum frame of its parents i and j. Inverse transform sampling
requires that we are able to integrate and invert Eq. 5.34 over all values of
the polar angle; we identified the valid regions of integration in Section 4.5.4,
which we denoted c1, c+ and c−. Importantly, we noted that c± ' c1 in the
limit that λ/nij is small, which allowed us to invert the integral. However, by
the nature of the collinear cutoff, with a sufficient number of emissions there
will be regions of angular phase-space where nij can approach λ, which could
invalidate the integral-limit approximation. This is currently speculative and
requires a more in-depth analysis.

Despite the direction sampling issue, the angular correlation distributions in
CVolver grant us an opportunity to test the 1/Nc breakdown of the emission
matrix elements. We see from the colour factors in Eq. 5.35, that the Nk

c con-
tributions to the angular correlation distributions produced by CVolver should
be related by

Nc

N2
c − 1

3

∑
k=−1

Nk
c ΣR,(k)

qq̄,2 = ΣR,(3)
qq̄,2 + N2

c ΣR,(3)
qq̄,2 + ΣR,(1)

qq̄,2 , (5.38)

for the V → qq̄ process. Similarly, in the case of H → gg, the angular correla-
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tion distributions should obey the relation

1
N2

c (N2
c − 1)

4

∑
k=2

Nk
c ΣR,(k)

gg,2 = ΣR,(4)
gg,2 = −ΣR,(2)

gg,2 . (5.39)
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FIGURE 5.9: The inclusive emission cross section as a function
of the angular correlation between two gluon emissions, for the
processes V → qq̄ and H → gg. Also shown are the individual
contributions at each order of Nk

c . A check on these contributions
is illustrated, as described in the text.

Figure 5.9 shows the breakdown of the angular correlation distributions in
terms of the the powers of Nk

c that contribute. This is illustrated for both the
V → qq̄ and H → gg process in Figure 5.9a and 5.9b respectively. In the for-
mer, there is agreement between the light-green and dark-green curves which
shows that the relation in Eq. 5.38 holds. Similarly, there is agreement be-
tween the light-green, dark-green and red curves in Figure 5.9b which respects
Eq. 5.39. This observation acts as a further check on the correctness of the emis-
sion matrix element calculation, basis tensor sampling of these elements and
the handling of the emission colour mechanics.

5.2.3 Nc Dependence

We have so far presented results pertaining to the components of CVolver re-
lated to emissions. In this section, we build on this to provide an initial vali-
dation of the fully-inclusive cross section, including both emission and virtual
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operators, up to three emissions.

To do this we use artificially chosen values for the colour charge and colour
charge product coefficients in the emission and virtual operators. This re-
moves the need for a direction sampling method and the density, ωijdΩk/Ωij

(in Eq. 4.93), is equal to unity. Specifically, the anomalous dimension matrix
coefficients used in the Sudakov operator exponents, Γij, and those used in the
competition algorithm, Ωij, are ascribed constant predetermined values in the
range 0.01 to 0.1 for each i, j pair. Importantly, the energy dependence in Γij is
left untouched. These coefficients take the form,

Γk
ij =

1
2

ln
(

E′

E

)
CΓ,k

ij ,

Ωk
ij =

1
2

CΩ,k
ij , (5.40)

where CΓ,k
ij and CΩ,k

ij are the aforementioned fixed values and we have included
the index k to denote the multiplicity context in which they appear. In the
normal running of CVolver, these coefficients are related according to

Γij = ln
(

E′

E

)
Ωij. (5.41)

However, for the purposes of this cross-check they are given values indepen-
dent of each other. The coefficients Ωij can then be equivalently viewed as the
coefficients of the emission operators, ωij, i.e. the eikonal factors. In addition,
the nature of evolving soft gluons dictates that these coefficients remain un-
changed if we swap the indices i ↔ j. As a more robust test of CVolver, we
assign different fixed values to all coefficients under this interchange of indices
(as might be necessary for the future inclusion of recoil effects or contributions
along the lines of dipole subtraction terms).

The specification of the coefficients CΓ,k
ij and CΩ,k

ij as fixed values essentially
predetermines a single point in angular phase-space for each emission, al-
though these points differ for the same emission between CΓ,k

ij and CΩ,k
ij . As

such, we can regard our cutoff prescription as having been absorbed into the
coefficient values. This also means that there is no notion of any angular region
in which the veto is enforced and no restriction on emission angles. Table 5.2
specifies the coefficients used to produce the results in Figures 5.10 and 5.11.

Figure 5.10 presents cross section values generated using CVolver at a fixed
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FIGURE 5.10: The inclusive cross section for the process V → qq̄
as a function of the veto scale, ρ, colour order, d and the number
of QCD colours, Nc. Gluon multiplicities are presented upto three
emissions (n = 0, 1, 2, 3). The coefficients of the colour operators
(see the text for more detail) in both the Sudakov and emission
operators have been fixed to numerical values at the same order
of magnitude. The plot marks denote the result generated using
CVolver whilst the unbroken curves correspond to the analytic

result.

evolution cutoff scale, ρ, and Sudakov operators calculated in the NdLC′V ap-
proximation, as a function of the number of QCD colours, Nc. These results
depict the cross section values for the hard process, V → qq̄, for gluon mul-
tiplicities upto three emissions (n = 0, 1, 2, 3). They are illustrated as points
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along with their corresponding errors.

Virtual (k = 0, 1) Virtual (k = 2) Emission

i j k CΓ,k
ij i j k CΓ,k

ij i j k CΩ,k
ij

a b 0 0.13 a b 2 0.1 a b 1 0.04
b a 0 0.11 a 1 2 0.18 b a 1 0.03
a b 1 0.12 a 2 2 0.13 a b 2 0.02
a 1 1 0.15 b a 2 0.2 a 1 2 0.07
b a 1 0.16 b 1 2 0.15 b a 2 0.06
b 1 1 0.14 b 2 2 0.17 b 1 2 0.08
1 a 1 0.18 1 a 2 0.18 1 a 2 0.09
1 b 1 0.17 1 b 2 0.12 1 b 2 0.01

1 2 2 0.16
2 a 2 0.2
2 a 2 0.12
2 1 2 0.15

TABLE 5.2: The fixed values of the kinematic and physical-
constant coefficients (see the text for details). The variables i and
j denote particle numbers, whilst k specifies the multiplicity at
which the coefficients are used. Labels a and b denote the pri-

mary partons in the processes V → qq̄ and H → gg.

The aforementioned simplifications to the anomalous dimension matrix and
competition algorithm coefficients enable one to carry out analytic calculations
upto two emissions. We begin by writing the N LC′V Sudakov matrix element
in Eq. 4.28 as

[τ|V |σ〉 = δτσe−NcΓ′σ − ζ
1

Nc
ΣτσR({τ, σ}), (5.42)

where we have parameterised the subleading-colour correction with the vari-
able ζ. This acts as a switch between the treatment of Sudakov operators in the
LC′V and NLC′V approximation. Using the coefficient values in Table 5.2, we
can write the zero emission cross section for qq̄ production using the LC′V and
NLC′V approximation, as

Σqq̄,0(ρ, Nc)
∣∣
ζ=0 = Σqq̄,0(ρ, Nc)

∣∣
ζ=1 = Ncρ

3(N2
c −1)

50Nc ,

(5.43)

where we have left the veto scale and the number of QCD colours explicit. The
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one emission cross section is

Σqq̄,1(ρ, Nc)
∣∣
ζ=0 =

9
8

Ncρ
N2

c −1
10Nc

(
8ρ

9Nc
100

13N2
c − 4

+
2N2

c ρ
9Nc
50

2− 11N2
c

+

(
2N2

c
11N2

c − 2
+

8
4− 13N2

c
+

1
N2

c − 1

)
ρ−

N2
c −1

25Nc

+
1

1− N2
c

)

Σqq̄,1(ρ, Nc)
∣∣
ζ=1 =

9Nc
(

N2
c − 1

)
ρ

3N2
c −5

50Nc

(
ρ

1
25Nc − ρ

11Nc
50

)

4 (11N2
c − 2)

. (5.44)

We do not present the two emission cross section here for the sake of readabil-
ity. Eq. 5.43 and 5.44 and the analytic results for Σ2(ρ, Nc) at both ζ = 0, 1 are
presented in Figure 5.10 by unbroken curves, alongside the CVolver results of
the same colour.

Figures 5.10a, 5.10b and 5.10c exhibit good agreement between the analytic
and CVolver results. In particular, the CVolver numerical results agree with the
analytic curves to within 0.0001%, 0.15% and 0.2% for n = 0, 1 and 2 respec-
tively. Their ratio is consistent with unity to within one standard deviation for
all values of ρ and Nc. The n = 3 analytic results have not been calculated and
as such are not presented. It is worth noting that the ratio between the d′ = 0
and d′ = 1 results for n = 3, at any given ρ are within 3%, indicating the size
of the NLC′V contributions.

The close agreement between these results provides validation on a number
of components within CVolver. It supplements the results of Section 5.2.1, to
confirm the correct sampling of emission matrix element basis tensors. Ad-
ditionally, the correct ρ-dependence and accurate description of the emission
operator eikonal factors verifies the competition algorithm implementation.
As an initial test of the inclusion of Sudakov operators in Variant B, Figure 5.10
corroborates the findings of Section 5.1.5. That is, the method for sampling
Sudakov matrix elements shared between Variant A and B, correctly chooses
basis tensors in an unbiased way. Our results also provide additional con-
firmation on the correctness of the Sudakov matrix element approximation.
Figure 5.10 also nicely showcases the ability of CVolver to handle any number
of QCD colours, Nc.

In order to further substantiate the findings of Figure 5.10, we present analo-
gous results for the process H → gg in Figure 5.11, which makes use of the
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same coefficients depicted in Table 5.2.
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FIGURE 5.11: The inclusive cross section for the process H → gg
as a function of the veto scale, ρ, colour order, d and the number
of QCD colours, Nc. Gluon multiplicities are presented upto three
emissions (n = 0, 1, 2, 3). The kinematic coefficients of the colour
operators in both the Sudakov and emission operators have fixed
numerical values at the same order of magnitude. The plot marks
denote the result generated using CVolver whilst the unbroken
curves correspond to the analytic result. Note that the overlap
between the d′ = 0 and d′ = 1 results, for multiplicities n ≥ 1, is

a coincidence of the chosen kinematic coefficients.

The analytic cross sections for Σgg,0(ρ, Nc) using the H → gg hard process in
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the LCV and NLC′V approximation, are

Σgg,0
∣∣
ζ=0 = N2

c ρ
3Nc
25 − 2ρ

3Nc
50 + 1

Σgg,0
∣∣
ζ=1 =

(
N2

c − 1
)

ρ
3Nc
25 , (5.45)

whilst those for Σgg,1(ρ, Nc) and Σgg,2(ρ, Nc) can be computed, as

Σgg,1
∣∣
ζ=0 = − 9

26

(
N2

c − 1
)

ρ
3Nc
25

(
ρ

13Nc
50 − 1

)

Σgg,1
∣∣
ζ=1 = −

9Nc
(

N2
c − 1

)
ρ

3N2
c −5

50Nc

(
ρ

11Nc
50 − ρ

1
25Nc

)

4 (11N2
c − 2)

, (5.46)

and

Σgg,2
∣∣
ζ=0 = − 1

146466320
ρ

3Nc
25

(
10974

(
15169N2

c − 8711
)

ρ
13Nc

50

− 58848075
(

N2
c + 1

)
ρ

7Nc
25 − 51026976

(
N2

c + 1
)

ρ
31Nc
100

− 31385640
(

N2
c + 1

)
ρ

7Nc
20 + 55

(
452899− 458253N2

c

)

+ 25534080ρ
59Nc
200 + 60869120ρ

63Nc
200 + 125542560ρ

33Nc
100

)
. (5.47)

The calculation of Σgg,2 at ζ = 1 is not presented here for the sake of readability.

