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Abstract

An operational development of quantum theory is presented,

from general correlations through single-particle theories to ele-

mentary quantum field theory, with a focus throughout on causal

relations. The objective is to establish the extent to which quan-

tum theories are consistent with the principle of relativistic causal-

ity (that no two events separated by a distance greater than their

separation in time multiplied by the speed of light may have a

causal influence on each other) and to examine the assumptions

that this analysis requires. It is necessary to pay particular atten-

tion to the notions of spatial location and measurement.

It is found that in a relativistically causal theory, any measure-

ment made in a finite spatial region must have the capacity for

particle creation.

A number of derivations are presented, including some rela-

tivistic single-particle propagators and a Hamiltonian based on the

square root of the Klein Gordon equation.
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1 Introduction

1.1 Causality

The notion that some phenomena arise in dependence upon others is basic to

any attempt to understand the world we find ourselves in. The relationship

between the dependent events (‘effects’) and the sets of events that they de-

pend upon (‘causes’) is known as causality. The purpose of this work is to

investigate this relationship in the context of quantum theory.

Perhaps the most striking quality of causality is that we intuitively asso-

ciate its direction – from cause to effect – with the direction of time. Causes

appear to precede effects. Quantum theory is not known for its respect of

what we might intuitively think, but in this case we will find our intuitions to

be correct. Before I introduce the content and scope of this work, let us take

a moment to narrow down what we mean by cause and effect.

The philosophy of causal relations has deep roots and many subtleties [1, 2],

but from the outset I wish to adopt a simplification that I suggest preserves

the essential characteristics of causality without exposing us to crippling am-

biguities. Consider the following causal relation: stepping outside in the rain

causes you to get wet. Two characteristics contribute the majority of what is

meaningful about this relation:

• the effect (getting wet) is something we could detect and respond to in

some way, and

• the causes (stepping outside, rain) include some that are at least partly

responsive to something we could do.1

Following this example, our simplification will be to focus only on effects

that can be responded to, either by a device that can detect the event

and is programmed to respond in a certain way or by a human being who can

observe the effect and choose to act on what he or she finds, and to causes

that are responsive to such a device or to something a human being could

choose to do. There need be no limit on how quickly a response can take place.

1For example, if we chose to stay indoors, one of the causes would cease in response to
our choice. We might object to the restriction that causes should be responsive to something
we could do, as it is not hard to imagine causal relations that might interest us in which this
does not apply: the events in the first fraction of a second of the universe are an extreme
example. But if that interest stems from a curiosity regarding the fundamental laws of
nature, and if that curiosity tends to manifest in terms of ‘thought experiments’, then even
this example is not so distant from the conditions above.
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With these restrictions, if an effect could precede its cause for the same

subject (human or device), the causal relation becomes nonsensical. For ex-

ample, if you were to get wet today in dependence on stepping outside in the

rain tomorrow, then you could respond to getting wet by choosing to stay

indoors tomorrow, which contradicts the cause. We need not rely on free will

to make this argument: consider instead a robot programmed to respond by

staying indoors if and only if it got wet on the previous day.2 Even if the

robot could only alter the probability with which it stayed indoors by a minus-

cule amount in response to an assessment of wetness on the previous day, the

logical contradiction remains.3 More generally, if the laws of nature allowed

events to precede causes, a device could be programmed to signal backwards

in time to itself if and only if it does not receive its own signal. Because this

contradicts itself, it follows that there is a simple law of causality :

• An effect cannot precede a cause for the same subject.

It is worth noting that, in adopting these restrictions, we are implicitly

defining an effect to be something that can be made to give rise to a lasting and

discernible trace of its having happened. This caveat will have some bearing

on how we might interpret anything that follows from these assumptions.

1.2 Relativistic causality

The laws of special relativity add an extra dimension or three to this situation,

in that it can be proven (see the box in Section 6.1.3) that if a subject could

send a signal to another subject faster than light, then it is also possible to

pre-arrange a scenario by which it could signal backwards in time to itself.

With this in mind, we should strengthen our law to the law of relativistic

causality :4

2We could propose a law that constrains free will and programmable devices, but it is
unclear how such a law could co-exist with other physical laws without introducing ‘con-
spiratorial’ elements. In relation to a closely-related problem (time loops rather than causal
loops): “It seems there is a chronology protection agency, which prevents the appearance of
closed timelike curves and so makes the universe safe for historians.” – S. Hawking [3].

3If the relative frequency that the robot stays indoors if it didn’t get wet is p1 and the
relative frequency that it stays indoors if it did get wet is p2 6=p1, then the relative frequency
that it stays indoors at all ceases to have a value. We could respond by challenging our un-
derstanding of probability [4], for example by introducing laws that restrict the repeatability
of experiments. That route won’t be considered here.

4For an influential account of relativistic causality, see [5].
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• An effect cannot occur outside the future light cone5 of any

cause.

One of the implications of this is that any immediate effect of a cause must

be local. If it is possible for the conditions at a point xA in space to act as

a cause at a time tA, then any future effect at time t is confined to a ball of

radius c(t−tA) centred on xA. Causality is bound together not only with the

direction of time, but with spatial location as well. To make sense of this, we

will need to investigate how and to what extent an event can be considered to

be spatially located at all.

1.3 The structure of this document

To explore causality in the context of quantum theory, we will retrace the

logical development of the theory from its operational foundations through

single-particle theory to field theory, with especially close attention being paid

to the notions of measurement and position at each stage.

In Section 2, largely following a paper by Bub [6], we see how the Hilbert

space formulation of quantum theory emerges from a much larger landscape

of imaginable ways in which a world could provide information. A ‘measure-

ment’ in this context is anything that can generate information and could

influence other measurements. It is significant for our discussion because it

encompasses any ‘cause’ or ‘effect’ that meets our requirements, at least in

information-theoretic terms. No explicit reference is made to space or time.

The most important development in this Section is the concept of signalling

– the ability of one observer to infer from their own measurements information

generated by another.

Having identified quantum theory in this context, three postulates are

presented, in as simple a form as possible, to characterise it more generally.

We could instead have sought quantum postulates that are suitable as a basis

for a mathematically rigorous, even axiomatic theory (see for example [7, 8, 9]),

but we will find that these three brief conceptual statements are sufficient to

cover a remarkable amount of ground.

The first two postulates (which include the Born rule and the projection

postulate) are presented in Section 3, along with some immediate conse-

quences including their implications for signalling. In preparation for the

5Assuming that the cause takes place entirely within a region of spacetime RA, the future
light cone of the cause is the set of spacetime points that can be reached from any point
within RA without exceeding the speed of light.
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need to locate events in continuous space, in Section 3.4 we focus on how

these postulates are applied to continuous information.

Time and space formally enter the picture in Section 4. The third quan-

tum postulate (the time evolution postulate) is introduced here, and guaran-

tees a correspondence between quantum theory and the Hamiltonian formu-

lation of classical mechanics. This leads us to consider the single-particle

system, not only for its simplicity but for the fact that it is the only system

for which the set of generalised Hamiltonian coordinates represents a position

in space.

We are then ready to consider signalling and causality in the context of

space and time. In Section 5 we establish the connection between the propa-

gator and causality, and present ways in which propagators may be calculated.

In Section 6 this is developed further for relativistic single-particle theories.

A novel representation for the Hamiltonian of a relativistic single particle

is presented in Section 6.2. Two other representations – the Feshbach–Villars

Hamiltonian and the Dirac Hamiltonian – are also explored. We find that the

notion of the position of a single particle in space is necessarily ambiguous and,

if taken literally, gives rise to irreconcilable causality violations. By pushing

onwards with the single-particle theory in spite of these problems, we find we

can shed a little light onto some of the properties that a more successful theory

should have.

These difficulties are resolved in Section 7 by applying our three pos-

tulates to a covariant field theory instead of a single particle. We see that

measurements corresponding to locations in spacetime can be defined for a

quantum field, and that two such measurements can never be used to signal

faster than light. The emergence of particles in this theory is described, and

we find that any measurement capable of locating a single particle in a finite

region of space must also have the capacity for particle creation.

In Section 7.5, the spectre of causality violation re-emerges for cases in-

volving more than two measurements; we conclude by considering whether

this should be taken to imply that the limits of the Hilbert space formulation

have finally been found.
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2 Correlations

2.1 Operational descriptions

Any piece of observational science can be described in the following way: on

a number of occasions, a number of observers each make one of a number of

possible measurements and each obtain one of a number of feasible results,

and the results are analysed mathematically. This bare-bones approach to

science is known as operationalism [10].

Consider a situation in which a system S receives a disturbance D and

a measurement M is subsequently taken in order to determine the effect of

D on S. In an operational description each of S, D and M must represent

a set of measurement choices and measured outcomes. By S we mean the

measurements we select and the outcomes of those measurements that we

believe are sufficient to identify the system; D is what we do and see in order

to specify what kind of disturbance was carried out; M is to identify some

potential effect.

The most basic condition necessary before any kind of dynamics or other

causal process can be proposed is for M to be correlated in some way with D

and S when sets of observations are taken.

If the correlations are perfect, the process is deterministic. If we trust

our measuring devices to be perfectly reliable, it would be natural to wish to

interpret this in terms of deterministic dynamics, in the sense of a physical

law or mechanism for its evolution. If, in contrast, the results are entirely

uncorrelated – i.e. if M is statistically independent of D and S – then there

can be no predictability, and no evidence of any dynamics at all.

Anything between these extremes is a stochastic process, and we may wish

to explain it using some stochastic dynamical theory and/or a stochastic model

of measurements. The aim of a model is to supply a consistent set of physical

reasons as to why the probabilities of a particular set of measured outcomes

for M are affected by the choices and outcomes in D and S.

2.2 Restrictions on non-local correlations in a classical theory

In any theory based on classical mechanics, the types of correlations between

any measurements at different places are restricted. These restrictions follow

from what once might have seemed self-evident assumptions about the nature

of reality – now known as the principle of local realism:

1. The results of measurements performed on an individual object at a given
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place are (at least stochastically) determined by real properties of the

object, the nature of the measuring process and other causal influences

at that place;

2. Actions at one place cannot immediately influence what is measurable

at a different place. More specifically, causal influences must be limited

by the speed of light.6

These assumptions may be used to derive a number of conditions that must

be satisfied by the correlations between measurable quantities in any theory

that accords with local realism. These conditions are collectively known as

‘Bell inequalities’ after the first such derivation by John Bell [11], and they

enable the assumptions of local realism to be directly tested by experiment.

An important example is the Clauser Horne Shimony Holt (CHSH) in-

equality [12]. Consider an experiment consisting of two observers, Alice and

Bob, who are spacelike separated : that is, their experiments take place

within well-defined regions of space and over well-defined periods

of time, separated by sufficient distance that no signal propagating

at the speed of light could carry information from one to the other

while they are taking place. Each makes one choice, A and B respec-

tively, from a set of two possible choices of measurement A ∈ {A1, A2} and

B ∈ {B1, B2} and each then obtains one of two possible measured outcomes

a ∈ {+1,−1} and b ∈ {+1,−1}.
The CHSH inequality7 can be stated as follows [13]: local realism requires

| 〈ab〉A1B1 − 〈ab〉A1B2 |+ | 〈ab〉A2B1 + 〈ab〉A2B2 | ≤ 2, (2.1)

6The significance of the speed of light for causality is outlined in Section 6.1.3.
7Proof of the CHSH inequality: given any complete set (λA,λB) of properties or ran-

dom variables pertaining to the measurement of each object, 〈ab〉AiBjλAλB is simply a
product of two definite values, aAiλA and bBjλB , each of which must be ±1. It follows
that 〈ab〉A1B1λAλB − 〈ab〉A1B2λAλB can only be 0 or ±2. The ±2 value arises only if
bB1λB = −bB2λB , whereupon 〈ab〉A2B1λAλB + 〈ab〉A2B2λAλB must be 0. Evaluating the
expectation values over any probability distribution of (λA,λB), the LHS of equation (2.1)
cannot exceed 2.

13



where 〈ab〉AiBi is the expectation value of the product of measured outcomes

a and b when the measurement choices of Ai and Bi are made.8 The left hand

side of this inequality, or any variant of it under interchange of A↔B or 1↔2,

is known as a CHSH coefficient.

The experimental sensitivity required to test these kinds of inequalities was

not available until many decades after the overturning of classical physics by

quantum theory. In the meantime it remained conceivable that an explicitly

locally real formulation of quantum physics could be found. Several experi-

ments in the 1970s suggested very strongly that the Bell inequalities may not

hold [14], but the conclusive experiments were performed by Aspect et al. in

1982 [15, 16], measuring the linear polarisation of pairs of photons from co-

herently excited calcium atoms. The CHSH inequality was indeed violated,

proving9 that correlations can be found in nature that cannot be accounted

for by classical stochastic dynamics or any other forms of local realism.

2.3 Parameter spaces of general correlations

The Bell inequalities were originally formulated in the context of quantum

mechanics; but the most comprehensive response to the violation of the Bell

inequalities requires us to drop the context altogether, allow all imaginable

correlations, and attempt to isolate the essential characteristics of the ones

that occur in nature.

The minimum requirements for correlations between a set of outcomes and

a set of measurements is that there be at least two choices of measurements

and at least two possible outcomes for each measurement choice.

8The quantity 〈ab〉 in this case is equal to the statistical covariance 〈ab〉 − 〈a〉〈b〉 of the
measured outcomes. A non-zero covariance is equivalent to linear correlation between the
variables – a sufficient but not strictly necessary condition for two variables to be correlated in
general. (A counterexample is (x, y) such that x ∈ {−1, 0,+1} with a symmetric probability
distribution and y = x2. Correlated variables with zero covariance like this rely on fine-
tuning or a symmetry in the distribution of the ‘independent’ variable, and will not be
relevant here.)

9Notwithstanding one or two logically possible but rather contrived loopholes [17, §35.4].
“Most of the dozens of experiments performed so far have favoured Quantum Mechanics, but
not decisively because of the ‘detection loophole’ or the ‘communication loophole.’ The latter
has been nearly decisively blocked by a recent experiment and there is a good prospect for
blocking the former.” [14]
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2.3.1 Imaginable parameter spaces for one binary observer

We start by considering an experiment consisting of n=1 observers choosing

from a set of m=2 possible choices of measurement, abbreviated to A ∈ {1, 2},
and obtaining one of v= 2 possible measured outcomes a ∈ {+1,−1}. I will

refer to an observer of this type as a ‘binary observer’.

The set of conditional probabilities p(a|A) can be expressed as follows:

p(+|1) = α; p(−|1) = 1− α;

p(+|2) = β; p(−|2) = 1− β.
(2.2)

There are two free parameters, α and β, and the parameter space {0 ≤ α ≤
1}⊗{0 ≤ β ≤ 1} has the form of a square. Any choice of α or β in this square

corresponds to a system that can be described classically in accordance with

assumption 1 above, and assumption 2 is trivially satisfied.

If we were to increase the number m of possible measurements or the

number of possible outcomes v of each measurement, the parameter space

would be more complicated, but it would remain unambiguously compatible

with the classical assumptions of local realism.

2.3.2 One-way signalling between two observers

Consider now an experiment consisting of n= 2 observers, who we can again

call Alice and Bob. Alice has a choice of mA = 2 measurements A ∈ {1, 2},
each of which can give only a single possible outcome a=+1. Bob is restricted

to mB = 1 measurements B = 1, which can give vB = 2 possible outcomes

b ∈ {+1,−1}. The set of conditional probabilities p(ab|AB) can be expressed

as follows:
p(++|11) = α; p(+−|11) = 1− α;

p(++|21) = γ; p(+−|21) = 1− γ;

p(−b|A1) = 0 ∀ b, A.
(2.3)

If α= 1 and γ= 0, then the correlation is deterministic. Should Alice choose

to perform measurement A=1, Bob will measure b=+1 with 100% reliability;

should she choose measurement A= 2, Bob will measure b=−1. A single bit

of information can be reliably transmitted from Alice to Bob each time the

experiment is performed.

More generally, if α 6= γ, then by repeating the experiment a sufficiently

large number of times, Bob could receive information from Alice with an arbi-

trary level of confidence. Unlike the deterministic example, there is noise; but

there is also a signal, and any amount of noise can in principle be overcome
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in an exactly repeatable experiment.

The necessary and sufficient condition for this experiment to be incapable

of signalling is

α = γ. (2.4)

We may apply the CHSH inequality (2.1) to this experiment to find the

conditions under which the first assumption of local realism will be true. To

do this, we require the expectation values 〈ab〉AB. The first one is

〈ab〉11 ≡ + + p(++|11) +−p(+−|11)−+p(−+|11)−−p(−−|11)

= 2α− 1.

Similarly, 〈ab〉21 = 2γ−1. The remaining two quantities 〈ab〉A2 don’t apply

to this situation – but let us imagine instead that Bob could choose a second

measurement B = 2, which has an entirely predictable outcome b= +1, but

that he never does so. (Adding this dummy measurement into the experiment

cannot in any case increase the amount of information he can receive, nor can

it allow Alice to receive any information from Bob.) In this equivalent case,

〈ab〉12 = 〈ab〉22 = 1.

There are two independent CHSH coefficients – as defined by the RHS of

(2.1) – obtainable from permutations of the measurements:

K1 ≡ | 〈ab〉11 − 〈ab〉12 |+ | 〈ab〉21 + 〈ab〉22 |

= 2(γ + 1− α) ∴ K1 ≤ 2 ⇒ γ ≤ α

K2 ≡ | 〈ab〉22 − 〈ab〉21 |+ | 〈ab〉12 + 〈ab〉11 |

= 2(α+ 1− γ) ∴ K1 ≤ 2 ⇒ α ≤ γ (2.5)

The CHSH inequality is satisfied if and only if α = γ. It is identical to the

no-signalling condition (2.4).

An experiment of this kind could therefore be used to challenge the second

assumption of local realism of Section 2.2. If the experiments of Alice and Bob

are spacelike separated (as defined above) and indicated that α 6= γ, then we

would have direct evidence that causal influences are not limited by the speed

of light. It cannot be used to test the first assumption, however, because the

CHSH inequality is indistinguishable from the no-signalling condition.

No experiment to date has confirmed any violation of the no-signalling

condition for spacelike separated observers (the second assumption), and we

know, at least for the kinds of events described in the Introduction, that

there are very strong reasons for expecting this condition to hold. To observe
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departures from the first assumption of local realism, we need a parameter

space with more structure. It is sufficient, as we see in the next section, to

make both observers ‘binary observers’ in the sense described in Section 2.3.1.

2.3.3 Imaginable parameter spaces for two spacelike-separated bi-

nary observers

Let us now consider an experiment carried out by Alice and Bob, in which each

makes one choice A and B from a set of m= 2 possible acts of measurement

A ∈ {1, 2} and B ∈ {1, 2} and each obtains one of v = 2 possible measured

outcomes a ∈ {+1,−1} and b ∈ {+1,−1}. The parts of the experiment carried

out by the two observers are assumed to be strictly spacelike separated from

each other.

The set of conditional probabilities p(ab|AB) is now

p(++|11)=α1; p(+−|11)=α2; p(−+|11)=α3; p(−−|11)=1−α1−α2−α3;

p(++|12)=β1; p(+−|12)=β2; p(−+|12)=β3; p(−−|12)=1−β1−β2−β3;

p(++|21)=γ1; p(+−|21)=γ2; p(−+|21)=γ3; p(−−|21)=1−γ1−γ2−γ3;

p(++|22)=δ1; p(+−|22)=δ2; p(−+|22)=δ3; p(−−|22)=1−δ1−δ2−δ3.

(2.6)

There are 12 free parameters. The full parameter space is {0 ≤ α1 ≤ 1}⊗{0 ≤
α2 ≤ 1−α1} ⊗ {0 ≤ α3 ≤ 1−α1−α2}, and similarly for βi, γi and δi.

The set of αi parameters has the form of a trapezium, with three of its

edges along the three αi axes from 0 to 1; likewise for βi, γi and δi. The

overall parameter space is therefore the 12-dimensional polytope formed by

the cartesian product of four trapezia.10

We may identify regions of the parameter space with very different char-

acteristics. A general point, which we may label

(α1, α2, α3 ; β1, β2, β3 ; γ1, γ2, γ3 ; δ1, δ2, δ3),

represents the statistics for a set of experimental results that Alice and Bob

might obtain.

10Generalising this result is fairly straightforward: the trapezium encountered in the case
of n=2 observers is the p = 4 case of an p-vertex simplex. A simplex is a polytope in (p−1)
dimensions having edges between every pair of vertices. For the n= 1 observer case above,
the line {0 ≤ α ≤ 1} is also a (p = 2)-vertex simplex. The general parameter space for
correlations between n observers making m measurements, each with v possible outcomes,
is the cartesian product of mn (vn)-vertex simplexes, which is a polytope in mn(vn−1)
dimensions. Each dimension represents a degree of freedom in the full set of conditional
probabilities for the system.
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Deterministic correlations: The parameter space has 44 = 256 vertices:

each one is a vertex of a trapezium in all four subspaces. At these points,

all conditional probabilities are either 0 or 1, so they represent deterministic

experimental situations. (0, 1, 0 ; 0, 1, 0 ; 0, 0, 0 ; 0, 0, 0) is an example: here,

every run of the experiment gives b = +1 for Bob, but Alice finds a = +1 if

she chooses A = 1 and a = −1 if she chooses A = 2. Both experiments are

deterministic and independent of each other.

(1, 0, 0 ; 1, 0, 0 ; 1, 0, 0 ; 0, 1, 0) is another example, but one with a quite

different character, and belongs to a class of points that cannot appear in

any relativistic causal theory. Here, if Bob sets B = 2, he will always obtain

b = +1 if Alice has set A = 1 and b = −1 if Alice has set A = 2. This means

Bob can immediately detect Alice’s choice of measurement setting, despite

their spacelike separation. This is termed a signalling correlation, because if

such a scenario existed it would enable Alice to send messages to Bob.

No-signalling correlations: Formally, a no-signalling correlation is one for

which Alice’s result a gives her no statistical information about Bob’s choice

of measurement B, and likewise b gives him no statistical information about

A. That is,11

p(a|AB) = p(a|A) ∀a,A,B

⇒
∑
b

p(ab|A1) =
∑
b

p(ab|A2) ∀a,A (2.7)

and

p(b|AB) = p(b|B) ∀b, B,A

⇒
∑
a

p(ab|1B) =
∑
a

p(ab|2B) ∀b, B (2.8)

Defining

S
(B→A)
A ≡

∣∣∣∣∣∑
b

(p(ab|A1)− p(ab|A2))

∣∣∣∣∣
and

S
(A→B)
B ≡

∣∣∣∣∣∑
a

(p(ab|1B)− p(ab|2B))

∣∣∣∣∣ ,
11There appear to be eight conditions here, but only four are independent. For example

p(+|AB) = p(+|A)⇔ p(−|AB) = p(−|A) because
∑
a p(a|AB) =

∑
a p(a|A) = 1.

18



the no-signalling condition is

S
(B→A)
1 = |(α1+α2)−(β1+β2)| = 0

S
(B→A)
2 = |(γ1+γ2)−(δ1+δ2)| = 0

S
(A→B)
1 = |(α1+α3)−(γ1+γ3)| = 0

S
(A→B)
2 = |(β1+β3)−(δ1+δ3)| = 0.

(2.9)

Our signalling example has S
(B→A)
1 = 0, S

(B→A)
2 = 0, S

(A→B)
1 = 0 and

S
(A→B)
2 = 1, indicating that Alice will be able to signal to Bob with 100%

efficiency if Bob chooses measurement 2.

Of the 256 deterministic correlations, 16 satisfy the no-signalling condition.

The full set of no-signalling correlations for n= 2, m= 2 and v= 2 is

an 8-dimensional cross-section of the full 12-dimensional parameter space. No

inequalities are involved, therefore its boundaries are located at the bound-

aries of the full parameter space. It is a polytope with 24 vertices [6]. The 16

no-signalling deterministic correlations must be vertices of this subset because

they are vertices of the full parameter space itself; the other 8

vertices are correlation extremes known as ‘Popescu-Rohrlich boxes’ (PR

boxes) [18], about which more later. An example of a PR box correlation is

(1
2 , 0, 0 ; 1

2 , 0, 0 ; 1
2 , 0, 0 ; 0, 1

2 ,
1
2).

The no-signalling polytopes for n = 2 observers making m = 2 measure-

ments each with an arbitrary number of measured outcomes are derived in

[19]. Those for n=2 observers making an arbitrary number of measurements

each with v = 2 measured outcomes are derived in [20]. Arbitrary n involves a

considerably greater increase in complexity: the n = 3 case [21] will be briefly

discussed in Section 2.3.6.

Locally real correlations: For a correlation to accord with the assump-

tions of local realism, it must (a) satisfy the no-signalling condition above

and (b) satisfy the CHSH inequality (2.1) in both of the independent CHSH

correlation coefficients. This requires Ki ≤ 2, where

K1 ≡ | 〈ab〉11 − 〈ab〉12 |+ | 〈ab〉21 + 〈ab〉22 |

= 2 |α2 + α3 − β2 − β3|+ 2 |γ2 + γ3 + δ2 + δ3 − 1|

K2 ≡ | 〈ab〉22 − 〈ab〉21 |+ | 〈ab〉12 + 〈ab〉11 |

= 2 |γ2 + γ3 − δ2 − δ3|+ 2 |α2 + α3 + β2 + β3 − 1| . (2.10)
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The 16 no-signalling deterministic correlations all have K1 = K2 = 2, so are

limiting cases of locally real correlations. The PR boxes, on the other hand,

have K1 = 0 and K2 = 4 or vice versa, violating the CHSH inequality.

The full set of locally real correlations is the subset of the no-signalling

polytope consisting of all points that satisfy the CHSH inequality.12 It remains

8-dimensional as there are no constraints in the form of equations. New bound-

aries are created by the linear inequalities given above (all of which are Bell

inequalities). As they remain limiting cases, all of the no-signalling determin-

istic correlations must also be vertices of the locally real polytope. No new

vertices are formed by the inequalities, but the PR boxes are excluded, leaving

16 vertices.

Factorisable correlations: Some locally real correlations are factorisable,

i.e. the set of conditional probabilities can be expressed in the form p(ab|AB) =

pA(a|A)pB(b|B).13 This tells us that the observations of Alice and Bob are

statistically independent of each other. Signalling is therefore not possible,

and local realism is not challenged. The set of factorisable correlations is the

cartesian product of two copies of the parameter space for a single observer

as described above, which makes the polytope of factorisable correlations a

four-dimensional hypercube.

The rest of the set of locally real correlations (which is almost all of it)

are non-factorisable, but with the introduction of a set of ‘hidden variables’ λ

12The case of two binary observers described in this Section is not the simplest case in
which CHSH-violating regions of parameter space exist within the no-signalling set. There
are intermediate cases between this and the much simpler one described in Section 2.3.2 that
may be investigated:

Case 1. Restrict Alice to one outcome per measurement – equivalent to the constraint
α3 =β3 =γ3 =δ3 =0 and α4 =β4 =γ4 =δ4 =0 (where α4≡1−α1−α2−α3 etc.).

Case 2. Restrict Bob to a single measurement – equivalent to β2 =δ2 =0 and β4 =δ4 =0.
Case 3. Restrict Bob to a single measurement and restrict Alice to one outcome on

measurement 1 – equivalent to α2 =β2 =δ2 =0 and α3 =β3 =β4 =δ4 =0.
The two sets of conditions (2.9) and (2.10) can be applied in each case. Of these three

cases, only Case 2 has a no-signalling subset that is partly CHSH-violating and partly
CHSH-compliant. The no-signalling constraints can be expressed as β1 =α1+α2, δ1 =γ1+γ2

and α1 +α3 = γ1 +γ3, which defines a 5-dimensional region bounded by the boundaries of
the original 12-parameter set (2.6). Retaining the parameters γ1, γ2, γ3, α2 and χ≡α1−α3,
we find there are three non-trivial CHSH inequalities: γ1 +α2 ≤ 1, γ3 +α2 ≤ 1 and
γ1+2γ2+γ3+|χ| ≤ 2.

13An example is ( 1
12
, 3

12
, 2

12
; 3

12
, 1

12
, 6

12
; 2

12
, 6

12
, 1

12
; 6

12
, 2

12
, 3

12
), which corresponds to

pA(0|0) = 1
3
, pA(0|1) = 2

3
, pB(0|0) = 1

4
, pB(1|0) = 3

4
.
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they can be expressed as a sum of factorisable terms:14

p(ab|AB) =
∑
λ

p(λ)pA(a|Aλ)pB(b|Bλ).

If λ is some shared information that is part of the make-up of the systems that

Alice and Bob are investigating, then this type of correlation could straightfor-

wardly be generated by a classical theory in accordance with local realism. For

any given λ, all of the conditional probabilities factorise. The measurements

are therefore fully independent of each other given a set of variables that are

already known to be shared, so signalling is not possible.

2.3.4 The parameter space in nature for two spacelike-separated

binary observers

We have seen that the parameter space for n = 2, m = 2, v = 2 can be

resolved into nested subsets:

Local

determinism
⊂ No hidden

variables
⊂ Local

realism
⊂ No-

signalling
⊂

Full

parameter

space

(0D:

16 points)

(4D

hypercube)

(8D

polytope)

(8D

polytope)

(12D

polytope)

(2.11)

All correlations in any causal theory must be restricted to the no-signalling

set. It is well established that Nature does not restrict herself to local realism

– however, it is also apparent that she does not make use of the full set of

no-signalling correlations [18], but supplies her own constraints intermediate

between the two:

Local

Realism
⊂ Nature ⊂ No-

signalling
(2.12)

The full subset of conditional probabilities that are available to general sys-

tems in nature is something that can, in principle, be explored experimentally.

The shape of the polytopes that such experiments reveal is the shape of the

operational laws of physics at their most basic level.

14For example, ( 13
24
, 3

24
, 2

24
; 3

24
, 13

24
, 6

24
; 2

24
, 6

24
, 13

24
; 6

24
, 2

24
, 3

24
) is not factorisable as it

stands, but it could be generated using λ ∈ {0, 1} and p(λ = 0) = 1
2

such that if λ = 0
the probabilities are those given in the factorisable example in Footnote13 above, whereas if
λ = 1 there is a deterministic correlation with a = A and b = B.
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Our ability to carry out experiments on the kinds of systems that would

allow us to explore nature beyond the locally real polytope is still in its infancy.

In addition, the problem of using Bell inequalities to define the boundaries of

that polytope for an arbitrary system is known to be NP-complete,15 even

for n = 2 and v = 2 (two observers choosing from an arbitrary number of

binary-valued measurements) [23, §6], so solutions with any kind of generality

are unlikely to be forthcoming. But progress has been and continues to be

made; some of this is outlined below.

2.3.5 The parameter space in quantum theory for two spacelike-

separated binary observers

Thus far, nothing has been assumed about what is being measured in our

two-observer experiment, or how it could be modelled. Having dispensed with

local realism, it is clear that we should consider our ‘input’ as a whole, rather

than as two individual objects.

In classical physics, systems are considered to be made of parts, each of

which has a set of properties that define its state. When we make a measure-

ment, the conditional probabilities for the results we obtain are determined

by the properties of those parts and the nature of the measurement process.

In quantum mechanics, a physical state is represented by a vector in a

vector space such that the probabilities for the outcomes of any measurement

are given by the square of the norm of a projection of this vector onto some

subspace that is characteristic of the measurement being made.16

Some of the familiar implications of this postulate will be reviewed in

Section 3.1. Of relevance here is the result that any measurement may be

15The class of NP-complete problems is the ‘hardest’ class of NP problems, which are
problems whose known solutions can be verified algorithmically in ‘polynomial time’ (a
computing time scale that is a polynomial function of the size n of the problem). Problem
A is said to be ‘harder’ than problem B if and only if there cannot exist a polynomial-time
algorithm transforming A into B.

If a proof is found that all problems verifiable in polynomial time are also solvable in
polynomial time (‘NP=P’), then no NP problems could be harder than any other, and the
concept of NP-complete would cease to be meaningful. This is considered improbable by the
majority of computer scientists [22].

Having made that disclaimer, the implication of an NP-complete problem in practice is
that there can be no algorithmic method of solution for general n: each instance of the
problem must be solved individually, and the process of finding each solution, if it exists at
all, increases rapidly in complexity as n increases.

16As the notion of a vector space is such a straightforward one, one could argue that this
is no more strange than the equivalent classical proposition: that the laws of nature are
somehow responsible for assigning and maintaining the objective properties of subsets of the
Universe, and that this is what our measurements reflect.
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represented by a self-adjoint operator, and that two measurements permit

signalling if and only if the corresponding self-adjoint operators do not com-

mute.17 What follows are some results that are significant in the discussion of

correlations.

In 1980, Tsirelson [24] showed that a CHSH correlation coefficient (2.1)

cannot exceed 2
√

2. The proof is as follows:

If K̂ ≡ Â1B̂1 + Â1B̂2 + Â2B̂1 − Â2B̂2, where Âi and B̂j are self-adjoint

operators with eigenvalues of ±1 and satisfying [Âi, B̂j ] = 0, then

4±
√

2K̂ =
(
Â2

1 + Â2
2 + B̂2

1 + B̂2
2

)
±
√

2
(
Â1B̂1 + Â1B̂2 + Â2B̂1 − Â2B̂2

)
=

(
Â1 ± 1√

2

(
B̂1 + B̂2

))2
+
(
Â2 ± 1√

2

(
B̂1 + B̂2

))2
.

The right hand side is a sum of squares of self-adjoint operators, and its

expectation value is therefore necessarily positive. Hence 〈4±
√

2K̂〉 ≥ 0, and∣∣∣〈K̂〉∣∣∣ ≤ 2
√

2. (2.13)

Since the proof applies under the interchange of Â↔B̂ or 1↔2, the Tsirelson

bound of 2
√

2 for any CHSH coefficient follows. As we have seen, the mag-

nitude of the CHSH coefficient reaches 4 in the case of the PR box, so this

bound immediately excludes significant regions of the no-signalling polytope.