The numerical results from CVolver again show good agreement with the ana-
lytic results of Eq. 5.45, 5.46 and 5.47. Results in Figure 5.11a and Figure 5.11b
agree to within 0.15%. In both cases, the ratio between the analytic and nu-
merical results are consistent with unity to within one standard deviation. The
n = 2 results agree to within 1% and their ratio is consistent with unity to
within 1.5 standard deviations. In the case of n = 3, the d′ = 0 and d′ = 1
results are again within 3% for all values of ρ and Nc. The same validation
conclusions can be drawn from Figure 5.11a. Indeed, the case of H → gg has
an additional colour flow at each multiplicity (i.e. after two emissions there
are 24 possible basis tensors as opposed to the 6 in the case of V → qq̄). The
H → gg process therefore provides an even stronger validation of the Sudakov
basis tensor sampling.

Results analogous to those in Figures 5.10 and 5.11, using different sets of CΓ,k
ij

and CΩ,k
ij coefficients, have been been produced. In particular, coefficient sets

in which CΓ,k
ij and CΩ,k

ij differ by orders of magnitude have been tested and
similarly good agreement is found between analytic and numerical results up
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to two emissions.

5.2.4 Fixed Order Validation

Similarly to Section 5.1.5, we now present results of the jet veto cross section
generated by Variant B upto two emissions, providing a comparison with an
independent numerical implementation, FixedOrderB.

FixedOrderB implements the V → qq̄ calculation presented in Section 5.1.1.
It differs from FixedOrderA by the collinear cutoff prescription used -
FixedOrderB adopts the one stated in Eq. 4.90. For the eikonal factors resulting
from the emission operators, FixedOrderB uses

ωij(k) =
ni · nj(

ni · nk + nj · nk
)
(

Θ (ni · nk − λ)

ni · nk
+

Θ
(
nj · nk − λ

)

nj · nk

)
. (5.48)

The integration over solid angle of the kinematic terms in the Sudakov expo-
nent produces the same result for both Variant A and Variant B cutoff prescrip-
tions, if we disregard terms suppressed by powers of λ. Thus, the Σ0(ρ) cross
section for the V → qq̄ process is exactly the same for both cutoff prescriptions,
whilst the Σ1(ρ) cross sections are within 0.2% of each other across the ρ range
10−3 to 1 when λ = 10−3. Beyond one-emission, the jet veto cross sections pro-
duced by FixedOrderA and FixedOrderB have much larger differences, reaching
15% for Σ2(ρ) in the range of ρ values between 10−3 and 1 with λ = 10−2. For
a smaller cutoff, λ = 10−3, this difference reduces to a maximum of 10%.

FixedOrderB also calculates the jet veto cross section for the H → gg process
upto two emissions. To not get too embroiled in calculational details, we shall
not present the explicit matrix forms for all of the colour charge operators in
the colour flow basis. We simply note that at a given multiplicity, n, these
matrices are (n+ 2)! dimensional compared to those in the corresponding V →
qq̄ calculation, which are (n + 1)! dimensional (as the initial gg process has an
extra colour flow relative to qq̄). An example of this can be seen with the T1

q ·T1
q̄
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and T1
g1
· T1

g2
colour charge products:

T1
q · T1

q̄ =

(
−N2

c−1
2Nc

−1
2

0 1
2Nc

)
, T1

g1
· T1

g2
=




0 0 1 0 0 0
0 0 0 1

2
1
2 0

0 0 −Nc −1
2 −1

2 0
0 0 0 −Nc

2 0 0
0 0 0 0 −Nc

2 0
0 0 0 1

2
1
2 0




.

(5.49)
The zero-emission cross section is

Σgg,0(ρ) = 2CACF exp
(
−2αs

π
ln
(

1
ρ

)
CA ln

(
2
λ

))
, (5.50)

while the one-emission cross section is

Σgg,1(ρ) = 4C2
ACF

αs

π

∫ 1

ρ

dE1
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∫

out

d cos θ1

2
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(
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λ
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× exp
[
−αs

π
CA ln

(
E1

ρ

)(
ln
(

2
λ

)
− ln

(
λ2

1− cos2 θ1

))]
, (5.51)

where g1 and g2 denote the two primary gluons. The cross sections presented
here adopt the parton momenta written in Eq. 5.3, with the parton labels g1 and
g2 taking the place of q and q̄. The two-emission cross section can be written as

Σgg,2(ρ) =
(αs

π

)2
∫ 1

ρ

dE1

E1

∫

out

dΩ1

4π

∫ E1

ρ
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E2

∫
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1 D†
1µD†

2νV†
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(
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× exp
[
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π
CA ln

(
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)(
ln
(

2
λ

)
− ln

(
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1− cos2 θ1

))]
, (5.52)
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where we can exploit colour conservation to write

T2
1 · T2

2 = T2
g1
· T2

g2
,

T2
g2
· T2

2 = T2
g1
· T2

1,

T2
g1
· T2

2 = T2
g2
· T2

1,

T2
g2
· T2

1 = −CA − T2
g1
· T2

g2
− T2

g1
· T2

1, (5.53)

which can be used to simplify the exponent of the Sudakov factor, as:

Vρ,E2 = exp

[
− αs

π
ln
(

E2

ρ

){
CA1 ln

((
ng1 · n2

) (
ng2 · n3

)

λ2

)

− T2
g1
· T2

g2
ln

(
2 (n1 · n2)(

ng1 · n2
) (

ng2 · n1
)
)

− T2
g1
· T2

1 ln

((
ng1 · n1

) (
ng2 · n2

)
(
ng1 · n2

) (
ng2 · n1

)
)}]

. (5.54)

The independent FixedOrderB code implements the Σn(ρ) cross sections
(where n = 0, 1, 2) for the processes V → qq̄ and H → gg. Just as in
Section 5.1.1, it utilises the GSL implementation of the VEGAS Monte Carlo
algorithm to perform the angular and energy integrations in Eq. 5.50, 5.51
and 5.52. The evolution operators in the case of the Σgg,1(ρ) calculation are
in the same dimension as those in Σqq̄,2(ρ). Despite this, the simplicity of an
all-gluon final-state allows us to simplify the Σgg,1(ρ) colour structure solely
in terms of Casimir operators. However, this is not the case for the ultimate
Sudakov operator in Σgg,2(ρ) for which we again employ the numerical
exponentiation methods in Armadillo.
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FIGURE 5.12: The jet veto cross section for the processes V → qq̄
and H → gg. Gluon multiplicities are presented upto two emis-
sions (n = 0, 1, 2). The stepped results pertain to those generated
using CVolver, whilst the broken curves correspond to a numeri-

cal integration of the calculation in Section. 5.1.1

Figure 5.12 shows the veto cross section dependence on ρ for different gluon
multiplicities up to n = 2. In all subfigures the stepped curves correspond
to the CVolver results, whilst the dashed curves represent the results of
FixedOrderB and are nomenclatured as ‘analytic’. The colour of each dashed
curve is in-correspondence with the CVolver result of the same process and
collinear cutoff. In order to capture the full-colour dependence in our CVolver
results, we can see from the calculations in Section 5.1.1 and from Eq. 5.52 that
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we must compute all Sudakov operator matrix elements to at least the NLC′V
approximation. Accordingly, all CVolver results in this section are computed
in the NNLC′V approximation.

Figure 5.12a illustrates the zero-emission cross sections for the V → qq̄ and
H → gg processes at cutoff values of λ = 10−2 and 10−3, presented along-
side their corresponding ‘analytic’ results. The one-emisison cross sections are
depicted in Figure 5.12b with the same schema.

Figure 5.12a shows good agreement between the results of CVolver and
FixedOrderB for both collinear cutoff values. Indeed, the results are equal to
within 0.5% for both λ = 10−2 and λ = 10−3 for a qq̄ primary system and
their ratios are consistent with unity to within one standard deviation. For
the gg final process, we also find good agreement to within 0.5% for both
cutoffs. Figure 5.12a also confirms some basic characteristics we expect of
Σ0(ρ): namely that for a given process, both collinear cutoff values have the
same value at ρ = 1 and that at a lower collinear cutoff the curve falls faster
as ρ gets smaller. Additionally, the value of both curves tends towards 0 with
smaller ρ. In particular, at ρ = 1 the inclusive cross sections take the values
Σqq̄,0(1) = Nc and Σgg,0(1) = N2

c − 1.

In the case of one-emission, Figure 5.12b illustrates close agreement between
CVolver and FixedOrderB. For both values of the cutoff, the Σqq̄,1 results agree
to within 0.6% down to a ρ value of 5× 10−3, below which the agreement is
to within 1.5%. This larger band of agreement is due to a greater sensitivity to
fluctuations in the CVolver results as the cross sections approach 0. Addition-
ally, the ratio between the CVolver and FixedOrderB results is consistent with
unity to within two standard deviations across the entire range of ρ values.
The Σgg,1 results agree to within 1% for λ = 10−2 and 5% for λ = 10−3, with
their ratio being consistent with a value of 1 to within two standard deviations.
The larger band of agreement for the lower cutoff value comes about due to a
greater sensitivity to fluctuations in the CVolver result as the cross section ap-
proaches 0. As already pointed out, this occurs at a larger value of ρ for a
smaller cutoff.

Figures 5.12c and 5.12d show the two-emission cross section results of CVolver
and FixedOrderB for the processes V → qq̄ and H → gg respectively. They
include the results for two cutoff values. We observe a discrepancy between
the CVolver and FixedOrderB results of at-most 10% for a qq̄ final-state with
a cutoff value of λ = 10−2. This discrepancy reduces to 5%, above values of
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ρ = 10−2. For lower cutoff values, this difference reduces to 3%. Figure 5.12d
confirms this disparity, where we find a difference between the CVolver and
FixedOrderB results of at-most 4% above ρ = 10−2 for both values of the cutoff.

This highlights an issue in the cross section results of CVolver Variant B, for
two or more emissions. We have already provided validation (using a uniform
direction sampling) in Section 5.2.1 and 5.2.3 of the emission and Sudakov op-
erator basis tensor sampling and calculation of the corresponding matrix el-
ements. Furthermore, the implementation of these components is shared be-
tween Variants A and B. The validation tests of Variant A performed in Sec-
tions 5.1.3, 5.1.4 and 5.1.5 further corroborate the findings of Section 5.2.1 and
5.2.3. This suggests that the discrepancy observed in Figures 5.12c and 5.12d
is due to our direction sampling. Further weight can be added to this pro-
posal with the observation of Section 5.2.2, that beyond one-emission the ra-
tio between the angular correlation distributions of AngularCorrelation and
CVolver deviates from unity. We saw in Figure 5.8b that this effect is less pro-
nounced for the H → gg process, compared with the V → qq̄ process (for
n = 2) - an observation which is mirrored in Figures 5.12c and 5.12d. Addi-
tionally, if one looks at the equivalent results to Figures 5.8a and 5.8b, but with
λ = 10−3, the ratio of angular correlation distributions for both the V → qq̄
and H → gg processes appears to fluctuate closer to unity (than for λ = 10−2).
Although, this is difficult to state concretely as smaller cutoff values cause
greater overall fluctuations in the angular correlation distributions. Moreover,
we can compare the results of FixedOrderB with all Sudakov operators set to
the identity matrix, to the ΣR

qq̄,2(ρ) result generated by CVolver. If these results
employ a uniform direction sampling across all phase-space (and we impose
the collinear cutoff prescription by-hand), we find agreement between the two
methods. One may ask, why then do we not adopt a simpler direction sam-
pling in Variant B? The reason being, that Variant B was developed with the
aim of minimising sampling weights. As it stands, Variant B utilises the den-
sity,

(
ωij(k)/Ωij

)
dΩk/4π, to sample the latest emission direction, which is

carried out in the ij zero-momentum frame, making the approximation that
we are in the small-λ limit. If we were to sample according to a simpler den-
sity, such as that used for Variant A (where we sample uniformly in the out-gap
region), we would have to introduce an additional source of weight, to include
an explicit factor of

(
ωij(k)/Ωij

)
dΩk/4π. In testing, such a factor can result

in large weight fluctuations, particularly for events with a higher number of
emissions. In summary, whilst we cannot firmly pin-point the issue causing
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the discrepancy in Figure 5.12, there is a clear need for further investigation.

Conclusions can still be drawn from Figure 5.12 however. We find good
agreement between the zero and one-emission cross sections calculated using
CVolver and FixedOrderB for both of the processes V → qq̄ and H → gg, at
multiple values of the collinear cutoff. This provides a degree of validation for
all components of the CVolver code. In addition, Figure 5.12c and Figure 5.3c
present results determined using a similar number of events (∼ 700M). We
observe fewer and less pronounced fluctuations in the curves of Figure 5.12c
which indicates improved efficiency of the Variant B algorithm.

5.2.5 Nc-breakdown

Following on from the validation tests of Sections 5.2.1, 5.2.2, 5.2.3 and 5.2.4,
we present the jet veto cross section for gluon multiplicities up to n = 3 for
both processes V → qq̄ and H → gg. We shall show results for these cross
sections comparing the LC′V , NNLC′V approximations for V → qq̄ and LCV ,
NNLCV approximations for H → gg, alongside their breakdown in terms of
the powers of Nc that contribute. These results have been generated using
CVolver at a cutoff of λ = 10−2.

Figures 5.13a, 5.13b, 5.13c and 5.13d, show the V → qq̄ veto cross section
for different gluon multiplicities up to n = 3. We include curves generated
using the LCV (d = 0), LC′V (d′ = 0) and NNLC′V (d′ = 2) approximations.
Also shown are the individual contributions at each order of Nk

c for both the
d′ = 0 and d′ = 2 approximations. The former are depicted as dashed-dotted
curves and the latter as solid curves. The strictly leading-colour cross sections,
LCV+R, are also presented with a solid green curve.

We can see that for multiplicities n ≤ 1, the d′ = 0 result is the exact result
and equal to the d′ = 2 curve. The zero and one-emission cross section can be
written schematically (see Eq. 5.8 and 5.9), as

Σqq̄,0(ρ) ∝ Nc exp
(
−
(

NcΓqq̄ −
1

Nc
Γqq̄

))
,

Σqq̄,1(ρ) ∝
(

N2
c − 1

)
ωqq̄(n1) exp

(
−
(

NcΓqq̄ −
1

Nc
Γqq̄

))

× exp
(
−
(

NcΓq1 + NcΓq̄1 −
1

Nc
Γqq̄

))
, (5.55)

to highlight their colour structures. From this we can straightforwardly see
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FIGURE 5.13: The jet veto cross section in V → qq̄ for different
gluon multiplicities (n = 0, 1, 2 and 3). Also shown are the indi-
vidual contributions at each order of Nk

c for d = 0 and d′ = 0, 2.
Solid curves (except that labelled LCR+V) always correspond to
d′ = 2, dashed-dotted curves to d′ = 0 and the dotted curve to

d = 0. Figures modified from [155].

why the d′ = 0 and d′ = 2 results are equivalent: the cross section exponents
only contain leading and sub-leading diagonal colour contributions. It is also
clear that the Σqq̄,0(ρ) strictly-leading colour cross section should be equal to

the d = 0 result and that Σ(1)
qq̄,0(ρ) should be equal to d′ = 2, as is evidenced

in Figure 5.13a. In the case of Σqq̄,1(ρ), we would expect that the Σ(0)
qq̄,1(ρ) cross

section is negative, that the d = 0 and LCV+R curves are not equal and that
Σ(2)

qq̄,1(ρ) is the largest positive contribution. All of these features are evidenced
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in Figure 5.13b. For higher multiplicities, n = 2, 3, it is interesting to note the
success of the d′ = 0 curves, whilst maintaining fewer fluctuations and being
far less computationally expensive (than the d′ = 1 and 2 results). Indeed,
the differences between d′ = 0, d′ = 1 and d′ = 2 are always less than 2%.
The d = 1 curve has been included in Figure 5.13d to exhibit this. It is also a
good validation of CVolver’s 1/Nk

c breakdown handling that the sum over all
Σ(k)

n does indeed equate to the corresponding d′ = 2 curve. This is true for all
multiplicities n = 0, 1, 2, 3 in Figure 5.13.

Figures 5.14a, 5.14b, 5.14c and 5.14d show the jet veto cross section for the
H → gg process at gluon multiplicities up to n = 3. For each multiplicity we
present results using only the unprimed LCV and NNLCV approximations. In
the case that the two primary jets and all subsequent emissions are gluons,
the flow decomposition coefficients in the ρ-term of Eq. 4.22 cancel entirely
(as they source from U(1) singlet gluon contribution in the gluon propagator,
which only interacts with quarks), and so the unprimed and primed forms of
our approximation are equal. For the results presented here, the differences
between the d = 0 and d = 2 results are within 3%.

The zero-emission cross section in Figure 5.14a, illustrates a peculiar feature of
our LCV approximation. There is a non-vanishing cross section at small ρ val-
ues, which occurs because of an unphysical N0

c contribution, present at d = 0
due to the subleading Nc terms in the scalar product and hard scattering matri-
ces. The strictly leading-colour contribution corresponds to the well-behaved
LCV+R curve, which is equal to the k = 2 curve and is the same for d = 0
and d = 2. As further validation of our 1/Nk

c breakdown, we see that the sum
over all Σ(k)

n corresponds to the d = 2 curve and is true for all multiplicities
n = 0, 1, 2, 3 in Figure 5.14.

5.2.6 Emission Spectra

In the previous section we exhibited the jet veto cross section results as a func-
tion of ρ for gluon multiplicities up to n = 3 and discussed their Nk

c break-
down. For each multiplicity, we compared the cross section results using the
LCV , LC′V and NLC′V approximations for the Sudakov matrix elements, includ-
ing the full-Nc dependence in the hard scattering, emission and scalar product
matrix elements. Also shown, were the strictly leading-colour results, LCV+R,
to act as a benchmark against the colour capabilities of modern showers. Of
course, state of the art parton showers can generate events with 10’s of emis-
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FIGURE 5.14: The jet veto cross section in H → gg for different
gluon multiplicities (n = 0, 1, 2 and 3). Also shown are the in-
dividual contributions at each order of Nk

c for d = 0 and d = 2.
Solid curves (except that labelled LCR+V) always correspond to
d = 2 and the broken curves always correspond to d = 0. Figures

modified from [155].

sions. As such, we shall extend the deliberation of Section 5.2.5 to the sum over
individual-multiplicity cross sections, Σqq̄(ρ) and Σgg(ρ), upto 20 emissions.

In order to compute the summed cross section using CVolver, we set a tog-
gle, emit2max, to 0. This adopts the scale sampling algorithm in Algorithm 8
with competition, which will carry on performing evolution steps until either
the maximum multiplicity or the chosen veto scale is reached (whichever oc-
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curs first). As previously described, Variant B of CVolver was developed in an
attempt to ameliorate the problem of large, fluctuating weights illustrated in
Section 5.1.6. We have seen in Section 5.2.5 that Variant B succeeds in this for
fixed, low multiplicities. However, when we allow CVolver to freely emit up to
higher multiplicities, such large-weight events reemerge, whose contributions
dominate the cross section. It seems we are afflicted by something similar to
the ‘no free lunch’ theorem, where the large event weights of Variant B are
now concentrated into the (necessary) 1/∆P (E|E′) factor which results from
the use of the competition algorithm at each evolution step. As a temporary
remedy, we apply a ‘weight cut’ to each event weight, discarding those events
with a value above our cut. This value is controlled with the command-line
flag weightCut and introduces the necessity to find its optimal value, i.e. to
find the lowest possible cutoff which has minimal effect on the cross section
result.

Figures 5.15a and 5.15b show the total 20-emission cross section and the first
few contributing lower-multiplicity cross sections for each of the processes
V → qq̄ and H → gg respectively. The summation over all cross sections
up to 20 emissions is denoted by n ≤ 20. These figures have been produced
using a collinear cutoff value of λ = 10−2, with a corresponding ‘optimal’
weightCut value of 12800 in the case of V → qq̄ and 51200 for H → gg. For
comparison, Figures 5.15c and 5.15d present the total n ≤ 20 cross section us-
ing these optimal weightCut values (denoted by wc), alongside the total cross
sections produced using wc/2 and 2wc. Both the wc/2 and 2wc results are
within two standard deviations of the wc one in the case of V → qq̄ and three
standard deviations for H → gg. In Figures 5.15a and 5.15b, the difference
between the d′ = 2 (solid blue) and d′ = 0 (dashed magenta) curves is 3.5%
down to ρ = 10−2. Below this veto scale the d′ = 0 and d′ = 2 curves fluc-
tuate significantly more which makes a comparison of relative values difficult.
The difference between the d′ = 2 curves (solid blue) and strict leading colour
ones (LCV+R) is significant: they agree for large ρ values, but exhibit a dif-
ference of 8% at ρ = 10−2 in the case of qq̄ production. For gg production,
the strictly-leading colour curve (multiplied by 8/9) and d = 2 curve differ by
10% at ρ = 10−2, which is dominated by the factor of 8/9 arising from the hard
scattering matrix element. Looking back to the Variant A V → qq̄ total cross
section result presented in Figure 5.4, we find agreement between the n ≤ 10
curve and the n ≤ 20 curve in Figure 5.15a to within 3% down to ρ values
of 10−2. Below this ρ value, the curves differ by 7%, which is dominated by
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FIGURE 5.15: The jet veto cross section in (a) for the V → qq̄
process and (b) for the H → gg process, for different gluon mul-
tiplicities (n = 0, 1, 2, 3,≤ 20). Results are shown for d′ = 0, 2
and d = 0, 2 respectively using a weightCut value of wc = 12800
and wc = 51200. The contributions from n = 0 up to 3 emis-
sions are also presented, however the total cross section result is
a summation over all emissions. The total cross section here has
been produced by CVolver, limited to n ≤ 20 emissions. Figures
modified from [155]. (c) and (d) compare the total cross section

(with n ≤ 20) for different values of the wc.

fluctuations. The apparent success of our d′ = 0 approximation in Figure 5.15a
is also interesting to note, although we do not expect this to continue once we
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consider more sophisticated hard processes [167].