The correlations excluded in this way are known as ‘superquantum’ correla-

tions. The remaining 8-dimensional set has curved boundaries lying between

the boundaries of the locally real and the no-signalling polytopes.

However, not all correlations within the Tsirelson bound can be generated

by quantum states. Necessary and sufficient conditions are [25]

∣∣sin−1(〈ab〉A1B1) + sin−1(〈ab〉A1B2) + sin−1(〈ab〉A2B1)− sin−1(〈ab〉A2B2)
∣∣ ≤ π.

(2.14)

This (and the corresponding inequalities after notation interchange) defines a

convex set with curved boundaries lying between those of the Tsirelson bound

and the locally real polytope, definitively separating those correlations that

can be attained in a quantum theory from those that cannot.

Thus:

Local

Realism
⊂ Quantum

theory
⊂ Tsirelson

bound
⊂ No-

signalling
(2.15)

17The equivalence between commuting operators and no-signalling will be discussed in
Section 3.3.1.
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The boundaries of all four of these nested subsets meet at the 16 locally de-

terministic correlations.

In 2004, Cabello [26] expressed the boundaries of this quantum set for n=2,

m=2 and v=2 in terms of directly measurable parameters, and proposed an

experiment to test those boundaries. The experiment was carried out in the

same year [27] and the results traced the boundaries as predicted.18

Quantum theory has been tested rigorously in many other ways over the

past eight decades, and some of its predictions – particularly in the measure-

ments of bound states and the results of scattering experiments – have been

verified with far greater precision than any exploration of correlation parame-

ter spaces of the type mentioned here. But what is so significant about these

correlation experiments, for whatever systems they can be carried out on, and

to the extent that the statistical power of the tests allow, is that by mapping

out the quantum set itself they reveal directly that there is a Hilbert space

formulation, as defined above, encompassing the conditional probabilities of

every observation that can be made on those systems. To that extent, the

Hilbert space formulation of quantum mechanics ceases to be a postulate, and

becomes directly observable as a recognisable shape in the space of imaginable

experimental outcomes.

2.3.6 Parameter spaces for three or more spacelike-separated bi-

nary observers

The no-signalling polytope for n= 3 observers choosing from m= 2 measure-

ments each with v=2 possible outcomes is a 26-dimensional subset of the full

56-dimensional parameter space, with 53856 vertices [21].

The vertices fall into 46 distinct classes, of which only one represents cor-

relations that could be generated by a local realist theory. A further 11 could

be generated by a two-party no-signalling theory, involving any kind of corre-

lation from the n= 2 no-signalling set discussed above.19 The remaining 34

classes of vertices are ‘fully tripartite’: they require correlations between

18Note that violations of the Tsirelson bound are predicted under quantum theory [28] and
have been observed [29] for cases in which the outcomes of measurements are conditional on
the values of a third system (‘post-selection’).

19The requirement is that all conditional probabilities P (abc|ABC) may be expressed in
the form

q1

3∑
i=1

qiPi(ab|AB)Pi(c|C) + q2

3∑
i=1

qiPi(ca|CA)Pi(b|B) + q3

3∑
i=1

qiPi(bc|BC)Pi(a|A),

with each Pi(xy|XY ) being a conditional probability from the n=2 no-signalling set.
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all three measurements that cannot be generated by correlations

between pairs.

The nature of the quantum subset of this no-signalling set has yet to be

ascertained, but quantum theory cannot generate fully tripartite correlations

[30]. Probabilities in quantum theory arise from inner products involving linear

combinations of vectors, so there is no scope for pure three-way correlations

without departing from the Hilbert space formalism.

Searches for fully tripartite correlations in quantum systems have been un-

dertaken using triple-slit diffraction [31] and three-path interference in nuclear

magnetic resonance [32], both involving photons. They have set modest upper

limits on the ratio of three-path to two-path amplitudes.

A framework for these experiments is provided by Sorkin’s ‘generalized

measure theory’20 [30]. A hierarchy of sum rules is set out, each of which

effectively disallows pure multipartite correlations above a given order. Clas-

sical physics satisfies the lowest non-trivial order of sum rule; quantum theory

and superquantum correlations such as PR boxes satisfy the next, the 34 fully

tripartite vertex classes described above would satisfy the next beyond that,

and so on. A discussion of how the CHSH inequalities and Tsirelson’s bound

might be generalised in such theories can be found in [33].

20Measure theory is the natural mathematical framework for probability. A probability
space is a special case of a measure space in which the measure of the whole space is 1. See
also Section 3.4.
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3 Hilbert Space

3.1 The Postulates and their implications

The arguments of Section 2 are not necessary to justify the use of Hilbert space

in quantum mechanics – it has been used as a means to perform calculations

of astonishing reliability and precision since the 1930s, long before any Bell

correlation experiments were possible – but the correlation picture motivates

and verifies it in a way that is arguably simpler and more direct than anything

that predates it.

We have seen that, at the most basic operational level, the correlations in

nature appear to fill causal regions of parameter space whose boundaries are

determined by a Hilbert space model of quantum mechanics. The foundations

for this model can be expressed in three postulates. Two are given below, the

third in Section 4.1.

Postulate 1 Any physical state can be represented by a vector in a vector

space such that the probabilities for the outcomes of any measurement are given

by the square of the norm of a projection of this vector onto some subspace

that is characteristic of the measurement being made.

We represent a vector as |ψ〉 and the vector space as H. Immediate impli-

cations include:

1. As the set of outcomes for any measurement can be specified so that it is

both mutually exclusive and exhaustive, it follows that any measurement

must have associated with it a set of mutually orthogonal projection

operators spanning the space H, each one corresponding to a possible

outcome;

2. H must be a Hilbert space;21

3. For any discrete set of mutually orthogonal projection operators {P̂ (A)
i }

representing a measurement A with real-valued outcomes, there exists

a self-adjoint operator Â =
∑

i aiP̂
(A)
i whose eigenspaces are precisely

21Strictly, it only necessarily follows that H is a pre-Hilbert space: this is the requirement
that a positive norm is defined for every non-zero vector, and an inner product is defined
between every pair of vectors that is no more than the product of the norms of the two vectors
(which is required in order that orthogonal projection operators can be employed). For a
Hilbert space, we also require it to be complete – meaning that for every Cauchy sequence
of vectors in H, the limit is also in H – which enables the use of calculus in quantum theory.
Quantum mechanics is almost universally formulated in a complex Hilbert space, as it must
be for the postulate in this form, though it need not be in general [34].
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the target spaces of each projection operator, and whose corresponding

eigenvalues {ai} are the values of each distinct possible outcome of the

measurement. The Spectral Theorem[35, §3], [7, §III.6] extends this

principle to continuous measurements. Thus every observable can be

represented by a self-adjoint operator.

4. The Born rule: Given a state |ψs〉 ∈ H, we can write the probability

of obtaining outcome ai from measurement A in the form

p(ai|A, s) = |P̂ (A)
i |ψs〉|

2. (3.1)

5. Since all conditional probabilities must sum to 1, any vector representing

the state of a system must be normalised22 to ||ψ〉|2 = 1;

6. Unitarity: as the state of a system evolves over time, the sum of all

conditional probabilities cannot deviate from 1 for any measurement.

This implies that an operator Û21 mapping from any initial state |ψ1〉 of

the system at time t1 to the state of the same system at a later time t2

must satisfy 〈ψ1|Û †21Û21|ψ1〉 = 〈ψ1|ψ1〉. If, in addition, this operator is

a linear operator, then it follows that Û21 is unitary.23

7. Compound systems: given two systems in which states are represented

by vectors in Ha and Hb respectively, vectors in the direct product space

Hab = Ha × Hb will represent the space of states for the compound

system in precisely the same way with respect to the probabilities of

joint outcomes from pairs of measurements. This extends to any number

of such systems.

None of these points need be separately postulated: they all follow directly

from Postulate 1, subject to a few caveats (some of the most significant of

which are footnoted). A second postulate is, however, required in order to

22||ψs〉|2 = 〈ψs|1̂1̂|ψs〉 = 〈ψs|
∑
i P̂

(A)
i

∑
j P̂

(A)
j |ψs〉 =

∑
i〈ψs|P̂

(A)
i |ψs〉 =

∑
i p(ai|A, s)=1.

23Non-linear approaches to quantum evolution have been proposed, but have not met
with experimental success [17, §28.2]. Linearity ⇒ Û(α|χ〉 + β|φ〉) = αÛ |χ〉 + βÛ |φ〉. If
〈ψ|Û†Û |ψ〉 = 〈ψ|ψ〉 ∀ |ψ〉 ∈ H, then

(α∗〈χ|+ β∗〈φ|)Û†Û(α|χ〉+ β|φ〉) = (α∗〈χ|+ β∗〈φ|)(α|χ〉+ β|φ〉)
⇒ (α∗β〈χ|Û†Û |φ〉) + (β∗α〈φ|Û†Û |χ〉) = (α∗β〈χ|φ〉) + (β∗α〈φ|χ〉)

⇒ Re((α∗β〈χ|(Û†Û − 1̂)|φ〉) = 0 ∀α, β ∈ C
⇒ Û†Û = 1̂.
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specify the effect on |ψ〉 of making a measurement. This is known as the

‘projection postulate’.

Postulate 2 Every measurement updates the state by projecting it onto the

subspace associated with the outcome of the measurement.

As this new state must be normalised, this means:

|ψ〉 → |ψ′〉 =
P̂

(A)
i |ψ〉
|P̂ (A)
i |ψ〉|

. (3.2)

This transformation is clearly not unitary: 〈ψ′1|ψ′2〉 will not be the same as

〈ψ1|ψ2〉 in general.

While arguments over the physical interpretation of postulates and their

implications have proliferated, and more recent developments have begun to

unify them by expressing the measurement process in terms of unitary evo-

lution of a system along with a complex environment [36],24 experimental

quantum physics has consistently and reliably employed this same formalism

since it was outlined in the treatments of Dirac in 1930 [38] and von Neumann

in 1932 [39].

A theory that makes no claim about reality aside from these postulates

is known as an operational quantum theory [40], and could be considered as

the bare minimum for any quantum theory.25 I will adopt here a working

definition of quantum theory as being any theory that reproduces the results

of operational quantum theory.

3.2 Operational stochastic quantum theory

For a quantum theory to give realistic probabilities, we require a means of tak-

ing into account unknowns regarding the initial state and the measurements

themselves. These unknowns may be internal to the Hilbert space of the

system itself – we may not know precisely which of the vectors in the Hilbert

space of the system describes its current state, and we may not know precisely

which of the operators in the Hilbert space of the system describes the mea-

surement we are taking. Or they may be external to the system – the Hilbert

24The forebear of these developments, whether or not it is subscribed to by modern theo-
rists in its original form, is the relative state interpretation of Everett [37].

25For example: “It’s a minimal interpretation of quantum theory. Even if you might at
heart be a realist, you can still follow the operational approach to get clear on what the theory
tells us, without any extra baggage. It’s a useful way of presenting the basic formalism of
quantum mechanics in a neutral way.” – R. Spekkens [41]
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space we are considering for our system may not be the full picture, because

the system may have some interaction with a larger environment.

The four permutations of these are introduced below (largely following

Spekkens [41]), along with their implications for the evolution of a system

over time, and some basic results and definitions. These are used to derive a

general no-signalling theorem in Section 3.3.1.

3.2.1 Internal unknowns regarding the initial state

If we believed our system would be better modelled by a probability distribu-

tion over states in H than by a single state, and we wanted a way to treat this

distribution stochastically, the Born rule equation (3.1) would be problematic

because it is non-linear in the state vector. In 1932, von Neumann [39] showed

that this could be remedied by using density operators instead of state vectors.

For any state |ψs〉 ∈ H, there exists a projection operator |ψs〉〈ψs| mapping

H onto the one-dimensional subspace containing |ψs〉. The density operator

for a system known to be in this state is exactly this projection operator:

ρ̂s = |ψs〉〈ψs|. The Born rule for all conditional probabilities relating to this

state is then:26

p(ai|A, s) = Tr(P̂
(A)
i ρ̂s). (3.3)

If we have an initial state which has a probability of 1
3 of being |ψs1〉 and a

probability of 2
3 of being |ψs2〉, then the sum ρ̂ = 1

3 |ψs1〉〈ψs1 | +
2
3 |ψs2〉〈ψs2 |

will also generate the correct set of probabilities in (3.3). Such a mixture is

referred to as a ‘mixed state’, and a state represented by a projection operator

onto a single one-dimensional subspace is called a ‘pure state’.

The density operator can be used to represent any probability distribution

over any set of vectors in H. It is a positive-definite self-adjoint operator with

unit trace.27

26The trace is defined by Tr(P̂
(A)
i ρ̂s) ≡

∑
j〈φj |(P̂

(A)
i ρ̂s)|φj〉, and is independent of the

choice of orthonormal basis {φj}. With ρ̂s = |ψs〉〈ψs|, we have

Tr(P̂
(A)
i ρ̂s) =

∑
j

〈ψs|φj〉〈φj |P̂ (A)
i |ψs〉 = 〈ψs|P̂ (A)

i |ψs〉 = p(ai|A, s).

27It is self-adjoint because all projection operators are self-adjoint, positive-definite be-
cause for every state |ψ〉 ∈ H, the value of 〈ψ|ρ̂|ψ〉 is the probability of finding the system
in that state using some suitable ideal measurement; and it is unit trace because orthog-
onal projection operators in a spanning set sum to the identity operator

∑
i P̂

(A)
i = 1̂ and

conditional probabilities sum to one: Tr(ρ̂) = Tr(
∑
i P̂

(A)
i ρ̂) =

∑
i p(ai|A) = 1.
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3.2.2 External unknowns regarding the initial state

All systems are influenced by their environment to some extent. If we wish to

take this into account, the classical stochastic procedure described above will

not be sufficient. In this situation, we are faced with a probability distribution

over the vastly larger joint Hilbert space of the system and its environment.

Fortunately, any state coupled to its environment in this way can still be

represented in the form of a density operator acting in the Hilbert space of

the system alone.

Given a pure state ρ̂ab = |ψab〉〈ψab| in a Hilbert space Hab = Ha×Hb, the

mixed state ρ̂a = Trb(ρ̂
ab) defined28 in Ha satisfies the same Born rule as the

pure state:

p(ai|A) = Tr
(
(P̂

(A)
i ⊗ 1̂(B)) ρ̂ab

)
= Tra

(
P̂

(A)
i Trb(1̂

(B) |ψab〉〈ψab|)
)

= Tr(P̂
(A)
i ρ̂a) (3.4)

This shows that a complete description of any state of knowledge about any

quantum system, no matter how entangled it may be with other systems, can

therefore be provided by a positive-definite, unit-trace self-adjoint operator ρ̂a

acting in Ha.

3.2.3 Internal unknowns regarding the measurement

We may also wish to generalise from a ‘pure’ measurement (with a set of

orthogonal subspaces) to a probability distribution over a set A = {Aj} of

such measurements, each with probability pj .

There still must exist a set of possible outcomes for this ‘mixed’ measure-

ment, but they need not conform to Postulate 1. Each outcome ai is now

associated with a probability distribution over projection operators of the form

Ê
(A)
i =

∑
j

pjP̂
(Aj)
i . (3.5)

The set {Ê(A)
i } is referred to as a positive operator valued measure (POVM),

28Trb refers to the ‘partial trace’, which is performed in Hab by summing over a set of
basis vectors spanning Hb to yield an operator acting in Ha.
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and it also satisfies a Born rule:

p(ai|A, s) = Tr(Ê
(A)
i ρ̂s), (3.6)

which implies ∑
i

Ê
(A)
i = 1̂

〈ψ|Ê(A)
i |ψ〉 ≥ 0 |ψ〉 ∈ H. (3.7)

3.2.4 External unknowns regarding the measurement

A real measurement process is also subject to influence from the larger Hilbert

space of its environment. It can be shown [17, §18.5] that a POVM satisfying

equations (3.7) exists that encapsulates the whole of the measurement process

with regard to the Hilbert space of the system, including the Born rule (3.6).

Further, for any set of operators {Ê(A)
i } in Ha satisfying equations (3.7)

that are not themselves projection operators, there exists a mutually orthogo-

nal set of projection operators {P̂ (A)
i } in a larger Hilbert space Hab = Ha×Hb

for which the set {Êi} would correctly represent the measurement made on a

state in Ha.29 That is,

Ê
(A)
i = P̂HaP̂

(A)
i P̂Ha , (3.8)

where P̂Ha is the projection operator from Hab onto the original space Ha,
and

p(ai|A, s) = Tr(Ê
(A)
i ρ̂as) = Tr(P̂

(A)
i ρ̂abs ). (3.9)

Here, ρ̂abs is the density operator for a state in the larger Hilbert space Hab.
This can be taken to have the form ρ̂as ⊗ ρ̂b, where ρ̂b is a one-dimensional

projection operator (a pure state) in Hb.
The set {P̂ (A)

i } could of course be represented (non-uniquely) by a self-

adjoint operator in Hab.

3.2.5 The generalised update rule

Equation (3.2) describes the effect of a measurement A on a state |ψ〉, as

prescribed by Postulate 2. For a pure measurement A, the effect on ρ̂ is given

29This is the Naimark extension theorem [40, §II.2]. The same cannot be said for mixed
measurements. While any probability distribution over sets of pure measurements can be
represented by a POVM, not every POVM can be expressed as a probability distribution
over sets of pure measurements.
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by:

ρ̂→ ρ̂′ =
P̂

(A)
i ρ̂P̂

(A)
i

Tr(P̂
(A)
i ρ̂)

. (3.10)

The numerator is an example of a linear superoperator – a linear map T from

operators on H to operators on H. This one yields an operator P̂
(A)
i ρ̂P̂

(A)
i

which has a trace less than or equal to the original ρ̂; and it is ‘positive’, i.e.

it preserves the positive-definiteness of an operator. Further, it is ‘completely

positive’, i.e. T ⊗1 will preserve the positive-definiteness of any ρ̂ab in Ha×Hb.
For a general measurement {Êi}, the effect on ρ̂ is as follows. For a given

outcome Êi, a trace-non-increasing, completely positive linear superoperator

Ti can be defined for every operator R̂ acting in H by

Tr(Ti(R̂)) = Tr(Ê
(A)
i R̂) ∀ R̂ : H → H (3.11)

The updated state following the measurement is then given, somewhat implic-

itly, by

ρ̂→ ρ̂′ =
Ti(ρ̂)

Tr(Ê
(A)
i ρ̂)

(3.12)

For a given superoperator Ti, the operator Êi defined by equation (3.11) is

called the effect of that superoperator [17, §18.1].30

It can be seen from these two equations that Tr(ρ̂′) = 1 is ensured and,

with reference to (3.6), that the action of Ti on ρ̂ is indeed trace-non-increasing

for any Êi.

Any trace-preserving, completely positive, linear superoperator T21 acting

on a density operator ρ̂1 yields an operator ρ̂2 that immediately satisfies all

the requirements of a density operator itself.

The Stinespring dilation theorem states that the action of any such super-

operator on any state ρ̂a in Ha can be reproduced by a unitary operator Û

acting on state vectors in a larger Hilbert space Hab [41].

Thus, any unitary evolution of states in a larger Hilbert space of the sys-

tem plus its environment can be represented stochastically in the Hilbert space

of the system by a trace-preserving, completely positive, linear superoperator;

and vice versa. This gives a general formalism for the evolution of any stochas-

tic or entangled system in accordance with the postulates.

30Superoperators are referred to as ‘operations’ by some authors, including the one cited.
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3.3 Causality in quantum mechanics

Now that we have a general formalism for quantum mechanics, we can apply

it to the matter of causality.

3.3.1 The no-signalling condition

The outcome bj of a measurement B cannot be said to have been even partly

‘caused’ by an event Ak unless some statistical correlation exists between the

set of possible outcomes {bj} and the set of possible events {Ak}. This suf-

ficient condition for the absence of causal influence is equivalent to the no-

signalling condition defined (from Alice to Bob) by equation (2.8):

p(bj |AkB) = p(bj |B) ∀j, k

⇒
∑
i

p(aibj |Ak1B) =
∑
i

p(aibj |Ak2B) ∀j, k1, k2 (3.13)

where ai refers to whatever local effect the event Ak may have, as distinct

from the remote outcome bj .

In operational stochastic quantum theory, in the most general case, our

knowledge of the event Ak together with the measurement B is treated as a

single joint measurement AkB. The value of p(bj |AkB) is given by (3.6):∑
i

p(aibj |AkB) =
∑
i

Tr(Ê
(AkB)
ij ρ̂ab) (3.14)

where {Ê(AkB)
ij } is the POVM for the joint measurement on the joint system

ρ̂ab in the joint Hilbert space Hab = Ha ×Hb.
To investigate causality, we need to split the joint measurement into Ak

and B and use the formalism to establish what the statistical independence of

bj on Ak implies about the system.

Because of the nature of the update rule for each measurement outcome,

it is necessary to specify an order in which the measurements take place. We

will consider A to have taken place first: then we can consider the separate

POVMs {Ê(Ak)
i } and {Ê(B)

j }, both of which act in the joint space Hab.
The probability of each outcome of A and the resulting state update are

given as follows:

p(ai|Ak) = Tr(Ê
(Ak)
i ρ̂ab) (3.15)

ρ̂→ ρ̂i =
T ki (ρ̂ab)

Tr(Ê
(Ak)
i ρ̂ab)

. (3.16)
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The probability of the outcome bj is then given by (3.14):

p(bj |AkB) =
∑
i

p(bj |aiAkB)p(ai|Ak)

=
∑
i

Tr

[
Ê

(B)
j

T ki (ρ̂ab)

Tr(Ê
(Ak)
i ρ̂ab)

]
Tr(Ê

(Ak)
i ρ̂ab)

=
∑
i

Tr
[
Ê

(B)
j T

k
i (ρ̂ab)

]
. (3.17)

If, and only if, this expression has any dependence on k, can we say that there

is some statistical causal connection from Ak to bj .
31

We know from (3.8) that a Hilbert space Habc = Hab ×Hc exists in which

both the measurements {Ê(Ak)
i } and {Ê(B)

j } can be expressed as projection

operators {P̂ (Ak)
i } and {P̂ (B)

j }; therefore we can write

p(bj |AkB) =
∑
i

Tr
[
P̂

(B)
j

(
P̂

(Ak)
i ρ̂abcP̂

(Ak)
i

)]
= Tr

[(∑
i

P̂
(Ak)
i P̂

(B)
j P̂

(Ak)
i

)
ρ̂abc

]
. (3.18)

Since this must apply to any feasible quantum state ρ̂abc, there will be a

potential for a causal link if and only if
∑

i P̂
(Ak)
i P̂

(B)
j P̂

(Ak)
i depends on k.

Choosing a basis in which the P̂
(Ak)
i are diagonal for all i, and representing

P̂
(B)
j in block form according to the subspaces of each i, a typical element

within this sum has the form

P̂
(Ak)
i P̂

(B)
j P̂

(Ak)
i =


0̂

1̂

0̂
. . .




û v̂ ŵ · · ·
v̂† x̂ ŷ · · ·
ŵ† ŷ† ẑ · · ·
...

...
...

. . .




0̂

1̂

0̂
. . .



=


0̂

x̂

0̂
. . .

 .

31Assuming the choice of measurement Ak could be made with free will – that is, assuming
k is not constrained by some factors that also affect the outcome bj – then there can be no
sense in which fundamental quantum statistical expressions such as these could be dependent
on k without there being some causal connection from Ak to bj .
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Thus

∑
i

P̂
(Ak)
i P̂

(B)
j P̂

(Ak)
i =


û

x̂

ẑ
. . .


= P̂

(B)
j − ∆̂

(B,Ak)
j , (3.19)

where ∆̂
(B,Ak)
j contains all the off-diagonal blocks of P̂

(B)
j .

If ∆̂
(B,Ak)
j = 0 for all available measurements Ak, then it is clear that there

is no k-dependence and therefore no potential for a causal link. This requires

P̂
(B)
j to be of block-diagonal form for any basis in which any of the P̂

(Ak)
i

is diagonal, which implies P̂
(B)
j is simultaneously diagonalisable with every

P̂
(Ak)
i .

In terms of the self-adjoint operators that represent these measurements,32

this implies [
Âk, B̂

]
= 0 ∀k. (3.20)

To prove that this is necessary as well as sufficient as a no-signalling condi-

tion, we need only consider the fact that Alice is free to choose to take no

measurement at all. In this case, Âk = 1̂ and ∆̂
(B,Ak)
j = 0. Therefore, if any

measurements have ∆̂
(B,Ak)
j 6= 0, then signalling would be possible.

Hence, in a general operational stochastic quantum system, there

is no potential for a causal link between Alice and Bob if and only if

the self-adjoint extension of every possible measurement available to

Alice commutes with that of every possible measurement available

to Bob.

3.3.2 Special cases

If measurements Ak and B were already projective measurements – that is, if

no internal unknowns or external influences are involved in the measurement

process – then (3.20) is a straightforward relationship between the self-adjoint

operators representing the measurements in Hab. If they can be considered to

32Note that these are operators in Habc, some larger Hilbert space in which both mea-
surements can be represented by self-adjoint operators. Physically, this could be thought
of as the space of states for the system plus its entire environment; but an equally suitable
Hilbert space can be constructed by enlarging Hab in accordance with the Naimark extension
theorem (3.8) using the measurement {Ê(Ak)

i } itself.

35



act on separate subspaces Ha and Hb, then the commutation relation holds

trivially.

The derivation of the Tsirelson bound (2.13) employs self-adjoint operators

and relies on this commutation relation. With no restrictions on the commu-

tators, the relation33 is insufficient to prevent 〈K̂〉 from taking its algebraic

maximum value of 4. The Tsirelson bound of 〈K̂〉 ≤ 2
√

2 is therefore strictly

a no-signalling bound.

For POVMs representing mixtures of measurements of the form (3.5), no

extension of Hab is required: the no-signalling condition is simply that all

the self-adjoint operators {Âi} and {B̂j} over which all of the probability

distributions are taken must satisfy [Âi, B̂j ] = 0.

For POVMs that are neither projective nor mixtures of projective measure-

ments, but nevertheless operate in separate spaces Ha and Hb so that the par-

tial traces follow equation (3.11) – specifically, Tra[T ki (ρ̂ab)] = Tra[Ê
(Ak)
i ρ̂ab] –

then the no-signalling condition can also be shown to hold automatically:

p(bj |AkB) =
∑
i

Tr
[
Ê

(B)
j T

k
i (ρ̂ab)

]
=

∑
i

Trb

{
Ê

(B)
j Tra

[
T ki (ρ̂ab)

]}
= Trb

{
Ê

(B)
j Tra

[∑
i

Ê
(Ak)
i ρ̂ab

]}
= Tr

[
(1̂⊗ Ê(B)

j )ρ̂ab
]
, (3.21)

which is independent of the choice of measurement Ak.

3.4 From discrete to continuous sets of outcomes

3.4.1 Partitions of discrete sets

Postulate 1 tells us that – at least for ideal measurement on a pure state –

all probabilities have the form |P̂i|ψ〉|2, where P̂i is a projection operator for

outcome i. Since any complete set of possible outcomes is, by definition, mu-

tually exclusive and exhaustive for any given measurement, a set of projection

33It becomes | 〈K̂〉 − 1
2

∑
i,j〈[Âi, B̂j ]〉 | ≤ 2

√
2.
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operators is a very natural way to represent them because, by definition,

P̂iP̂j = δijP̂i (3.22)∑
i

P̂i = 1̂ (3.23)

〈ψ|P̂i|ψ〉 ≥ 0 ∀|ψ〉 ∈ H. (3.24)

The third equation here reflects the fact that probabilities can never be nega-

tive.

These three equations not only hold for a discrete set S = {ai} of individual

outcomes, they also hold for any partition of that set.

A partition is a mutually exclusive and exhaustive set {Si} of sets of out-

comes Si ⊂ S (with Si ∩ Sj = ∅ and
⋃
i Si = S). For each set of outcomes Si,

we can define a projection operator as simply the sum of the projection oper-

ators for each individual outcome P̂Si =
∑

ak∈Si P̂k, and equations equivalent

to (3.22) to (3.24) remain true no matter how the set S is partitioned.

Postulate 2 tells us that, if an ideal measurement gives an outcome ai,

the state vector is updated to a projection onto the subspace of that out-

come (which is one of the eigenvectors of the self-adjoint operator for the

measurement). If the measurement cannot distinguish between the individ-

ual outcomes within a set Si, the updated state will have the general form

ρ̂ =
∑

ak∈Si pk|ψk〉〈ψk|.

3.4.2 Partitions of continuous sets

For a measurement with continuous set S of outcomes, we can arbitrarily

partition the set in precisely the same way, so the same principles should apply.

To achieve this requires the mathematics of measure theory [35, §A.1].

The possible outcomes of a measurement are represented using a measure

space (S,Σ, µ) which consists of three objects: a set S, which here is the

sample space (the set of possible values that an outcome could be considered

to take); the set Σ of all measurable subsets of S, which is a σ-algebra34 over

S; and the measure, which is a function µ : Σ→ R giving a real value35 µ(Si)

34A σ-algebra over S is a set of subsets, including S and ∅, that is closed under countable
applications of the binary operations of union and intersection. The set of all ‘measurable’
subsets includes every imaginable subset of the sample space, provided the imagination is not
inclined to go to a great deal of trouble to seek mathematically pathological counterexamples.

35A measure is required to be non-negative for all subsets, and to satisfy the condition
that the measure of the union of any two non-overlapping subsets of S must be equal to the
sum of the measures of each subset.
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to each subset Si ∈ Σ.

If the outcomes are discrete, a value of µk = 1 for every individual outcome

ak would be a simple example. If the outcomes may take a continuous value

a, then µ(Si) =
∫
a∈Si da would be the simplest example of a measure: this can

be expressed unambiguously as dµ(a) = da. The extension to any number of

parameters is straightforward.

The question now is: given a continuous sample space S and any cho-

sen partition {Si}, does a set of projection operators {P̂i} exist that satisfy

equations (3.22) to (3.24)? The answer [35, §3.1], for any Hilbert space of

countably infinite dimensionality, is yes.

This result enables us to apply Postulates 1 and 2 to measurements with

continuous outcomes without modification.

A function P̂ (S) that gives us a projection operator for any measurable

subset S of the sample space is called a projection-valued measure (PVM). Its

only difference from a real-valued measure as defined above is that it assigns a

projection operator rather than a numerical value to each subset of the sample

space.

If Sα is the set of all outcomes with a < α, we can define a projection-

valued function called the resolution of the identity : P̂ (α) = P̂ (Sα), for which

lim
α→∞

P̂ (α) = 1̂. This allows the definition of an ‘infinitesimal projection oper-

ator’
d

dα
P̂ (α) = lim

δα→0

P̂ (α+ δα)− P̂ (α)

δα
. (3.25)

This is not itself an operator in H, but it can be used to construct operator-

valued integrals that do act in H:

P̂ (Si) =

∫
Si

da
d

da
P̂ (a). (3.26)

The definition of a PVM tells us that P̂ (Si)P̂ (Sj) = P̂ (Si ∩ Sj), whereupon∫
Si

da

∫
Sj

da′
d

da
P̂ (a)

d

da′
P̂ (a′) =

∫
Si∩Sj

da
d

da
P̂ (a)

⇒ d

da
P̂ (a)

d

da′
P̂ (a′) = δ(a− a′) d

da
P̂ (a). (3.27)

These ‘infinitesimal projection operators’ are sometimes expressed in Dirac’s

Probability, p : Σ→ R, is an example of a measure, with the additional requirement that
p(S) = 1.
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‘continuous basis’ form:
d

da
P̂ (a) = |a〉〈a|. (3.28)

More generally, we could consider there to be a ν-dimensional subspace that

is preserved by each projection:36

d

da
P̂ (a) =

ν∑
α=1

|aα〉〈aα|. (3.29)

Superficially, the objects |a〉 in (3.28) appear to satisfy an eigenvalue equation

Â|a〉 = a|a〉 and an orthonormalisation condition 〈a|a′〉 = δ(a−a′),37 and they

may be referred to as eigenvectors of the measurement Â. However, they are

not members of the Hilbert space in which Â acts, and they do not represent

possible states of the system in quantum theory. An operator of this type has

no eigenstates or eigenvalues.

3.4.3 Unbounded operators

If the set of outcomes of an operator doesn’t have any explicit limit, the

operator is said to be unbounded. More precisely, an operator Â is unbounded

if there is no maximum value of
∣∣Â|ψ〉∣∣/∣∣|ψ〉∣∣ over |ψ〉 ∈ H. An operator in

H, by definition, must map a vector |ψ〉 to another vector |φ〉, both of which

must have finite norm: this immediately implies that no such operator can act

on all states in H, which raises a suite of technical difficulties that are beyond

the scope of this work.38 However, if an operator is self-adjoint, then it must

have a domain that is dense in H [8, §4], meaning that for any vector that is

not in its domain, there is a vector arbitrarily close to it that is.39

The existence of a ‘continuous basis’ {|a〉} for self-adjoint operators is guar-

anteed by the spectral theorem [35, §3], as is the real-valued set of outcomes

a if the operator is used to represent a measurement.

36This could be seen as ascribing a ν-fold degeneracy to Â. More formally, we are ad-
mitting a ν-dimensional quotient space on which the Â acts as the identity operator. The
dimensionality ν may be anything from 1 to countably infinite.

37More generally, Â|aα〉 = a|aα〉 and 〈aα|a′β〉 = δ(a−a′)δαβ .
38See e.g. [7, 8, 35].
39The domain of Â is dense in H if, for all |ψ〉 ∈ H and all ε > 0, there exists a state
|ψ′〉 ≡ |ψ〉+ |δψ〉 such that Â|ψ′〉 ∈ H and 〈δψ|δψ〉 < ε.
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3.4.4 Continuous observables

Given a pure state |ψ〉, the probability of obtaining an outcome in Si, from

(3.1), is

p(ai ∈ Si|A) = 〈ψ| P̂ (Si) |ψ〉 =

∫
da〈ψ|a〉〈a| P̂ (Si) |ψ〉. (3.30)

It can be seen that the trace form (3.3) remains valid if we adopt the definition

Tr(P̂ ρ̂) ≡
∫
da〈a|P̂ ρ̂|a〉.