During the writing of this work, [167] presented results that can be directly
compared with CVolver - these results have been included in Figure 5.15b and
are depicted by red data points. The approach of Hatta and Ueda in [167]
differs greatly from our own, providing a good finite-Nc benchmark: Hatta
and Ueda have built on the work of [174] and developed a framework (in [175,
176]) which resums non-global logarithms for the jet veto and hemisphere jet
mass observables. This is achieved by formulating the finite-Nc generalisation
of the BMS equation (in [174]) in terms of Wilson lines, which can be written
as a Fokker-Planck equation and solved using random walk trajectories in the
SU(3) colour space. This random walk is simulated by discretising the particle
coordinates−1 ≤ cos θ ≤ 1 and 0 ≤ φ ≤ 2π onto a lattice. For the red points in
Figure 5.15b, this is achieved with a lattice spacing of 1/80 and 1/60 for cos θ

and φ respectively. As we will see in a moment (in our upcoming discussion
around Figure 5.16), the jet veto cross sections produced with a cutoff value of
λ = 10−2 should be reliable (with a minimal cutoff dependence) for ρ ≥ 10−2;
these results also show good agreement with [167]. The lattice spacing used in
[167] for cos θ could have a similar effect on the cross section as our collinear
cutoff, with a 1/80 spacing corresponding to λ ' 0.01. However, [167] does
not explore cutoff dependence.
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FIGURE 5.16: The jet veto cross section in (a) and (b) for the
V → qq̄ process and (c) and (d) for the H → qq̄ process, for sum-
mations over different gluon multiplicities (n ≤ 0, 1, 2, 3, 4, 5, 6
and 20). Results are shown for d′ = 2 for the qq̄ final state and
d = 2 for the gg final state. The blue shaded region corresponds
to the n ≤ 20 cross section (one standard deviation) error. Solid
curves correspond to a collinear cutoff of 1× 10−2, whereas the
broken curves correspond to a cutoff of 1× 10−3. In Figures (B)
and (D), we are comparing the similarity between the total cross
section results produced using two cutoff values at large ρ. For
clarity: the n ≤ 5, 6 cross section results in both figures, whilst
plotted, reside under the n ≤ 20 result for both cutoff values, and
so are not visible. The λ = 10−2 and λ = 10−3 n ≤ 20 curves are
indistinguishable for large ρ values, down to ρ = 0.1 in (B) and

ρ = 0.2 in (D), where their difference becomes apparent.
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Figure 5.16 shows how the total 20-emission cross section is built up from
different multiplicities, for two values of the collinear cutoff: λ = 10−2 and
λ = 10−3. Curves produced using the former cutoff are represented with solid
coloured lines, whereas those produced using the latter are dashed. All curves
include the full-Nc dependence, with Sudakov matrix elements computed to
the NNLC′V approximation.

Figure 5.16a and Figure 5.16c exhibit the same principle features noted in Sec-
tion 5.1.6. The n = 0 curves are described by an exponential function and fall
faster as ρ gets smaller, for a lower cutoff. At ρ = 1, the zero-emission results
have the same values (of Nc and N2

c − 1 for V → qq̄ and H → gg), irrespec-
tive of the collinear cutoff used. Figure 5.15 illustrates how the n > 0 curves
increasingly contribute less to the total cross section at high ρ-values and sim-
ilar contributions at lower ρ. This feature is more pronounced for lower cutoff
values, where the n > 0 curves become more peaked closer to ρ = 1. This
characteristic manifests itself in Figure 5.16, where we see decreasing ‘jumps’
in the total cross section value for each successive emission at higher ρ and a
steadier increase at low-ρ. For the limit of a zero-value cutoff and an infinite
number of emissions to be well-approximated, we therefore expect to need a
minimum number of emissions, to sufficiently populate the total cross section
at low-ρ. Furthermore, we expect a higher number of real emissions to be nec-
essary for a smaller cutoff. We notice in Figures 5.16a and 5.16c, that the total
cross section is cutoff-independent down to ρ = 0.1 for the V → qq̄ process
and ρ = 0.2 for H → gg. This is highlighted more clearly in Figures 5.16b
and 5.16d. Below these ρ values, the cross section result develops a cutoff de-
pendence. The reason for this dependence requires further exploration. Also,
examining Figures 5.16a and 5.16c, we see that for both cutoff values, the total
cross section does not change (beyond fluctuations) past 6 emissions.
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It is clear from Figure 5.16a, that fluctuations in the total cross section result
begin to appear after four emissions. Figure 5.17 illustrates the distribution of
positive and negative event-weights which contribute to the n ≤ 4 total cross
section in Figure 5.16a, with the n ≤ 3 and n ≤ 5 weight distributions for
comparison. The event-weight distributions of Variant B are reminiscent of
Variant A (see Figure 5.5b) as we see that with an increasing number of emis-
sions, the weight distributions broaden and populate larger weights. Similarly
to Figure 5.5b, there are outlier event-weights, however they occur less fre-
quently for Variant B, represented by fewer fluctuations in the event-weight
distributions of Figure 5.17. This in-turn, corroborates the improved stability
of the Variant B jet veto cross section at lower multiplicities. Conversely, the
event-weight distributions in Figure 5.17 differ from those in Figure 5.5b as the
negative distributions are much closer to their positive counterparts for each
n. Additionally, the event-weight distributions for Variant B broaden much
more rapidly with increasing emissions than those of Variant A. We can see
from Figure 5.17, that the positive and negative weights follow a distribution,
dN
dw ∝ 1/w2; implying that the integral is formally not convergent. One can
show that, for a distribution in which positive or negative weights are equally
common, imposing a weight cutoff of |w| < wc is effective in dealing with
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this issue. However, a weight cutoff also introduces a bias in the integrand
evaluation that goes as 1/wc, whilst the variance is proportional to wc. We are
therefore forced to compromise between a larger wc, giving a less biased result,
and a smaller wc giving better convergence.
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FIGURE 5.18: The multiplicity distributions corresponding to the
total 20-emission cross section results in Figure 5.15. (a) presents
the distributions for the V → qq̄ process at NNLC′V and (b) for the
H → gg process at NNLCV for a weightCut of wc = 12800 and
wc = 51200. Both (a) and (b) show the multiplicity distributions
using total cross section-weighted events (solid curves) and unit-
weighted events (dashed-dotted curves), for two values of the
collinear cutoff: λ = 10−2 and λ = 10−3. The same distributions

using a larger weightCut value, 2wc, are included.

Figure 5.18 presents the multiplicity plots corresponding to the 20-emission to-
tal cross section in Figure 5.16. The solid curves show the multiplicity distribu-
tion, weighted by the total cross section at a given multiplicity, n, for both cut-
off values. These results use the optimal weightCut values, wc. Also included,
are the total cross section multiplicity plots for a larger weightCut value. The
dashed curves represent the unweighted multiplicity distributions, i.e. the nth
multiplicity bin simply counts events for an event with n emissions (the nor-
malisation is a result of the histogramming process, in which each bin weight
is divided by the number of ‘attempted’ points). Importantly, one can see from
the unweighted distributions that 0.001% of events contain 20 emissions, and
that this fraction is even less for a larger cutoff. This is expected, as the cutoff on
each particle removes a portion of phase-space in which a subsequent emission
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can reside. However, looking at the weighted multiplicity distributions, we see
that past 6 emissions, the distributions drop off far too quickly for both cutoff
values, developing large fluctuations. This corroborates the same observation
in Figure 5.16. A similar trend is seen for the results produced using a higher
weightCut value, 2wc. Whilst it appears that the 2wc curves have larger values
at higher multiplicities, there is also a strong increase in fluctuations, making
any conclusion on this matter difficult. The exact cause of the rapid drop off
past 6 emissions and large fluctuations is not known. It is worth mentioning,
that we have deliberately chosen a challenging observable as a robust test of
CVolver, where the phase-space of the emitted gluons is tightly constrained.
And so, there is an some expectation of erratic behaviour related to numerical
stability. Notwithstanding this point, the large fluctuations could be caused
by, although not limited to, one of the following: the employed cutoff pre-
scription (and its corresponding direction sampling), insufficient sampling of
the factorially increasing colour space at higher multiplicities, the more rapid
broadening of the event-weight distributions in Variant B or a potential artifact
of the imposed weight cutoff. Given that higher-multiplicity contributions are
necessary to populate the low-ρ total cross section, it is possible that one of
these factors is the cause for the observed cutoff-dependences at low ρ.

It is clear that our Hemispheres implementation of the jet veto cross section un-
derestimates the weights of high-multiplicity events, which additionally con-
tain large weight fluctuations. However, our examination of the total cross sec-
tions in Figures 5.15, 5.16 and 5.18 vindicates the performance of Hemispheres
for ρ ≥ 10−2.
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Conclusions and Outlook

With the analyses at modern particle colliders frequently limited by theoret-
ical uncertainties, improving the accuracy of general-purpose event genera-
tors (GPEGs) is becoming increasingly important. Precise predictions for ob-
servables at colliders often cannot be achieved without the resummation of
logarithmically-enhanced contributions to all orders in perturbation theory.
And particularly for non-global observables, the all-orders resummation can
be a complicated task, largely due to unavoidable non-trivial colour correla-
tions. It is the domicile of GPEG parton showers to provide an all-purpose ap-
proximation to this procedure. To drastically simplify the problem, they adopt
the leading colour approximation and account for the leading logarithms of
soft and collinear origin. However, there is a growing list of effects that par-
ton showers do not account for, including in particular a full colour treatment
of non-global logarithms. One crucial area therefore in which GPEGs can be
improved, is by the inclusion of sub-leading colour corrections.

In spite of much progress in recent years [148–150, 174, 175, 177–182], it re-
mains to develop an automated approach to resummation beyond the leading
colour approximation. This thesis has built on the work [18–21], which encap-
sulates many of the aforementioned effects, to make progress in this direction.
It uses algorithmic, recursive definitions of QCD amplitudes for soft gluon
emissions, including the leading virtual corrections to all orders.

In Chapter 2 we presented a general evolution algorithm, which can be used
as a basis for automated resummations. It was written in a differential form,
apt for the calculation of multiple soft-gluon contributions to any observable,
and suited to a Monte-Carlo implementation. To showcase the validity of this
algorithm, we reformulated it in such a way, so as to make the cancellation of
infrared divergences explicit. Using this rephrased algorithm, we calculated
the non-global contributions to the hemisphere jet mass observable, finding
agreement with [96, 104, 105] up to O(α3

s ). We then turned our attention to
the colour structures encountered in the evolution algorithm, expressing the
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Sudakov and emission colour operators in the colour flow basis. A systematic
procedure to calculate colour traces, and expand in contributing powers of
1/Nk

c was expressed. Using the leading colour terms in this expansion, we
were able to re-derive the Banfi-Marchesini-Smye equation. We subsequently
explored the first subleading-colour corrections in our expansion. This work
gave us the requisite knowledge to build the beginnings of a parton shower,
including contributions beyond leading colour.

Following on, in Chapter 4 we presented a Monte Carlo code, CVolver, that
utilises the amplitude-level evolution algorithm in Chapter 2 to simulate high-
energy particle collisions. It sums the most important soft-gluon logarithms,
although the framework is general enough to accommodate beyond this
approximation. We began by expressing the evolution algorithm explicitly
in terms of matrix elements to illustrate how we handle a large colour space
- by sampling over intermediate colour states. Subsequently, we laid out
the CVolver framework, which provides the general colour machinery, upon
which an observable Implementation can be interfaced. We addressed the
calculation of the approximated Sudakov and full-colour emission matrix
elements in the colour flow basis, and their implementation in Core. Approx-
imating Sudakov matrix elements, [τ|V |σ〉, raised the challenge of sampling
the basis tensor, |τ〉, d swaps from |σ〉, which was tackled in Section 4.4.
With these fundamental implementations settled, we proceeded to outline
two variants of the Hemispheres implementation, which calculates the jet veto
observable. This process is sensitive to wide-angle, soft-gluon emission and
thus provides an ideal test of the framework. Variant A was our initial im-
plementation, maintaining an inherently amplitude-level description. Whilst
this is necessary for the inclusion of collinear emissions, spin dependence and
Coulomb gluon effects [103], Variant A produces total cross section results
contaminated by large weight fluctuations. Variant B on the other hand makes
cross section-level Lorentz contractions, allowing for more efficient sampling
strategies in an attempt to ameliorate these large weights. In Chapter 5 we
presented the cross section results of these two variants. Comparing with
independent results, we used both variants to validate the underlying colour
machinery of CVolver. In addition, we created independent test codes to verify
the individual multiplicity cross sections up to two emissions. For Variant B
we showed the cross section breakdown, in terms of the different powers of
Nc that contribute, using the LCV+R, LCV , LC′V and NNLC′V approximations.
We observed significant deviations from the leading-colour approximation
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in the jet veto observable, for both V → qq̄ and H → gg production, and
small differences between the LC′V and NNLC′V approximations. Examining
the total jet veto cross section (summing emissions up to n ≤ 20) and the
corresponding multiplicity distributions for multiple collinear cutoff values,
we found that for n ≤ 6 emissions and for ρ ≥ 10−2, the jet veto cross section
calculated by CVolver appears accurate and largely cutoff-independent. For
H → gg production, we also find our results are in good agreement with [167].
All of this represents a milestone in the progress towards a full-colour parton
shower.

There are several directions which can be indicated for future works. Firstly,
we identified a potential issue in the direction sampling of Variant B, which we
believe to be caused by the deformation of the cutoff cones about each emis-
sion as they are boosted back to the lab-frame. To make a firmer conclusion
on the exhibited cutoff dependence of Variant B, a more thorough study of the
cutoff prescription and associated direction sampling should be carried out.
Furthermore, Variant B was our attempt at alleviating the large weight fluc-
tuations observed in Variant A. Whilst it achieved this for low multiplicities,
an imposed weight cutoff was still required to attain stable total cross section
results. Traditional showers, in the leading colour approximation, can achieve
sampling algorithms which produce positive-definite weights. However, in-
cluding sub-leading colour effects (and relatedly performing an amplitude-
level evolution), necessitates the inclusion of negative weights, which in gen-
eral can lead to largely varying weight distributions. We have observed such
distributions accumulate emission-by-emission in CVolver. To improve this
situation, the resampling strategy presented in [183] could be integrated into
CVolver, to achieve a narrower weight distribution at each evolution step.

Additionally, we saw in Section 5.2.6 that for events with n ≥ 6 emissions,
the total cross section had grossly underestimated weights. As a partial rem-
edy to this, one could tailor the basis tensor sampling in CVolver to return to
the colour matrix diagonal before the shower cascade reaches 6 emissions, and
henceforth evolve in the leading-colour approximation. Whilst the author has
not explored this approach, it may prove to include a sufficient ’bulk’ of the
sub-leading colour corrections. CVolver should also be extended beyond the
soft approximation, and to include incoming hadrons. This can be done us-
ing the results presented in [103], which improved on the algorithm presented
in Chapter 2 to include collinear emissions, spin dependence and kinematic
recoil.
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Appendix A

CVolver UML

In this appendix, we present the Unified Modeling Language (UML) class dia-
grams of the CVolver framework upon which we build the Hemispheres imple-
mentation. This simulates high-energy particle collisions and is tailored to the
production of two-jet systems, in which there is a restriction on the amount of
radiation lying in some angular region of phase-space, outside of the jets: the
jet veto observable. The exact implementation of Hemispheres is discussed in
Chapter 4 for two variants, Variant A and Variant B, whilst the corresponding
cross section results are presented in Chapter 5. This appendix aims to provide
the reader with a more detailed review of the CVolver code to assist in future
improvements.

To aid the reader, we provide a quick overview of class diagram notation. Class
diagrams are a type of structure diagram, presenting the systems’ classes: their
attributes, methods (i.e. what they do) and their relationship to other classes.
These are represented in each system by a yellow box, which are split into
three sections: the class name (with its scope signified by the operator ::, e.g.
CVolver::), the class attributes, and the class methods. The Hemispheres imple-
mentation is split into three ‘systems’. First, we have the implementation of
the operator classes and the event recording for the jet veto observable (in the
grey box entitled ‘Hemispheres’). Secondly, Hemispheres inherits from Core.
This provides an archetype of an operator class, defines the necessary operator
class methods, and handles all of the required colour manipulation machinery
(the grey box entitled ‘Core - Operators’). Thirdly, Core also carries out the
important Sudakov operator colour approximation (in EvolutionMatrix) and
orchestrates the shower evolution (in Evolver). This is described in the ‘Core -
Shower Evolution’ box.

The visibility of each class attribute or method (collectively termed ‘members’)
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is specified by: + for a public member,− for a private member and # for a pro-
tected member;∼ denotes a class destructor. Relationships between classes are
represented by lines and differ by the arrow-head. A normal arrow represents
an association, which simply indicates the ‘use’ of another class. An open tri-
angle denotes inheritance, whilst an open diamond indicates an aggregation
association. This is more specific than a normal association and indicates that
one class ‘has’ an instance of another; likely contained in the class as an at-
tribute.
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Hemispheres

Core - Operators

�struct�
CVolver::Hemispheres::Random

+ rnd()
+ seed()

�struct�
CVolver::Hemispheres::Particle

+ energy
+ colour
+ direction

+ polarization()

�struct�
CVolver::Hemispheres::EventRecord

+ nLeft
+ nRight
+ particles
+ weight
+ hardScale
+ softScale
+ nextPolarization
+ nextDirection
+ nextDipole
+ pol

�struct�
CVolver::Hemispheres::Direction

+ cosTheta
+ phi

+ dot()
+ uniformDirection()
+ rotate()
+ towardsDirection()
+ generateCollinerEmission()
+ flip()

�struct�
CVolver::Hemispheres::AnomalousDimensionMatrix

+ evaluate()

�struct�
CVolver::Hemispheres::EmissionMatrix

+ nextPhaseSpace()
+ evaluate()
+ updateCrossing()

CVolver::AnomalousDimensionMatrix

EventRecord, RandomT

CVolver::EmissionMatrix

EventRecord, RandomT

CVolver::Evolver

EventRecord, RandomT

CVolver::HardProcessMatrix

EventRecord, RandomT

CVolver::EvolutionOrdering

EventRecord, RandomT

�struct�
CVolver::Hemispheres::HardProcessMatrix

+ initialKinematics()
+ element()

�struct�
CVolver::Hemispheres::EvolutionOrdering

+ hardScale

+ setHardScale()
+ setNextScale()
+ getNextScaleAndDipole()
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Core - Shower Evolution

Core - Operators

CVolver::Evolver

+ testApproximation
+ deltaMatrix
+ noVirtuals
- theCrossing
- theHardProcessMatrix
- theEvolutionMatrix
- theEmissionMatrix
- theScalarProductMatrix
- theEvolutionOrdering
- theMaxEmissions
- theCurrentEvent
- theCurrentAmplitude
- theCurrentFlows
- theCurrentEventWeight
- theCurrentNEmissions
- theLogFile
- theVerbosity

+ Evolver()
+ ~Evolver()
+ verbosity()
+ log()
+ crossing()
+ hardProcessMatrix()
+ evolutionMatrix()
+ anomalousDimension()
+ emissionMatrix()
+ scalarProductMatrix()
+ evolutionOrdering()
+ maxEmissions()
+ currentEvent()
+ currentAmplitude()
+ currentFlows()
+ currentWeight()
+ currentNEmissions()
+ evolve()
+ evolveFull()
# currentAmplitude()
# currentFlows()
# currentWeight()
# currentNEmissions()

EventRecord, RandomT

CVolver::EvolutionMatrix

- theAnomalousDimension
- rFunctions
- theDefaultOrder
- theCutParameter
- theFlatFlows
- theLCPrime
- theRFuncDef
- theSummationSequenceCache

+ EvolutionMatrix()
+ anomalousDimension()
+ flushCaches()
+ crossing()
+ ~EvolutionMatrix()
+ defaultOrder()
+ cutParameter()
+ lcPrime()
+ RFuncDef()
+ virtualFlatFlows()
+ nextFlows()
+ element()
+ exactElement()
+ lcElement()
+ lcPrimeElement()
+ R()
+ sigmaProduct()
+ sigmaSummand()
+ sigmaSum()
+ RTermXLC()
- makeSummationSequences()

EventRecord, RandomT

CVolver::RFunction

+ terms

+ RFunction()
+ evaluate()
+ math()

CVolver::RTerm

+ exponentiatedOmega
+ omegaPowers
+ omegaDifferences
+ nPower
+ preFactor

+ RTerm()
+ multiplyOmegaPower()
+ diff()
+ evaluate()

CVolver::ExactEvolutionMatrix

- exponentialCached
- exponential

+ ExactEvolutionMatrix()
+ exactElement()
+ nexactElement()
+ flushCaches()

CVolver::EvolutionOrdering

+ setHardScale()
+ setNextScale()

EventRecord, RandomT

CVolver::AnomalousDimensionMatrix

EventRecord, RandomTCVolver::EmissionMatrix

EventRecord, RandomT

CVolver::AnomalousDimensionMatrixBaseCVolver::EmissionMatrixBase

CVolver::HardProcessMatrix

EventRecord, RandomT

CVolver::ScalarProductMatrix

CVolver::ColourFlowCrossing

CVolver::ColourFlowMatrix

CVolver::ColourFlow
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Core - Operators

CVolver::AnomalousDimensionMatrix

+ AnomalousDimensionMatrix()
+ ~AnomalousDimensionMatrix()
+ evaluate()
+ nextFlows()

EventRecord, RandomT
CVolver::EmissionMatrix

- theFlatFlows

+ EmissionMatrix()
+ ~EmissionMatrix()
+ nextPhasespace()
+ evaluate()
+ nextFlowWeights()
+ nextFlowWeight()
+ flatFlows()
+ nextFlows()
+ updateCrossing()

EventRecord, RandomT

CVolver::AnomalousDimensionMatrixBase

- rhoCache
- omegaCache
- sigmaCache

+ AnomalousDimensionMatrixBase()
+ ~AnomalousDimensionMatrixBase()
+ flushCaches()
+ omega()
+ rho()
+ Omega()
+ Sigma()
+ element()

CVolver::EmissionMatrixBase

- elemCache

+ EmissionMatrixBase()
+ ~EmissionMatrixBase()
+ flushCaches()
+ omega()
+ omegaLR()
+ element()
+ elementLR()

CVolver::HardProcessMatrix

+ HardProcessMatrix()
+ ~HardProcessMatrix()
+ initialFlows()
+ initialKinematics()
+ element()

EventRecord, RandomT

CVolver::ScalarProductMatrix

- elementCache

+ ScalarProductMatrix()
+ ~ScalarProductMatrix()
+ element()

CVolver::ColourFlowCrossing

- theNFlows
- theNLegs
- theColourMap
- theAntiColourMap
- theReverseColourMap
- theReverseAntiColourMap
- theColourCrossingSigns
- theAntiColourCrossingSigns
- theAllFlows

+ addColourAntiColourCrossing()
+ printMaps()
+ clear()
+ initialize()
+ ColourFlowCrossing()
+ ColourFlowCrossing()
+ nFlows()
+ nLegs()
+ allFlows()
+ colourLeg()
+ antiColourLeg()
+ colourCrossingSign()
+ antiColourCrossingSign()
+ coloured()
+ colourLine()
+ antiColoured()
+ antiColourLine()
+ isSinglet()
+ reduceSinglets()
+ patchSinglets()
+ colourConnected()
# addColourCrossing()
# addAntiColourCrossing()
# fill()

CVolver::ColourFlowMatrix

- theCrossing
- theIncludeCrossingSigns

+ ColourFlowMatrix()
+ ~ColourFlowMatrix()
+ crossing()
+ isNotCrossed()
+ includeCrossingSigns()CVolver::ColourFlow

- thePermutation

+ ColourFlow()
+ ColourFlow()
+ operator==()
+ operator!=()
+ operator<()
+ size()
+ empty()
+ conjugate()
+ scalarProduct()
+ permutation()
+ antiColour()
+ colour()
+ getTranspositionOf()
+ diff()
+ ndiff()
+ swap()
+ emitSinglet()
+ emitFromColour()
+ emitFromAntiColour()
+ isNonZero()
+ randomFlow()
+ allFlows()



281

Bibliography

[1] P. Bagnaia et al. “Evidence for Z0 → e+e− at the CERN p̄p Collider”.
Phys. Lett. B 129 (1983), pp. 130–140.