If an idealised measurement determines that the outcome a lies within the

range a1 <a< a2 but can give no further information regarding its location,

then the updated state in the continuous basis can be given using (3.10):

ρ̂→ ρ̂′ =

(∫ a2

a1
da|a〉〈a|

)
ρ̂
(∫ a2

a1
da′|a′〉〈a′|

)
∫
da〈a|

(∫ a2

a1
da′′|a′′〉〈a′′|

)
ρ̂|a〉

=

∫ a2

a1
da
∫ a2

a1
da′ |a〉〈a|ρ̂|a′〉〈a′|∫ a2

a1
da′′〈a′′|ρ̂|a′′〉

. (3.31)

Uncertainty can be represented by replacing the projective measurement op-

erator Â with a continuous distribution of possible measurements Â(r), each

of which has the same set S of outcomes, distributed with probability distri-

bution function f(r). This is an example of an unsharp measurement, which

could for example yield an outcome a1 < a< a2 representing a value of a to

a certain number of significant figures, for example, but without the observer

being entirely sure of precisely what measurement took place.

For a given outcome Si, this defines a POVM {Êi} of the form40

d

da
Ê(a) =

∫
dr f(r)

d

da
P̂ (ar), (3.32)

where ar=a+∆a(a, r) is a stochastic adjustment to every a ∈ S. The change

∆a(a, r) is the mismatch between the measurement that is taking place (for a

given value of the random variable r) and an idealised projective measurement

Â that would give the outcome a. We may parametrise r so that ∆a(a, 0) = 0.

Provided
∫
da d

da P̂ (ar) = 1̂ for all r, the POVM satisfies equations corre-

sponding to (3.23) and (3.24) in common with a projective measure; in general

40As noted in Section 3.2.4, this is not the most general form of a POVM. Measurements
that may involve coupling to other quantum systems don’t necessarily fit this kind of distri-
bution over projection-valued measures in H.
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it will not satisfy (3.22).

If a measurement now determines that the outcome a lies in the range

a1 <a<a2, the probability of that outcome and the resulting updated state

would then be

p(a1<a<a2) =

∫
dr f(r)

∫ a2

a1

da 〈ar| ρ̂ |ar〉 (3.33)

ρ̂→ ρ̂′ =

∫
dr f(r)

∫ a2

a1
da
∫ a2

a1
da′ |ar〉〈ar|ρ̂|a′r〉〈a′r|∫ a2

a1
da′′〈a′′r |ρ̂|a′′r〉

. (3.34)

Equation (3.31) can be seen to be a limiting case with f(r) = δ(r).

We may note that while a discrete, ideal measurement {P̂i} can be repeated

on any otherwise undisturbed state and yield a consistent single outcome ai

every time, this can never be the case for a continuous measurement. This

is irrespective of any limitations on the accuracy of a measurement: it is a

consequence of the fact that such an outcome would require a projection onto

a ‘state’ |a〉 that does not exist in the Hilbert space of the system.

An outcome of ai from a mixture of discrete measurements such as (3.5)

could be interpreted as having objectively projected the state into one of a

set of known subspaces, with it merely being unknown to us which one. In

the continuous case, however, such an interpretation is not available to us. If

it were suggested that an unsharp measurement objectively projects a state

onto one of a range of states |a〉 with it merely being unknown to us which

one, then that suggestion is meaningless if none of those states exist in the

space of states of the system.41

41One way around this is by imagining an expansion of the Hilbert space to include the
eigenstates of continuous operators. This was the approach taken in 1930 by Dirac: “The bra
and ket vectors we now use form a more general space than a Hilbert space.” [38, §10]. This
has been followed implicitly or explicitly by many since – for example Shankar [42, §1.10]
refers to “the physical Hilbert space, which is of interest in quantum mechanics. . . we use the
quantifier ‘physical’ to distinguish it from the Hilbert space as defined by mathematicians.”

Such a space was not defined rigorously until the 1960s [43] and is now known as a ‘rigged
Hilbert space’. Allowing the elements of the continuous basis expansion to have some onto-
logical status is appealing – it enables a more thorough mathematical discussion of the use
of plane waves as approximations, for example [44]. It also permits an interpretation of a
physical state in terms of a mixture of eigenstates, as discussed. The cost is a substantial
loss of simplicity in the formalism in order to accommodate what would remain states of zero
probability in any case. Treating |a〉 as a physical state on which repeatable measurements
could take place would also entail physical infinities for any observable that does not com-
mute with Â, via an uncertainty relation. Although rarely mentioned explicitly in standard
textbooks, it could be argued [45] that rigged Hilbert spaces are now ubiquitous in forming
part of the formalism of quantum theory in use. The question of whether or not we should
consider them to be part of the formalism in this way remains a matter of taste.
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If we wish quantum theory to describe quantities that are continuous with-

out imposing physical limits on them, we need to work with self-adjoint un-

bounded operators with continuous outcomes. It may ultimately be the case

that the quantities we think of as continuous are in fact discrete at some level

of detail that we do not yet have access to,42 but in the absence of knowledge

of such a scale, we require operators that are not limited by this. On the other

hand, no real measurement has an infinite set of outcomes – a measurement

can only give a finite amount of information. Operators of the kind described

in this section illustrate one way such measurements can be represented.

42The search for a theory of quantum gravity has motivated many theories in which space-
time is fundamentally discrete, e.g. [46], [47].

42



4 The relationship between Hilbert space and spaces

of generalised coordinates

Thus far, quantum theory has been introduced in a way that is abstracted

from space and time. The notion of spacelike separated observers (used for es-

tablishing the failure of local realism in Section 2.2), and the unitary evolution

of states over time (noted in Section 3.1) have been touched upon; but in order

to discuss causality, it will be necessary to examine the relationship between

space, time and the quantum state. This relationship will be introduced in

this Section.

To begin with, however, we will consider Hamiltonian systems in which

the generalised coordinates x ≡ {xi} need not represent positions in space.

4.1 Relationship to classical mechanics

Assuming a linear theory of quantum mechanics, as discussed under the im-

plications of Postulate 1, any evolution of a state43 from a time t1 to a

time t2 must take place via a unitary operator Û21 = Û(t2, t1), so that

|ψ2〉 = Û21|ψ1〉 and ρ̂2 = Û21ρ̂1Û
†
21. With time as a continuous parameter,

and with the assumptions limt2→t1 Û21 → 1̂ and Û31 = Û32Û21, we can always

write Û21 = eiX̂21 where X̂21 is self-adjoint.44 In the limit δt→ 0 this gives

Û(t+ δt, t) = 1̂ + i
∂X̂

∂t
δt. (4.1)

The operator ∂X̂
∂t is referred to as the generator of time evolution.

The expectation value 〈Â〉 ≡
∫
p(a|A)da = Tr(Âρ̂) of any continuous ob-

servable Â then evolves as follows:

d

dt
〈Â〉 = lim

δt→0

1

δt

{
Tr
[
Â(t+ δt)ρ̂(t+ δt)

]
− Tr

[
Â(t)ρ̂(t)

]}
= lim

δt→0

1

δt

{
Tr

[
Âρ̂(−i∂X̂

∂t
δt) + Â(i

∂X̂

∂t
δt)ρ̂+

∂Â

∂t
ρ̂(t)δt

]}

= i 〈 [Â, ∂X̂
∂t

] 〉+ 〈∂Â
∂t
〉. (4.2)

In a classical system, we know that any quantity A(xi, pi, t) that can be ex-

43The convention that the state is considered to evolve, rather than the operators defining
observables, is referred to as the Schrödinger picture. I will be employing this convention
throughout Sections 3 to 5.

44Stone’s theorem [35, §5], [7, §IV.6].
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pressed in terms of generalised coordinates {xi} and generalised momenta {pi}
obeying Hamilton’s equations45 satisfies

dA

dt
= {A,H}P +

∂A

∂t
. (4.3)

This tells us that any operator proportional to the generator of time evolution,

Ĥ = −κ∂X̂∂t with some constant κ, can act as a Hamiltonian operator. Given

any self-adjoint operators Âi for which i〈 [Âi, Ĥ] 〉 = −κ{Ai, H}P , the out-

comes ai of the measurements of those observables will, on average, reproduce

the values of the classical quantities Ai as they change through time.

This requires only the following:

Postulate 3 The generator of time evolution can be expressed as a function of

a set of continuous operators that commute with each other, a set of operators

canonically conjugate46 to them, and a set of discrete operators that commute

with them.

For the purposes of this Section, we will suppose that these operators

are observables, i.e. that they are self-adjoint operators that can represent

measurements, at least in an unsharp form such as (3.32). (They need not be

in general: we will encounter counterexamples in Section 7.)

We may therefore write the generator of time evolution as a function

Ĥ(t) = H(x̂i, p̂i, τ̂α; t) of a set of continuous operators {x̂i}, a set of con-

jugate operators {p̂i} satisfying [x̂i, p̂j ]= iκδij , and a set of discrete operators

{τ̂α}. Discrete operators in this context give rise to non-classical degrees of

freedom, as we will see in Section 4.2. For now, let us consider the case where

there are no τ̂α.

If we have an observable of the form Â(t) = A(x̂i, p̂i; t), then it follows that

45I am taking Hamilton’s equations, dpi
dt

=− ∂H
∂xi

and dxi
dt

= ∂H
∂pi

, to be the defining char-

acteristic of a classical mechanical system. The Poisson bracket of two functions f(xi, pi, t)

and g(xi, pi, t) is defined by {f, g}P ≡
∑
i

(
∂f
∂xi

∂g
∂pi
− ∂f

∂pi

∂g
∂xi

)
[48, §12], [49, §10].

46Two self-adjoint operators Â and B̂ are canonically conjugate to one another if their
commutator [Â, B̂] is a multiple of the unit operator. If a linearly independent set of contin-
uous observables {x̂i} exists such that [x̂i, x̂j ]=0, it is straightforward to find operators k̂i for
which [x̂i, k̂j ]= Zδij . These may be self-adjoint provided Z is imaginary, in which case they
are called conjugate observables. In the continuous basis defined by x̂, k̂i =

∫
dx |x〉i ∂

∂xi
〈x|

is sufficient.
It can be proven that canonically conjugate operators are necessarily unbounded [50, §7.3].

An alternative form of canonical commutation relation that does not involve unbounded
operators was also developed in 1927 by Weyl, and is in widespread use where rigorous
mathematical formulations of quantum theory are required. See e.g. [7, §IV.6], [51].
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the time evolution of its expectation value 〈A〉 will be identical47 to the time

evolution of a classical variable A(xi, pi, t) in a system with classical Hamil-

tonian H(xi, pi, t). The Hamiltonian we observe that describes this classical

behaviour is the same function of xi and pi as the operator Ĥ(t) = H(x̂i, p̂i; t)

is of x̂i and p̂i.

By appropriating known classical Hamiltonians, for example that of a non-

relativistic particle of mass m, H(x,p) = p2/2m + V (x), it is therefore pos-

sible to describe quantum systems capable of giving rise to known classical

behaviour; and correspondences of this type allow us to evaluate the constant

κ as ~, the reduced Planck’s constant.

Conceptually, however, all we need postulate is the existence of continuous

observables and their conjugates, and a generator of time evolution that is de-

termined by them. The classical behaviour of expectation values then emerges

automatically. The expectation values of the continuous observables and their

conjugates then corresponds to canonical pairs of generalised coordinates.

From the fact that we recognise classical Hamiltonian systems in which

the coordinates x correspond directly to one or more positions in space, we

can assert that our quantitative experience of space is an emergent

property of these three postulates.

We have arrived at Ehrenfest’s theorem:

d

dt
〈Â〉 =

1

i~
〈 [Â, Ĥ] 〉+ 〈∂Â

∂t
〉. (4.4)

If Ĥ is not explicitly time-dependent, the time evolution operator can therefore

be written Û(t2, t1) = exp [ Ĥi~ (t2−t1)].

47We can verify this for any Hamiltonian operator that can be expressed as a series Ĥ =∑
n(p̂k)nfn(x̂i, p̂i6=k, t). (For any sum of products of operators it is always possible to re-order

using commutators to obtain this form.) This automatically satisfies 〈[x̂α, Ĥ]〉 = i~〈 ∂Ĥ
∂p̂k
〉 =

i~ dxk
dt

= i~{xk, H}P . For functions Â(t) = A(x̂i, p̂i, t) and A(xi, pi, t), the equivalence of
commutators with Poisson brackets follows similarly.
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In the general case,48

Û(t+δt, t) = 1̂ +
1

i~
Ĥ(t)δt (4.5)

Û(t2, t1) = T exp

∫ t2

t1

1

i~
Ĥ(t)dt (4.6)

≡
∞∑
k=0

1

k!

1

(i~)k

∫ t2

t1

dt′
∫ t2

t1

dt′′ . . .

∫ t2

t1

dt(k) T
{
Ĥ(t′)Ĥ(t′′) . . . Ĥ(t(k))

}
.

The Schrödinger equation follows from (4.5):

i~
∂

∂t
|ψ(t)〉 = i~ lim

δt→0

1

δt

(
Û(t+δt, t)− 1̂

)
|ψ(t)〉

= Ĥ(t)|ψ(t)〉, (4.7)

or, more generally,49

i~
∂

∂t
ρ̂(t) = −[ρ̂(t), Ĥ]. (4.8)

A canonical operator or set of operators such as x̂ ≡ {x̂i} can, like any self-

adjoint operator with a measure space of outcomes (S,Σ, dx), be used to

generate projection operators of the form P̂ (S) =
∫
S dx |x〉〈x| for any subset

of outcomes S ∈ Σ. We may take the dimensionality of the measure space to be

the number n of canonical pairs (x̂i, p̂i) for the system, so that dx ≡
∏n
i=1 dxi.

Using this continuous basis {|x〉}, a wavefunction can be defined:

ψ(x, t) ≡ 〈x|ψ(t)〉. (4.9)

48The notation ‘T exp’ refers to the time-ordered exponential, defined by the sum of time-
ordered products as shown in (4.6).

The time-ordered product T{Â1(t1)Â2(t2) . . . Âk(tk)} of a set of operators {Âi(ti)} evalu-
ated at different times (or at equal times provided the operators commute) is defined to be
the product of those operators when arranged from left to right in order of increasing time.
That is,

T{Â1(t1)Â2(t2) . . . Âk(tk)} ≡ Âi1(ti1)Âi2(ti2) . . . Âik(tik),
where {i1, i2, ..., ik} is the permutation of {1, 2, ..., k} for which ti1 ≤ ti2 ≤ . . . ≤ tik.

49This equation is, using (4.4), equivalent to d
dt
〈ρ̂〉 = 0. For open systems, in which

unitary evolution effectively takes place in a larger Hilbert space as described in Section
3.2.5, equation (4.8) can be generalised further to

i~∂ρ̂
∂t

= −[ρ̂, Ĥ] + i~Ld(ρ̂),

where Ld(ρ̂) = 1
2

∑
j

(
[V̂j ρ̂, V̂

†
j ] + [V̂j , ρ̂V̂

†
j ]
)

is the Lindblad dissipation term, constructed

from a set of operators {V̂j} on H representing the effect of the environment on the sys-
tem. This equation may be employed to investigate the nature of decoherence in quantum
mechanics, including the measurement process itself [17, §21].
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The absolute square of the wavefunction, from (3.30), is a probability distri-

bution function for the measure space of outcomes:

p(x ∈ S) =

∫
S
dx |ψ(x, t)|2 ∀S ∈ Σ. (4.10)

The nature of the conjugate operators p̂i in this basis can be deduced from the

commutation relation [x̂i, p̂j ] = i~δij 1̂. We are looking for a linear operator

p̂
(x)
i to satisfy the equivalence p̂i|ψ〉 = |φ〉 ⇔ p̂

(x)
i ψ(x) = φ(x). The most

general form in n coordinate dimensions is

p̂
(x)
i ψ(x) =

∞∑
r1=0

. . .

∞∑
rn=0

a
(r)
i (x)

∂r1+...+rnψ(x)

∂xr11 . . . ∂xrnn
.

Using the commutation relation as a constraint, all but two of the terms vanish

and we’re left with

p̂
(x)
i ψ(x, t) =

[
a

(0)
i (x)− i~ ∂

∂xi

]
ψ(x, t), (4.11)

with an arbitrary function a
(0)
i (x). If we propose a momentum basis {|p〉} such

that p̂i|p〉 = pi|p〉, then by definition we have p̂
(x)
i 〈x|p〉 = pi〈x|p〉. This can be

solved using (4.11), provided a
(0)
i (x) can be written in the form ~ ∂φ

∂xi
,50 giving

〈x|p〉 = Aeiφ(x)eix.p/~, (4.12)

where A is a real constant and φ(x) an arbitrary differentiable scalar field.

The completeness requirement
∫
dp |p〉〈p|= 1̂ together with 〈x′|x〉= δ(x−x′)

then implies A=(2π~)−n/2.

The function φ(x) may be eliminated by a change of basis of the form

|x〉 → |x′〉 = eiφ(x)|x〉, which preserves all relevant relations; we will adopt

this simpler basis here.

p̂
(x)
i = −i~ ∂

∂xi

〈x|p〉 = (2π~)−n/2 eix.p/~ . (4.13)

In the case where our system is a non-relativistic single particle with Hamil-

tonian Ĥ = p̂2

2m + V (x̂), the quantum mechanics of that system is reduced by

the Schrödinger equation to a differential equation in ψ(x, t) with respect to

50i.e. provided a(0)(x) is a curl-free field.
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spatial coordinates and time that has the characteristics of a wave equation.

Using this equation, observations of the wave-like properties of particles allow

the evaluation of ~.51

4.2 Non-classical degrees of freedom

In Section 4.1, we employed a generalised coordinate basis {|x〉} generated

from n pairs of classical canonical variables (xi, pi). This basis satisfies the

n-dimensional equivalent of equation (3.28):

d

dx
P̂ (x) ≡ dn

dx1 . . . dxn
P̂ (x) = |x〉〈x|, (4.14)

from which the components of the continuous operator x̂ could be expressed

as

x̂i =

∫
dx xi |x〉〈x|. (4.15)

A more general formulation would involve equation (3.29), in which a ν-

dimensional subspace of H is preserved by each projection:

d

dx
P̂ (x) =

ν∑
α=1

|xα〉〈xα|. (4.16)

and

x̂i =
ν∑

α=1

∫
dx xi |xα〉〈xα|. (4.17)

We can introduce a ν-component wavefunction

ψα(x) ≡ 〈xα|ψ〉. (4.18)

If the Hamiltonian operator Ĥ(t) takes the same functional form as the clas-

sical Hamiltonian, then the resulting dynamics would be identical to the dy-

namics generated in Section 4.1. We can generalise by introducing discrete

observables τ̂i into the Hamiltonian:

Ĥ(t) = H(x̂, p̂, τ̂i; t). (4.19)

51~ = 1.054571726× 10−34Js, with a standard error of one part in 22 million [52].
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We can express any local52 operator in a coordinate representation:

Â =
∑
αβ

∫
dx |xα〉Â(x)αβ(x)〈xβ| (4.20)

where Â
(x)αβ(x) ≡ 〈xα| Â |xβ〉. From (4.17), x̂

(x)αβ
i (x) = xiδ

αβ. The commu-

tation relations [x̂i, p̂j ] = i~ δij then imply the following general form for the

momentum operator:

p̂
(x)αβ
i ψ(x, t) =

[
a

(0)αβ
i (x)− i~ δαβ ∂

∂xi

]
ψ(x, t). (4.21)

with an arbitrary set of matrix functions a
(0)αβ
i (x).

As these are matrices, an exponential equation for 〈xα|pβ〉 of the form

(4.12) only follows if a function φαβ(x) exists which satisfies a
(0)αβ
i (x) =

~ ∂φαβ/∂xi for all i and which commutes with the a
(0)αβ
i (x) for all x.

These are significant restrictions, so we cannot give a general form for

〈xα|pβ〉. They are, of course, trivially satisfied by φαβ(x) = 0, which is suffi-

cient for the non-relativistic theory. In that case, we may use

p̂
(x)αβ
i = −i~ δαβ ∂

∂xi

〈xα|pβ〉 = (2π~)−n/2 δαβ eix.p/~ . (4.22)

Given any ν × ν self-adjoint matrix with fixed components ταβi , the operator

τ̂i =
∑
αβ

∫
dx |xα〉ταβi 〈x

β|

is a coordinate-independent operator acting on H. It clearly commutes with

the operators x̂i and p̂i. Any operator of this type represents an inherently

quantum degree of freedom.

Each of these quantum variables may have a scalar, vector or general tensor

character with respect to the labels i of the canonical operators. An example

52The completeness of the coordinate basis implies that any operator, local or otherwise,
is expressible as follows:

Â =
∑
αβ

∫
dx′ dx |x′α〉Â

(x,x′)αβ(x,x′)〈xβ |

where Â
(x,x′)αβ(x,x′) ≡ 〈x′α| Â |xβ〉. A local operator, by definition, is one whose coordinate

representation has the form Â
(x,x′)αβ(x,x′) = Â

(x)αβ(x) δ(x−x′).
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of a vector operator for a particle in n=3 dimensions with a ν=2-dimensional

quotient space is the spin variable σ̂ (see below). While the functional form

no longer duplicates that of the classical Hamiltonian H(xi, pi, t), it should

reproduce the behaviour of the classical system given the appropriate condi-

tions.

The Pauli–Schrödinger Hamiltonian for a spin-1
2 particle in an elec-

tromagnetic field (in three-dimensional Cartesian coordinates) is an example

of a Hamiltonian containing discrete observables. The classical Hamiltonian

for a particle with charge q in an electromagnetic field is

H(x,p, t) =
(p− qA(x, t))2

2m
+ qφ(x, t), (4.23)

from which we can obtain the Lorentz force law (here using Cartesian coordi-

nates):

ẋi =
∂H

∂pi
=

pi − qAi
m

ṗi = −∂H
∂xi

= q

[
ẋj
∂Aj
∂xi
− ∂φ

∂xi

]
(4.24)

⇒ mẍ = q

[
(ẋ×(∇×A))−∇φ− ∂A

∂t

]
. (4.25)

Creating a Hamltonian operator by direct replacement of x → x̂ and p → p̂

gives rise to equivalent expressions for the expectation values d
dt〈x̂i〉,

d
dt〈p̂i〉 and

m d2

dt2
〈x̂〉, per Ehrenfest’s theorem. For electrons, however, this treatment as

a classical particle fails to account for its intrinsic magnetic moment. This is

remedied by introducing an inherently quantum degree of freedom σ̂ with three

components σ̂i =
∑

αβ

∫
dx |xα〉σαβi 〈xβ|, where σαβi are the Pauli matrices, into

the Hamiltonian:

Ĥ(t) =
[σ̂.(p̂− qA(x̂, t))]2

2m
+ qφ(x̂, t). (4.26)

The expectation values now satisfy

d

dt
〈x̂i〉 =

1

i~
[x̂i, Ĥ] = 〈 p̂i − qAi

m
〉

d

dt
〈p̂i〉 =

1

i~
[p̂i, Ĥ] = q 〈 p̂j − qAj

2m

∂Aj
∂x̂i

+
∂Aj
∂x̂i

p̂j − qAj
2m

− ∂φ

∂x̂i
〉

+
~q
2m
〈 εjklσ̂j

∂2Al
∂x̂i∂x̂k

〉 (4.27)
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⇒ m
d2

dt2
〈x̂〉 = q 〈 p̂− qA

2m
×(∇×A)− (∇×A)× p̂− qA

2m
〉+ q 〈−∇φ− ∂A

∂t
〉

+
~q
2m
〈∇(σ̂.∇×A) 〉. (4.28)

The first terms in (4.27) and (4.28) can be seen to be equivalent to those of

(4.24) and (4.25), with a symmetrisation of the operator products. The final

term in each of (4.27) and (4.28) is the expectation value of the force on a

magnetic moment of (~q/2m)σ̂ in a magnetic field ∇×A(x̂).

The introduction of extra degrees of freedom directly into the Hamilto-

nian operator in this way is consistent with Postulate 3. The new operators

may alter the dynamics, but the position operator x̂ and momentum opera-

tor p̂ remain well-defined, and they retain a consistent and straightforward

interpretation in relation to the canonical variables of the original classical

Hamiltonian.

We will find in Section 6 that this consistency is not retained when we

begin to consider relativistic Hamiltonians.

4.3 The single particle

The motivation for setting out the correspondence between Hamiltonian sys-

tems and quantum theories in this Section was to establish a connection be-

tween the postulates of quantum theory and our quantitative experience of

spatial location.

Hamiltonian mechanics would not normally be said to define spatial co-

ordinates.53 Rather, it is a well-established description of the classical world

in terms of any parametrisation of its degrees of freedom. The key is that

some parametrisations can be arranged by definition to correspond to spatial

locations. The simplest such system – and the only one for which the set of

generalised coordinates is a set of coordinates for a location in space – is the

single particle.

In effect, we have a ‘test-particle’ definition for quantifying a spatial loca-

tion: a set of numbers x that would be valid as Hamiltonian coordinates for

a classical single particle system if such a particle were to be found at that

location. Because of the correspondence described in Section 4.1, there is a

natural extension of this to quantum theory: we seek a continuous operator

x̂ whose expectation values obey the same dynamical laws as x. This is the

53It would not be a ridiculous proposal, however: our most sophisticated and well-
established classical notion of location comes from the general theory of relativity, and
this theory can be cast in a Hamiltonian form (e.g. [53]).
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program we will be following for the next two Sections.

A side-effect of this attempt is that we can associate a continuous basis

element with every point in space: x 7→ |x〉. If R is a spatial region, we have

a map

R 7→ HR ≡
∫
R
dx |x〉. (4.29)

This HR is a subspace of H, and the projection operator P̂R ≡
∫
R dx |x〉〈x|

projects onto it. We have a map between arbitrarily small, non-overlapping

regions of space and mutually orthogonal subspaces of H.

Since we observe that classical particles move in three-dimensional Eu-

clidean space and wish to maintain this correspondence, this means that our

continuous operator x̂ imposes a three-dimensional Euclidean topology on the

set of subspaces of H, the space of states for a single particle.
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5 Propagators

In this Section, our focus is on the Hamiltonian of a single particle. The nota-

tion (x,p) from the previous Section will be maintained and the calculations

will be kept as general as possible, but we now wish to interpret x as the

coordinates of a location in space. This will enable us to discuss signalling

between spatial locations, and to identify the role of propagators, the coor-

dinate space path integral and Green’s functions in the causal (or otherwise)

behaviour of quantum theory.

5.1 Canonical quantum mechanics and causality

We begin by applying the no-signalling condition from Section 3.3.1 to a gen-

eral single-particle system.

Consider a binary measurement by Alice at time tA to detect the particle in

a spatial region RA. An ideal detector would be represented by an observable

of the form54

Â =

∫
RA

dx |x〉〈x|. (5.1)

If the state of the system at time tA is ρ̂, then the probability p(+|RA) for

a positive detection in region RA and the resulting state update are given by

(3.31)

p(+|RA) =

∫
RA

dx 〈x| ρ̂ |x〉 (5.2)

ρ̂→ ρ̂+ =

∫
RA
dx
∫
RA
dx′ |x〉〈x| ρ̂ |x′〉〈x′|∫

RA
dx′′ 〈x′′| ρ̂ |x′′〉

(5.3)

The probability of a negative result is p(−|RA) = 1 − p(+|RA); the resulting

update ρ̂→ ρ̂− has the same form as above but with the integrals over X \RA,

the complement of RA in X.

A similar position measurement B̂ is made by Bob at time tB and in region

RB. When this measurement takes place, the state has evolved to ÛBA ρ̂± Û
†
BA,

where ÛBA = Û(tB, tA) is the evolution operator between times tA and tB.

54We have taken ν = 1 here. We generalise to include non-classical degrees of freedom in
Section 5.3
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The total probability of Bob registering a positive detection is

p(+|RBRA) =
∑
±
p(+|RBRA±) p(±|RA)

=

∫
RB

dx′′ 〈x′′| ÛBA ρ̂+ Û
†
BA |x

′′〉
∫
RA

dx 〈x| ρ̂ |x〉

+

∫
RB

dx′′ 〈x′′| ÛBA ρ̂− Û †BA |x
′′〉
∫
X\RA

dx 〈x| ρ̂ |x〉

=

∫
RB

dx′′ 〈x′′| ÛBA
(∫

RA

dx

∫
RA

dx′ |x〉〈x| ρ̂ |x′〉〈x′|
)
Û †BA |x

′′〉

+ similar term with RA → X\RA

=

∫
R2
A∪(X\RA)2

dxdx′
∫
RB

dx′′ KBA(x′′,x) 〈x| ρ̂ |x′〉K ∗BA(x′′,x′),

(5.4)

where KBA is the propagator [54], defined by

KBA(xB,xA) ≡ 〈xB| Û(tB, tA) |xA〉. (5.5)

The integrals in (5.4) over RA×RA and (X \RA)×(X \RA) can be replaced

by an integral over X×X less integrals over RA×(X\RA) and (X\RA)×RA.

This gives

p(+|RBRA) = p(+|RB)− 2<{∆p(+|RBRA)} (5.6)

where the first term is the X ×X integration, which is independent of Â,

p(+|RB) =

∫
RB

dx′′ 〈x′′| ÛBA ρ̂ Û †BA |x
′′〉, (5.7)

and the second term contains all the Â-dependence,55 with

∆p(+|RBRA) =

∫
RA

dx

∫
X\RA

dx′
∫
RB

dx′′ KBA(x′′,x) 〈x| ρ̂ |x′〉K ∗BA(x′′,x′).

(5.8)

The probability, from (5.6), of Bob’s measurement registering a pos-

55In the limit of small regions RA and RB , and employing a pure state ρ̂ = |ψ〉〈ψ| with
wavefunction ψ(x, t) ≡ 〈x| Û(t, tA) |ψ〉, the Â-dependent term reduces to

∆p(+|RBRA) = RBRA KBA(xB,xA)ψ(xA, tA)

∫
X\RA

dx′ ψ∗(x′, tA)K ∗BA(xB,x
′)

= RBRA ψ
∗(xB, tB)KBA(xB,xA) ψ(xA, tA) − O

(
RB(RA)2) .
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itive response will in general depend on the location of Alice’s mea-

surement unless KBA(xB,xA) = 0 for all xA ∈ RA and xB ∈ RB.

In Appendix A.1, this result is generalised to any spatially-restricted op-

erator of the form

Â =

∫
RA

dx

∫
RA

dx′ |x′〉Â(x,x′)〈x|, (5.9)

where the operator Â(x,x′) may be a function of x and x′, or any series of finite

order differential operators with functional coefficients.

If the propagator is non-zero for any (xB, tB) outside the future light cone

of any (xA, tB), this would mean that operators of the form (5.9) permit su-

perluminal signalling, which leads to significant problems in terms of causality

(see Section 6.1.3). As we will see in the next Section, this is indeed the case

– the propagator does not vanish for any finite interval.

The calculation above mirrors that leading to equation (3.19). If the off-

diagonal terms ∆̂
(B,Ak)
j do not vanish in that equation then the measurements

Ak and B are causally linked. In the coordinate basis here, the ‘off-diagonal’

terms give rise to the ∆p in (5.6), as can be seen from the asymmetric char-

acter of range of the dxdx′ integral. The original argument was shown to

be equivalent to a commutation rule (3.20); the same argument applies for

position measurements:56

KBA(xB,xA) = 0 ∀ xA ∈ RA, xB ∈ RB ⇔
[
ÛBA Â Û †BA , B̂

]
= 0 ∀k.

(5.10)

The propagator result relies on the use of idealised projection operators cor-

responding to the detection or non-detection of a particle in a spatial region

RA. The commutator result, however, applies to any measurement Â and B̂

available to Alice and Bob (Section 3.3.1), so we may make a more general

statement:

[
ÛBA Â Û †BA , B̂

]
= 0 ∀ Â, B̂ ⇔ no causal link. (5.11)

There is no causal link between Alice and Bob if and only if the time-

evolved operator Û(tB, tA) Â Û †(tB, tA) of every measurement available

56In the Heisenberg picture, the commutator condition would simply be
[
Â(tA), B̂(tB)

]
=0.
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to Alice at time tA commutes with the operator of every measure-

ment B̂ available to Bob at time tB.

We may apply a smearing function f(r) to the regions RA and RB by

employing POVMs of the form described in Section 3.4, and using the proba-

bilities and states given in (3.33) and (3.34). We may also introduce smearing

to the time interval tB− tA. However, unless the functions f(r) smear out any

two events so far that they always overlap within a light cone, superluminal

signalling will remain a part of this theory.

We are left with the choice of either:

1. Modifying quantum theory at the level of Postulates 1 & 2;

2. Accepting that superluminal signalling may occur to some degree and

attempting to find a way to deal with the paradoxes this throws up;

3. Accepting that all physical measurements are necessarily smeared out

over infinite space and/or infinite time; or

4. Accepting that position operators – and, by extension, wavefunctions in

the position basis – are physically meaningful only as approximations,

and being especially aware of this if they are introduced into any rela-

tivistic argument.

This is a statement about any operators constructed from a continuous ba-

sis {|x〉} of generalised coordinates in accordance with Postulate 3, regardless

of any interpretation in terms of particles or otherwise.

This result will be explored in more detail throughout the remainder of

this work. Having established the role of the propagator (5.5), our next task

is to derive expressions for it in terms of the single-particle Hamiltonian.

5.2 The propagator in canonical quantum mechanics

The propagator KBA ≡ K(xB, tB; xA, tA) was defined in equation (5.5). With

δt ≡ (tB−tA)/N , ts ≡ tA+sδt and t′s ≡ tA+(s−1
2)δt,57 together with xN = xB

57The dashed notation t′s refers to quantities that are averaged over the sth δt interval.
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and x0 = xA, we can use (4.6) to expand further:

KBA = lim
N→∞

〈xB| e
1
i~ Ĥ(t′N )δte

1
i~ Ĥ(t′N−1)δt . . . e

1
i~ Ĥ(t′2)δte

1
i~ Ĥ(t′1)δt |xA〉

= lim
N→∞

∫
dxN−1 . . .

∫
dx1〈xB| e

1
i~ Ĥ(t′N )δt|xN−1〉 . . . 〈x1| e

1
i~ Ĥ(t′1)δt|xA〉.

(5.12)

If the Hamiltonian operator58 can be expanded as a series

Ĥ(t) =
∑
a

fa(x̂, t) ga(p̂, t), (5.13)

then, in n coordinate dimensions, each factor for r ∈ {1, . . . , N} has the fol-

lowing form to order δt:

〈xr| e
1
i~ Ĥ(t′r)δt|xr−1〉

≈ 〈xr| 1̂ +
1

i~
∑
a

δt fa(x̂, t
′
r) ga(p̂, t

′
r) |xr−1〉

=

∫
dp

(
〈xr|p〉〈p|xr−1〉+

δt

i~
∑
a

〈xr|fa(x̂, t′r)|p〉〈p|ga(p̂, t′r)|xr−1〉

)

=

∫
dp

eixr.p/~

(2π~)n/2
e−ixr−1.p/~

(2π~)n/2

(
1 +

δt

i~
∑
a

fa(xr, t
′
r) ga(p, t

′
r)

)

≈
∫

dp

(2π~)n
exp

{
i

~
(xr − xr−1).p− i δt

~
∑
a

fa(xr, t
′
r) ga(p, t

′
r)

}

=

∫
dp

(2π~)n
exp

[
i δt

~

{
xr−xr−1

δt
.p − H(xr,p, t

′
r)

}]
. (5.14)

This analysis is valid provided the neglected terms of order δt2 can be relied

upon to vanish when the N→∞ limit is taken.59

58The operator takes the same functional form as the classical Hamiltonian, per Postulate
3. A reordering of operators or functions of operators has no overall effect on the theory (see
next footnote).

59The xr appearing in the Hamiltonian in (5.14) would be xr−1 if the ordering of fa(x̂, t′r)
and ga(p̂, t′r) were reversed in (5.13). This constitutes an ambiguity which would normally
vanish as N−1 when the limit is taken. O(δt2) corrections should be understood to be
present in all lines of equation (5.14); they arise here from the implicit use of the Baker-
Campbell-Hausdorff formula for exponential functions of non-commuting operators. Again,
these corrections would normally vanish as N−1 when the limit is taken. Hamiltonians
containing potentials that vary as a negative power of a coordinate, such as a Coulomb
potential or a centrifugal barrier, are exceptions to this: the assumptions made here regarding
limits are not applicable in those cases, although the result (5.15) remains valid [55, §2.1.4].
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Thus

KBA = lim
N→∞

∫ (N−1∏
s=1

dxs

) N∏
r=1

dpr

(2π~)n
exp

[
i δt

~

{
ẋ′r.pr − H(xr,pr, t

′
r)
}]
,

(5.15)

where ẋ′r ≡ (xr−xr−1)/δt.

5.2.1 If the Hamiltonian is a quadratic function of momentum

If the Hamiltonian (5.13) is quadratic in p, i.e.

H(x,p, t) = f0(x, t) + f1 i(x, t) pi + f2 ij(x, t) pipj , (5.16)

then we can use a standard result for the Gaussian integral of a quadratic

form (represented by a symmetric, non-singular n×n matrix a),

∫
dp exp

[
−1

2 ip
Tap + ib.p

]
=

√
(−2πi)n

det a
exp

[
1
2 ib

Ta−1b
]
, (5.17)

to perform each momentum integral in (5.15):∫
dpr

(2π~)n
exp

[
−1

2 ip
T
r

2δt

~
f2pr + i

δt

~
(
ẋ′r−f1

)
.pr −

i δt

~
f0

]
=

1

(2π~)n

√
(−2πi)n

(2δt/~)n det f2
exp

[
1
2 i
δt2

~2

(ẋ′r−f1)Tf−1
2 (ẋ′r−f1)

2δt/~

]
exp

[
− i δt

~
f0

]

=

√
1

(4π~ i δt)n det f2
exp

[
i δt

~

{
1
4(ẋ′r−f1)Tf−1

2 (ẋ′r−f1)− f0

}]
. (5.18)

From (5.16), ẋi = ∂H
∂pi

= f1 i + 2f2 ij pj ; so the classical Lagrangian is

L(x, ẋ, t) ≡ ẋ.p−H(x,p, t) =
{

1
4 (ẋ−f1)Tf−1

2 (ẋ−f1)− f0

}
(5.19)

and the full propagator can be expressed as a coordinate space path integral:

K(xB, tB; xA, tA)

= lim
N→∞

∫ (N−1∏
s=1

dxs

) N∏
r=1

√
1

(4π~ i δt)n det f2
exp

[
i δt

~
L(xr, ẋ

′
r, t
′
r)

]

= lim
N→∞

∫ ( ∏N−1
s=1 dxs∏N

r=1 (4π~ i δt)n/2
√

det f2(xr, t′r)

)
exp

[
N∑
r=1

i δt

~
L(xr, ẋ

′
r, t
′
r)

]

≡
∫
Dx(t) exp

[
i

~
SBA

]
, (5.20)
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where SBA is the classical action for the path x(t) between (xA, tA) and

(xB, tB):

SBA ≡
∫ tB

tA

dtL(x(t), ẋ(t), t). (5.21)

The path integral measure Dx(t) is defined here as the N → ∞ limit of the

product measure given in the line above.

Thus we find – at least in the case where the Hamiltonian is quadratic –

that the functional appearing in the path integral form of the canon-

ical propagator is the same classical action that, via the stationary

action principle, generates the Hamiltonian from which the canoni-

cal operators were constructed in Postulate 3.

The circular character of this derivation60 suggests that an alternative to

Postulate 3, based on the action via equation (5.20), could be considered as

more fundamental. Feynman proposed this in 1948 [56]; it has subsequently

been made rigorous using Itō calculus to define the analytic continuation of a

series of random processes [55, §18].

This path integral formulation of quantum mechanics is a generali-

sation of the stationary action principle, which is recovered in the limit ~→ 0

[55, §4].

5.2.2 free-particle propagators

Another useful case involves Hamiltonians that are functions of momentum

alone, i.e. H(x,p, t) = H(p). The general phase space path integral (5.15) is

then

KBA = lim
N→∞

∫ (N−1∏
s=1

dxs

) N∏
r=1

dpr

(2π~)n
exp

[
i

~
(xr−xr−1).pr −

i δt

~
H(pr)

]

= lim
N→∞

∫ ( N∏
r=1

dpr

)
exp

[
− i δt

~

N∑
r=1

H(pr)

]
exp

[
i

~
(−x0.p1+xN.pN)

]

× 1

(2π~)n

∫ N−1∏
s=1

dxs

(2π~)n
exp

[
i

~
xs.(ps−ps+1)

]
.

60The Hamiltonian formalism of classical mechanics, on which the canonical formalism
of quantum mechanics is based, can be viewed as a structure that emerges from the more
fundamental stationary action principle (or ‘Hamilton’s principle’) [48, §3.7]. It is more fun-
damental in the sense that it is coordinate-free – this also makes it manifestly relativistically
invariant, which the Hamiltonian formalism is not. For these reasons, the action is attractive
as a starting point for approaches to quantum theory that seek to bypass the Hamiltonian
altogether. The path integral is the key mathematical tool for this endeavour [54, 55].
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Each of the N−1 coordinate space integrals gives an n-dimensional momentum

delta function δ(ps−ps+1), making all but one of the momentum integrals

trivial:

KBA = lim
N→∞

∫
dp1

(2π~)n
exp

[
− i δt

~
N H(p1)

]
exp

[
i

~
(−x0.p1+xN.p1)

]
=

∫
dp

(2π~)n
exp

[
i

~
(xB−xA).p− i

~
(tB−tA)H(p)

]
. (5.22)

If the Hamiltonian is a function only of p, the magnitude of the momentum,

the propagator is a function of ∆x = xB−xA and ∆t = tB−tA:

KBA =


∫ ∞
−∞

dp

2π~
exp

[
i

~
(p∆x−H(p)∆t)

]
n = 1∫ ∞

0
dp

∆x

~

( p

2π~∆x

)n
2
Jn

2
−1

(
p∆x

~

)
exp

[
− i
~
H(p)∆t

]
n ≥ 2.

(5.23)

Here Jν(x) is the spherical Bessel function of order ν.

In n=3 spatial dimensions we may use the identity z
1
2J 1

2
(z) = (2/π)

1
2 sin z.

Provided the Hamiltonian is an even function of p, the integral simplifies con-

siderably. By doubling the range of integration, the sin z is eliminated in

favour of eiz:

K(xB, tB; xA, tA) =

∫ ∞
−∞

dp

(2π~)2

p

i∆x
exp

[
i

~
(p∆x−H(p)∆t)

]
. (5.24)

This expression will be used in Section 6 to evaluate the free-particle propa-

gator for a relativistic scalar particle.

The Hamiltonian H(p) = p2/2m of a non-relativistic free scalar particle

– or a set of non-interacting particles – in rectilinear coordinates x ∈ Rn is

another example. The momentum integral is Gaussian, so (5.17) can be used

for general n. The result is61

K(xB, tB; xA, tA) =
( m

2π~ i∆t

)n
2

exp

[
im

2~
∆x2

∆t

]
. (5.25)

61As the Hamiltonian is quadratic, this result can also be derived from the path integral
expression (5.20) with det f2 = det(δij/2m) = (1/2m)n and L = 1

2
m[(xr−xr−1)/∆t]2 [54,

§3-1].
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5.3 Propagators involving non-classical degrees of freedom

The propagators in Sections 5.1 and 5.2 can be generalised to include non-

classical degrees of freedom and the associated ν-component wavefunctions.

The ideal detector of equation (5.1), capable of determining whether or

not a particle is in a given region RA, is generalised to one that can also

discriminate between the components of the wavefunction:

Â =
∑
αβ

∫
RA

dx |xα〉Â(x)αβ〈xβ|. (5.26)

If Â
(x)αβ = δ1αδ1β, to take an idealised example, then the detector responds

only to the 1st component of the wavefunction, ψ1(x). If the components of

the wavefunction are to be interpreted as different types of particle at the

same location, then this detector would respond to a single particle type.

If there are any non-classical degrees of freedom that an observer has some

ability to distinguish experimentally, the reasoning in Section 5.1 must hold

with regard to every element of the matrix of propagators Kαβ
BA(xA,xB) ≡

〈xβB|Û(tB, tA)|xαA〉: that is, the theory permits signalling between regions RA

and RB unless Kαβ
BA(xA,xB) = 0 for all xA ∈ RA and xB ∈ RB.

The general form of the Hamiltonian (4.19) can be expressed in the coor-

dinate basis by means of a matrix with components Ĥ
(x)αβ(x, t):

Ĥ(t) =
∑
αβ

∫
RA

dx |xα〉Ĥ (x)αβ〈xβ|. (5.27)

The propagator may be calculated in the same way as Section 5.2. Following

equation (5.13), we require it to be expressible as Ĥ(t) =
∑

a f̂a(x̂, t) ĝa(p̂, t).

f̂a and ĝa are now operators in the space of the non-classical degrees of

freedom as well as functions of the canonical operators. We require that they

can be expressed as a power series f̂a =
∑

b f̂abx̂
b and ĝa =

∑
b ĝabp̂

b. Each

coefficient can be expressed in matrix form in that space, as well as having a

general rank-b tensor character with respect to the canonical operators, and

being some function of the operators representing the non-classical degrees of

freedom. In all its fully-indexed glory, this means[
f̂ab

]
i1i2...ib

x̂i1 x̂i2 . . . x̂ib =
∑
αβ

∫
dx |xα〉

[
fαβab (â, b̂, ĉ, . . . ; t)

]
i1i2...ib

x̂i1 x̂i2 . . . x̂ib〈x
β|

(5.28)

and similarly for ĝab.

From this, we can define a matrix Hαβ(x,p, t) that will play the role of
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the classical Hamiltonian in the coordinate space while remaining an operator

in the space of the non-classical degrees of freedom:

Hαβ(x,p, t) ≡
∑
a

(∑
b

fαγab (t)xb

)(∑
c

gγβac (t)pc

)
. (5.29)

With the application of (4.22): 〈xα|pβ〉 = (2π~)−n/2 δαβ eix.p/~, the reason-

ing that leads to equation (5.14) continues to hold and we arrive at a full

generalisation of the phase space expression (5.15) for the propagator:62

Kαβ(xB, tB; xA, tA) =

lim
N→∞

∫ (N−1∏
s=1

dxs

) N∏
r=1

dpr

(2π~)n
exp

[
i∆t

~

{
ẋ′r.pr δ

αβ −Hαβ(xr,pr, t
′
r)
}]
. (5.30)

For Hamiltonians that are quadratic in the momentum operator, such as the

Pauli–Schrödinger Hamiltonian (4.26), the standard Gaussian integral (5.17)

is no longer enough. Our expression for a single momentum integral now has

the form ∫ ( n∏
i=1

dpi
)

exp
[
−1

2 i pi a
αβ
ij pj + i bαβi pi + i cαβ

]
. (5.31)

If aαβij , bαβi and cαβ can be diagonalised simultaneously with respect to the

non-classical degrees of freedom (the Greek indices), then this integral can be

performed using the standard Gaussian result for each element on the diago-

nal, and a coordinate space path integral emerges as we saw in (5.20). For our

Hamiltonian, this is equivalent to the requirement that a basis {|xα〉} exists

in which each component of a wavefunction ψα(x) = 〈xα|ψ〉 evolves indepen-

dently. In other words, the system would be equivalent to a set of independent

systems each of which evolves unitarily with no non-classical degrees of free-

dom.

To derive a coordinate space path integral by this method, we must attempt

to find a position representation in which the Hamiltonian itself is diagonal.

5.4 Propagators as Green’s functions

All propagators discussed in Section 5 rely on the notion of a time evolution

operator (Postulate 3), and the equivalent path integral procedure relies on

an ordered time-slicing. A propagator K(xB, tB; xA, tA) ≡ 〈xB| Û(tB, tA) |xA〉

62The right-hand side of (5.30) and (5.31) are to be understood as the αβ element of the
exponential of the matrix, rather than the exponential of the αβ element.
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in this context is therefore defined for tB>tA only.

Let us now define

GR(x, t; x0, t0) ≡ θ(t−t0)K(x, t; x0, t0), (5.32)

which has the following property:∫
dx′GR(x, t; x′, t0)ψ(x′, t0) = θ(t−t0)

∫
dx′ 〈x| Û(t, t0) |x′〉〈x′|ψ(t0)〉

= θ(t−t0)〈x|Û(t, t0)|ψ(t0)〉

=

{
0 if t < t0

ψ(x, t) if t > t0.
(5.33)

Let us also define a differential operator

Ŝ =
∂

∂t
− Ĥ
i~
. (5.34)

This is an operator that gives zero in and only if that state is evolving according

to the laws of quantum mechanics. (The Schrödinger equation (4.7) implies

Ŝ|ψ〉 = 0 ∀|ψ〉 ∈ H.) If we apply the operator to GR(x, t; x0, t0) and refer to

(4.5), we find

Ŝ GR = θ(t−t0) 〈x|

(
∂

∂t
− Ĥ
i~

)
Û(t, t0) |x0〉 + δ(t−t0) 〈x| Û(t, t0) |x0〉

= δ(t− t0) δ(x−x0) (5.35)

This is the defining condition for GR to be a Green’s function of Ŝ. Because

it evolves from a given state, it is known as the retarded Green’s function. A

Green’s function that evolves to a given state – the advanced Green’s function

– also exists for Ŝ:

GA(x, t; x0, t0) ≡ θ(t0−t)K(x0, t0; x, t), (5.36)

for which∫
dx GA(x, t; x′, t0)ψ(x, t) = θ(t0−t)

∫
dx 〈x′| Û(t0, t) |x〉〈x|ψ(t)〉

= θ(t0−t)〈x′|Û(t0, t)|ψ(t)〉

=

{
ψ(x′, t0) if t < t0

0 if t > t0.
(5.37)
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The existence of a retarded and an advanced Green’s function is a general

property of differential operators Ŝ that are first order in time. Once they

are known, they can be used to solve equations of the form

(Ŝψ)(x, t) = j(x, t) ∀x ∈ V, t1≤ t≤ t2 (5.38)

where j(x, t) is any function of space and time. The solution can be expressed

in terms of ψ(x, t0) where t1≤ t0≤ t2. For t > t0 it takes the following form,

of which (5.33) is a special case:

ψ(x, t) =

∫
V
dx′GR(x, t; x′, t0)ψ(x′, t0)

+

∫ t

t0

dt′
∫
V
dx′GR(x, t; x′, t′) j(x′, t′) + surface term

The surface term, integrated over the boundary of V from time t0 to t, depends

on the form of Ŝ. If Ŝ contains second order spatial derivatives, this term

includes the components of ∇ψ and ∇GR normal to the boundary in addition

to the boundary values of ψ and GR themselves.
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6 Relativistic free particles and their propagators

Note: we set c = 1 and ~ = 1 in this and subsequent discussions

concerning relativistic quantum theory.

6.1 The relativistic scalar particle propagator

The Hamiltonian of a relativistic particle of massm and charge q is well-defined

in classical mechanics:

H(x,p, t) =
√

[p− qA(x, t)]2 +m2 + qφ(x, t)

=
√

p2 +m2 for a free particle. (6.1)

As per Postulate 3, in the absence of non-classical degrees of freedom (as we

assume to be the case for a scalar particle) we propose a free-particle Hamilto-

nian operator with the same functional form as the classical Hamiltonian. In

the coordinate representation, the identification p̂
(x)

i =∂/∂xi inside the square

root is problematic: we will return to this in Section 6.2. For now, we make

use of the fact that the Hamiltonian is a function of momentum alone, so that

the propagator takes the form (5.22):

K(xB, tB; xA, tA) =

∫
dp

2π
exp
[
i∆x.p− i∆t

√
p2 +m2

]
, (6.2)

where ∆x ≡ xB−xA and ∆t ≡ tB−tA.

The propagator calculation below includes the negative as well as the pos-

itive square root Hamiltonian:

H±(p, t) = ±
√

p2 +m2. (6.3)

We will make use of both results in later Sections.

6.1.1 Positive and negative energy propagators

In three spatial dimensions, the propagator is given by (5.24). Applying the

substitution p = m sinhχ,

K±(xB, tB; xA, tA) =

∫ ∞
−∞

dp

(2π)2

p

i∆x
exp
[
i(p∆x∓ (p2 +m2)

1
2 ∆t)

]
=

m2

(2π)2i∆x

∫ ∞
−∞

sinhχ coshχdχ exp[∓imτ cosh(χ∓φ)] ,
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where τ = (∆t2−∆x2)
1
2 and sinhφ = ∆x/τ . Changing variables again to

χ′ = χ∓φ, the integral becomes

1
2 cosh 2φ

∫ ∞
−∞

sinh 2χ′ dχ′ e∓imτ coshχ′ ± 1
2 sinh 2φ

∫ ∞
−∞

cosh 2χ′ dχ′ e∓imτ coshχ′ .

The first term has an odd integrand and therefore vanishes; the second is even.

Since 1
2 sinh 2φ = ∆t∆x/τ2, we have

K±(xB, tB; xA, tA) =
±m2 ∆t

(2π)2 i τ2
2

∫ ∞
0
dχ′ cosh 2χ′ e∓imτ coshχ′ . (6.4)

If a small appropriately-signed imaginary part is added to t, the integral con-

verges to give a modified Bessel function. To this end, we redefine τ as:

≡ lim
ε→0+

[(∆t∓ iε)2 −∆x2]
1
2 (6.5)

and, with z = ±imτ , make use of the standard result

Kν(z) =

∫ ∞
0

cosh νt e−z cosh t provided <(z) > 0 (6.6)

to arrive at a general expression for the propagator:

K±(xB, tB; xA, tA) =
m2

2π2

±∆t

i τ2
K2(±imτ). (6.7)

When the interval from (xA, tA) to (xB, tB) is timelike – that is, if ∆t >∆x

– the variation with τ is revealed more clearly as a Hankel function via the

relation63 K2(±imτ) = −iπ2H
(1)
2 (∓mτ). When the interval is spacelike, we

note that the ε prescription implies ±iτ =
√
−τ2.

Hence, for a relativistic free scalar particle in three spatial dimen-

63The relationship between modified Bessel functions and Hankel functions is [57, §9.6]

Kν(z) ≡

(i)ν+1 π

2
H(1)
ν (iz) if −π < arg(z) ≤ π/2,

(−i)ν+1 π

2
H(2)
ν (−iz) if −π/2 < arg(z) ≤ π.

In (6.7), z = ±imτ , and −π/2 < arg(z) < π/2 for finite ε> 0. As ε → 0+, arg(z) → ±π/2
for the timelike case, and arg(z) → 0 for the spacelike case. Therefore the H

(1)
ν (iz) result

is necessary for the timelike propagator in the negative energy case, and is sufficient for the
positive energy case also.
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sions, we obtain from (6.7),64

K±(xB, tB; xA, tA) =


m2

4π

∓∆t

τ2
H

(1)
2 (∓mτ) if ∆t>∆x (timelike)

im2

2π2

±∆t

−τ2
K2(m

√
−τ2) if ∆t<∆x (spacelike).

(6.8)

In the lightlike limit τ2 → 0, approaching the light cone surface from either the

timelike or spacelike side, and also in the massless limit m→ 0, this becomes

K±(xB, tB; xA, tA) =
±i∆t

π2τ4

[
1 +

m2τ2

4
+O(m4τ4)

]
as |mτ | → 0. (6.9)

Away from the surface of the light cone (for massive particles) in either the

timelike or spacelike limit |mτ | → ∞,

K±(xB, tB; xA, tA) =

√
m3

8π3

1

±iτ
±i∆t
−τ2

e∓imτ
[
1 +

15

8

1

±imτ
+O

( 1

m2τ2

)]
.

(6.10)

In the spacelike case, e∓imτ = e−m
√
−τ2

drops off exponentially away from the

light cone surface for both positive and negative energy propagators. Within

the light cone, e∓imτ is a phase.

For a particle in one spatial dimension, the process of integration is

very similar, resulting in65

K±(xB, tB;xA, tA) =
m

π

∆t

τ
K1(±imτ) (6.11)

=


−m

2

∆t

τ
H

(1)
1 (∓mτ) if ∆t>∆x (timelike)

m

π

±i∆t√
−τ2

K1(m
√
−τ2) if ∆t<∆x (spacelike)

(6.12)

In the |mτ | → 0 limit,

K±(xB, tB; xA, tA) =
∓i∆t

πτ2

[
1− m2τ2

4

(
ln(
−m2τ2

4
) + 2γ−1

)
+O

(
m4τ4

)]
,

(6.13)

where γ ≈ 0.5772 is Euler’s constant and the logarithm takes the principle

64In the 3D timelike positive energy propagator, −H(1)
2 (−mτ) may be replaced by

+H
(2)
2 (mτ).

65In the 1D timelike positive energy propagator, −H(1)
1 (−mτ) may be replaced by

−H(2)
1 (mτ). The 1D positive energy propagator here (6.11) agrees with that in [58].

67



value. When |mτ | → ∞,

K±(xB, tB; xA, tA) =

√
m

2π

1

±iτ
∆t

τ
e∓imτ

[
1 +

3

8

1

±imτ
+O

( 1

m2τ2

)]
.

(6.14)

Again, in the spacelike case, e∓imτ = e−m
√
−τ2

drops off exponentially for both

propagators.

The limits (6.10) and (6.14) in particular illustrate that propagation be-

yond the light cone is a feature of any theory with a square root Hamiltonian

of the form (6.1).

6.1.2 The path integral for a relativistic particle

We know from Sections 5.2.1 and 5.3 that when the Hamiltonian is quadratic in

the momentum operator (after having been diagonalised with respect to any

intrinsic degrees of freedom), there is an equivalence between the canonical

propagator K(xB, tB; xA, tA) and the coordinate space path integral repre-

sentation (5.20)

K(xB, tB; xA, tA) =

∫
Dx eiSBA , (6.15)

where SBA is the classical action for a path between (xA, tA) and (xB, tB).

This allows for a very attractive picture of quantum mechanics in terms of

particles taking all conceivable paths through space.

The relativistic Hamiltonian, however, is not quadratic, so we must refer

back to the more general phase space path integral (5.15), which may be

written

K(xB, tB; xA, tA) =

∫
Dx
Dp

(2π)n
exp

[
i

∫ tb

ta

dt
{
ẋ.p−H(x,p, t)

}]
. (6.16)

Nevertheless, the coordinate space equation (6.15) is worth investigating, with

a view to introducing some ways in which it can be generalised to the rela-

tivistic case.

The classical action for a free relativistic particle is simply SBA =−mτ ,

where τ2 = ∆t2−∆x2. For timelike intervals, this is a real quantity; for

spacelike intervals it is imaginary. If anything like equation (6.15) holds in

this case, we should expect iSBA to be unambiguously negative for spacelike

intervals so that propagation is exponentially suppressed rather than amplified.

An initial glance at iSBA = −im
√
−(∆x2−∆t2) is not reassuring.
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Let us consider free relativistic particles (for completeness, I include the

negative as well as the positive energy case, following on from Section 6.1.1)

by taking a Lagrangian of

L±(x, ẋ) = ∓m
√

1− ẋ2 = ∓m
√
dxµ

dt

dxµ
dt

. (6.17)

This implies SBA = ∓mτ . The ith component of momentum is then

pi ≡
∂L±
∂ẋi

=
±mẋi√
1− ẋ2

=
±mẋi√
dxµ

dt
dxµ
dt

(6.18)

which makes ẋ(p) = ±p/
√

p2 +m2, and the Hamiltonian is

H±(x,p) ≡ p.ẋ(p)− L±(x, ẋ(p)) = ±
√

p2 +m2 (6.19)

in correspondence with (6.3).

If we adopt the same iε prescription as was employed in (6.5), the action

becomes

SBA = lim
ε→0+

∓m [(∆t∓ iε)2 −∆x2]
1
2

= lim
ε→0+

∓m

√
(∆t2−∆x2)

(
1∓ iε′

∆t2−∆x2

)

=

∓m
√

∆t2−∆x2 if ∆t>∆x (timelike)

im
√

∆x2−∆t2 if ∆t<∆x (spacelike)
(6.20)

The weight of a path in (6.15) over a spacelike interval is then e−m
√

∆x2−∆t2 ,

which is indeed exponentially suppressed in both positive and negative energy

cases. Equivalently, if any part of a path involves a spacelike interval, the

contribution of that path to the propagator will be exponentially suppressed.

In Section 6.1.1, the iε prescription was required to carry out a basic inte-

gral, but here the choice is not so inevitable. If we do not wish to rely on the

results of the canonical calculation, it may be motivated by demanding that

spacelike contributions to the propagator be suppressed rather than amplified.

The evaluation below illustrates that this prescription is sufficient to main-

tain the equivalence between the two approaches for the case of a free rela-

tivistic particle.

The positive energy propagator – see (6.7) and (6.11) – has been derived

in the path integral representation by Jizba and Kleinert [59]. The authors
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first derive the conditions for an identity relating the path integrals of pairs

of Hamiltonians H(p,x) and H(p,x) via a distribution function ω(v, tba):∫
DxDp exp

[∫ tb

ta

dt
(
ip.ẋ− H

)]
=

∫ ∞
0
dv ω(v, tba)

∫
DxDp exp

[∫ tB

tA

dt
(
ip.ẋ− vH

)]
. (6.21)

The integral is over all paths fixed at the two points x(ta) = xa and x(tb) = xb,

and tba ≡ tb − ta.
In particular, they find that the path integral for a square root Hamilto-

nian H(p,x) = a
√

p2 +m2 can be transformed into a superposition of path

integrals for a quadratic Hamiltonian vH(p,x) = v(p2 +m2) by means of the

following distribution:66

ω(v, tba) =
a e−a

2tba/4v

2
√
πv3/tba

. (6.22)

The propagator discussed here (6.2) is related to (6.21) by a Wick rotation

tA → itA ≡ ta and tB → itB ≡ tb

K(xb,−itb; xa,−ita) =

∫
dp

2π
exp
[
i∆x.p− tba

√
p2 +m2

]
=

∫
DxDp exp

[∫ tb

ta

dt
(
ip.ẋ− H

)]
(6.23)

provided a suitable analytic continuation exists for t ∈ C throughout the

calculation, which is the case here.

The transformation to a quadratic Hamiltonian allows us to recover a

66This is the ‘Weibull distribution’ of order a. The case of a= 1 is sufficient here. The
invariance of this identity with a corresponds to the global reparametrisation invariance of
the action over a parametrised path [60, §V].

If an arbitrary parametrisation xµ(λ) is applied to a path, one may consider the intrinsic

(0+1)-dimensional metric g00(λ) = ∂xµ

∂λ

∂xµ
∂λ

(or the ‘einbein’ e(λ) =
√
g00) induced by that

parametrisation. The requirement that the action be independent of the parametrisation
then dictates how this metric must vary if the parametrisation is changed [61, 6.2]. Invariance
with respect to a → ka corresponds to a small subset of this reparametrisation invariance
– namely the global invariance of the action with respect to λ → λ/k and e(λ) → ke(λ)
everywhere along the path.

The full local gauge freedom of reparametrisation is explored in [60, §V], and it is shown
that the distribution over v can be re-expressed as an integral over path lengths L together
with a functional integral over einbeins De, putting e(λ) on the same footing as x(λ).
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coordinate space expression. With a=1, the integrals over p give

K(xb,−itb; xa,−ita) =

∫ ∞
0
dv

e−tba/4v

2
√
πv3/tba

∫
Dx eSBA,v (6.24)

where

SBA,v = −v
∫ tb

ta

dt
(
m2 +

ẋ2

4v2

)
. (6.25)

After the final integral over v, their general result for D spatial dimensions

is67

K(xb,−itb; xa,−ita) = 2tba

(
mγ

2πtba

)(D+1)/2

K(D+1)/2

(mtba
γ

)
(6.26)

where γ = (1 + x2
ba/t

2
ba)
−1/2. We can continue the expression to real ∆t

while maintaining <(tba) > 0 by employing the same iε prescription (6.5):

tba = i(∆t−iε). This gives tba/γ = iτ for both timelike and spacelike intervals,

and hence

K(xB, tB; xA, tA) = 2i∆t
( m

2πiτ

)(D+1)/2
K(D+1)/2(imτ). (6.27)

This expression agrees with the positive energy cases in (6.7) and (6.11) for

D=3 and D=1 respectively.

6.1.3 Propagation backwards in time?

As discussed in Section 5.4, the derivations of propagators above rely on the

notion of a time evolution operator. They therefore apply only for tB > tA.

We have seen that KAB 6= 0 between spacelike-separated spacetime points

(xA, tA) and (xB, tB). As this is proposed as a relativistic theory, what are

we to make of this from the point of view of an observer for whom tB < tA?

The propagator in its current form lacks self-consistency.

One option is to argue that we have sufficient grounds to abandon the

attempt to use a single-particle Hamiltonian to define a position operator and

move on, perhaps to a field theory (Section 7). In the context of special

relativity itself, it is not difficult to show that where superluminal signalling

is possible, it is also possible for an observer to transmit information to him

or herself at an earlier time, would constitute the worst kind of violation of

67Equation (82) in [59]. The paper incorrectly shows D+ 1
2

in the exponent and in the
order of the Bessel function.
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causality:

In 1+1 dimensions: A stationary observer, Alice, at xµA = ( 0
0 ) sends

a signal at speed w1 to Bob, who is stationary relative to Alice. He

receives the signal at xµB = bµ ≡ ( b/w1

b
) where b>0. Bob immediately

hands this information to Charlie, who is travelling away from Alice at

speed v<w1 relative to Bob. In Charlie’s frame of reference, this takes

place at x′µB = Λµν bν , where Λµν = ( γv −vγv
−vγv γ ) and γv ≡ (1−v2)−1/2.

Charlie immediately transmits a signal in the opposite direction, this

time at signal speed w2 > v, to Dan who is stationary relative to

Charlie. He receives it at x′µD = Λµν bν−dµ where dµ ≡ ( d/w2

−d ) and

d>0. Dan hands the information immediately back to Alice, so that

she receives it at xµD = (Λ−1)µνxνD in her own frame of reference.

Thus,

xµD = (Λ−1)µν (Λνρb
ρ−dν) = bµ−(Λ−1)µνd

ν =

(
b/w1 + γvd/w2 − vγvd
b+ vγvd/w2 − γvd

)
.

As she is stationary, x1
D = 0, ⇒ b= γvd(1− v

w2
). The time at which

she receives the information is therefore

x0
D =

γvd

w1w2

(
(w1+w2)−v(1+w1w2)

)
, (6.28)

which means the causal condition x0
D > 0 for her to receive it after

she sent it is equivalent to v< w1+w2
1+w1w2

. In other words, if there exist

solutions to
w1 + w2

1 + w1w2
< v < min(w1, w2) (6.29)

then Alice will be able to receive – and act on – the information before

she chooses to send it. If either of the signals is not superluminal, i.e.

if min(w1, w2)≤ 1, then w1+w2
1+w1w2

≥min(w1, w2) and no such solutions

for v exist; but if both are superluminal, i.e. if min(w1, w2)>1, then

subluminal speeds v exist that satisfy (6.29).

There is no limit on how far into the past the message can be sent

– the time (6.28) is proportional to d (and therefore to b) – so unless

there is an absolute restriction on signalling distance, any delays in

the transmission process can in principle be compensated for.

We have assumed here that the sending and receiving of signals

occur at spacetime points, but the argument extends trivially to a
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case in which the sending and receiving of signals takes place within

finite regions of spacetime, such as that discussed in Section 5.1.

A theory of nature that permits bi-directional signalling over

spacelike intervals therefore also makes it possible for someone to

alter the information she sends after having already received it from

herself, or for a device to be programmed to signal to itself in the past

if and only if it does not receive a signal from itself. This proves by

reductio that either some very contrived new laws apply (viz. special

relativity is false, or there are absolute restrictions on free will and

programmable devices, or signal speed is limited in different ways in

different directions) or signalling over spacelike intervals cannot occur

in nature.