[2] G. Arnison et al. “Experimental Observation of Isolated Large Trans-
verse Energy Electrons with Associated Missing Energy at

√
s = 540

GeV”. Phys. Lett. B 122 (1983), pp. 103–116.
[3] F. Abe et al. “Observation of top quark production in p̄p collisions”.

Phys. Rev. Lett. 74 (1995), pp. 2626–2631. arXiv: hep-ex/9503002.
[4] S. Abachi et al. “Observation of the top quark”. Phys. Rev. Lett. 74 (1995),

pp. 2632–2637. arXiv: hep-ex/9503003.
[5] K. Kodama et al. “Observation of tau neutrino interactions”. Phys. Lett.

B 504 (2001), pp. 218–224. arXiv: hep-ex/0012035.
[6] S. Chatrchyan et al. “Observation of a New Boson at a Mass of 125 GeV

with the CMS Experiment at the LHC”. Phys. Lett. B 716 (2012), pp. 30–
61. arXiv: 1207.7235 [hep-ex].

[7] G. Aad et al. “Observation of a new particle in the search for the Stan-
dard Model Higgs boson with the ATLAS detector at the LHC”. Phys.
Lett. B 716 (2012), pp. 1–29. arXiv: 1207.7214 [hep-ex].

[8] Y. Fukuda et al. “Evidence for oscillation of atmospheric neutrinos”.
Phys. Rev. Lett. 81 (1998), pp. 1562–1567. arXiv: hep-ex/9807003.

[9] M. C. Gonzalez-Garcia and M. Maltoni. “Phenomenology with Mas-
sive Neutrinos”. Phys. Rept. 460 (2008), pp. 1–129. arXiv: 0704 . 1800
[hep-ph].

[10] M. Bähr et al. “Herwig++ Physics and Manual”. Eur. Phys. J. C58 (2008),
pp. 639–707. arXiv: 0803.0883 [hep-ph].

[11] J. Bellm et al. “Herwig 7.0/Herwig++ 3.0 release note”. Eur. Phys. J.
C76.4 (2016), p. 196. arXiv: 1512.01178 [hep-ph].

[12] J. Bellm et al. “Herwig 7.1 Release Note” (2017). arXiv: 1705 . 06919
[hep-ph].

[13] T. Sjöstrand, S. Mrenna, and P. Z. Skands. “PYTHIA 6.4 Physics and
Manual”. JHEP 05 (2006), p. 026. arXiv: hep-ph/0603175 [hep-ph].



282 Bibliography

[14] T. Sjöstrand, S. Mrenna, and P. Z. Skands. “A Brief Introduction to
PYTHIA 8.1”. Comput. Phys. Commun. 178 (2008), pp. 852–867. arXiv:
0710.3820 [hep-ph].

[15] T. Sjöstrand et al. “An Introduction to PYTHIA 8.2”. Comput. Phys. Com-
mun. 191 (2015), pp. 159–177. arXiv: 1410.3012 [hep-ph].

[16] T. Gleisberg et al. “Event generation with SHERPA 1.1”. JHEP 02 (2009),
p. 007. arXiv: 0811.4622 [hep-ph].

[17] J. Bellm et al. “Herwig 7.2 release note”. Eur. Phys. J. C 80.5 (2020), p. 452.
arXiv: 1912.06509 [hep-ph].

[18] J. R. Forshaw, A. Kyrieleis, and M. H. Seymour. “Super-leading log-
arithms in non-global observables in QCD”. JHEP 08 (2006), p. 059.
arXiv: hep-ph/0604094 [hep-ph].

[19] J. R. Forshaw, A. Kyrieleis, and M. H. Seymour. “Super-leading log-
arithms in non-global observables in QCD: Colour basis independent
calculation”. JHEP 09 (2008), p. 128. arXiv: 0808.1269 [hep-ph].

[20] R. Ángeles-Martínez, J. R. Forshaw, and M. H. Seymour. “Coulomb glu-
ons and the ordering variable”. JHEP 12 (2015), p. 091. arXiv: 1510 .
07998 [hep-ph].

[21] R. Á. Martínez, J. R. Forshaw, and M. H. Seymour. “Ordering multiple
soft gluon emissions”. Phys. Rev. Lett. 116.21 (2016), p. 212003. arXiv:
1602.00623 [hep-ph].

[22] M. De Angelis, J. R. Forshaw, and S. Plätzer. “Resummation and Sim-
ulation of Soft Gluon Effects beyond Leading Color”. Phys. Rev. Lett.
126.11 (2021), p. 112001. arXiv: 2007.09648 [hep-ph].

[23] E. C. Fowler et al. “A Diffusion Cloud-Chamber Study of Pion Interac-
tions in Hydrogen and Helium”. Phys. Rev. 91 (1 1953), pp. 135–149.

[24] V. E. Barnes et al. “Observation of a Hyperon with Strangeness Minus
Three”. Phys. Rev. Lett. 12 (8 1964), pp. 204–206.

[25] M. Gell-Mann. “The Eightfold Way: A Theory of strong interaction
symmetry” (1961).

[26] Y. Ne’eman. “Derivation of strong interactions from a gauge invari-
ance”. Nucl. Phys. 26 (1961). Ed. by R. Ruffini and Y. Verbin, pp. 222–
229.

[27] G. F. Chew and S. C. Frautschi. “Principle of Equivalence for All
Strongly Interacting Particles Within the S Matrix Framework”. Phys.
Rev. Lett. 7 (1961), pp. 394–397.

[28] P. D. B. Collins. “Regge theory and particle physics”. Phys. Rept. 1
(1971), pp. 103–234.



Bibliography 283

[29] M. Gell-Mann. “A Schematic Model of Baryons and Mesons”. Phys. Lett.
8 (1964), pp. 214–215.

[30] G. Zweig. “An SU(3) model for strong interaction symmetry and its
breaking.” Developments in the quark theory of hadrons. Ed. by D. B. Licht-
enberg and S. P. Rosen. Vol. 1. Feb. 1964.

[31] E. D. Bloom et al. “High-Energy Inelastic e p Scattering at 6-Degrees
and 10-Degrees”. Phys. Rev. Lett. 23 (1969), pp. 930–934.

[32] M. Y. Han and Y. Nambu. “Three Triplet Model with Double SU(3) Sym-
metry”. Phys. Rev. 139 (1965). Ed. by T. Eguchi, B1006–B1010.

[33] O. W. Greenberg. “Spin and Unitary Spin Independence in a Paraquark
Model of Baryons and Mesons”. Phys. Rev. Lett. 13 (1964), pp. 598–602.

[34] D. J. Gross and F. Wilczek. “Asymptotically Free Gauge Theories - I”.
Phys. Rev. D 8 (1973), pp. 3633–3652.

[35] H. Fritzsch, M. Gell-Mann, and H. Leutwyler. “Advantages of the Color
Octet Gluon Picture”. Phys. Lett. B 47 (1973), pp. 365–368.

[36] G. ’t Hooft. “Renormalization of Massless Yang-Mills Fields”. Nucl.
Phys. B 33 (1971), pp. 173–199.

[37] L. D. Faddeev and V. N. Popov. “Feynman Diagrams for the Yang-Mills
Field”. Phys. Lett. B 25 (1967). Ed. by Jong-Ping Hsu and D. Fine, pp. 29–
30.

[38] G. ’t Hooft. “An algorithm for the poles at dimension four in the di-
mensional regularization procedure”. Nucl. Phys. B 62 (1973), pp. 444–
460.

[39] G. ’t Hooft. “Renormalizable Lagrangians for Massive Yang-Mills
Fields”. Nucl. Phys. B 35 (1971). Ed. by J. C. Taylor, pp. 167–188.

[40] D. J. Gross and F. Wilczek. “Ultraviolet Behavior of Nonabelian Gauge
Theories”. Phys. Rev. Lett. 30 (1973). Ed. by J. C. Taylor, pp. 1343–1346.

[41] D. J. Gross and F. Wilczek. “Asymptotically Free Gauge Theories - II”.
Phys. Rev. D 9 (1974), pp. 980–993.

[42] H. D. Politzer. “Reliable Perturbative Results for Strong Interactions?”
Phys. Rev. Lett. 30 (1973). Ed. by J. C. Taylor, pp. 1346–1349.

[43] H. Georgi. Lie Algebras In Particle Physics: from Isospin To Unified Theories.
New York: Westview Press, 1999. ISBN: 0-7382-0233-9.

[44] G. Abbiendi et al. “A Simultaneous measurement of the QCD color fac-
tors and the strong coupling”. Eur. Phys. J. C 20 (2001), pp. 601–615.
arXiv: hep-ex/0101044.

[45] G. ’t Hooft. “A Planar Diagram Theory for Strong Interactions”. Nucl.
Phys. B 72 (1974). Ed. by J.C. Taylor, p. 461.



284 Bibliography

[46] M. Moretti, T. Ohl, and J. Reuter. “O’Mega: An Optimizing matrix ele-
ment generator” (2001). Ed. by Ties Behnke et al., pp. 1981–2009. arXiv:
hep-ph/0102195.

[47] W. Kilian, T. Ohl, and J. Reuter. “WHIZARD: Simulating Multi-Particle
Processes at LHC and ILC”. Eur. Phys. J. C 71 (2011), p. 1742. arXiv:
0708.4233 [hep-ph].

[48] A. Cafarella, C. G. Papadopoulos, and M. Worek. “Helac-Phegas: A
Generator for all parton level processes”. Comput. Phys. Commun. 180
(2009), pp. 1941–1955. arXiv: 0710.2427 [hep-ph].

[49] G. Marchesini and B. R. Webber. “Monte Carlo Simulation of General
Hard Processes with Coherent QCD Radiation”. Nucl. Phys. B 310
(1988), pp. 461–526.

[50] R. K. Ellis, G. Marchesini, and B. R. Webber. “Soft Radiation in Parton
Parton Scattering”. Nucl. Phys. B 286 (1987). [Erratum: Nucl.Phys.B 294,
1180 (1987)], p. 643.

[51] S. Catani and M.H. Seymour. “A General algorithm for calculating
jet cross-sections in NLO QCD”. Nucl. Phys. B 485 (1997). [Erratum:
Nucl.Phys.B 510, 503–504 (1998)], pp. 291–419. arXiv: hep-ph/9605323.

[52] S. Plätzer and S. Gieseke. “Coherent Parton Showers with Local Re-
coils”. JHEP 01 (2011), p. 024. arXiv: 0909.5593 [hep-ph].

[53] S. Plätzer and S. Gieseke. “Dipole Showers and Automated NLO
Matching in Herwig++”. Eur. Phys. J. C 72 (2012), p. 2187. arXiv:
1109.6256 [hep-ph].

[54] B.R. Webber. “A QCD Model for Jet Fragmentation Including Soft
Gluon Interference”. Nucl. Phys. B 238 (1984), pp. 492–528.

[55] F. Mandl and G. Shaw. Quantum Field Theory. Wiley, Apr. 2010. ISBN:
978-0-471-49683-0.

[56] S. Weinberg. “Nonabelian Gauge Theories of the Strong Interactions”.
Phys. Rev. Lett. 31 (1973), pp. 494–497.

[57] C. Yang and R. L. Mills. “Conservation of Isotopic Spin and Isotopic
Gauge Invariance”. Phys. Rev. 96 (1954). Ed. by Jong-Ping Hsu and D.
Fine, pp. 191–195.

[58] M. E. Peskin and D. V. Schroeder. An Introduction to quantum field theory.
Reading, USA: Addison-Wesley, 1995. ISBN: 978-0-201-50397-5.

[59] M. Srednicki. Quantum field theory. Cambridge University Press, Jan.
2007. ISBN: 978-0-521-86449-7, 978-0-511-26720-8.