The second option is to keep going and see what happens. This alternative

is what I intend to do here, in the spirit of investigating how far the single-

particle theory can be taken. If we were to really take this seriously, we would

have to admit that either

(a) all observables relating to the particle are spread over infinite space,68 or

(b) the transmission of signals backwards in time is possible: that it is expo-

nentially suppressed rather than forbidden.

We must then seek a consistent means of extending the domain of the

propagator from its present requirement (tB−tA > 0) at least as far as the

backwards light cone (tB− tA > −|xB−xA|), so that time-ordering is not

restricted for spacelike-separated events.

One clue is evident from the forms (6.8) and (6.12) taken by the propaga-

tors for the positive and negative energy Hamiltonians: they are time-reversed

images of each other.69 We will see in Section 6.4 that the Feshbach–Villars

theory unites the positive and negative energy Hamiltonians, making it pos-

sible to exploit this symmetry, at least to some extent. We will return to the

relativistic particle propagator in this context in Section 6.4.7.

68Because we know from Section 5.1 that any observable defined within a finite region
(5.9) makes signalling possible whenever the propagator is non-zero.

69The reason for this can be traced back to the emergence of the Hamiltonian as the
generator of time evolution in Section 4.1, in particular the invariance of (4.5) under δt→ −δt
and Ĥ → −Ĥ.
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6.2 The square root Hamiltonian

For the calculation above, we avoided the question of what form the Hamilto-

nian operator takes in coordinate space by making use of a general result for

free-particle Hamiltonians. Here we look at what form this Hamiltonian could

take.70

An operator that is identical to (6.1) for at least some region of Hilbert

space (see below for the domain) can be constructed by using a Taylor expan-

sion:

Ĥ√ = m

∞∑
n=0

−1

2n− 1

(2n)!

(2nn!)2

(
− p̂2

m2

)n
= m 1̂ +

p̂2

2m
− p̂4

8m3
+

p̂6

16m5
− 5 p̂8

128m7
+ . . . (6.30)

Writing Ĥ√ =
∫
dx |x〉 Ĥ(x)

√ 〈x|, and employing the simplest coordinate repre-

sentation (4.13),

Ĥ
(x)
√ =m

∞∑
n=0

−1

2n− 1

(2n)!

(2nn!)2

(
1

m2
∇2

)n
. (6.31)

The square of this Hamiltonian converges to

Ĥ2√ |ψ〉 = (p̂2 +m21̂)|ψ〉, (6.32)

mirroring the classical Hamiltonian perfectly, but only if |ψ〉 can be decom-

posed as
∫m

0 d|p|
∫
dΩ ψ(p) |p〉. That is, the domain of Ĥ√ is limited to a

subset of Hilbert space satisfying 〈p|ψ〉 = 0 for all |p〉 with |p| ≥ m.71

We can construct an equivalent operator for the set of all analytic wave-

functions by using a convolution operation, as set out in Appendix A.2. The

70It can be proven that for every positive self-adjoint operator T̂ on a Hilbert space there

exists a unique positive self-adjoint square root operator T̂
1
2 such that (T̂

1
2 )2 = T̂ [62].

71There can be no non-trivial analytic functions in momentum space satisfying ψ(p) =
0 ∀|p| ≥ m, because by definition an analytic function is equal to its Taylor expansions, and a
Taylor expansion of such a function about a point p′ with |p′|>m would be zero everywhere.
(The Hilbert space of square-integrable functions does include non-analytic functions.)

The equivalence between (6.31) and (6.32) would also apply if ψ(x) were polynomial in x,
but no non-trivial polynomials are square-integrable over R3.
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result for three spatial dimensions, (A.28), is

Ĥ
(x)
√ ψ(x) = mψ(x) +

m

2π2

∫
R3

dr r
∂

∂r

(
K1(mr)

r2

)
[ψ(x+r)− ψ(x)] . (6.33)

The function in the integrand has the following character for large r

lim
r→∞

r
∂

∂r

(
K1(mr)

r2

)
∝ e−mr

(mr)
3
2

. (6.34)

In one spatial dimension, the equivalent expression (A.15) is

Ĥ
(x)
√ ψ(x) = mψ(x)− m

π

∫ ∞
−∞
dr
K1(m|r|)
|r|

[ψ(x+r)− ψ(x)] . (6.35)

It may be verified numerically that these operators satisfy (Ĥ
(x)
√ )2ψ = (−∇2 +

m2)ψ for a variety of square-integrable functions of x.

The action of the operator (6.35) on Gaussian functions is illustrated in

Figure 1. The even character of the function is retained in the low-momentum

limit, where the Hamiltonian is dominated by the mass. In the high-momentum

limit, the operator converts an even function into an odd one. Between these

limits, the function Ĥ
(x)
√ ψ(x) is neither even nor odd.

Does this square root Hamiltonian act ‘locally’? At first glance,

the convolution operation above may appear to be non-local.72 However, the

appearance of [ψ(x+r)− ψ(x)] rather than just ψ(x+r) indicates that this is

not a convolution in the strict sense (A.8).

It can be seen in Figure 1 that wherever ψ(x)→ 0 in coordinate space, it

is also the case that Ĥ
(x)
√ ψ(x)→ 0. This remains true in the limit, represented

in Figure 2. So in this sense at least, this Hamiltonian is a ‘local’ operator,

even though it is not expressed in a manifestly local form.

Nevertheless, propagation does occur over spacelike intervals under this

Hamiltonian, as was shown in Section 6.1.

72If at t= 0 we have a localised wavefunction such as δ(x−x0), a convolution operation
with a function g(x) that is non-zero throughout coordinate space gives a result which is no
longer localised, such as δ(x−x0) ∗ g(x) = g(x−x0). The Schrödinger equation (4.7) tells us
that the Hamiltonian operator gives the rate of change of a wavefunction with time; therefore
under a Hamiltonian of this form, a highly localised wavefunction would have non-zero time
derivatives for all x at t = 0. This is not the case for the Hamiltonians discussed in this
Section.
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Figure 1: The action of the square root Hamiltonian (6.35) on Gaussian wave-
functions ψ(x) = a√

π
e−(ax)2

, with a=0.2, 1, 5 and 20 respectively, and m=1.

The broadest functions, representing high mass or low momentum, are at the

top of the Figure. In the limit of broad Gaussians, Ĥ
(x)
√ ψ(x) → mψ(x). In

the limit of narrow Gaussians, Ĥ
(x)
√ ψ(x)→ −dψ/dx (see Figure 2).

Figure 2: A Gaussian function and its 1st and 2nd derivatives
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6.3 Other relativistic Hamiltonians

It is possible to construct Hamiltonians in accord with Postulate 3 that obey

the Klein–Gordon relation Ĥ2 = p̂2 + m21̂ without resorting to convolution

functions or infinite sums of momentum operators.

The most general finite sum of products of momentum operators, employ-

ing a series of rank-r tensors, is

Ĥ

m
=

N∑
r=0

A
(r)
i1i2...ir

p̂i1
m

p̂i2
m
...
p̂ir
m

such that
(Ĥ
m

)2
=
( p̂

m

)2
+ 1̂. (6.36)

There are no solutions for N=0. For N=1, we require

Ĥ

m
= A(0)1̂ +A

(1)
i

p̂i
m

such that (A(0))2 =1; {A(0), A
(1)
i }=0; {A(1)

i , A
(1)
j }=δij .

This anticommutator algebra defines the Dirac theory, which will be discussed

in Section 6.5. It requires at least a ν = 4-dimensional representation, which

may be self-adjoint.

For N=2, there is some redundancy. In the the case A
(1)
i = 0, we have

A
(2)
ij = α δij and A(0) = β with {α, β} = 1; α2 = 0; β2 = 1.

This algebra defines the Feshbach–Villars theory, which will be discussed in

the next Section. It requires at least a 2-dimensional representation, and the

matrices in this representation cannot be self-adjoint because of the nilpotency

requirement α2 = 0.73

If we set A
(1)
i = εi and allow all the coefficients to vary a small amount

from the elements of the Feshbach–Villars algebra, we obtain to lowest order

in εi the following anticommutation relations:

{εi, εj} = 0; {εi, A(2)} = 0; {εi, A(0)} = 0.

These restrict εi somewhat, in particular the nilpotency relations ε2i = 0, and

are rather suggestive of εi = 0. Another set of zero relations arises if we start

from the Dirac algebra and introduce A
(2)
ij = εij .

For N ≥ 3, the number of zero anticommutation relations and nilpotent

elements increases, and the algebra becomes progressively more contrived.

The conclusion here is that the set of single-particle theories in line with the

73If A is self-adjoint, A2 = 0 ⇒
∑
j AijAjk = 0 ∀ i, k ⇒

∑
j |Aij |

2 = 0 ∀ i ⇒ A = 0.
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three postulates for a particle with manifestly locally-generated time evolution

that could give rise to the relativistic energy-momentum relation we observe

classically is effectively exhausted by two cases. I discuss the Feshbach–Villars

theory in some detail below, and follow this with a brief examination of the

similarities and differences that arise for the Dirac theory.

6.4 The Feshbach–Villars Hamiltonian

6.4.1 Introduction

The simplest represention of the Feshbach–Villars algebra uses two of the Pauli

matrices, giving the following Hamiltonian [63, §1.6]:

ĤFV = (σ3 + iσ2)
p̂2

2m
+ σ3m. (6.37)

Appreciating the nature of position in this theory requires some care. There

is clearly a momentum operator p̂, which must be self-adjoint (as it is an

observable) with a continuous spectrum of eigenvalues. A position operator

can be constructed from momentum along the lines of the argument outlined

for constructing momentum from position in Section 4.2, but I will postpone

this until Section 6.4.5. The intention is to begin by exploring the character

of this theory as far as possible without relying on any particular notion of

position.

We proceed as follows. First, the time evolution equation is found in the

momentum representation, with basis elements denoted by |pα〉. Its solutions

are used to generate a second momentum representation, with basis elements

denoted by |p(±)〉, in which the free-particle Hamiltonian is diagonal and the

two components of the wavefunction evolve independently. These can then

naturally be identified with a pair of particle types, which we will see is a

particle-antiparticle pair. After a brief examination of the space of states

for physical particles, we will be equipped to consider what is required for

a meaningful position observable, and to use this to derive propagators and

investigate the causal implications of the theory.

In Section 6.5 we will see that significant aspects of this Section apply also

to Dirac theory.

6.4.2 Notation

A few words are required to clarify the notation in this Section.

As the momentum representation is two-dimensional, there is a pair of
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momentum basis elements |pα〉 for each momentum eigenvalue p, and conse-

quently a pair of wavefunctions. I refer to these explicitly in component form

with superscripts ψα(p, t), or collectively using a capital Ψ(p, t), and also in

column vector form. The relations between these are defined in (6.39) below;

the t-dependence will only be made explicit when it is relevant. ‘Ket’ notation

|ψ〉 is reserved for expressions that are representation-independent.

Operators in the standard momentum representation, which I shall refer to

as the canonical momentum representation, carry a superscript (p). When

given explicitly as elements of a matrix in relation to vector components they

also carry two matrix superscripts, for example Ĥ
(p)αβ
FV

. Operators without

any superscript are representation-independent. A subscript on vectors ai

runs from 1 to 3, and refers to a Cartesian basis. A vector operator Â is an

operator that has vector eigenvalues, here labelled by n: Â|A(n)〉 = A(n)|A(n)〉.
In component form, it may be expressed as (Â1, Â2, Â3) where Âi|A(n)〉 =

A
(n)
i |A(n)〉. It is understood that p̂

(p)

i = pi.

A second momentum representation, known as the Φ-representation,

will be introduced, in which the two components of the wavefunction are

written as φ
(+)

(p)e−iEpt and φ
(−)

(p)eiEpt, or collectively as Φ(p, t), as defined

in (6.45) and (6.49). Operators in this representation are distinguished by a

further superscript Φ, for example Ĥ
(pΦ)

.

Vectors |ψ〉 and wavefunctions ψα(p, t) carrying superscripts (+) and (−) refer

to states that have only a single non-zero component (upper and lower respoec-

tively) when expressed in the Φ-representation. These correspond to particle

and antiparticle states respectively. The subspaces of these states are denoted

H(+)

FV
and H(−)

FV
, and are spanned by the continuous momentum bases |p(+)〉

and |p(−)〉 respectively.

Any equation in which the ± symbol is used, whether in superscript or

otherwise, should be regarded as a pair of equations.

6.4.3 The two momentum representations

Any continuous momentum representation for the space of states HFV may

be expressed as follows:

p̂i =
2∑

α=1

∫
dp pi |pα〉〈pα| (6.38)

Ψ(p) ≡

(
ψ1(p)

ψ2(p)

)
≡

(
〈p1|ψ〉
〈p2|ψ〉

)
. (6.39)
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We define the canonical momentum representation to be that in which the

Hamiltonian has the form prescribed in (6.37):

Ĥ
(p)

FV
= (σ3 + iσ2)

p2

2m
+ σ3m =

(
p2

2m+m p2

2m

− p2

2m − p2

2m−m

)
. (6.40)

Continuous unitary time evolution (Section 3.1) can only be generated by a

self-adjoint Hamiltonian operator (Section 4.1). The Hamiltonian in (6.37)

has Ĥ†
FV

= σ3ĤFV σ3; but it can be made self-adjoint on HHV if the inner

product on HHV is suitably defined. Requiring

〈ψ2|ĤFV ψ1〉 = 〈ψ1|ĤFV ψ2〉∗ ∀|ψ1〉, |ψ2〉 ∈ HFV (6.41)

implies the following inner product in the momentum basis:

〈ψ1|ψ2〉 ≡
∫
dpψ1

†(p)σ3 ψ2(p). (6.42)

Since σ3 has eigenvalues of ±1, the cost of introducing this inner product is

that it cannot be positive-definite: that is, there are |ψ〉 ∈ HFV such that

〈ψ|ψ〉 < 0. This means the vector space HFV is not a Hilbert space. From

Section 3.1, the necessity for using a Hilbert space arises from the requirement

that all probabilities in the theory be positive, if Postulate 1 is to hold.

This is not necessarily as serious a problem as it appears. A proposal

for generalising a theory need not satisfy all the postulates of that theory

provided it can demonstrate that those postulates could emerge from it. As

we will see below, a subspace H(+)

FV
⊂ HFV exists which is a Hilbert space. We

can identify this as the space of states of a ‘particle’, and apply the postulates

to those states. (The remainder of the full space of states would then be open

to interpretation and phenomenological investigation.)

The time evolution generated by this Hamiltonian in the momentum rep-

resentation, with ĤFV ≡
∑

αβ

∫
dp |pα〉Ĥ (p)αβ

FV
〈pβ|, is

∑
αβ

∫
dp |pα〉Ĥ (p)αβ

FV
ψβ(p, t) = i

∂

∂t

∑
α

∫
dp |pα〉ψα(p, t). (6.43)

Pre-multiplying by 〈p′γ |, this yields the Feshbach–Villars equation:

Ĥ
(p)γβ
FV

ψβ(p′, t) = i
∂

∂t
ψγ(p′, t)

⇒

(
p2

2m+m p2

2m

− p2

2m − p2

2m−m

)(
ψ1

ψ2

)
=

(
i ∂ψ1/∂t

i ∂ψ2/∂t

)
. (6.44)
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This has the pair of solutions

Ψ
(±)

(p, t) ≡

(
ψ1(±)

(p, t)

ψ2(±)
(p, t)

)
=

1√
4mEp

(
m± Ep
m∓ Ep

)
φ

(±)
(p) e∓i Ept, (6.45)

where Ep ≡
√
p2 +m2. These are normalised to

∫
dp |φ(±)

(p)|2 = 1, so that a

state constructed from either positive states only or negative states only would

satisfy74

〈ψ(+) |ψ(+)〉 = 1 ; 〈ψ(−) |ψ(−)〉 = −1 . (6.46)

We know that at any given point in p in momentum space, there exists a

two-dimensional space spanned by the two basis vectors |p1〉 and |p2〉. What

this tells us is that there are only two combinations of basis vectors

from which unitarily-evolving states can be constructed. These are

|p(+)〉 and |p(−)〉, given by

|p(±)〉 ≡ (m± Ep)√
4mEp

|p1〉+
(m∓ Ep)√

4mEp
|p2〉. (6.47)

Any physical wavefunction in this basis then has only one non-zero component:

〈p(±) |ψ(±)〉 = φ
(±)

(p) e∓i Ept

〈p(∓) |ψ(±)〉 = 0. (6.48)

74This can be made explicit by considering a state in the limit of well-defined momentum

p′, taking φ
(±)

(p) in (6.45) to be the limit of a rectangular function:

Ψ
(±)

p′ (p, t) = lim
K→0

1√
4mEp

(
m± Ep
m∓ Ep

)
1

K3/2
rect3(

p− p′

K
)e∓i Ept

|ψ
(±)

p′ 〉 ≡
∑
α

∫
dpψα

(±)

p′ (p, t)|pα〉

= lim
K→0

∫
dp

1

K3/2
rect3(

p− p′

K
) e∓i Ept

(
(m± Ep)√

4mEp
|p1〉+

(m∓ Ep)√
4mEp

|p2〉

)
.

The ‘rect’ function allows us to translate between discrete and continuous bases: it takes
the value 1 when all components of its vector argument lie in the range (− 1

2
,+ 1

2
), and zero

otherwise. In terms of the Heaviside function, rect3(a) =
∏3
i=1(θ(ai+

1
2
)−θ(ai− 1

2
)). Here it

specifies a box in momentum space of volume K3.
The integral over p in the final line may appear to be redundant in the limit K → 0, but

this is not the case – the continuous basis elements |pα〉 must be integrated to give a state
in HFV . It would be a mistake to regard the |pα〉 themselves as equivalent to states in the
limit of well-defined momenta, as one might in non-relativistic quantum mechanics.

Now if we consider a mutually exclusive and complete set of these boxes in momentum

space, then the orthogonality relation 〈p′α|p′′β〉=δαβδ(p′−p′′) leads directly to 〈ψ
(±)

p′ |ψ
(±)

p′′ 〉=
±δp′p′′ . General solutions to the Feshbach–Villars equation (6.44) may be constructed from
superpositions of these states.
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We can express a general wavefunction Φ(p, t) ≡

(
〈p(+) |ψ〉
〈p(−) |ψ〉

)
in this basis:

Φ
(+)

(p, t) ≡ UpΨ
(+)

(p, t) =

(
1

0

)
φ

(+)
(p) e−iEpt

Φ
(−)

(p, t) ≡ UpΨ
(−)

(p, t) =

(
0

1

)
φ

(−)
(p) eiEpt, (6.49)

where the matrix Up is given by

Up ≡
(m+ Ep)I − (m− Ep)σ1√

4mEp
(6.50)

and75

U−1
p ≡ (m+ Ep)I + (m− Ep)σ1√

4mEp
. (6.51)

This is the Φ-representation [63, §1.6]. Notably, the Hamiltonian is diago-

nalised in this representation:

Ĥ
(pΦ) ≡ UpĤ

(p)

FV
U−1
p =

(
Ep 0

0 −Ep

)
= Ep σ3. (6.52)

The diagonalising matrix Up is pseudo-unitary : that is, from Ĥ
(p)†
FV

= σ3Ĥ
(p)

FV
σ3

it follows that U †p = σ3U
−1
p σ3.

6.4.4 The structure of the space of states

We may now define each of the pair of vector spaces H(±)

FV
as the set of states∫

dpφ(p) |p(±)〉 such that φ(p) is any square-integrable function over momen-

tum space.

The ‘positive energy space’ H(+)

FV
is a Hilbert space. It possesses a positive

norm-squared for all states. Any state in the limit of well-defined momentum

is an eigenstate of the Hamiltonian ĤFV with positive eigenvalue Ep. The

‘negative energy space’ H(−)

FV
has a consistently negative norm-squared.76

75Note that

(
|p

(+)

〉
|p

(−)

〉

)
= U−1

p

(
|p

1

〉
|p

2

〉

)
, i.e. the matrix transforming the basis states is the

inverse of the one transforming the wavefunctions. This is as should be expected for two
representations of the same state.

76It can readily be seen that the expectation value of the Hamiltonian∫
dpΦ†(p)σ3Ĥ

(pΦ)

Φ(p) remains strictly positive. In this sense at least, the term
‘negative energy’ is something of a misnomer.
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The two spaces are quite distinct. This suggests, as we will see below, that

every physical observable in this single-particle theory should be represented

by an operator in HFV that does not mix states between the positive and

negative energy spaces. Any operator Â for which Â
(pΦ) ≡ UpÂ

(p)
U−1
p is

diagonal has this property, so I will refer to such operators as Φ-diagonal.

The significance of this pair of spaces H(±)

FV
is that they are stable under

free-particle evolution. This means they can be considered as representing two

distinct particle types.

The operator that distinguishes between the two is called Q̂, defined such

that Q̂|ψ(±)〉 = ±|ψ(±)〉 for all |ψ(±)〉∈H(±)

FV
. In the Φ-representation, therefore,

Q̂
(pΦ)

= σ3. It is shown in Appendix A.4.1, where an electromagnetic field

is introduced into the Hamiltonian, that the eigenvalues of Q̂ are directly

proportional to the charge of the particle type. As both Q̂ and ĤFV are

simultaneously diagonal in the Φ representation, they commute and therefore

charge is conserved as the state evolves.

The operator Ĉ that switches between the two charges is defined in the

momentum representation by Ĉ
(p)

Ψ(p) = σ1Ψ∗(p). The state Ĉ|ψ〉 is referred

to as the charge conjugate of |ψ〉, and where one refers to a particle, the other

is its antiparticle. The two sets of states H(+)

FV
and ĈH(−)

FV
are therefore both

Hilbert spaces, and in both of these spaces we will see that Postulates 1, 2 and

3 continue to hold. It is therefore natural to consider this theory as a particle

theory, with antiparticles.

The statement that a measurement performed on a particle should be rep-

resented by operators Â that are diagonal in the Φ representation is equivalent

to the statement that the process of making this measurement does not

switch of the sign of the charge of the particle. This would normally

be seen as a reasonable requirement for a measurement – in particular for a

measurement of the particle’s position, which is what we will consider below.

A discussion of the structure of the full spaceHFV is presented in Appendix

A.3.

6.4.5 The two position operators and their eigenstates

In Feshbach and Villars’ paper [64], they employ a coordinate representation

for which p̂
(x)

i = −i∂/∂xi, so that the equation of motion (6.37) becomes a

wave equation:

Ĥ
(x)

FV
= (σ3 + iσ2)

−∇2
x

2m
+ σ3m. (6.53)
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I will refer to this representation as the canonical position representation,

and denote it with a subscript C.

The only possible position operator in this representation (up to an ad-

ditive constant) satisfying [x̂iC , p̂j ] = i δij is the familiar x̂
(x)

iC
= xi. It follows

that

x̂
(p)

iC
= i

∂

∂pi
I. (6.54)

This operator is clearly diagonal (when the 2×2 unit matrix I is made ex-

plicit) in the canonical momentum representation. If we move to the Φ-

representation, however, we find that it is not Φ-diagonal:

x̂
(pΦ)

iC
= Up x̂

(p)

iC
U−1
p

= Up i
∂U−1

p

∂pi
+ Up i U

−1
p

∂

∂pi

= − ipi
2E2

p

σ1 + i I
∂

∂pi
. (6.55)

If the canonical position operator represented a measurement, it would be one

that caused particle and antiparticle states (of a single particle) to intermix.

This could be taken as reasonable grounds to reject it as a physical observable

in this theory. But it is not without significance, as we will see.

By demanding that a position operator “preserves the positive character of

the wavefunction” – that is, does not transform particle states into antiparticle

states – we are following the specification set out by Newton and Wigner in

their 1949 landmark paper [65]. Position operators of this form are referred

to as Newton–Wigner operators; I will denote the operator we seek with

a subscript NW .

The requirements are that [x̂iNW , p̂j ] = i δij 1̂, and that x̂
(pΦ)

NW
be diagonal.

In Section 4.2, a general expression for a momentum operator was derived

from the commutation relation in the position basis. Here we have established

a momentum basis and seek a position operator. Switching the roles of position

and momentum involves only a change of sign in the commutator. Mirroring

(4.21), we have

x̂
(p)αβ
iNW

ψ(p, t) =

[
aαβi (p) + i δαβ

∂

∂pi

]
ψ(p, t), (6.56)
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from which

x̂
(pΦ)

iNW
= Up ai(p)U−1

p + Up i
∂U−1

p

∂pi
+ Up i U

−1
p

∂

∂pi

= Up ai(p)U−1
p −

ipi
2E2

p

σ1 + i I
∂

∂pi
. (6.57)

The requirement that x̂
(pΦ)

NW
be diagonal then amounts to77

Up ai(p)U−1
p −

ipi
2E2

p

σ1 = κi(p)I + λi(p)σ3

⇒ ai(p) =
ipi

2E2
p

σ1 + κi(p)I + λi(p)U−1
p σ3Up , (6.58)

where κi(p) and λi(p) are arbitrary functions.

The simplest form of the position operator, x̂
(pΦ)

iNW
= iI ∂

∂pi
, is obtained by

choosing the momentum basis in which these arbitrary functions are zero, just

as we were free to choose a convenient coordinate basis in Section 4.2. This

leaves us with

x̂
(p)

iNW
= iσ1

pi
2E2

p

+ iI
∂

∂pi
. (6.59)

This operator has its own continuous basis, with two basis elements for each

spatial position x – one from which particle states may be constructed, and

one for antiparticle states:

x̂NW |x
(±)

NW
〉 = x|x(±)

NW
〉. (6.60)

In this basis, the Hamiltonian and all physical measurements (that do not

involve transforming particles into antiparticles) are represented in diagonal

form.

The disadvantage is that the Hamiltonian does not have manifestly local

form. As we will see below, in the Newton–Wigner basis the Feshbach–Villars

theory reverts to that of the square root Hamiltonian discussed earlier.

77Any 2× 2 diagonal matrix can be expressed as a sum of terms proportional to the unit
matrix and σ3. The relation Upσ1U

−1
p = σ1 has been employed here; the equivalent relations

for σ2 and σ3 are less trivial:

Upσ2U
−1
p =

Ep
2m

(σ2 + iσ3) +
m

2Ep
(σ2 − iσ3)

Upσ3U
−1
p =

Ep
2m

(σ3 − iσ2) +
m

2Ep
(σ3 + iσ2) = U2

pσ3 .
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In the Φ representation, x̂
(pΦ)

iNW
〈p± |x±

NW
〉 = i ∂∂p〈p

± |x±
NW
〉, and 〈p± |x∓

NW
〉 =

0. Normalising to 〈x′±
NW
|x±
NW
〉=δ(x−x′) and discarding an arbitrary constant

phase, it follows that

〈p± |x±
NW
〉 = (2π)−3/2e−ix.p. (6.61)

With Greek indices now running over the + and − states, and sums over

repeated indices implied,

Ĥ
(xΦ)αβφβ(x) = 〈xα|ĤFV |ψ〉

=

∫
dp 〈xα|pρ〉Ĥ (pΦ)ρσ〈pσ|ψ〉

=

∫
dp

eix.p

(2π)3/2
Epσ

ασ
3

∫
dx′ 〈pσ|x′γ〉〈x′γ |ψ〉 (6.62)

= σασ3

∫
dp

eix.p

(2π)3/2
(p2+m2)

1
2

∫
dx′

e−ix
′.p

(2π)3/2
〈x′σ|ψ〉

= σασ3

∫
dp Ĥ

(x)
√

∫
dx′

ei(x−x
′).p

(2π)3
φσ(x′)

= σασ3 Ĥ
(x)
√

∫
dx′ δ3(x−x′)φσ(x′)

Hence,

Ĥ
(xΦ)
φ

(±)
(x) = ±Ĥ (x)

√ φ
(±)

(x)

= ±
{
mφ

(±)
(x) +

m

π

∫ ∞
−∞
dr r

∂

∂r

(
K1(mr)

r2

)[
φ

(±)
(x+r)− φ(±)

(x)
]}
.

(6.63)

The square root operator Ĥ
(x)
√ was introduced in Section 6.2 in the context of

single-component wavefunctions. The final step follows from (6.33).

In the Newton–Wigner basis, the dynamics are therefore the same as those

described in Sections 6.1 and 6.2. The free particle(+) and antiparticle(−)

propagators between eigenstates of the Newton–Wigner operator in this theory

are therefore also given by (6.7) and (6.8):

〈x(±)

B |Û(tB, tA)|x(±)

A 〉 =
m2

2π2

±∆t

i τ2
K2(±imτ)

=


m2

4π

∓∆t

τ2
H

(1)
2 (∓mτ) if ∆t2>∆x2

im2

2π2

±∆t

−τ2
K2(m

√
−τ2) if ∆t2<∆x2 .

(6.64)
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Once again, it is non-zero for spacelike separations.

To conclude this Section, the eigenstates of the Newton–Wigner operator

are calculated in the canonical position representation.

We start by establishing some basic relations in the canonical representa-

tions. Basis states are defined such that x̂C |xαC 〉 = x|xα
C
〉. Using p̂

(x)

i 〈xαC |p
β〉 =

−i ∂
∂xi
〈xα

C
|pβ〉 and normalising to 〈x′α

C
|xβ
C
〉 = δ(x−x′) δαβ, it follows78 that

〈xα
C
|pβ〉 = (2π)−3/2δαβe−ix.p.

Now let us compare basis elements representing the point x in the Newton–

Wigner basis and the point y in the canonical basis:

x̂NW |x
(±)

NW
〉 = x |x(±)

NW
〉

x̂C |y
α
C
〉 = y |yα

C
〉, α ∈ {1, 2}. (6.65)

Inserting a complete set of momentum basis elements in the Φ-representation

and employing (6.47) and (6.61),

〈yα|x±
NW
〉 =

∫
dp 〈yα|p±〉〈p± |x±

NW
〉

=

∫
dp 〈yα|

[
(m± Ep)√

4mEp
|p1〉+

(m∓ Ep)√
4mEp

|p2〉

]
e−ix.p

(2π)3/2

⇒

(
〈y1|x±

NW
〉

〈y2|x±
NW
〉

)
=

∫
dp

(2π)3

 (m±Ep)√
4mEp

(m∓Ep)√
4mEp

 e−i(x−y).p . (6.66)

These integrals are performed in [63, §1.12]. The results, in terms of r ≡ |x−y|

78Strictly, it follows that 〈xα
C
|pβ〉 = (2π)−3/2Ûαβe−ix.p, with Û pseudo-unitary. The choice

Ûαβ = δαβ aligns the bases so that states represented by wavefunctions Ψ(p) with zero in
one component are represented by wavefunctions Ψ(x) with zero in the same component.
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for the exact case and for the approximation for r�1/m are as follows:79

(
〈y1|x±

NW
〉

〈y2|x±
NW
〉

)

=
1

4π2mr

d

dr

(
d2

dr2
−m2

) √π(mr)3/4

Γ(5/4) K3/4(mr)±
√
π(mr)1/4

Γ(3/4) K1/4(mr)
√
π(mr)3/4

Γ(5/4) K3/4(mr)∓
√
π(mr)1/4

Γ(3/4) K1/4(mr)


≈ m3

8π
√

2 Γ(5
4)

e−mr

(mr)7/4

{(
1

1

)
±

Γ(5
4)

Γ(3
4)

1√
mr

(
−1

1

)
+ O

( 1

mr

)}
. (6.67)

To clarify what this means, consider a particle state |ψ(+)

x′ 〉 that is well-localised

at a point x′ with respect to the Newton–Wigner coordinate basis. That is, a

state for which an ideal position measurement would give a well-defined out-

come: x̂NW |ψ
(+)

x′ 〉 = x′ |ψ(+)

x′ 〉. In the Newton–Wigner representation, this state

would be a delta function. For simplicity let us represent it by a rectangular

function:

Φ
(+)

x′ (x) ≡

(
1

0

)
〈x+

NW
|ψ(+)

x′ 〉 = lim
L→∞

(
1

0

)
1

L3/2
rect3(

x− x′

L
). (6.68)

In the canonical representation, its wavefunction would be (in the r� 1/m

approximation)

Ψ
(+)

x′ (y) ≡

(
〈y1|ψ(+)

x′ 〉
〈y2|ψ(+)

x′ 〉

)

=

∫
dx

(
〈y1|x+

NW
〉〈x+

NW
|ψ(+)

x′ 〉
〈y2|x+

NW
〉〈x+

NW
|ψ(+)

x′ 〉

)

≈ L3/2 m3

8π
√

2 Γ(5
4)

e−m|y−x
′|

(m|y−x′|)7/4

(
1− . . .
1 + . . .

)
. (6.69)

It is an idealised localised particle state at x′, yet it has a two-component ex-

tended wavefunction in the canonical representation. The Hamiltonian (6.53)

acts locally at every point y in the infinite domain of this function.

At this point, we may make a general diagnosis of what has brought

79The standard integral exploited in the calculation is:∫ ∞
0

dq
cos qz

(q2 + 1)ν+ 1
2

=
zν

Γ(ν + 1
2
)
Kν(z).
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about the split between these two physical representations of po-

sition. This same split will arise whenever the Hamiltonian is specified in

the form of a non-diagonal matrix involving the momentum operator, and the

process of diagonalisation requires a momentum-dependent operator such as

(6.50). This inevitably introduces an off-diagonal momentum-dependent term

to the Newton–Wigner operator (6.59), making the Newton–Wigner operator

non-local in the canonical basis. Likewise, the canonical operator is non-local

in the Newton–Wigner basis. The two bases are ‘out of focus’ with respect to

one another.

The principles involved in ideal localised preparations and measurements

of states were outlined in Section 5.1. I have argued that only the Newton–

Wigner operator can be responsible for a physical determination of the position

of a particle in this theory, so if a localised state were prepared at a position

xA and a subsequent localised measurement were taken at position xB, the

outcome would be determined by the Newton–Wigner propagator (6.64). The

non-zero values of this propagator for spacelike intervals makes clear that the

evolution generated by the Hamiltonian gives rise to superluminal spreading

of the wavefunction in the Newton–Wigner representation.

Since this affects subsequent measurements outside the light cone, the

theory violates relativistic causality with respect to observables defined on

bounded spatial regions at particular times, if those observables have the gen-

eral form given in (5.9).

6.4.6 A theory with two position spaces

It has been shown above that there are two position representations – cor-

responding to two position operators – with direct physical relevance in this

theory. We have also seen (Section 4.3) that in a single-particle theory, position

space emerges in the form of a representation of the space of states derived

from the position operator. There are therefore two definitions of position

space in Feshbach–Villars theory.

On scales significantly larger than the Compton wavelength of the particle,

the Newton–Wigner and canonical ‘spaces’ are indistinguishable for all practi-

cal purposes; but at smaller scales, if a point in one of the ‘spaces’ is brought

into sharp focus, points in the other become smeared. The smear has the form

of a Bessel function (6.67) with unlimited spatial extent.

In the Newton–Wigner space, local measurements take place. A

particle or an antiparticle can be located, in principle to any accuracy. If a
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particle is prepared or created or detected somewhere, then that somewhere is

a region of the Newton–Wigner space; but time evolution is non-local (6.63).

In the canonical space, the local unitary evolution of the state

takes place. The Hamiltonian acts point-wise, but any measurement that

can locate a particle within a finite spatial region gives rise to a mixing of

particle and antiparticle states.

To illustrate the fact that localised measurements clearly relate to the one

of these representations rather than the other, we may look to the correspon-

dence principle. In the Newton–Wigner representation, the expectation value

of the position operator satisfies

d

dt
〈x̂iNW 〉 = −i 〈 [x̂iNW , ĤFV ] 〉

= −i
∫
dp Φ†(p)σ3

[
i
∂

∂pi
, Epσ3

]
Φ(p)

=

∫
dp Φ†(p)σ3

pi
Ep
σ3Φ(p)

= 〈v̂i〉, (6.70)

where v̂i is defined by its Φ-representation v̂
(p)

iΦ ≡ (pi/Ep)σ3, in correspondence

with the velocity ∂
∂pi
H(x,p) in the classical Hamiltonian formalism for a rel-

ativistic particle. This operator has eigenvalue p′i/E
′
p for any state |ψ(±)

p′ 〉 in

the limit of well-defined momentum p′.

In contrast, the equivalent operator in the canonical representation is

d

dt
〈x̂iC 〉 = −i 〈 [x̂iC , ĤFV ] 〉

= −i
∫
dp Ψ†(p)σ3

[
i
∂

∂pi
,

(
(σ3 + iσ2)

p2

2m
+ σ3m

)]
Ψ(p)

=

∫
dp Ψ†(p)σ3

(
(σ3 + iσ2)

pi
m

)
Ψ(p)

= 〈 (σ3 + iσ2)
p̂i
m
〉 . (6.71)

This operator has no non-zero eigenvalues (both of the eigenvalues of σ3+iσ2

are zero). Thus, the measurements involved in determining what we recognise

the velocity of a relativistic particle in the classical limit are well-described

only in the Newton–Wigner representation.
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6.4.7 A small adjustment to restore Lorentz invariance

The Newton–Wigner operator clearly has attractive features, but the causality

violation still present in Section 6.4.5 is very serious for a relativistic theory

(see Section 6.1.3).

One approach is to modify the propagator from that given in (6.64) to this:

K ′
(+)

NW
(xA, tA; xB, tB) ≡ GR(xA, tA; xB, tB)

=

0 if tB<tA

K
(+)

NW
(xA, tA; xB, tB) if tB>tA

K ′
(−)

NW
(xA, tA; xB, tB) ≡ GA(xA, tA; xB, tB)

=

{
K

(+)

NW
(xB, tB; xA, tA) if tB<tA

0 if tB>tA,

which gives

K ′
(±)

NW
(xA, tA; xB, tB) =


θ
(
±(tB−tA)

) m2

4π

−|∆t|
τ2

H
(1)
2 (−m|τ |) if ∆t2>∆x2

θ
(
±(tB−tA)

) im2

2π2

|∆t|
−τ2

K2(m
√
−τ2) if ∆t2<∆x2.

(6.72)

For positive states |ψ(+)〉 ∈ H(+)
, this changes nothing. The result (6.64) is

valid only for tB> tA, because it is based at root on Postulate 3 – the unitary

evolution of states in the Hilbert space – and this still holds.

For the negative states, |ψ(−)〉 ∈ H(−)
, the retarded propagator has been

replaced by the advanced propagator (see Section 5.4). Because of the sym-

metry of the propagator with interchange of xA and xB, this is equivalent to

postulating that the unitary evolution of negative states |ψ(−)〉 ∈ H(−)
occurs

‘backwards in time’. (As previously noted, we cannot require the negative-

energy states to conform to the same postulates that we have assumed for

everything else, as H(−)
isn’t a Hilbert space. Provided the postulates hold for

H(+)
and ĈH(−)

, the theory remains in good health.)

The canonical propagator is related to this via the overlap functions

〈xα
C
|x′±
NW
〉 given in (6.67):

K ′αβ
C

(xA, tA; xB, tB) =
∑
±

∫
dx′dx′′ 〈xα

C
|x′±
NW
〉K ′(±)

NW
(x′, tA; x′′, tB)〈x′′±

NW
|xβ
C
〉

(6.73)

Kleinert and Jizba [60] use distributions over path integrals (see Section 6.1.2)
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to derive this propagator, and obtain80

K ′
±

NW
(xA, x

0
A; xB, x

0
B) =

∫
d4p

(2π)4

[
−ip0 ∓ iEp

] e−ip.(xA−xB)

−p2−iε+m2
(6.74)

K ′αβ
C

(xA, x
0
A; xB, x

0
B) =

∫
d4p

(2π)4

[
−ip0 δαβ − iĤ (p)αβ

FV

] e−ip.(xA−xB)

−p2−iε+m2
(6.75)

The latter of these (the expression for K ′αβ
C

), they state, is Lorentz invariant.81

Both propagators, however, remain non-zero for spacelike xA−xB.

It might be suggested that the Lorentz invariance of the canonical ex-

pression should have been expected – after all, the Schrödinger equation with

(6.53) squares to (−∂2/∂t2)Ψ(x, t) = (−∇2
x + m2)Ψ(x, t), which is Lorentz

invariant. However, in the Newton–Wigner representation, although con-

siderably less transparently, (6.63) also squares to give (−∂2/∂t2)Φ(x, t) =

(−∇2
x +m2)Φ(x, t) (see Section 6.2).

The fact that both propagators K ′αβ
C

and K ′αβ
NW

are not simultaneously

Lorentz invariant is a consequence of the fact that the function (6.67) that

translates between the two representations is not Lorentz invariant.

The results presented in this Section are motivated by quantum field the-

ory (the relationship of (6.75) to field theory propagators is discussed below)

rather than single-particle theory. Although the symmetry of the single parti-

cle theory under t↔ −t, K+ ↔ K− was noted in Section 6.1.3, our quantum

postulates are insufficient to give rise to an ‘adjustment’ of the type made in

this section – it would have to be made ad hoc.

To conclude, let us take a brief look at the resemblance between (6.75)

and the Feynman propagator GF (x− y) of quantum field theory, to be

introduced in Section 7.2. The Green’s functions, G1 and G2, for the first-

order (in time derivatives) operator Ŝ1 ≡
(
∂
∂t+iĤ

(x)
)

and the second-order

80Their equations (46), translated from Euclidean to real time; also their equation (28).
81From [60, p. 10]: “These difficulties [notably loss of relativistic invariance] do not arise

when the full matrix structure of the Weibull distribution [equivalent to the use of retarded
and advanced propagators described here, in the context of the Feshbach–Villars formal-
ism] is taken into account. Such a matrix structure takes complete care of both particles
and antiparticles. And it highlights the key role of the Feynman–Stuckelberg boundary condi-
tion.” The Feynman–Stuckelberg boundary condition is the postulate “that negative-energy
solutions propagate backwards in time.” Ibid., p.7.

Note that the Lorentz invariance is manifest in the equivalent expression in Dirac the-
ory (6.87). The reason is more straightforward in that case: unlike the Feshbach–Villars
Hamiltonian, the Dirac Hamiltonian immediately gives a Lorentz invariant equation in the
canonical position representation (6.83).

92



operator Ŝ2 ≡
(
∂2

∂t2
−(Ĥ

(x)
)2
)

respectively, satisfy

(
∂

∂t
+ iĤ

(x)

)
G1(x, t; x′, t′) = δ(x−x′)δ(t−t′) (6.76)(

∂

∂t
+ iĤ

(x)

)(
∂

∂t
− iĤ (x)

)
G2(x, t; x′, t′) = δ(x−x′)δ(t−t′) (6.77)

Any wavefunction satisfying Ŝ1ψ(x, t) = 0 also satisfies Ŝ2ψ(x, t) = 0, just as

any wavefunction satisfying the Feshbach–Villars equation also satisfies the

Klein–Gordon equation.

All of the propagators discussed so far satisfy an equation of the form

(6.76) (see Section 5.4), whereas the Feynman propagator satisfies the second-

oder equation (7.18). If Ĥ2 = p̂2 + m21̂, the Feynman propagator supplies a

solution to (6.77) in the form G2(x, x0; y, y0) = GF (x−y).

A sufficient82 condition for (6.76) to follow from (6.77) is

G1(x, t; x′, t′) =

(
∂

∂t
− iĤ (x)

)
G2(x, t; x′, t′). (6.78)

This allows us to generate a Green’s function for the first-order equation from

a Green’s function for the second. If we apply this to GF given in (7.24), and

Ĥ
(x)

FV
in the canonical position representation from (6.53), what we obtain is

the canonical propagator of (6.75):

K ′
C

(xA, x
0
A; xB, x

0
B) =

(
∂

∂t
− iĤ (x)

FV

)
GF (xA − xB). (6.79)

Similarly, taking GR and GA from (7.24) and the Newton–Wigner representa-

tion of the Hamiltonian (6.62),

K ′
+

NW
(xA, x

0
A; xB, x

0
B) =

(
∂

∂t
− iĤ (xΦ)

FV

)
GR(xA − xB)

K ′
−

NW
(xA, x

0
A; xB, x

0
B) =

(
∂

∂t
− iĤ (xΦ)

FV

)
GA(xA − xB) (6.80)

These two Green’s functions can be obtained using the square root Hamil-

82A necessary condition is that any function ψ′ of the form

ψ′(x, t) ≡
∫
dx′

{
(
∂

∂t
−iĤ

(x)

)G2(x, t;x′, t′)−G1(x, t;x′, t′)

}
f(x′, t′),

where f(x, t) is an arbitrary smooth function, is a solution to the Schrödinger equation
Ŝ1ψ

′(x, t) = 0.
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tonian of Section 6.2, which acts on a single-component wavefunction. The

two-dimensional representation of the Feshbach–Villars formalism allows us

to obtain equivalences with all four of the second-order Green’s functions in

(7.24).

6.5 The Dirac Hamiltonian

A third operator satisfying the Klein–Gordon relation (6.32) is the Dirac

Hamiltonian:

ĤD = γ0γ.p̂ + γ0m (6.81)

which satisfies Ĥ2
D

= (p̂2 +m21̂) provided the γ operators satisfy the commu-

tation relation [γρ, p̂i] = 0 and the anticommutation relation {γρ, γσ} = 2ηρσ

for any ρ, σ ∈ {0, 1, 2, 3}. A self-adjoint momentum operator with a continu-

ous spectrum of eigenvalues must have a ν-dimensional momentum basis |pα〉,
from which we can construct a wavefunction Ψ(p) for every state |ψ〉, with ν

components ψα(p) ≡ 〈pα|ψ〉. This gives us a representation in which each γρ

is a p-independent, ν×ν matrix.

A minimum of ν=4 is required to satisfy the anti-commutation relations.

One convenient choice of basis gives

γ0 =

(
I 0

0 −I

)
; γi =

(
0 σi

σi 0

)
. (6.82)

The Dirac Hamiltonian has two properties that make it significantly more

appealing for a relativistic quantum theory than the Feshbach–Villars Hamil-

tonian. Firstly, it is manifestly self-adjoint under the straightforward inner

product 〈ψ1|ψ2〉 ≡
∫
dp Ψ†1(p)Ψ2(p), which makes the space of states H an

uncomplicated Hilbert space. And secondly, in the simplest coordinate repre-

sentation for which the Hamiltonian is a local operator, the Dirac equation83

Ĥ
(x)

D
Ψ(x, t) = i ∂∂tΨ(x, t) is manifestly Lorentz invariant:

iγµ∂µΨ(x)−mΨ(x) = 0. (6.83)

In the non-relativistic limit, both theories revert to a particle theory with

Ĥ = p̂2

2m , but they differ when an electromagnetic field is introduced. While

the Feshbach–Villars theory reverts to the single-component non-relativistic

Schrödinger theory (see Appendix A.4.2), the Dirac theory becomes equivalent

83This is the Schrödinger equation (4.7) for the Dirac Hamiltonian
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to the two-component Pauli–Schrödinger theory (4.26), with the components

differing in their response to a magnetic field.

In common with the Feshbach–Villars equation, the Dirac equation allows

us to define a coordinate representation such that we either have a manifestly

local Hamiltonian or we have a local position operator, but not both. We

may analyse these two representations and the class of transformations that

connect them by proceeding along similar lines to Section 6.4.

The momentum space wavefunction has four components that are mixed

by time evolution under a non-diagonal Hamiltonian. Using a unitary ma-

trix UFW = e(γ.p/p)θp with tan(2θp) = p/m, known as a Foldy-Wouthuysen

transformation [66], the Hamiltonian can be diagonalised:84

Ĥ
(p)

FW
≡ UFW Ĥ

(p)

D
U−1
FW

= Epγ
0, (6.85)

In this representation, we can interpret the four components of the wavefunc-

tion ΨFW (p) ≡ UFWΨ(p) as representing types of particle – types that are

preserved in the time evolution of the system. Employing the Dirac–Pauli

representation (6.82) for the γρ matrices, in relation to some chosen z-axis,

the four particle types are, respectively, spin-up particle, spin-down particle,

spin-up antiparticle and spin-down antiparticle.

A position operator x̂NW satisfying [x̂iNW , p̂j ] = iδij can then be defined

which is diagonal, and we have a Newton–Wigner representation for the Dirac

particle. This defines position to be an observable of a particle that doesn’t

flip its charge or affect its spin.

The simplest such operator is again i∂/∂pi in this representation, which

transforms back to the Dirac representation to give

x̂
(p)

iNW
= U−1

FW
i
∂

∂pi
UFW

= i
∂

∂pi
+ i

Ep +m− γ.p√
(Ep +m)2 + p2

(
∂

∂pi

Ep +m+ γ.p√
(Ep +m)2 + p2

)

= i
∂

∂pi
+ i

(Ep +m− γ.p) γi − (1 + γ.p/Ep) pi
2Ep(Ep +m)

. (6.86)

84Expressing the even and odd powers of the series expansion in terms of sin θ =√
1
2
(1−m/Ep) and cos θ =

√
1
2
(1 +m/Ep), the unitary operator can be written

UFW =
Ep +m+ γ.p√
(Ep +m)2 + p2

; U−1
FW

=
Ep +m− γ.p√
(Ep +m)2 + p2

. (6.84)
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The departure from ∂/∂pi indicates that the eigenfunctions of position are

not delta functions, but are irreducibly smeared in the canonical coordinate

representation.

Once again, there are in effect two position spaces for a Dirac

particle, in the sense discussed in Section 6.4.6 – one in which local

unitary evolution takes place, and one in which local measurements

can be made.

And again, the motion of the free particle in the Newton–Wigner repre-

sentation satisfies d
dt〈x̂NW 〉 = 〈v̂〉 where v̂ has eigenvalues of p̂/Ep for states

in the limit of well-defined momentum, in correspondence with classical ob-

servations. No such corresponence exists in the canonical representation.

The propagators for the two position representations (compare (6.75)) may

be written85

KNW (xA, tA; xB, tB) =

∫
d4p

(2π)4

[
−ip0 − iEpγ0

]
γ0
e−ip.(x−x

′)

−p2 +m2

KC (xA, tA; xB, tB) =

∫
d4p

(2π)4

[
−ip0 − iĤ (p)

D

]
γ0
e−ip.(x−x

′)

−p2 +m2
(6.87)

As with the Feshbach–Villars propagator, a Lorentz invariant form of the

canonical representation can be obtained by taking a p2 + iε prescription:

KC (xA, tA; xB, tB) = −i
∫

d4p

(2π)4
γ0 [γµp

µ +m] γ0
e−ip.(x−x

′)

−p2−iε+m2
. (6.88)

This prescription again corresponds to the use of the advanced propagator

for the negative energy states – the lower pair of components in the Foldy–

Wouthuysen representation that correspond to anti-particles. Equivalently, it

corresponds to postulating that the unitary evolution of the negative energy

states takes place ‘backwards in time’ (see Section 6.4.7).

Following Postulate 3 as expressed in Section 4.1 leads to the retarded

propagator throughout, which does not give a Lorentz invariant theory. And

once again, the Lorentz invariance does not extend to the Newton–Wigner

representation in which precise measurements may be defined.

85Equations (55) of [60], translated from Euclidean time to real time. Note that, from
(6.81),

γ0(γµp
µ +m) = p0 + Ĥ

(p)

D
.
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With regard to electromagnetic interactions, the Dirac theory is a theory

of point-like interactions with classical fields in the canonical representation.

The fields are minimally coupled to the Hamiltonian, making them part of the

unitary evolution:

i
∂ψ

∂t
=
[
γ0γ.

(
p̂−A(x̂C)

)
+ γ0m+ φ(x̂C)

]
ψ. (6.89)

In the Newton–Wigner representation, a particle is an extended object with

respect to electromagnetic interactions. Foldy and Wouthuysen [66] use this

extended object to account for terms that arise in the energy spectrum of a

Dirac particle in a Coulomb potential – in particular the term proportional to

the divergence of the electric field, now known as the Darwin or Darwin–Foldy

term, which corresponds to the first-order correction that would arise if the

point-like charge were replaced by a multipole expansion.

Almost all textbooks discussing Dirac theory implicitly employ the canon-

ical position representation, and describe the Darwin term as being a conse-

quence of unlocalisability [42, §20.2], or more specifically of Zitterbewegung86

[67, §4.3], [63, §11.1].

6.6 The breakdown of relativistic quantum particle mechanics

This exhausts the possibilities for creating a Hamiltonian that satisfies the

Klein–Gordon relation.

If a free Hamiltonian (4.19) involves discrete operators τ̂i, and takes a

matrix form as a function of momentum, then it must be diagonalised in

order to establish the basis for physical states and to identify these as particle

types. If the diagonalising matrix is also function of momentum, then the

canonical position operator will cease to be diagonal and the Newton–Wigner

operator will be distinct from it.

A non-diagonal Hamiltonian that is a function of both position and mo-

mentum does not have a momentum basis, because it no longer commutes

with the momentum operator. Unless a canonical transformation exists that

diagonalises the Hamiltonian with respect to both position and momentum

86Zitterbewegung is a fluctuation in position that results from the interference between
positive and negative energy states (see Appendix A.4.1). There is no such interference for
a free particle in the Newton–Wigner representation.
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simultaneously, there is no Newton–Wigner operator.87

The violations of relativistic causality with respect to any kind of local

measurements of the form (5.9) by relativistic particle theories is just one of

many signs of a theory being pushed beyond its sphere of applicability. Other

signs include the Klein paradox, the existence of photons, and the failure of

the Dirac theory to account for the Lamb shift in the hydrogen spectrum.

Any theory with a fixed number of pairs of canonical coordinates, as stip-

ulated by Postulate 3, if interpreted as representing the dynamics of particles,

necessarily describes systems in which the numbers of particles with each type

of dynamics are fixed. The premise of the theory contradicts observations such

as the creation and annihilation of electrons and positrons in pairs, or that the

emission and absorption of bosons, so it should be no surprise that it breaks

down at scales or energies where such processes might occur.

A largely successful resolution, as is well-known, comes about with the

transition from particle degrees of freedom to field degrees of freedom, and

the development of quantum field theory.

87In perturbation theory, where the position-dependent ‘interaction’ part of the Hamil-
tonian is small in comparison to the momentum-dependent ‘free’ part, a Newton–Wigner
operator may be defined with respect to the free Hamiltonian. Because of the interaction,
a measurement of position that doesn’t change the type of particle being measured in the
process can no longer be defined.
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7 Quantum Field Theory

We saw in Section 4.1 that a classical–quantum correspondence exists if we can

express the generator of time evolution and other observables as functions of

operators with continuous eigenvalue spectra and their canonical conjugates.

The equations of classical mechanics emerge as the time evolution equations

of the expectation values of those observables, the Hamiltonian emerges as

the generator of time evolution, and position and momentum emerge from the

conjugate pairs of operators.

We then saw in Section 5.1 that if that theory admits of measurements

that are confined within a finite region (5.9), no matter how large that re-

gion, these measurements can be used to signal between a spatial region

RA at time tA and a second region RB at tB if and only if the propagator

KBA(xB,xA) ≡ 〈xB|Û(tB, tA)|xA〉 (constructed from the set of basis elements

|x〉 of the position operator) is nonzero for some xA ∈ RA and xB ∈ RB.

And finally, we have seen that, for tB > tA, this propagator is never zero

in quantum mechanics, and that when special relativity is taken into account,

this implies a breakdown in causality for the theory (see Section 6.1.3).

We wish to attempt to restore causality to the theory without abandoning

the Hilbert space formulation that was argued for in Section 2. To do this,

we need to find a way of guaranteeing that an evolving vector Û(tB, tA) |ψA〉
can remain orthogonal to a fixed vector |ψB〉 for a finite time. We could then

attempt to interpret this inner product as a propagator between to locations.

The following toy model might suggest itself as a way in which relativistic

causality could be restored.

In a system with discrete time-steps, we can guarantee that a state initially

parallel to a basis vector |eα〉 remains orthogonal to a basis vector |eα+n〉 at

least until n time steps have elapsed by employing a tridiagonal time evolu-

tion operator.88 Given an initial state of |ψ(0)〉 = |ek〉, the state after one

application of a tridiagonal operator will be |ψ(1)〉 = a|ek−1〉+ b|ek〉+ c|ek+1〉,

88In an orthonormal basis {|eα〉}, a tridiagonal operator has the form

Û(ti) =
∑
βγ

|eβ〉
(
U (0)
γ (ti) δβ,γ + U (+)

γ (ti) δβ+1,γ + U (−)
γ (ti) δβ−1,γ

)
〈eγ |.

The use of ‘+1’ and ‘-1’ in the labels means there is an implicit topology to the set of basis
elements: each element has neighbours, and a metric can be defined giving a measure of ‘dis-
tance’ between elements. This is the kind of property one would expect for a mathematical
representation of position.
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which maintains orthogonality with every basis element having a label further

than 1 from k. The influence of initial conditions propagates at a rate of no

more than one basis vector per time step. It is a one-dimensional system with

a guaranteed speed limit.

The fatal flaw in this model is that the only tridagonal matrices that

are unitary are block-diagonal in 1× 1 or 2× 2 blocks [68].89 This means

propagation among the basis states in this model can progress no further than

a perpetual interchange between neighbouring pairs. If the bases were to

represent positions in space, there wouldn’t be scope for much movement.

Generalising the time evolution matrices from tri-diagonal to (2N + 1)-

diagonal does not fix the flaw. The objective of employing basis vectors to

represent position and having non-orthogonality propagate at a finite rate

appears to be fundamentally at fault.

In classical physics, on the other hand, a theory that generates precisely

this kind of spacetime propagation already exists: covariant field theory.

What’s more, it is built on exactly the same foundations as classical mechanics,

making it amenable to the quantum postulates that we already have.

7.1 Covariant field theory

7.1.1 Classical fields

Classical covariant field theory is derived from the stationary action principle

over a set of infinite sets of classical variables φa(x) where the continuous label

x ≡ (x0,x) ranges throughout Minkowski space R1,3 and the discrete label a

distinguishes between fields. The theory is covariant if the action is a Lorentz

invariant functional of the fields.90

For an observer using coordinates (t,x), the defining equations in the

89Each block must be eiθ if 1×1 or ei(n0I+n.σ) if 2×2 (ni ∈ R).
90The action S[φa] =

∫
d4xL[φa, ∂µφa;x] is the spacetime integral of the Lagrangian den-

sity L; minimising this leads to the Euler-Lagrange equations ∂µ(∂L/∂(∂µφa))−∂L/∂φa = 0.
The conjugate fields are defined by πa(x) ≡ ∂L/∂(∂0φa), and the Hamiltonian density is
H ≡ πa∂0φa − L, which is also the time-time component of the energy-momentum tensor

H = T 0
0 , where T νµ ≡

∑
a

∂L
∂(∂νφa)

∂µφa − δνµL.

With the Hamiltonian of the field given by H[φa, πa; t] ≡
∫
d3x H[φa(x), πa(x);x, t], Hamil-

ton’s field equations (7.1) follow directly from the Euler–Lagrange equations [69, §12.4], [70,
§2.1].

We may extend the Lorentz invariance of the action further to Poincaré invariance by
removing explicit x-dependence from L, which also removes explicit x-dependence from H.
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Hamiltonian formulation, with fields φa(x) and conjugate fields πa(x) (defined

over space rather than spacetime), are

∂πa(x)

∂t
=

δH

δφa(x)
;

∂φa(x)

∂t
= − δH

δπa(x)
. (7.1)

Defining a Poisson bracket for functions of the fieldsA[φa, πa; t] andB[φa, πa; t],

{A,B}P ≡
∫
d3x

∑
a

(
δA

δφa(x)

δB

δπa(x)
− δA

δπa(x)

δB

δφa(x)

)
, (7.2)

it follows that

{φa(x), πb(y)}P = δab δ
3(x− y);

dA

dt
= {A,H}P +

∂A

∂t
. (7.3)

The situation precisely parallels that of Section 4.1; therefore if we apply

Postulate 3 to a set of infinite sets of continuous operators labeled by x ∈ R3

together with conjugate operators, we are guaranteed a correspondence be-

tween the dynamics of expectation values and their counterparts in a classical

covariant field theory.

7.1.2 Quantum scalar fields and observables

We start with the most basic type of field: one that has a scalar character

with respect to Lorentz transformation, so we need not apply any particular

constraints on how it may appear in the action.

A field operator φ̂(x) is an operator-valued distribution over space, such

that an integral
∫
R d

3x φ̂(x) over any spatial region R is an operator in a

Hilbert space H. Postulate 3 requires that the Hamiltonian be a function of

these operators; a sufficient condition (and a necessary one for a covariant

theory) is to employ a Hamiltonian density H defined at each point x as a

function of field operators and their conjugates at that point. Thus, with

Ĥ(t) =

∫
d3x H[φ̂a(x), π̂a(x); t,x][

φ̂a(x), φ̂b(y)
]

=
[
π̂a(x), π̂b(y)

]
= 0[

φ̂a(x), π̂b(y)
]

= i δab δ
3(x− y), (7.4)

yhe expectation values of any operator that is a function of the field opera-

tors throughout space Â(t) = A[φ̂a(x∈R3), π̂a(x∈R3); t] then automatically
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satisfies
d

dt
〈Â〉 =

1

i
〈 [Â, Ĥ] 〉+ 〈∂Â

∂t
〉 (7.5)

for an observer employing coordinates (t,x), mirroring the classical result.

These operators, now defined at every point in space, are examples of

the continuous operators described in Section 4.1: the operators of which the

generator of time evolution is a function (Postulate 3). By analogy with (4.9),

the field operators have a continuous basis {|φ〉} satisfying

φ̂a(x)|φ)〉 = φa(x)|φ〉 ∀ x ∈ R3 (7.6)

where φa(x) is the equivalent of a spectral eigenvalue of the operator at a given

point in space. For any state |Ψ〉 in the Hilbert space of the system, we can

now define a wave functional Ψ[φ(x), t] ≡ 〈φ|Ψ〉. For a given Hamiltonian we

could present the Schrödinger equation in this basis [71, §2.10], showing the

evolution of the state over time in the Schrödinger picture.

There is no reason to require the field itself to be self-adjoint, although an

observable Â constructed as a function of field operators clearly must be. For

the purposes of establishing a direct correspondence with a real classical scalar

field we would consider φ̂a to be self-adjoint. Beyond this purpose, significant

generalisations are open to us, as will be seen in Section 7.1.3.

For a relativistic field theory, it is convenient to work in the Heisenberg

picture in relation to some base time t0, defining, for x ≡ (t,x),

φ̂a(x) ≡ Û †(t, t0)φ̂a(x)Û(t, t0) (7.7)

The state vector |Ψ〉 in the Heisenberg picture must then be fixed for all t to

be equal to the Schrödinger state vector |Ψ(t0)〉.
It follows from the definition that the commutation relations (7.4) continue

to apply provided they are evaluated at equal times. As the theory is Lorentz

invariant, it follows immediately that any two field operators φ̂a(x) and φ̂b(y)

necessarily commute if x and y are spacelike separated. This condition is

referred to as microcausality.

Further, if two operators Â and B̂ are functions of the field operators φ̂a(x)

and π̂a(x) within the bounded spacetime regions RA, and RB respectively,
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then

[
Â , B̂

]
= 0 if RA and RB are entirely spacelike separated.91 (7.8)

If we were to assert that all observables have the form of functions of

field operators over bounded spacetime regions, then quantum field

theory is guaranteed to be a causal theory with respect to pairs of

measurements over those regions.92

7.1.3 Non-scalar fields and observables

If the equal time commutation rules are modified by a phase,

φ̂a(t,x)φ̂b(t,y)− e2πi/ν φ̂b(t,y)φ̂a(t,x) = 0

π̂a(t,x)π̂b(t,y)− e2πi/ν π̂b(t,y)π̂a(t,x) = 0

φ̂a(t,x)π̂b(t,y)− e2πi/ν π̂b(t,y)φ̂a(t,x) = i δab δ
3(x− y), (7.9)

where ν ∈ N, then (7.5) and (7.8) continue to hold provided Â, B̂ and Ĥ each

involve a multiple of ν one-point products of field operators.

The requirement that the action be Lorentz invariant, however, requires

that the fields must transform as representations of the Lorentz group [72, §4].

For some representation D[Λ] (which, by definition, satisfies D[Λ1]abD[Λ2]bc =

D[Λ1Λ2]ac ), the fields must transform under xµ → Λµνxν as

φ̂a(x) → D[Λ]ab φ̂b(Λ
−1x). (7.10)

In 3+1 dimensions, two classes of representation exist for the Lorentz

group: bosonic representations with ν=1, and fermionic representations with

91Spacetime regions RA and RB are entirely spacelike separated if xA is spacelike sepa-
rated from xB for all xA ∈ RA and all xB ∈ RB .

92See, however, Section 7.5.1.

103



with ν=2.93

A field with a rank-p tensor character is called a boson field. D[Λ] is

a product of p Lorentz tensors, and (7.4) continue to apply. The results of

Section 7.1.2 generalise straightforwardly to vector and other tensor fields.

The other type of field is a fermion field. Fermionic representations in-

clude the spinor representation, which has the form S[Λ] = exp(1
8 [γµ, γν ]ωµν)

for infinitesimal Lorentz transformations Λµν = δµν +ωµν . The indices for spinor

fields ψ̂α and the representation S[Λ]αβ correspond to the indices of the matrix

representation chosen for the γµ, for example (6.82).

From (7.9), all fermion fields and their conjugates π̂ satisfy the anticom-

mutation relations

{
ψ̂a(t,x), ψ̂b(t,y)

}
=
{
π̂a(t,x), π̂b(t,y)

}
= 0{

ψ̂a(t,x), π̂b(t,y)
}

= i δab δ
3(x− y), (7.11)

The relations (7.5) and (7.8) therefore continue to hold provided Ĥ, Â and B̂

are composed of an even number of field operators, ψ̂a(x) and/or π̂a(x).

It is instructive to look more closely at the kind of operator that could

represent an observable in a fermion field.

In the spinor representation, there are five Lorentz covariant objects that

can be formed from the fields. They are constructed using the γµ matrices

93The group SO(n, 1)+ of proper (non-reflecting) orthochronous (non-time-reversing)
Lorentz transformations in n spatial dimensions is a Lie group, and therefore has a topolog-
ical structure. The set of closed paths in a topological space can be divided into equivalence
classes by continuous deformation, and the set of transformations between those equivalence
classes forms a group, called the fundamental homotopy group of that space. SO(n, 1)+

has a homotopy group that is trivial for n = 1, Z for n = 2 and Z2 for n ≥ 3. For each
SO(n, 1)+, a ‘universal covering group’ exists that is simply connected (has a trivial homo-
topy group) and has SO(n, 1)+ as a subgroup. In three dimensions, the universal covering
group is SL(2,C). By exploiting the homomorphism SL(2,C) → SO(3, 1)+, all of the rep-
resentations of SO(3, 1)+ can be found. The two classes of representations, bosonic (ν= 1)
and fermionic (ν= 2), correspond to the two elements of the homotopy group Z2, which is
the kernel of the homomorphism.

In one spatial dimension, only bosonic representations exist. In two spatial dimensions,
ν may take any integer value, and the resulting representations are anyonic. However, the
relations (7.9) do not generate a local field theory. The quantum theory of anyons relies
on representations of the braid group rather than the homotopy group, so commutation
relations of the form (7.9) do not apply [73, §5].
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along with ψ≡ ψ†γ0 and γ5 ≡ iγ0γ1γ2γ3, and are all bilinear in the fields:94

ψψ, ψ γµψ, ψ [γµ, γν ]ψ, ψ γµγ5ψ, ψ γ5ψ. (7.12)

If the field theory is to be covariant, then any spinor field may only appear in

the action in the form of these objects.