[60] A. Zee. Quantum field theory in a nutshell. 2003. ISBN: 978-0-691-14034-6.



Bibliography 285

[61] G. ’t Hooft and M. Veltman. “Combinatorics of gauge fields”. Nuclear
Physics B 50.1 (1972), pp. 318–353.

[62] M. D. Schwartz. Quantum Field Theory and the Standard Model. Cam-
bridge University Press, Mar. 2014. ISBN: 978-1-107-03473-0, 978-1-107-
03473-0.

[63] R. K. Ellis, W. J. Stirling, and B. R. Webber. QCD and collider physics.
Vol. 8. Cambridge University Press, Feb. 2011. ISBN: 978-0-511-82328-2,
978-0-521-54589-1.

[64] G. F. Sterman. An Introduction to quantum field theory. Cambridge Uni-
versity Press, Aug. 1993. ISBN: 978-0-521-31132-8.

[65] G. ’t Hooft and M. J. G. Veltman. “Regularization and Renormalization
of Gauge Fields”. Nucl. Phys. B 44 (1972), pp. 189–213.

[66] G. ’t Hooft. “Dimensional regularization and the renormalization
group”. Nucl. Phys. B 61 (1973), pp. 455–468.

[67] J. C. Collins. Renormalization: An Introduction to Renormalization, The
Renormalization Group, and the Operator Product Expansion. Vol. 26. Cam-
bridge Monographs on Mathematical Physics. Cambridge: Cambridge
University Press, 1986. ISBN: 978-0-521-31177-9, 978-0-511-86739-2.

[68] G. Dissertori, I. G Knowles, and M. Schmelling. Quantum Chromody-
namics, High energy experiments and theory. 2003. ISBN: 978-0-199-56641-9
978-0-521-31132-8.

[69] M. Levy and J. Sucher. “Eikonal approximation in quantum field the-
ory”. Phys. Rev. 186 (1969), pp. 1656–1670.

[70] D. J. Pritchard and W. J. Stirling. “QCD Calculations in the Light Cone
Gauge.” Nucl. Phys. B 165 (1980), pp. 237–268.

[71] A. Bassetto, M. Ciafaloni, and G. Marchesini. “Jet Structure and In-
frared Sensitive Quantities in Perturbative QCD”. Phys. Rept. 100 (1983),
pp. 201–272.

[72] S. Catani and M. Grazzini. “The soft gluon current at one loop order”.
Nucl. Phys. B 591 (2000), pp. 435–454. arXiv: hep-ph/0007142.

[73] R. D. Field. Applications of Perturbative QCD. Vol. 77. 1989.
[74] Gianluca Oderda and George F. Sterman. “Energy and color flow in

dijet rapidity gaps”. Phys. Rev. Lett. 81 (1998), pp. 3591–3594. arXiv: hep-
ph/9806530.

[75] Gianluca Oderda. “Dijet rapidity gaps in photoproduction from pertur-
bative QCD”. Phys. Rev. D 61 (2000), p. 014004. arXiv: hep-ph/9903240.

[76] C. F. Berger, T. Kucs, and G. F. Sterman. “Energy flow in interjet radia-
tion”. Phys. Rev. D 65 (2002), p. 094031. arXiv: hep-ph/0110004.



286 Bibliography

[77] S. Catani, D. de Florian, and G. Rodrigo. “Space-like (versus time-like)
collinear limits in QCD: Is factorization violated?” JHEP 07 (2012),
p. 026. arXiv: 1112.4405 [hep-ph].

[78] J. R. Forshaw, M. H. Seymour, and A. Siodmok. “On the Breaking of
Collinear Factorization in QCD”. JHEP 11 (2012), p. 066. arXiv: 1206.
6363 [hep-ph].

[79] T. Muta. Foundations of Quantum Chromodynamics: An Introduction to Per-
turbative Methods in Gauge Theories. 3rd. Vol. 78. World scientific Lecture
Notes in Physics. Hackensack, N.J.: World Scientific, 2010. ISBN: 978-
981-279-353-9.

[80] F. Bloch and A. Nordsieck. “Note on the Radiation Field of the elec-
tron”. Phys. Rev. 52 (1937), pp. 54–59.

[81] T. Kinoshita. “Mass singularities of Feynman amplitudes”. J. Math.
Phys. 3 (1962), pp. 650–677.

[82] T. D. Lee and M. Nauenberg. “Degenerate Systems and Mass Singular-
ities”. Phys. Rev. 133 (1964). Ed. by G. Feinberg, B1549–B1562.

[83] S. Catani et al. “Resummation of large logarithms in e+ e- event shape
distributions”. Nucl. Phys. B 407 (1993), pp. 3–42.

[84] S. Catani and B. R. Webber. “Resummed C parameter distribution in
e+ e- annihilation”. Phys. Lett. B 427 (1998), pp. 377–384. arXiv: hep-
ph/9801350.

[85] Y. L. Dokshitzer et al. “On the QCD analysis of jet broadening”. JHEP
01 (1998), p. 011. arXiv: hep-ph/9801324.

[86] V. Antonelli, M. Dasgupta, and G. P. Salam. “Resummation of thrust
distributions in DIS”. JHEP 02 (2000), p. 001. arXiv: hep-ph/9912488.

[87] C. F. Berger, T. Kucs, and G. F. Sterman. “Event shape / energy flow
correlations”. Phys. Rev. D 68 (2003), p. 014012. arXiv: hep-ph/0303051.

[88] A. Banfi, G. P. Salam, and G. Zanderighi. “Resummed event shapes
at hadron - hadron colliders”. JHEP 08 (2004), p. 062. arXiv: hep- ph/
0407287.

[89] M. Dasgupta and G. P. Salam. “Event shapes in e+ e- annihilation and
deep inelastic scattering”. J. Phys. G 30 (2004), R143. arXiv: hep - ph /
0312283.

[90] M. Dasgupta et al. “Logarithmic accuracy of parton showers: a fixed-
order study”. JHEP 09 (2018). [Erratum: JHEP 03, 083 (2020)], p. 033.
arXiv: 1805.09327 [hep-ph].



Bibliography 287

[91] A. Banfi, G. P. Salam, and G. Zanderighi. “Generalized resummation
of QCD final state observables”. Phys. Lett. B 584 (2004), pp. 298–305.
arXiv: hep-ph/0304148.

[92] A. Banfi, G. P. Salam, and G. Zanderighi. “Phenomenology of event
shapes at hadron colliders”. JHEP 06 (2010), p. 038. arXiv: 1001.4082
[hep-ph].

[93] E. Farhi. “A QCD Test for Jets”. Phys. Rev. Lett. 39 (1977), pp. 1587–1588.
[94] R. W. L. Jones et al. “Theoretical uncertainties on alpha(s) from event

shape variables in e+ e- annihilations”. JHEP 12 (2003), p. 007. arXiv:
hep-ph/0312016.

[95] M. T. Ford. “Studies of event shape observables with the OPAL detector
at LEP”. PhD thesis. Cambridge U., 2004. arXiv: hep-ex/0405054.

[96] M. Dasgupta and G. P. Salam. “Resummation of nonglobal QCD ob-
servables”. Phys. Lett. B512 (2001), pp. 323–330. arXiv: hep-ph/0104277
[hep-ph].

[97] F. Maltoni et al. “Color flow decomposition of QCD amplitudes”. Phys.
Rev. D67 (2003), p. 014026. arXiv: hep-ph/0209271 [hep-ph].

[98] W. Kilian et al. “QCD in the Color-Flow Representation”. JHEP 10
(2012), p. 022. arXiv: 1206.3700 [hep-ph].

[99] R. Á. Martínez et al. “Soft gluon evolution and non-global logarithms”
(2018). arXiv: 1802.08531 [hep-ph].

[100] M. Dasgupta and G. P. Salam. “Accounting for coherence in interjet E(t)
flow: A Case study”. JHEP 03 (2002), p. 017. arXiv: hep-ph/0203009.

[101] Y. L. Dokshitzer and G. Marchesini. “Soft gluons at large angles in
hadron collisions”. JHEP 01 (2006), p. 007. arXiv: hep-ph/0509078.

[102] S. Catani and M.H. Seymour. “The Dipole formalism for the calcula-
tion of QCD jet cross-sections at next-to-leading order”. Phys. Lett. B
378 (1996), pp. 287–301. arXiv: hep-ph/9602277.

[103] J. R. Forshaw, J. Holguin, and S. Plätzer. “Parton branching at ampli-
tude level”. JHEP 08 (2019), p. 145. arXiv: 1905.08686 [hep-ph].

[104] Y. Delenda and K. Khelifa-Kerfa. “Eikonal gluon bremsstrahlung at fi-
nite Nc beyond two loops”. Phys. Rev. D93.5 (2016), p. 054027. arXiv:
1512.05401 [hep-ph].

[105] K. Khelifa-Kerfa and Y. Delenda. “Non-global logarithms at finite Nc

beyond leading order”. JHEP 03 (2015), p. 094. arXiv: 1501 . 00475

[hep-ph].
[106] G. Gustafson and U. Pettersson. “Dipole Formulation of QCD Cas-

cades”. Nucl. Phys. B306 (1988), pp. 746–758.



288 Bibliography

[107] L. Lönnblad. “Ariadne version 4: A Program for simulation of QCD cas-
cades implementing the color dipole model”. Comput. Phys. Commun. 71
(1992), pp. 15–31.

[108] S. Plätzer and M. Sjödahl. “The Sudakov Veto Algorithm Reloaded”.
Eur. Phys. J. Plus 127 (2012), p. 26. arXiv: 1108.6180 [hep-ph].

[109] T. Gleisberg and S. Hoeche. “Comix, a new matrix element generator”.
JHEP 12 (2008), p. 039. arXiv: 0808.3674 [hep-ph].

[110] S. Gieseke et al. “Colour Reconnection from Soft Gluon Evolution”.
JHEP 11 (2018), p. 149. arXiv: 1808.06770 [hep-ph].

[111] M. De Angelis. “Non-global Logarithms beyond Leading Colour”.
QCD@LHC 2018. 2018.

[112] A. Banfi, G. Marchesini, and G. Smye. “Away from jet energy flow”.
JHEP 08 (2002), p. 006. arXiv: hep-ph/0206076 [hep-ph].

[113] S. Ulam, R. D. Richtrnyer, and J. von Neumann. “Statistical methods in
neutron diffusion”. Alamos Scientific Laboratory report LAMS-55 1 (1947).

[114] G. Cullen et al. “GOSAM-2.0: a tool for automated one-loop calcu-
lations within the Standard Model and beyond”. Eur. Phys. J. C 74.8
(2014), p. 3001. arXiv: 1404.7096 [hep-ph].

[115] G. Cullen et al. “Automated One-Loop Calculations with GoSam”. Eur.
Phys. J. C 72 (2012), p. 1889. arXiv: 1111.2034 [hep-ph].

[116] J. Alwall et al. “The automated computation of tree-level and next-to-
leading order differential cross sections, and their matching to parton
shower simulations”. JHEP 07 (2014), p. 079. arXiv: 1405.0301 [hep-ph].

[117] S. Badger, B. Biedermann, and P. Uwer. “NGluon: A Package to Cal-
culate One-loop Multi-gluon Amplitudes”. Comput. Phys. Commun. 182
(2011), pp. 1674–1692. arXiv: 1011.2900 [hep-ph].

[118] S. Badger et al. “Numerical evaluation of virtual corrections to multi-
jet production in massless QCD”. Comput. Phys. Commun. 184 (2013),
pp. 1981–1998. arXiv: 1209.0100 [hep-ph].

[119] F. Buccioni et al. “OpenLoops 2”. Eur. Phys. J. C 79.10 (2019), p. 866.
arXiv: 1907.13071 [hep-ph].