Setting aside the Lorentz character of these bilinears, what we have here

is a set of 1+4+6+4+1 = 16 matrices – let us call them Γiαβ, i ∈ {1, ..., 16}.
As the Lagrangian density L must be built from these, the conjugate field

π̂a(x) = ∂L/∂(∂0ψa) must also. Each one of these bilinears ψ Γiψ is a self-

adjoint operator [72, §4]. As we have 16 linearly independent operators, they

constitute a complete basis for self-adjoint bilinears on the spinor fields.

The most general observable we may define using a spinor field is therefore

a self-adjoint95 operator function f(Â, B̂, . . .) of operators of the form:

Â =

∫
RA
d4xψα(x) Â

(x)
i Γiαβ ψβ(x), (7.13)

where Â
(x)
i is a set of self-adjoint differential operators with respect to x (or

functions of x, or numbers). The differential operator may act to the right

on ψβ(x), to the left on ψα(x), or both. The integration takes place over a

spacetime region RA.

The anticommutation relations (7.11) for these fields give zero for different

points at equal times in any reference frame. Since the sign changes inher-

ent in manipulating anticommutators come in pairs when applied to pairs of

operators, we may restate (7.8) for spinor fields:

[
Â , B̂

]
= 0 if RA and RB are entirely spacelike separated. (7.14)

If we were to assert that all observables on a spinor field have the

form of functions of integrals of self-adjoint bilinears over bounded

spacetime regions, then a quantum field theory of spinors would be

guaranteed to be causal with respect to pairs of measurements in

those regions.

Result (7.14) is proven for the general case in Appendix A.5

94For reasons of clarity, I have dropped the caret notation for fermion fields.
95Any function f(Â, B̂) of self-adjoint operators can be made self-adjoint by symmetrising

or antisymmetrising. Examples include the symmetric product 1
2
(ÂB̂ + B̂Â) and the anti-

symmetric product 1
2
i(ÂB̂ − B̂Â).
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7.2 A field theory with a classical source

One way of representing an external influence on a quantum field is by adding

a classical source term to the action. A simple example using an otherwise

free real scalar field is discussed in [74, §2.4]:

Ŝ[x] ≡
∫
d4xL[φ̂, ∂µφ̂;x] =

∫
d4x

(
1
2(∂µφ̂)(∂µφ̂)− 1

2m
2φ̂2 + j(x)φ̂

)
(7.15)

where j(x) is a scalar function of x that is zero outside of a finite region Rj ,
and φ̂(x) is a real scalar field. The last term breaks the Poincaré invariance

of the action, but not the Lorentz invariance.

The equivalent action in classical field theory gives the equation of motion

of a scalar field with a source j(x). In quantum field theory, with j(x) a

function of x, the equation is identical:

(∂µ∂
µ +m2)φ̂ = j(x)1̂. (7.16)

This ‘classical source’ j(x) does not evolve along with the system’s equations of

motion. It is an influence on the system, but isn’t affected by anything within

it. If it represents a physical influence, it must be one that is determined

externally.

A general solution to (7.16) can be expressed as

φ̂(x) = φ̂0(x) +

∫
d4y Ĝ(x, y)j(y) (7.17)

for some two-point operator Ĝ(x, y), where φ̂0(x) is a solution for the homo-

geneous equation (∂µ∂
µ+m2)φ̂0 = 0.

Substituting (7.17) into (7.16), we find that Ĝ(x, y) = G(x−y)1̂ must be a

distribution proportional to the unit operator on the Hilbert space, satisfying

the differential equation:

(∂µ∂
µ +m2)G(x−y) = δ4(x−y). (7.18)

This marks G(x−y) as a Green’s function of the Klein–Gordon operator

∂µ∂
µ+m2 in (7.16). In [74, §2.4], it is taken to be the retarded Green’s function;

in this Section, I will consider whether this is necessarily the case.
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If the inhomogeneous Klein–Gordon equation (∂µ∂
µ+m2)φ=j(x) is known

to hold in a given spacetime region R ⊃ Rj , then the general solution is96

φ(x) =

∫
R
d4y G(x−y)j(y)−

∫
∂R

(d3y)µ
[
G(x−y)

∂φ

∂yµ
− ∂G

∂yµ
φ(y)

]
. (7.19)

Comparing with (7.17), this gives a source-independent relation between φ̂0(x)

and the conditions at a boundary ∂R, in terms of a given Green’s function:

φ̂0(x) = −
∫
∂R

(d3y)µ

[
G(x−y)

∂φ̂

∂yµ
− ∂G

∂yµ
φ̂(y)

]
. (7.20)

Returning to the Green’s function itself, the Fourier Transform of (7.18) is

(−kµkµ +m2)G̃(k) = 1 (7.21)

which has the general (distribution) solution97

G̃(k) =
1

−k2 +m2
+ G̃0(k) δ(−k2 +m2). (7.22)

96This can be shown using, in turn, the inhomogeneous Klein–Gordon equation, the prod-
uct rule for differentiation, Stokes’ theorem and the definition of a Green’s function (7.18):∫

R

d4y G(x−y)j(y) =

∫
R

d4y G(x−y)

[
∂2

∂yµ∂yµ
+m2

]
φ(y)

=

∫
R

d4y

{
∂

∂yµ

[
G
∂φ

∂yµ

]
− ∂

∂yµ

[
∂G

∂yµ
φ

]
+

∂2G

∂yµ∂yµ
φ+m2Gφ

}
=

∫
∂R

(d3y)µ
[
G
∂φ

∂yµ
− ∂G

∂yµ
φ

]
+

∫
R

d4y

{[
∂

∂2yµ∂yµ
+m2

]
G

}
φ

=

∫
∂R

(d3y)µ
[
G
∂φ

∂yµ
− ∂G

∂yµ
φ

]
+

∫
R

d4y δ4(x−y)φ(y)

which leads directly to (7.19) [75, §6]. In the boundary term, (d3y)µ is an outward-directed
three-dimensional element of the boundary of the Minkowski spacetime region R. At an
initial time boundary, for example, (d3y)µ ∂

∂yµ
= −d3y ∂

∂t
. At a spatial boundary, in terms

of an outward-directed area element dA, (d3y)µ ∂
∂yµ

= −dt dA.∇. (Here, t≡y0.)

97A distribution solution to A(x)=B(x) is one for which
∫
dxA(x)f(x) =

∫
dxB(x)f(x)

for any smooth function f(x) that vanishes outside of a finite region. For a straightforward
introduction to distributions, including the reason for this definition, see [76, §2]. (Some
authors, e.g. [77, §2.1], use the slightly less restrictive condition that f(x) must vanish
at infinity faster than any power of x. Distributions defined in this way are said to be
‘tempered’.)
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Hence

G(x−y) =

∫
d4k

(2π)4

e−ik.(x−y)

−k2 +m2
+

∫
d4k

(2π)4
e−ik.(x−y)G̃0(k) δ(−k2 +m2)

=

∫
d4k

(2π)4

e−ik.(x−y)

−k2 +m2
+ Φ(x−y) (7.23)

where Φ(x) is a solution of the homogeneous Klein–Gordon equation

(∂µ∂
µ+m2)Φ(x)=0.

Because of the singularities at kµkµ = m2, the integral does not converge

to a unique solution. It can be performed using complex analysis, treating the

singularities as poles in the complex k0 plane [74, §2.4]. By taking a contour

clockwise or anticlockwise about each of the two poles, one may obtain four

distinct results – all of which ultimately differ only in terms of the Φ in (7.23),

but which are appropriate for particular types of boundary conditions.

With τ ≡
√
xµ − yµ)(xµ − yµ), and using the notation x � y and x ≺ y to

refer to x being in the future and past light cones of y respectively, the four
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Green’s functions are as follows: [78, §2], [79, §App. II]98

GR(x−y) ≡ lim
ε→0+

∫
d4k

(2π)4

e−ik.(x−y)

−k2−iεk0+m2
=


δ(τ2)

2π
− m

4πτ
J1(mτ) if x � y

0 otherwise

GA(x−y) ≡ lim
ε→0+

∫
d4k

(2π)4

e−ik.(x−y)

−k2+iεk0+m2
=


δ(τ2)

2π
− m

4πτ
J1(mτ) if x ≺ y

0 otherwise

GF (x−y) ≡ lim
ε→0+

∫
d4k

(2π)4

e−ik.(x−y)

−k2−iε+m2
=


δ(τ2)

4π
− m

8πτ
H

(2)
1 (mτ) if τ2≥0

im

4π2
√
−τ2

K1(m
√
−τ2) if τ2<0

GD(x−y) ≡ lim
ε→0+

∫
d4k

(2π)4

e−ik.(x−y)

−k2+iε+m2
=


δ(τ2)

4π
− m

8πτ
H

(1)
1 (mτ) if τ2≥0

−im
4π2
√
−τ2

K1(m
√
−τ2) if τ2<0

(7.24)

These are the retarded, advanced, Feynman and Dyson99 Green’s functions

respectively. All four are Lorentz invariant100 distribution solutions of (7.18).

If the source function j(x) can be altered in any way by an external ob-

server, we can now see that the only Green’s function that can be used in

98The Hankel functions of the first and second kind (or order ν) are defined by

H(1)
ν (x) ≡ Jν(x) + iYν(x),

H(2)
ν (x) ≡ Jν(mτ)− iYν(x).

Jν and Yν here are the Bessel functions of first and second kind respectively. Some authors,
e.g. [79], refer to the latter as Nν , the Neumann function. The expression for ∆F (x) given
in Huang [71, p.29] employs the wrong Hankel function.

The modified Bessel function of the second kind, Kν(x), also known as the Basset function
or Macdonald function [80], is related to the Hankel functions by [57, §9.6] [81, §10.27.8]

Kν(x) ≡

(i)ν+1 π

2
H(1)
ν (ix) if −π < arg(x) ≤ π/2,

(−i)ν+1 π

2
H(2)
ν (−ix) if −π/2 < arg(x) ≤ π.

99These four are named (as propagators) for example in [82, §4]. The form of GD was
derived using the contour integrals given in [79, §App. II]. In terms of the quantities presented
by Boguliobov and Shirkov, GD(x) = θ(x0)D+(x)− θ(x0)D−(x), taking the opposite poles
in each case to GF (x) = θ(x0)D−(x)− θ(x0)D+(x). This implies GD−GF = D+−D−. The
authors provide an expression for D1 ≡ i(D+−D−), which then yields the expression given
here for GD.

100GR and GA are invariant under orthochronous Lorentz transformations, and GR(−x)=
GA(x). GF , GD and the sum GR+GA are invariant under all Lorentz transformations.
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(7.17) is indeed the retarded Green’s function GR(x−y). A brief argument

runs as follows. Let us take x in equation (7.20) to be a point in the timelike

past of the whole of the source region Rj . The term φ̂0(x) on the left hand

side is, by definition, independent of j(x). But we know the source affects the

field φ̂(y) where y ∈ Rj , so if we choose a surface ∂R that cuts through Rj ,
the expression on the right hand side also depends on j(x) unless G(x−y) = 0

in that region. As x ≺ y, this requires G to be the retarded Green’s function.

This assertion is proved using a causal argument in the box below.

The classical source is determined independently from the system

that the action (7.15) describes. Let us suppose that it is possible

for an external observer to (a) exert some control over the source

function j(x), and (b) make local measurements of some observable

B̂ in a spacetime region RB.101 We are free to select any propagator

for our problem, provided we evaluate Φ correctly in (7.23). Let us

select GR(x−y), so that

φ̂(x) = φ̂0(x) +

∫
Rj
d4y

[
GR(x−y) + Φ(x−y)

]
j(y)1̂. (7.25)

For the purpose of this proof, let us consider RB to be entirely

in the past light cone of all points in Rj . Any j-dependence in the

outcomes of measurements made there would constitute a signal from

the observer to him or herself in the past, which he or she could then

act upon to make the signal contradict itself. This is rejected as

absurd, implying102

∫
Rj
d4yΦ(x−y)j(y) = −

∫
Rj
d4y GR(x−y)j(y) ∀x ∈ RB. (7.26)

The right-hand side of this equation is zero by (7.24). As the function

j(x) can be varied, it follows that Φ(x−y) = 0 for all x ∈ RB and

y ∈ Rj . If a solution Φ of the homogeneous Klein–Gordon equation

101This is a minimal requirement for causal structure, in the sense of giving meaning to the
question of what observable effect the source can have. Following Section 7.1.2, we assume
that the observables to hand are functions B̂({φ̂(x) : x∈RB}) of the field operators in region
RB .

102An alternative means of ensuring the observer cannot signal to the past is by placing
j-dependent restrictions on observables. This seems sufficiently contrived as to not warrant
further consideration.
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is zero over a finite range, it is zero everywhere. Hence,

φ̂(x) = φ̂0(x) +

∫
Rj
d4y GR(x−y)j(y)1̂. (7.27)

GR is zero outside the forward light cone. Therefore, from the ex-

istence of one region RB in the past light cone of the source within

which observations cannot be influenced by altering j(x), it follows

that the influence of the source on the outcomes of any mea-

surements is necessarily restricted to the forward light cone

of points in Rj .

The outcomes of any general observable B̂ of the form (7.8) cannot be

affected by j(x) if all of the field operators in region RB are independent of

j(x). Therefore there can be no correlations between a classical source and a

detector of this type if they are spacelike separated. Scalar field theory is

relativistically causal with respect to classical sources.

A different approach to investigating causality in the presence of classical

sources can be found in a paper by Buscemi and Compagno [83]. The au-

thors begin with the same scalar field action (7.15) expressed in terms of the

Hamiltonian, which is split into a free field part103 and an interaction part

Hint(t) = g

∫
d3x φ̂(t,x)j(t,x). (7.28)

Note that, since Lint = −Hint, this is equivalent to (7.15) if we set g = −1.

This is used to calculate the time evolved state |Ψ(t)〉 = Û(t, 0) |0〉 on the

basis that at t = 0 the system is in the vacuum state and j(0,x) = 0, from

which it is possible to derive expressions for expectation values of general

observables of the form (7.15). Because it is straightforward to generalise, we

focus on the limit in which both source and detector are pointlike (at xA and

xB respectively), and take B̂ to be a single term from a Taylor expansion of a

general function of the field operators and their derivatives at that point:

j(x) = J δ4(x−xA)

B̂ = φ̂ j(∂0φ̂)k(∇φ̂)l
∣∣
x=xB

(7.29)

103Their equation (19). The free field Hamiltonian has the form (7.40), although the authors
use a different normalisation (on which see footnote109).
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The result is104

〈Ψ(t)| B̂ |Ψ(t)〉 = 〈0|
{[
φ̂(x) + J GR(x−xA)

]j[
∂0φ̂(x) + J ∂0GR(x−xA)

]k
×
[
∇φ̂(x) + J ∇GR(x−xA)

]l}
|0〉x=xB (7.30)

= 〈0| B̂ |0〉 if (xB−xA)2 < 0 (7.31)

The expectation value of this operator for spacelike separations has no de-

pendence on the strength of the source g: all source-dependent terms are

proportional to the retarded Green’s function or its derivatives. This result

generalises to any source function j(x) that is non-zero outside a regionRj , and

to any operator that can be expressed as an integral over point-like functions of

field operators and their first derivatives B̂ =
∫
RB d

4x f
(
φ̂(x), ∂0φ̂(x),∇φ̂(x)

)
.

Operators of this type are referred to by the authors as ‘good operators’.

It may be seen that this result is far more easily derived from (7.27).

Putting j(x) = J δ4(x−xA), we obtain

φ̂(x) = φ̂0(x) + J GR(x−xA)1̂. (7.32)

In the Heisenberg picture, a system initially in the vacuum state at t= 0 has

state |Ψ〉= |0〉 for all t. We can calculate the expectation value of B̂ directly:

〈Ψ|B̂|Ψ〉 = 〈0|
{
φ̂ j(∂0φ̂)k(∇φ̂)l

}
x=xB

|0〉

= 〈0|
{[
φ̂0(xB) + JGR(xB−xA)

]j[
∂0φ̂0(x) + J ∂0GR(x−xA)

]k
×
[
∇φ̂0(x) + J ∇GR(x−xA)

]l}
|0〉x=xB (7.33)

For spacelike xB−xA, this is simply 〈0|B̂0|0〉, where B̂0 is identical to B̂ with

φ̂ replaced with φ̂0. It is the expectation value that the operator would have

if J=0, and therefore identical to (7.31).

Indeed, (7.33) is equivalent to (7.30). The causality result proved in the

box on page 110-11 is more general than Buscemi and Compagno’s result on

104Equation (51), [83]. I have used |Ψ(t)〉 rather than the authors’ |t〉 to emphasise that
|0〉 refers to the vacuum state and not a general state at t= 0. Their ∆̃R(x−y) is defined
in their equation (37); taking the j(x′, t′) in that expression to be J δ4(x′−y), and referring
also to their equation (6), we have ∆̃R(x−y) = J ∆ret(x−y) ≡ J θ(x0−y0)∆(x−y) ≡
−iJ θ(x0−y0)〈0|[φ̂(x), φ̂(y)]|0〉 = −J GR(x−y) as defined in (7.24). Thus, from their (51),
when we put g=−1 (see (7.28)) we obtain (7.30).
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three counts: it does not depend on the field initially being in the vacuum

state, it does not depend on the operators being ‘good operators’, and it is

valid not only for expectation values but for the probability of any individual

measurement outcome. Their method of calculation, however, does reveal

some interesting properties of the state vector itself.

They calculate the single-particle component of |Ψ(t)〉 in a Newton–Wigner

basis (we will discuss such a basis in Section 7.4.1). Their result, for general

j(x), is105

ψ(t,x) ≡ 〈x|ψ(t)〉 = eif(t) g

∫ t

0
dt′
∫
d3x j(x)∆+(x−x′) (7.34)

where eif(t) is some phase factor and ∆+(x−x′) = −GF (x−x′) + GA(x−x′)
in terms of the Green’s functions of (7.24). At a point that does not lie in the

causal past of any part of Rj , the GA term vanishes.

In the limit j(x) = J δ4(x−xA), with g=−1 again, we have

ψ(tB,xB) = J eif(t) θ(tB−tA)GF (xB−xA). (7.35)

The fact that this is non-zero for spacelike xB−xA, even though there are

no measurable effects, reaffirms the finding of Section 6.4.5 (and also Section

7.4.1) that it is the single-particle Newton–Wigner basis that does not respect

causality, rather than the field theory.

7.3 Location-specific information in Hilbert space

In Section 4.3 it was noted that a continuous basis element |x〉 is associated

with every point in space, and that therefore, in quantum mechanics, space

could be said to emerge as a topological arrangement of the subspaces of the

Hilbert space of states of a single particle.

In a quantum field theory, an operator (or a set of operators, φ̂a(x)) in the

Schrödinger picture is associated with every point in space. If we attempt to

relate space to a representation of the Hilbert space H of states of the field, it

quickly becomes complicated. When quantum field theory is developed from

Postulate 3 (via the Hamiltonian, by analogy with quantum mechanics) as it

was in Section 7.1.2, the continuous basis {|φ〉} defined by (7.6) again provides

a topological arrangement of the subspaces of H but, instead of being three-

105Their equation (32). The basis is defined in their (14), the RHS of which is missing a
factor eik.x. It is equivalent to that of Section 7.4.2, allowing for the difference in normali-
sation.
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dimensional and labelled by i∈{1, 2, 3}, this topology is infinite-dimensional

and labeled by x∈R3.

Although field operators can be conveniently labeled with spacetime points,

the relationship between the state vectors and spacetime has become far more

complicated in field theory than it is in single-particle quantum mechanics.

The following theorems illustrate how far removed the state vector is from

having any straightforward relationship to spacetime. The first theorem below

is particularly dramatic – it shows that if an observer were confined to a tiny

region of empty space for a short period of time, and they had access to any

combination of field operators in that region, there is no quantum state

(of the Universe) that they could not reproduce using only those

local operators.

Reeh–Schlieder (1961) Given any spacetime region R, no matter how

small, and a field theory with causal commutation relations,106 there is no

state in the Hilbert space that cannot be constructed to arbitrary precision

from the action of local field operators φ̂(x) (x ∈ R) acting on the vacuum

state |0〉 [84] [85, §II.5.3].(∑
n

∫
Rn

d4x1...d
4xnfn(x1, ..., xn)φ̂(x1)...φ̂(xn)

)
|0〉

To reproduce a state with features at great distance would entail extremely

fine tuning, exploiting the unlimited range of non-zero correlations within the

vacuum state. The result is not special to the vacuum state – any state with

finite energy has this property.

This result appears to go against relativistic causality in an extreme sense.

Yet it is derived from relativistic causality: the commutator of operators in

spacelike separated regions is axiomatically zero. There is no question of any

signalling across spacelike regions.

Many attempts to identify a relation between spacetime and state vectors

have focused on three-dimensional spatial regions, motivated by single particle

theory. As a result, a number of very general no-go theorems have arisen [86],

some of the more relevant of which are listed below.

106Relations such as (7.4) and (7.11) which give rise to microcausality.
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Hegerfeldt (1998) If it were possible to create a state localised in a spatial

region R in a theory that does not allow instantaneous wavepacket spreading,

then the unitary evolution of that state would keep it localised in R forever

[87] [86, §2].107

Conversely, if the evolution of a localised state didn’t confine it to remain

within its local region for all time, there would be superluminal spreading.

Malament (1996) In a relativistically causal theory, there are no sets of

non-zero operators PR that could act as projection operators with respect to

spatial regions R in the sense that PRAPRB = 0 for any pair of disjoint regions

RA and RB. [88] [86, §3].

For the case of a single particle, this means there cannot be a map between

regions of Euclidean space and subspaces of Hilbert space (as described above

and in Section 4.3) without violating relativistic causality. This is indeed what

we have found in Sections 5 and 6: every propagator was found to be non-zero

for spacelike separations, implying a violation of causality if measurements

involving projection operators onto spatial regions exist (Section 5.1).

Halvorson–Clifton (2001) Developed from a theorem by Busch [89]. In

a relativistically causal theory, there are no sets of non-zero operators AR for

which 0 ≤ 〈Ψ|AR|Ψ〉 ≤ 1 ∀ |Ψ〉∈H and ARA
⋃
RB = ARA+ARB for any pair of

disjoint regions RA and RB [86, §5].

This supplements the Malament theorem above by supposing that general

quantum measurements (in the general sense of a POVM – see Section 3.2.3)

might exist even if strict projection operators do not. For example, let us say a

particle exists, but it can never (because of Malament) be located exclusively

within any region, yet a probability distribution over space exists such that

the probability associated with the union of two spatial regions was equal to

the sum of the probabilities associated with each region. Is it possible to have

a measurement whose outcomes have such a distribution over space? The

answer is no.

These theorems above rule out any relativistic quantum theory of single

particles, and they underline the difficulty of making any straightforward as-

sociation between a state and a location.

However, the quantum state must carry spatial information in this

107This conclusion is similar to that of the toy example given in the introduction to Section
7, but far more general.
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theory, for the following reason. The evolution of this system between times

tA and tB is governed by Postulate 3, the time evolution of a state vector

|Ψ〉. If a disturbance takes place at xA≡(tA,xA), whether that disturbance is

represented by a classical source (7.15) or a local observable (7.8) or (7.14), we

have seen that any detectable effects at a time tB>tA are absolutely spatially

restricted to a ball of radius c (tB−tA).

A state in a quantum field theory can be very highly localised, even if it

cannot be completely localised [70, §5.2]. In the following section we will see

how a simple example of localisation – the Newton–Wigner representation of

single-particle theory – emerges as an approximation within a free scalar field.

7.4 Particles in quantum field theory

7.4.1 The Fock representation

The {|φ〉} basis for quantum field theory was introduced in Section 7.1 is

extremely large. A basis element exists for every point on the continuous

spectrum of the unbounded operator φ̂(x) at every x ∈ R1,3. Its cardinality

is therefore 2(2ℵ0 ), where ℵ0 is the cardinality of a countably infinite set. We

might ask whether such an enormous basis is justified.

First, let us note that a separable Hilbert space must have a basis that is

no more than countably infinite, and that separability is often suggested as

a fundamental requirement of a working quantum theory [8, §7.1]. Quantum

mechanics freely makes use of uncountable bases such as {|x〉}, but this is

not a true basis (its elements are not members of the space of states – see

Section 3.4) and the space of wavefunctions ψ(x)=〈x|ψ〉 that differ by a set of

non-zero measure and are square-integrable (
∫
dx |ψ(x)|2 ∈ R) is a separable

Hilbert space. The appearance of such a huge basis in constructing quantum

field theory needn’t necessarily cause concern, but it is reasonable to seek one

that is less redundant.

A more practical basis is provided by the Fock representation, which in

the free field theory reveals a direct correspondence with N -particle quantum

mechanics.

A single real free scalar field, following (7.15) and (7.16) with j = 0, has a

Lagrangian density and resulting field equation:

L̂ = −1
2(∂µφ̂)(∂µφ̂)− 1

2m
2φ̂2 (7.36)

(∂µ∂
µ +m2)φ̂ = 0. (7.37)
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The most general self-adjoint operator solution to (7.37) is

φ̂(x) =

∫
d3p

(2π)3/2

1

(2Ep)1/2

(
âp e

−i(Ept−p.x) + â†p e
i(Ept−p.x)

)
. (7.38)

where ap is some operator that may vary with a parameter p that we shall

come to identify with momentum, and Ep≡p2+m2.

Since π̂(x) ≡ ∂L/∂(∂0φ̂) = ∂0φ̂, the canonical commutation relations (7.4)

require

[
âp, â

†
q

]
= δ3(p−q)[

âp, âq
]

=
[
â†p, â

†
q

]
= 0, (7.39)

whereupon, with normal ordering,108

:Ĥ : =

∫
d3pEp â

†
p âp. (7.40)

We first note that if a state |0〉 exists such that âp|0〉 = 0 ∀p, then it is an

eigenstate of Ĥ. We call this the vacuum, and we assume that it is unique.

Secondly, we note that [Ĥ, â†p] = Ep â
†
p, which means the state109

|p〉 ≡ â†p|0〉 (7.41)

108The Hamiltonian calculated directly for this theory is Ĥ =
∫
d3pEp â

†
p âp + EV . The

constant energy term EV is infinite if the theory is taken to be valid for unlimited energies
and measured over infinite space. More realistically, a field theory should be considered to be
effective, meaning that it is a low-energy approximation to a theory that remains unspecified
for higher energies, but satisfies the conditions for a field theory subject to renormalisation
group equations [74, §12]. In an effective field theory, EV becomes a finite energy per unit
volume. In neither case does this term have any physical consequence (general relativistic
complications aside). A normal ordered operator : Â : = Â − 〈0|Â|0〉1̂ measures a quantity
relative to its expectation value in state |0〉.

109As they are elements of a continuous basis, they are not true states in the sense of
elements of a Hilbert space (or a Fock space), but the term ‘state’ is in common use for them.
I have normalised these elements such that 〈p|q〉 = δ3(p−q) to maintain continuity with
results of earlier Sections, for example the derivations of propagators in which

∫
dp |p〉〈p|=1̂ is

employed. For a Lorentz invariant normalisation, a prefactor proportional to Ep is required,
for example 〈p|q〉 = (Ep/m) δ3(p−q). This may be achieved by redefinition of the state in
terms of the creation operator, e.g. |p〉 ≡ (Ep/m)1/2â†p|0〉, retaining (7.39). Alternatively,
ap and a†p may be defined so that, for example, [âp, â

†
q] = (2π)3(2Ep) δ

3(p−q), which results
in a particularly simple field expansion when (7.4) is applied:

φ̂(x) =

∫
d3p

2Ep

(
âp e

−i(Ept−p.x) + â†p e
i(Ept−p.x)

)
.

Conventions among quantum field theory texts vary.
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is an eigenstate of Ĥ with eigenvalue Ep. As 〈p|q〉 = δ3(p−q), these states

form a continuous basis for a single-particle Hilbert space H1. For this reason,

â†p is referred to as the creation operator for a particle of momentum p.

Finally, it follows that any state |{pi}〉 ≡
(∏N

i=1 â
†
pi

)
|0〉, for any set of N

momenta {pi ∈ R3}, is an eigenstate of Ĥ with eigenvalue
∑

iEpi above the

vacuum, and may be referred to as an N -particle state (see Section 7.4.2). The

direct product of any two such states is zero unless they involve identical sets

of creation operators regardless of order, in which case it is an N -fold product

of delta functions. The space of states HN is therefore a symmetrised110 direct

product of N Hilbert spaces:

HN ≡ S H1 ⊗H1 ⊗ . . .⊗H1. (7.42)

The direct sum of these spacesHN , which are themselves mutually orthogonal,

is known as a symmetrised Fock space:

FS =
∞⊕
N=0

HN . (7.43)

The Fock representation allows any state in the field theory to be expressed

as a superposition of these basis elements |{pi}〉. As is appropriate for any

continuous basis, each basis element must appear in an N -fold integral over

momenta in order to give a state in FS .

The representation can be generalised to include complex fields:

L̂ = −(∂µφ̂
†)(∂µφ̂)−m2φ̂†φ̂ (7.44)

(∂µ∂
µ +m2)φ̂ = 0 (7.45)

φ̂(x) =

∫
d3p

(2π)3/2

1

(2Ep)1/2

(
âp e

−i(Ept−p.x) + b̂†p e
i(Ept−p.x)

)
, (7.46)

in which the â†p and b̂†p operators act as creation operators for particles and

their anitparticles, with equal mass and opposite charge. The resulting Fock

space is the direct product of two of the Fock spaces defined above – one for

particle states and one for antiparticle states.

110The symmetrising operator S maps all equivalent states corresponding to the same
unordered set of momenta to a single state in HN .
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Where there are multiple fields, the space of states will be a direct product

of multiple Fock spaces.

Fermion fields can be accommodated by replacing the symmetrisation op-

erator in (7.42) with an antisymmetrisation operator.

To follow up on the note at the start of this Section, we should ask whether

the Fock space is separable, since a large number of the theorems that are used

in quantum theory apply only to separable Hilbert spaces. A great deal of the

power of the theory would be lost if the space of states were non-separable.

It may be shown that any countable direct sum of finite direct products

of separable Hilbert spaces is itself separable. The definition (7.43) of a Fock

space, however, makes clear that there is no finite limit to the number direct

products (7.42). It is still possible to work with a separable Hilbert space

by restricting the theory to finite numbers of particles, but this is a difficult

constraint to apply to a field theory.

Alternatively, one may take advantage of physical restrictions on the types

of operators that can act between the states. This constrains the time evo-

lution operators and observables of the theory to a subset of operators on

F (known as a ‘superselection sector’), and isolates a separable subspace in

which all the dynamics takes place. This subspace is the full space of states

accessible to the system, so the theorems of separable Hilbert spaces remain

valid for the field theory that describes it [77, §§1.1, 2.6].

7.4.2 The correspondence between quantum field theory and quan-

tum mechanics

The claim that states in the HN subspace of Fock space represent systems of

N physical particles can be verified in several ways.

We may identify quantities such as energy and momentum of the field, and

compare them to the properties of particles. These quantities emerge naturally

in the field theory as conserved Noether charges arising from the invariance of

the action under space and time translations [74, §2.2]:

P̂µ ≡
∫
d3x : T̂ 0µ : ≡

∫
d3x :

(
π̂ ∂µφ̂− η0µL̂

)
:

=

∫
d3p (Ep,p)

(
â†pâp + b̂†pb̂p

)
(7.47)

Applying (7.46) yields P̂µ |{pi}〉 =
∑

i(Epi ,pi) |{pi}〉. The field momentum

of a Fock eigenstate is equal to the sum of the momenta in its set of creation
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operators, whether particle or antiparticle.

A charge operator also emerges as a conserved quantity due to the invari-

ance of the action under a global phase change:

Q̂ ≡
∫
d3x i : (φ̂†π̂† − π̂φ̂) : =

∫
d3p

(
â†pâp − b̂†pb̂p

)
, (7.48)

and this yields Q̂ |{pi}〉 = (Na−Nb)|{pi}〉, where Na and Nb are the numbers

of particle and antiparticle creation operators involved in the state |{pi}〉,
again in agreement with the particle claim.

Let us consider the space of single particle and antiparticle states, H1⊕H1.

A general state can be expressed in terms of particle basis states |p〉 ≡ â†p|0〉
and antiparticle basis states |p〉 ≡ b̂†p|0〉 using two functions ψ(p) and ψ(p) as

follows:

|ψ〉 =

∫
d3p

(
ψ(p) |p〉+ ψ(p) |p〉

)
. (7.49)

We already have a reliable momentum operator on this space:

P̂i =

∫
d3p pi

(
â†pâp + b̂†pb̂p

)
, (7.50)

so we may construct a position operator in the standard way (4.13), summing

over both sets of basis states:111

x̂
(1)
i ≡

∫
d3p

(
|p〉 i ∂

∂pi
〈p|+ |p〉 i ∂

∂pi
〈p|
)

(7.51)

111This position operator may be written in terms of field operators and the vacuum pro-
jection operator |0〉〈0|, but it isn’t very revealing. From (7.46), we can obtain an expression
for the particle annihilation operator

âp =
1

(2Ep)1/2

∫
d3x

(2π)3/2

(
Epφ̂(x) + iπ̂†(x)

)
ei(Ept−p.x).