[120] K. Arnold et al. “VBFNLO: A Parton level Monte Carlo for processes
with electroweak bosons”. Comput. Phys. Commun. 180 (2009), pp. 1661–
1670. arXiv: 0811.4559 [hep-ph].

[121] F. Campanario et al. “Electroweak Higgs Boson Plus Three Jet Produc-
tion at Next-to-Leading-Order QCD”. Phys. Rev. Lett. 111.21 (2013),
p. 211802. arXiv: 1308.2932 [hep-ph].



Bibliography 289

[122] S. Gieseke, P. Stephens, and B. Webber. “New formalism for QCD par-
ton showers”. JHEP 12 (2003), p. 045. arXiv: hep-ph/0310083.

[123] B. Andersson et al. “Parton Fragmentation and String Dynamics”. Phys.
Rept. 97 (1983), pp. 31–145.

[124] T. D. Gottschalk and D. A. Morris. “A New Model for Hadronization
and e+e− Annihilation”. Nucl. Phys. B 288 (1987), pp. 729–781.

[125] T. Sjöstrand. “Status of Fragmentation Models”. Int. J. Mod. Phys. A 3
(1988), p. 751.

[126] HEPForge. 2018. URL: https : / / www . hepforge . org/ (visited on
03/18/2021).

[127] A. Buckley et al. “General-purpose event generators for LHC physics”.
Phys. Rept. 504 (2011), pp. 145–233. arXiv: 1101.2599 [hep-ph].

[128] P. Skands. “Introduction to QCD”. Theoretical Advanced Study Institute in
Elementary Particle Physics: Searching for New Physics at Small and Large
Scales. July 2012. arXiv: 1207.2389 [hep-ph].

[129] F. James. “Monte Carlo Theory and Practice”. Rept. Prog. Phys. 43 (1980),
p. 1145.

[130] G. Wahnström. Monte Carlo Lecture Notes. http://fy.chalmers.se/
~tfsgw/CompPhys/lectures/MC_LectureNotes_171114.pdf. 2017.

[131] J. Beringer et al. “Review of Particle Physics (RPP)”. Phys. Rev. D 86
(2012), p. 010001.

[132] L. C. Noll, R. G. Mende, and S. Sisodiya. “Method for seeding a pseudo-
random number generator with a cryptographic hash of a digitization
of a chaotic system”. Pat. US5732138A. 1998.

[133] S. Weinzierl. “Introduction to Monte Carlo methods” (2000). arXiv: hep-
ph/0006269.

[134] G. Marsaglia. The Marsaglia Random Number CDROM including the
Diehard Battery of Tests of Randomness. 1995. URL: https://web.archive.
org/web/20160125103112/http://stat.fsu.edu/pub/diehard/.

[135] D. E. Knuth. The Art of Computer Programming, Volume 2 (3rd Ed.):
Seminumerical Algorithms. USA: Addison-Wesley Longman Publishing
Co., Inc., 1997. ISBN: 0201896842.

[136] Compaq. Compaq Fortran Language Reference Manual. formerly DIGITAL
Fortran and DEC Fortran 90. Sept. 1999.

[137] M. Matsumoto and T. Nishimura. “Mersenne Twister: A 623-
Dimensionally Equidistributed Uniform Pseudo-Random Number
Generator”. 8.1 (1998), 3–30.



290 Bibliography

[138] Chudakov A. “On an Ionization Effect Related to the Observation of
Electron Positron Pairs at very high Energies”. Bull. Acad. Sci. USSR
(1955), pp. 589–595.

[139] G. Marchesini and B. R. Webber. “Simulation of QCD Jets Including
Soft Gluon Interference”. Nucl. Phys. B 238 (1984), pp. 1–29.

[140] G. Altarelli and G. Parisi. “Asymptotic Freedom in Parton Language”.
Nucl. Phys. B 126 (1977), pp. 298–318.

[141] T. Sjöstrand. “Monte Carlo Tools”. 65th Scottish Universities Summer
School in Physics: LHC Physics. Nov. 2009. arXiv: 0911.5286 [hep-ph].

[142] T. Sjöstrand. “Monte Carlo Generators”. 2006 European School of High-
Energy Physics. Nov. 2006. arXiv: hep-ph/0611247.

[143] V. V. Sudakov. “Vertex parts at very high-energies in quantum electro-
dynamics”. Sov. Phys. JETP 3 (1956), pp. 65–71.

[144] L. Lönnblad. “Fooling Around with the Sudakov Veto Algorithm”. Eur.
Phys. J. C 73.3 (2013), p. 2350. arXiv: 1211.7204 [hep-ph].

[145] R. Kleiss and R. Verheyen. “Competing Sudakov Veto Algorithms”.
Eur.Phys.J.C 76.7 (2016), p. 359. arXiv: 1605.09246 [hep-ph].

[146] S. Plätzer and M. Sjödahl. “Subleading Nc improved Parton Showers”.
JHEP 07 (2012), p. 042. arXiv: 1201.0260 [hep-ph].

[147] Z. Nagy and D. E. Soper. “Parton shower evolution with subleading
color”. JHEP 06 (2012), p. 044. arXiv: 1202.4496 [hep-ph].

[148] Z. Nagy and D E. Soper. “A parton shower based on factorization of
the quantum density matrix”. JHEP 06 (2014), p. 097. arXiv: 1401.6364
[hep-ph].

[149] Z. Nagy and D. E. Soper. “Effects of subleading color in a parton
shower”. JHEP 07 (2015), p. 119. arXiv: 1501.00778 [hep-ph].

[150] Z. Nagy and D. E. Soper. “What is a parton shower?” (2017). arXiv:
1705.08093 [hep-ph].

[151] Z. Nagy and D. E. Soper. “Effect of color on rapidity gap survival”.
Phys. Rev. D 100.7 (2019), p. 074012. arXiv: 1905.07176 [hep-ph].

[152] Z. Nagy and D. E. Soper. “Parton showers with more exact color evo-
lution”. Phys. Rev. D 99.5 (2019), p. 054009. arXiv: 1902.02105 [hep-ph].

[153] E. Bothmann et al. “Event Generation with Sherpa 2.2”. SciPost Phys.
7.3 (2019), p. 034. arXiv: 1905.09127 [hep-ph].

[154] S. Plätzer. “Summing Large-N Towers in Colour Flow Evolution”. Eur.
Phys. J. C74 (2014), p. 2907. arXiv: 1312.2448 [hep-ph].



Bibliography 291

[155] M. De Angelis, J. R. Forshaw, and S. Plätzer. Resummation and simula-
tion of soft gluon effects beyond leading colour. 2020. arXiv: 2007 . 09648
[hep-ph].

[156] S. Weinzierl. “Automated computation of spin- and colour-correlated
Born matrix elements”. Eur. Phys. J. C 45 (2006), pp. 745–757. arXiv: hep-
ph/0510157.

[157] J. Holguin. “QCD coherence and how it fails”. YTF (Young Theorists
Forum) 12. 2019.

[158] J. R. Forshaw and J. Holguin. “Coulomb gluons will generally destroy
coherence”. Discussions with J. Forshaw and J. Holguin on forthcoming
publication. 2020.

[159] C. B. Moler and C. F. Van Loan. “Nineteen Dubious Ways to Com-
pute the Exponential of a Matrix, Twenty-Five years Later”. SIAM 45
(1 2003), pp. 3–49.

[160] A. H. Al-Mohy and N. J. Higham. “A New Scaling and Squaring Algo-
rithm for the Matrix Exponential”. SIAM Journal on Matrix Analysis and
Applications 31.3 (2010), pp. 970–989. eprint: https://doi.org/10.1137/
09074721X.

[161] M. De Angelis. “News on Colour Evolution with CVolver”. Parton
Showers and Resummation 2019. 2019.

[162] S. Roman. The Umbral Calculus. New York: Academic Press, 1984,
pp. 59–63.

[163] J. Riordan. An Introduction to Combinatorial Analysis. New York: Wiley,
1980.

[164] B.R. Webber. “Monte Carlo Simulation of Hard Hadronic Processes”.
Ann. Rev. Nucl. Part. Sci. 36 (1986), pp. 253–286.

[165] M. L. Mangano and S. J. Parke. “Multiparton amplitudes in gauge the-
ories”. Phys. Rept. 200 (1991), pp. 301–367. arXiv: hep-th/0509223.

[166] L. J. Dixon. “A brief introduction to modern amplitude methods”. The-
oretical Advanced Study Institute in Elementary Particle Physics: Particle
Physics: The Higgs Boson and Beyond. 2014, pp. 31–67. arXiv: 1310.5353
[hep-ph].

[167] Y. Hatta and T. Ueda. “Non-global logarithms in hadron collisions at Nc

= 3”. Nucl. Phys. B 962 (2021), p. 115273. arXiv: 2011.04154 [hep-ph].
[168] T. Williams, C. Kelley, et al. Gnuplot 4.6: an interactive plotting program.

http://gnuplot.sourceforge.net/. Apr. 2013.
[169] R. Mears. “Amplitude Level Evolution in QCD”. MA thesis. The Uni-

versity of Manchester, 2020.



292 Bibliography

[170] B. Gough. GNU Scientific Library Reference Manual - Third Edition. 3rd.
Network Theory Ltd., 2009. ISBN: 0954612078.

[171] G. P. Lepage. “A new algorithm for adaptive multidimensional integra-
tion”. Journal of Computational Physics 27.2 (1978), pp. 192–203.

[172] C. Sanderson and R. Curtin. “Armadillo: a template-based C++ library
for linear algebra”. Journal of Open Source Software 1.2 (2016), p. 26.

[173] Boost. Boost C++ Libraries V 1.46.0. http://www.boost.org/. 2011.
[174] H. Weigert. “Nonglobal jet evolution at finite Nc”. Nucl. Phys. B685

(2004), pp. 321–350. arXiv: hep-ph/0312050 [hep-ph].
[175] Y. Hatta and T. Ueda. “Resummation of non-global logarithms at finite

Nc”. Nucl. Phys. B874 (2013), pp. 808–820. arXiv: 1304.6930 [hep-ph].
[176] Y. Hatta. “Relating e+ e- annihilation to high energy scattering at weak

and strong coupling”. JHEP 11 (2008), p. 057. arXiv: 0810.0889 [hep-ph].
[177] M. D. Schwartz and H. X. Zhu. “Nonglobal logarithms at three loops,

four loops, five loops, and beyond”. Phys. Rev. D90.6 (2014), p. 065004.
arXiv: 1403.4949 [hep-ph].

[178] S. Caron-Huot. “Resummation of non-global logarithms and the BFKL
equation” (2015). arXiv: 1501.03754 [hep-ph].

[179] A. J. Larkoski, I. Moult, and D. Neill. “Non-Global Logarithms, Factor-
ization, and the Soft Substructure of Jets”. JHEP 09 (2015), p. 143. arXiv:
1501.04596 [hep-ph].

[180] A. J. Larkoski, I. Moult, and D. Neill. “The Analytic Structure of Non-
Global Logarithms: Convergence of the Dressed Gluon Expansion”.
JHEP 11 (2016), p. 089. arXiv: 1609.04011 [hep-ph].

[181] T. Becher et al. “Factorization and Resummation for Jet Processes”.
JHEP 11 (2016). [Erratum: JHEP05,154(2017)], p. 019. arXiv: 1605.02737
[hep-ph].

[182] Y. Hatta et al. “Resumming double non-global logarithms in the evolu-
tion of a jet” (2017). arXiv: 1710.06722 [hep-ph].

[183] J. Olsson, S. Plätzer, and M. Sjödahl. “Resampling Algorithms for High
Energy Physics Simulations”. Eur. Phys. J. C 80.10 (2020), p. 934. arXiv:
1912.02436 [hep-ph].