The antiparticle operator b̂p has the same form with φ̂↔ φ̂† and π̂ ↔ π̂†. From this,

∂

∂pi
〈p| = 1

(2Ep)1/2

∫
d3x

(2π)3/2

[(
i
pi
Ep

t− ixi
)(
Epφ̂+ iπ̂†

)
+

pi
2E2

p

(
Epφ̂− iπ̂†

)]
ei(Ept−p.x)

and so, with φ̂ ≡ φ̂(x) and φ̂′ ≡ φ̂(x′) and similarly for π̂,

x̂
(1)
i =

∫
d3p

2Ep

∫
d3x′d3x

(2π)3

{(
Epφ̂

′†−iπ̂′
)
|0〉〈0|

[(
xi−

pi
Ep

t
)(
Epφ̂+iπ̂†

)
+ i

pi
2E2

p

(
Epφ̂−iπ̂†

)]
+
(
Epφ̂

′−iπ̂′†
)
|0〉〈0|

[(
xi−

pi
Ep

t
)(
Epφ̂

†+iπ̂
)

+ i
pi

2E2
p

(
Epφ̂

†−iπ̂
)]}

eip.(x
′−x).
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The momentum operator has two sets of eigenstates, |p〉 and |p〉, with identical

eigenvalue spectra. There are also two sets of eigenstates for the position

operator, and we can express them and define the associated creation operators

as follows:112

|x〉 ≡
∫

d3p

(2π)3/2
e−ip.x â†p |0〉 ≡ â†x|0〉

|x〉 ≡
∫

d3p

(2π)3/2
e−ip.x b̂†p |0〉 ≡ b̂†x|0〉. (7.52)

These results then follow straightforwardly:

x̂
(1)
i |x〉 = xi|x〉

x̂
(1)
i |x〉 = xi|x〉

〈x|p〉 = 〈x|p〉 = (2π)−3/2 eip.x

〈x|p〉 = 〈x|p〉 = 0 (7.53)[
x̂

(1)
i , P̂j

]
= i δij

∫
d3p

(
|p〉〈p|+ |p〉〈p|

)
= i δij 1̂(1) (7.54)[

P̂i, Ĥ
]

= 0[
x̂

(1)
i , Ĥ

]
= i

∫
d3p

(
|p〉 pi

Ep
〈p|+ |p〉 pi

Ep
〈p|
)

= i v̂
(1)
i . (7.55)

Here, 1̂(1) refers to the unit operator on H1⊕H1, and v̂
(1)
i is a one-particle op-

erator with eigenvalues equal to the velocity of a classical particle for states of

well-defined momentum. All of these correspond directly with Postulate 3 and

reproduce the principles of quantum mechanics of a single particle or antipar-

ticle – the two are treated on equal footing. With reference to the discussion

of position operators in Section 6, the fact that x̂i preserves a particle as a

particle (not mixing it with antiparticle states) makes it a Newton–Wigner

operator.

The Hamiltonian may be decomposed into one-particle and many-particle

operators, : Ĥ : = Ĥ(1) + Ĥ(N>1), where Ĥ(N>1) annihilates any one-particle

112A similar construction is suggested in [74, §2.3]. In [72, §2.8.1], it is noted that in the
Schrödinger picture,

φ̂†S(x)|0〉 ≡ e−iHt φ̂†(x) eiHt|0〉 =

∫
d3p

(2π)3/2

1

(2Ep)1/2
â†p e

ip.x|0〉,

which means (2m)1/2φ̂†S(x)|0〉 would make a good position eigenstate in a non-relativistic
theory, in which (2m)1/2/(2Ep)

1/2 is essentially constant – compare (7.52).
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state and

Ĥ(1) = 1̂(1)P̂ 0 1̂(1) =

∫
d3p

(
|p〉Ep〈p|+ |p〉Ep〈p|

)
. (7.56)

If we also define a momentum operator exclusive to one-particle states p̂(1) ≡
1̂(1)P̂ 1̂(1), then this Hamiltonian satisfies the Klein–Gordon relation

(
Ĥ(1)

)2
=

(p̂(1))2 +m2 1̂(1). It is now possible, as per Postulate 3, to express the Hamil-

tonian directly in terms of the one-particle canonical operators, which brings

us back to the relativistic particle mechanics discussed in Section 6.

If we bring the operator x̂
(1)
i to the full Fock space, it projects all states

onto the one-particle subspace H1⊕H1. The momentum operator P̂i of (7.47)

does not. With care, the position operator can be extended over the whole of

the Fock space.

Let us denote a general basis state by |A,B〉 =
∏NA
a=1 â

†
pa

∏NB
b=1 b̂

†
pb |0〉

where A = {pa} is a set of NA particle momenta and B = {pb} is a set of

NB antiparticle momenta. The position operator proposed below involves a

sum over all basis states, with combinatorial factors to ensure states are not

counted more than once given the symmetry of the Fock space. For multi-

particle states, symmetry suggests that the single i∂/∂pi operator be replaced

by the mean of all such operators for that state. The resulting operator X̂i is

∞∑
NA=0

1

NA!

∞∑
NB=0

1

NB!

∫ NA∏
a=1

d3pa

∫ NB∏
b=1

d3pb |A,B〉

(NA∑
a=1

i
∂

∂pa,i
+

NA∑
b=1

i
∂

∂pb,i

)
NA +Nb

〈A,B|

(7.57)

One may verify that its eigenvalues correspond to the position of the centre

of mass of a set of localised particles and/or antiparticles of equal mass: for

example,

X̂i â
†
x1
â†x2

b̂†x3
|0〉 =

1

3
(x1i+x2i+x3i) â

†
x1
â†x2

b̂†x3
|0〉.

This adds weight to the suggestion that â†x and b̂†x as defined in (7.52) are

creation operators for particles and antiparticles at position x in this free field

theory.

The relation for conjugate operators now holds throughout the Fock space:

[
X̂i , P̂j

]
= i δij . (7.58)
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7.4.3 Particle creation

In Section 5.1, two equivalences were established for a quantum theory in

which that the spatial representation in which measurements can be localised

is the same as the spatial representation of a position operator x̂.

1. The probability of a measurement localised in a spatial region RB made

at time tB giving a particular outcome will in general depend on the

region RA in which an earlier measurement was made at time tA unless

the propagator vanishes:

〈xB|Û(tB, tA)|xA〉 = 0 for all xA ∈ RA, xB ∈ RB ⇒ no causal link.

In particular, if the propagator is non-zero for any (xB, tB) outside the

future light cone of any (xA, tA), this would mean that we do not have a

relativistically causal theory in which one-particle operators of the form

Â(1) =

∫
RA
dx dx′ |x′〉Â(x,x′)〈x|,

defined with respect to a spatial region RA, can represent physical mea-

surements.

2. There is no causal link between Alice and Bob if and only if every pos-

sible position measurement Â available to Alice at time tA, subject to

an appropriate forwards time evolution, commutes with the operator of

every possible position measurement B̂ available to Bob at a later time

tB: [
Û(tB, tA) Â Û †(tB, tA) , B̂

]
= 0 ⇔ no causal link.

In Section 7.4.2, a Newton–Wigner position representation was found for the

one-particle subspace of a free scalar field. Since the single-particle Hamilto-

nian satisfies the Klein–Gordon relation, we know that the relevant propagator

for the first of these statements is the single-particle relativistic propagator

K+(xB, tB; xA, tA) of (6.8), and we know that it does not vanish outside the

future light cone.113

113If we were to use the approximate position eigenstates defined in footnote112, the prop-
agator for tB > tA would be

〈xB | Û(tB , tA) |xA〉 = 2m 〈0| φ̂S(xB) eiĤ(tB−tA) φ̂†S(xA) |0〉 = 2m 〈0| φ̂(xB) φ̂†(xA) |0〉.

This quantity is 2m times the Feynman propagator, iGF (xB−xA). However, as noted there,
this is not a suitable position eigenstate for a relativistic theory.
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It follows that one-particle operators of the form Â(1) cannot represent

observables in a relativistically causal quantum field theory. We can extend

this to a wider class of observables: any operator Â that acts in an identical

way to Â(1) on the one-particle space: i.e. any Â for which 1̂(1)Â 1̂(1) = Â(1).114

A measurement on a free scalar field that (a) takes place in a finite spatial

region and (b) does not mix one-particle states with n 6= 1-particle states

would allow signalling that violated relativistic causality. To put it another

way, in a causal theory, if a measurement is to take place in a finite

spatial region, that measurement must have the capacity for particle

creation.

In contrast, with regard to the statement 2 on the previous page, if our ob-

servables are functions of the field operators within bounded spacetime regions

as prescribed in Section 7.1, we have seen that the no-signalling condition does

hold between pairs of measurements when the regions are spacelike separated.

We may conclude that the violation of the first condition but not of the

second is informative not so much about the nature of particles as about the

nature of observables in quantum field theory.

7.5 The return of relativistic causality violations

7.5.1 Signalling using more than two measurements

We have seen that no signalling is possible using a pair of observables Â and B̂

constructed from the field operators in spacetime regions RA and RB that are

entirely spacelike separated from each other. If more than two field observables

are involved, however, the spectre of superluminal signalling re-emerges.

In [90], Sorkin outlines a scheme for generalising from two to any num-

ber of observables defined on non-overlapping spacetime regions, whereby the

postulates of quantum mechanics can be applied to the measurements in a

well-defined way. He then presents a simple case in which three measurements

can be used to signal across a spacelike interval.

An example of the kind of arrangement of three spacetime regions RA, RB
and RC that allows superluminal signalling is shown in Figure 3.

Regions RA and RC are entirely spacelike separated from each other, but

neither of them is entirely spacelike separated from RB. The choice of mea-

114To make a reliable single-particle measurement, the measurement must be able to dis-
tinguish a one-particle state from a n 6=1-particle state, but proof of signalling only requires
that the probabilities of measurement B be affected by the choice of measurement A.
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x

t

RA

RB

RC

Figure 3: An arrangement of three spacetime regions. The future light cone
of RA and the past light cone of RC are indicated by the dashed lines.

surement A in RA affects both the outcomes and the updated state after

measurement B in RB, and this in turn affects the outcomes of measurement

C in RC . If a pre-arranged measurement takes place at B, it is argued that

signalling from RA to RC can occur.

A simple idealisation – employed by Sorkin – is to reduceRA to a spacetime

point xA = (tA,xA), and likewise RC to point xC = (tC ,xC), while extending

RB to the entire spacelike hypersurface x0 = tB, with tA < tB < tC . We

consider a real scalar quantum field φ̂(x).

The density operator (Section 3.2.1) of the state at t < tA is taken to be

ρ̂0. The explicit form of the observable Â is not required: the overall effect of

the measurement on ρ̂0 is necessarily that of a unitary operator constructed

from the fields in RA, resulting in an updated state ρ̂A = ÛA ρ̂0 ÛA. Following

Sorkin, we take ÛA = eiλφ̂A , where φ̂A ≡ φ̂(xA); λ is an adjustable parameter

that we propose to use to transmit information.

For measurement B, we use B̂ = |1〉〈1|, where |1〉 is some one-particle

state.115 This simplifies the calculation, since it doubles as both the projection

operator onto state |1〉 and the observable itself. The measurement gives an

outcome of 1 with probability p(1B|λ) = Tr(ρ̂AB̂) and an outcome of 0 with

probability p(0B|λ) = Tr
(
ρ̂A(1̂− B̂)

)
. After the measurement, the updated

state is ρ̂B1 if the outcome is 1, ρ̂B0 if the outcome is 0. With the outcome

115Sorkin uses B̂ = |b〉〈b| with |b〉 = α|0〉+ β|1〉, but notes that the case α=0 is sufficient.
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unknown, the mixed state after measurement B is

ρ̂B = p(1B|λ) ρ̂B1 + p(0B|λ) ρ̂B0

= Tr(ρ̂AB̂)
B̂ρ̂AB̂

Tr(ρ̂AB̂)
+ Tr(ρ̂A(1̂−B̂))

(1̂−B̂)ρ̂A(1̂−B̂)

Tr(ρ̂A(1̂−B̂))

= B̂ρ̂AB̂ + (1̂−B̂)ρ̂A(1̂−B̂) (7.59)

For measurement C we take Ĉ = φ̂C ≡ φ̂(xC), and simply ask whether the

expectation value 〈Ĉ〉 of this measurement varies with λ. The derivative of

〈Ĉ〉 at λ=0 is a measure of the sensitivity of the reception of the signal from

A. Taking the vacuum as the initial state, ρ̂0 = |0〉〈0|,116

d

dλ
〈Ĉ〉 =

d

dλ

∣∣∣∣
λ=0

Tr(ρ̂BĈ)

= −iTr(B̂ρ̂0φ̂AB̂φ̂C) + iTr(B̂φ̂Aρ̂0B̂φ̂C)

− iTr((1̂−B̂)ρ̂0φ̂A(1̂−B̂)φ̂C) + iTr((1̂−B̂)φ̂Aρ̂0(1̂−B̂)φ̂C)

= 2=
[
Tr(|0〉〈0|φ̂Aφ̂C) + 2Tr(|0〉〈0|φ̂A|1〉〈1|φ̂C |1〉〈1|)

− Tr(|0〉〈0|φ̂A|1〉〈1|φ̂C)− Tr(|0〉〈0|φ̂Aφ̂C |1〉〈1|)
]

= −2=
[
Ψ(xA)Ψ∗(xC)

]
, (7.60)

where Ψ(x)≡〈0|φ̂(x)|1〉. The sensitivity of C as a receiver of a superluminal

signal from A is then non-zero unless Ψ(xA) = 0 or Ψ(xC) = 0 or the phase

difference ∆θAC between them satisfies sin ∆θAC =0.

As |1〉 ∈ H1, we may use (7.49) to write |1〉 =
∫
d3pψ1(p) â†p|0〉. If φ̂(x) is

a free field (7.38), then

Ψ(t,x) = 〈0|
∫

dp′

(2π)3/2

1

(2Ep′)1/2
âp′e

−i(Ep′ t−p′.x)

∫
dpψ1(p)â†p |0〉

=

∫
dp

(2π)3/2

1

(2Ep)1/2
ψ1(p) e−i(Ept−p.x) (7.61)

This cannot be zero for all x unless ψ1(p) = 0 ∀p, which contradicts |1〉 ∈
H1.We may choose a point xA so that Ψ(xA) 6= 0, whereupon |Ψ(xC) sin ∆θAC |
becomes a relative measure of the signal strength.

If the one-particle state |1〉 has well-defined momentum p′, measurement B

116The identity [Tr(ÂB̂Ĉ)]∗ ≡ Tr(ĈB̂Â) for self-adjoint Â, B̂ and Ĉ has been used to
obtain (7.60), along with the cyclic property of the trace. This property also tells us that
=[Tr(ρ̂0φ̂Aφ̂C)] = −=[Tr(ρ̂0φ̂C φ̂A)] = 0, because φ̂A and φ̂C commute at spacelike separa-
tion. The other two terms that vanish in the final step do so simply because 〈1|0〉=0.
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corresponds to an ideal detector that responds only to particles of exactly this

momentum. In this case, (7.61) shows that the signal strength is independent

of the interval xC−xA in both time and space, aside from the rapidly oscillating

factor sin[Ep′(tC−xA)−p′.(xC−xA)].

A less extreme situation is explored in [91]. The state |1〉 is taken to be a

massless particle with a Gaussian function in momentum space with peak at

(k0, 0, 0, k0) and width σ. Region RB is thickened to give measurement B a

duration tC−tA, but the form of the measurement is essentially the same: it

is a projection operator onto a one-particle state. Taking xA = (0, 0, 0, 0) and

xC = (t, 0, 0, t+δ) where t� k0/σ
2 and 0<δ<1/σ, they find a superluminal

signal whose strength is proportional to
√
k0/σ cos(k0δ) t

−1. As δ (the spatial

distance by which xC is outside the future light cone of xA) increases, the

signal strength is modulated by a function e−σ
2δ2/4D−3/2(−iσδ−k0/σ), which

drops off as e−σ
2δ2/2
√
δ as δ →∞.

Rejecting superluminal signalling, the conclusion of the authors is that ei-

ther the unitary transformation at xA, the ideal measurement B̂ = |1〉〈1| or

the final measurement at xC is impossible, and that this represents a funda-

mental failing of the Hamiltonian approach to quantum mechanics (the three

postulates of Sections 3.1 and 4.1), underlining the need, as they see it, to set

the foundations of quantum mechanics firmly in a path integral approach.

7.5.2 The limits of canonical quantum theory?

The results outlined in Section 7.5.1 have much in common with those of Sec-

tion 7.4.3: they involve a measurement that is a projection operator onto a

subset of one-particle states leading to a violation of relativistic causality. It

may be that measurements projecting onto the one-particle subspace simply

cannot occur in quantum field theory. Alternatively, our three basic postu-

lates may merely be conveniences that emerge as approximations from a very

different and more solid foundation, and we may now have arrived at the place

at which they finally break down.

The case against the ‘Hamiltonian approach’ has been running for a long

time. The primary motivation is the clear absence of manifest relativistic in-

variance in the postulates – the evolution of the state vector with respect to

time is generated by a spatially-global Hamiltonian. The action and the La-

grangian density, by contrast, are relativistic scalars. This was noted by Dirac

in 1933 [92] and led Feynman to develop the path integral formulation of quan-

tum mechanics [56] in terms of the action (which is demonstrably equivalent

to the Hamiltonian approach in some circumstances, as is noted in Section
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5.2.1). It may be thought unseemly for a relativistic theory to be developed in

a manner that has such disregard for relativistic invariance; yet the Hamilto-

nian approach has persisted long into the development of quantum field theory

as a practical tool. The majority of texts and courses give it precedence be-

cause of its relative simplicity and its compatibility with elementary quantum

mechanics, and also because it is known to generate a relativistic theory in

practice, in spite of its roots.

There is still room to defend the three basic postulates against challenges

such as those described by the results of Section 7.5.1. In particular, a signifi-

cant class of the observables proposed in Section 7.1.2 for a scalar field do not

exhibit these superluminal signal facilitating properties. These observables

are sums of infinitesimal local operators, each defined by the field at a point

– that is, operators of the form

B̂ =

∫
RB

d3xF (φ̂(x), ∂µφ̂(x), ∂µ∂ν φ̂(x), . . .). (7.62)

where RB is a spacelike hypersurface [90, §4] [91, §III].117

For operators to conform to the requirements of a measurement in a causal

theory, therefore, they should be both local and instantaneous. (These would

be considered natural conditions in quantum mechanics, the context in which

these postulates arose.)

As was noted in Section 3.1, measurements may in fact be an emergent

process: the unitary local evolution of an open system in a particular kind of

complex environment, one that approximates to a set of projection operators

under certain conditions. If this is the case, it may be that the kinds of

causality-violating measurements described in Section 7.5.1 cease to arise, but

the question of how and to what extent physical phenomena are located in

spacetime would remain to be addressed.

117In the latter reference, this class of well-behaved observables is restricted further to “field
operators smeared with real functions over subsets of spacelike hypersurfaces.”
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8 Conclusions

The study of causal relations in quantum theory requires us to pay close atten-

tion to the assumptions we make and the definitions we choose to work with.

A class of causal relationships of interest was proposed in the Introduction,

and defined quantitatively using the concept of signalling in Section 2.3. The

information-theoretic context of that Section also helped us begin setting out

an operational definition of quantum theory suitable for the scope of this

work.

Three simple quantum postulates, introduced in Sections 3.1 and 4.1, were

found to be sufficient to cover a vast amount of ground:

Postulate 1 Any physical state can be represented by a vector in a vector

space such that the probabilities for the outcomes of any measurement are given

by the square of the norm of a projection of this vector onto some subspace

that is characteristic of the measurement being made.

Postulate 2 Every measurement updates the state by projecting it onto the

subspace associated with the outcome of the measurement.

Postulate 3 The generator of time evolution can be expressed as a function of

a set of continuous operators that commute with each other, a set of operators

canonically conjugate to them, and a set of discrete operators that commute

with them.

Individual quantum theories within this scheme can then be defined by (a)

the function specified in Postulate 3 and (b) any restrictions placed on the

subspaces of a measurement outcome in Postulates 1 and 2.

With regard to Postulate 3, we saw in Section 4 that if we include a

finite number of conjugate pairs of continuous operators {x̂i, p̂i} and no

discrete operators, the result is a theory in which the expectation values of

any operator obey the laws of classical Hamiltonian mechanics. Awareness

of relativistic causality (revisited more quantitatively in Section 6.1.3) meant

that it was necessary to be clear about how location in space and time

is treated in the theory. By defining the coordinates of a spatial location

as the Hamiltonian coordinates of a classical single particle system in which

the particle is at that location, we generate a map R 7→ HR between spatial

regions and subspaces of the vector spaceH of Postulate 1. For the purposes of

quantum mechanics (Sections 4 to 6), this map is sufficient for the evaluation

of causal relationships between different locations.
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Two key results with regard to signalling and relativistic causality in

single particle theories were established in Section 5.1. First, a proof was

presented that if operators exist of the form (5.9):

Â =

∫
RA

dx

∫
RA

dx′ |x′〉Â(x,x′)〈x| (8.1)

they can be used for superluminal signalling – that is, a transfer of information

that violates relativistic causality – if and only if the propagator is non-zero

for spacelike separated intervals:

K(xB, tB; xA, tA) 6= 0 with (xB−xA)2 > c2(tB−tA)2 (8.2)

Second, we have the more general result that two measurements represented by

any operators Â and B̂ and made at times tA and tB can be used to transmit

information if and only if their commutator in the Heisenberg picture is

non-zero: [Â(tA), B̂(tB)] 6= 0.

While it is a familiar idea in quantum physics that a non-zero propagator

indicates the potential for influence between a pair of spacetime points, and a

non-zero commutator indicates an interaction between a pair of measurements,

to my knowledge, the causal implications and assumptions are not explicitly

set out in any single text. It has been my intention to bring these details

together here.

Through the rest of Section 5 and Section 6, a number of single particle

propagators were calculated; it is clear that they all satisfy (8.2), implying a

violation of relativistic causality. It was noted in the Introduction that any

amount of signalling over spacelike separated distances, no matter how mi-

nuscule the associated probabilities, points to a logical contradiction in the

theory. It follows that (notwithstanding the caveats in Sections 5.1 and 6.1.3)

no operators of the form (8.1) can exist: there can be no operators ex-

clusively associated with a finite spatial region in a single particle

theory. (This result mirrors a general theorem by Malament, described in

Section 7.3.)

Nevertheless, single particle theories are unarguably of value and can yield

results agreeing with observation to a high degree of accuracy – most notably

the success of the Dirac theory of the electron in calculating the energy levels

of hydrogen118 – results that must be reproduced and explained by whatever

118Although even this is somewhat suspect, since “we have to replace the electron mass by
the reduced mass, a concept which has no room in special relativity” – H. Bacry [93].
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theory is to replace them. With this in mind, relativistic single particle theories

were the focus of Section 6.

In Section 6.3 it was established that, aside from attempting to take a

simple ‘square root’, there are essentially only two Hamiltonians satisfying

the relativistic single particle equation Ĥ2 = p̂2+m21̂: the Feshbach–Villars

Hamiltonian and the Dirac Hamiltonian. Both require a multi-component

wavefunction, which is equivalent to admitting discrete operators in Postulate

3. We saw that each of the resulting theories has an ambiguous relationship

to spatial location, having one position representation (the ‘canonical’ rep-

resentation) in which the time evolution of the state takes place point by

point throughout space; and a second position representation (the ‘Newton–

Wigner’ representation) in which location-specific measurements may be

defined. The propagators in both Feshbach–Villars theory and Dirac theory

can be made Lorentz invariant, but only in the ‘canonical’ representation (6.75)

and (6.88), and even then only by imposing a prescription on the propagator

that identifies antiparticles as particles propagating backwards in time. The

propagators that result from this prescription are found to be closely related

to the Feynman propagators of quantum field theory.

One topic that is rarely approached in the literature is the form of the

‘square root’ operators Ĥ = ±
√

p̂2+m2 acting on a one-component wave-

function in a position representation. Derivations of the propagators were

presented in Section 6.1 and a convolution expression for a ‘square root

Hamiltonian’ operator in the position representation was presented in Sec-

tion 6.2. (The derivation can be found in Appendix A.2). In equation (6.63)

this can be seen to be equivalent to the Feshbach–Villars Hamiltonian in the

Newton–Wigner representation. A comparison of equations (6.52) and (6.85)

is sufficient to see that this equivalence also holds in the Dirac theory.

In Section 7 we saw that a quantum field theory can be defined using

the same three postulates, if no limit is placed on the number of continuous

operators involved in Postulate 3. The operators are considered to be dis-

tributed over space119 with the additional requirement that the generator of

time evolution be derived from a Lorentz invariant action by the meth-

ods of classical Hamiltonian field theory. The radical change in going from

the quantum theories of Sections 4–6 to the field theories of Section 7 is not

in the formalism but in the relationship between the space of states

119In other words, the set is made Cauchy continuous and a three-dimensional Euclidean
topology is imposed upon it. The description here refers to the Schrödinger picture (Section
7.1.2).
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H and spatial location. Rather than a map R 7→ HR from spatial regions

to subspaces of H, we have a set of maps120 R 7→
∫
R d

3x φ̂a(x) from spatial

regions to operators on H. The connection between individual states in H
and spatial location is far more complicated (Section 7.3).

Despite the very different definitions of location, the relativistic single par-

ticle theory – along with a Newton–Wigner representation – emerges naturally

from a free scalar field theory (Section 7.4.2). The observation that ‘there can

be no operators exclusively associated with a finite spatial region in a single

particle theory’ then gives rise to the implication ‘if a measurement is to

take place in a finite spatial region, that measurement must have

the capacity for particle creation’ (Section 7.4.3).

Because of the map between location and operators, causal relations be-

tween pairs of localised measurements in quantum field theory are consid-

erably simpler than in a single-particle theory. Measurements defined from

the operators in finite regions of spacetime RA and RB always commute if

the regions are entirely spacelike separated from each other (Section

7.1), in accordance with relativistic causality. In Section 7.2 we saw that if an

influence on a free quantum field is represented by a classical source, this

influence is also strictly relativistically causal.

In practice, however, applications of quantum field theory do not involve lo-

cal measurements. No satisfactory model exists for a physical detector strictly

confined to a finite region of spacetime, whether in terms of projection opera-

tors (per Postulate 1) or field operators (per Section 7.1). And while it may be

reassuring that two measurements confined to finite spacetime regions would

necessarily obey relativistic causality, we would still be left with the question

of how we would physically determine exactly where the boundaries of those

regions were.

Further, if we define a quantum field theory using these postulates and

place no restrictions on measurements in spacetime regions, causality viola-

tions re-emerge (Section 7.5.1). This result suggests that a quantum field

theory based on a projection postulate is only causally consistent in relation

to measurements that are both local121 and instantaneous.

To reiterate a point made in the Introduction: when we consider a mea-

surement outcome, we implicitly take it to be something that can be made to

120One map for each field label a.
121A local operator is one that can be expressed as a sum of operators defined at each point

in a region.
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give rise to a lasting and discernible trace of its having happened. There is

a great deal of idealisation in this requirement, suggesting that the reduction

of the measurement process to Postulates 1 and 2 only approximates a deeper

dynamical process. A review of what this kind of process might involve can

be found in [36].

We know that the canonical approach to quantum field theory is equivalent

to a coordinate space path integral formalism that is manifestly Lorentz in-

variant.122 It may be that the measurement process within field theory can be

clarified by appealing to foundational models123 that generate path integrals

without appealing to Hilbert space.

In the meantime, to the extent that we make use of quantum theories that

are in accord with the postulates listed above, issues of location and causality

such as those presented here remain relevant. It is hoped that this work on

elementary theories will be of interest to those concerned with these issues,

whether their motivation is to ensure such theories are causally consistent or

to try to prove them false.

122This is shown to be the case in Section 5.2.1 for theories in which the Hamiltonian is
quadratic in p̂; the same principle applies to field theories that are quadratic in ∂µφ̂a [74,
§9].

123Such as causal sets [46].
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A Appendix

A.1 Causal relation between observables in quantum mechan-

ics

In Section 5.1, it was shown that a pair of idealised measurements giving

simple yes/no answers as to whether a particle is in a particular spatial region

at a given time (5.1) can in principle be used to send signals if and only if

there are non-vanishing propagators between the regions and times of the two

measurements (5.8).

Here, the result is generalised to any normal operator of the following type:

Â =

∫
RA

dx

∫
RA

dx′ |x′〉Â(x,x′)〈x|, (A.1)

again defined strictly over a region RA. The operator Â(x,x′) may be a function

of x and x′, or any series of finite order differential operators with respect to x

and x′ with coefficients that are functions. This allows the operator to be any

function of position and momentum – provided it is confined to the specified

spatial region in this way. If Â(x,x′) = Â(x)δ(x−x′), the operator is a ‘local’

operator in the coordinate representation.

Let Â have eigenvalues ai, each with an eigenspace spanned by an or-

thonormal set |Ai,q〉, and let Ai,q(x) ≡ 〈x|Ai,q〉. Then

Â|Ai,q〉 = ai|Ai,q〉

⇒
∫
dx Â|x〉〈x|Ai,q〉 =

∫
dx |x〉ai〈x|Ai,q〉

⇒
∫
dx 〈y|Â|x〉Ai,q(x) = aiAi,q(y) (A.2)

From (A.1), 〈y|Â|x〉 = 0 if either x or y is not in RA, therefore every function

Ai,q(y) must have support124 RA except for the case a0 =0.

The projection operator for outcome ai is P̂
(A)
i =

∑
q |Ai,q〉〈Ai,q|. If the

system is initially in state ρ̂ at time tA when the measurement is made, the

probability, using (3.3), is

p(i|A) = Tr(P̂
(A)
i ρ̂) =

∑
n

∫
RA

dx〈x|Ai,q〉〈Ai,q|ρ̂|x〉 (A.3)

124The support of a function is the smallest closed subset of its domain consisting of all
arguments for which the function returns a non-zero value.

134



and the state immediately after the measurement, using (3.10), is

ρ̂ → ρ̂i =
P̂

(A)
i ρ̂P̂

(A)
i

Tr(P̂
(A)
i ρ̂)

=

∑
rs |Ai,r〉〈Ai,r|ρ̂|Ai,s〉〈Ai,s|∑
q

∫
RA
dx 〈x|Ai,q〉〈Ai,q|ρ̂|x〉

(A.4)

As in Section 5.1, we consider the case where Alice is able to choose from

a selection of possible measurements of this type, to be carried out at time

tA in spatial region RA. At a later time tB and in region RB, Bob makes a

measurement B.

By this time, the system has evolved to state UBA ρ̂i Û
†
BA, where ÛBA ≡

Û(tB, tA) is the time evolution operator between times tA and tB. The prob-

ability of outcome bj in a subsequent measurement by operator B̂ defined

similarly over region RB is then

p(j|A,B) =
∑
i

p(j|A,B, i)p(i|A)

=
∑
i

Tr(P̂
(B)
j ÛBA ρ̂i Û

†
BA)

∑
q

∫
RA

dx 〈x|Ai,q〉〈Ai,q|ρ̂|x〉

=
∑
i

∑
t

∫
dy〈y|Bj,t〉〈Bj,t| ÛBA

∑
rs

|Ai,r〉〈Ai,r|ρ̂|Ai,s〉〈Ai,s| Û †BA|y〉

(A.5)

If the sum over i were replaced by a double sum over i1 and i2, we would

be able to use the completeness relation
∑

i P̂
(A)
i =

∑
i,r |Ai,r〉〈Ai,r| = I to

simplify the expression considerably. The original single sum is equivalent to

the condition i1 = i2, which we can enforce by subtracting the terms where it

does not hold:

p(j|AB) =
∑
t

∫
dy〈y|Bj,t〉〈Bj,t| ÛBA ρ̂ Û †BA|y〉 −∑

i1 6=i2

∑
rst

∫
dy〈y|Bj,t〉〈Bj,t|ÛBA|Ai1,r〉〈Ai1,r|ρ̂|Ai2,s〉〈Ai2,s|Û

†
BA|y〉

= Tr(P̂
(B)
i ÛBA ρ̂ Û

†
BA) −∑

i1 6=i2

∑
rst

∫
dy1dy2

∫
dx1dx2dx3dx4Bj,t(y1)B∗j,t(y2)KBA(y2,x1)

× Ai1,r(x1)Ai1,r(x2)〈x2|ρ̂|x3〉Ai2,s(x3)A∗i2,s(x4)K∗BA(y1,x4)

(A.6)

where KBA(x,y) ≡ 〈x|Û(tB, tA)|y〉 is the propagator.

The first term is simply the probability of outcome bj from B alone. For
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any probability p(j|A,B) of outcome bj to have any dependence on the choice

of measurement A, the second term must be non-zero.

If j 6=0, we know that Bj,t(y) has support RB. In the second term, i1 and

i2 are never both zero, so at least one of Ai1,r(x1) and Ai2,s(x4) must have

support RA. This immediately means that if KBA(y,x) = 0 for all x ∈ RA
and all y ∈ RB, the whole of the second term vanishes. This means p(j) is

independent of the choice of A when j 6=0; and since p(0) = 1−
∑

j 6=0 p(j), this

holds for all j.

If KBA(y,x) 6= 0 for some x ∈ RA and some y ∈ RB, then it would be

possible, by selecting a different measurement (A.1) in region RA, to alter the

probabilities of the outcomes of B and therefore enable signalling.

A.2 The square root of the Klein–Gordon Hamiltonian as a

convolution operation

Here we are concerned with the square root Hamiltonian in its Taylor-expanded

form (6.31)

Ĥ
(x)
√ =m

∞∑
n=0

−1

2n− 1

(2n)!

(2nn!)2

(
1

m2
∇2

)n
(A.7)

and the derivation of the dependence of Ĥ
(x)
√ ψ(x) at any given point x on the

wavefunction at every point in space.

In one dimension, the convolution of an analytic function ψ(x) with a func-

tion f(x) over x ∈ R can be expanded as

f ∗ ψ(x) ≡
∫ ∞
−∞
dr f(r)ψ(x+ r) =

∞∑
n=0

∫ ∞
−∞
dr f(r)

rn

n!

dn

dxn
ψ(x). (A.8)

Comparing coefficients with those of (A.7), it follows that if we can find a

function f(r) that has the following definite integrals for n ∈ N

∫ ∞
−∞
dr f(r) rn =

m
−1

n−1

1

2n

(
n!
n
2 !

)2 1

mn
if n is even

0 if n is odd,

(A.9)

then we can infer that

f ∗ ψ(x) = Ĥ
(x)
√ ψ(x) (A.10)

for every analytic function ψ(x) for which Ĥ
(x)
√ ψ(x) is defined.
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A general method for finding functions such as f(r) is to use an inverse

Mellin transform.125 For our case, however, it suffices to note that the modified

Bessel function of the second kind Kν(x) has the following definite integrals:∫ ∞
0
drKν(r)rn−1 = 2n−2 Γ(n−ν2 )Γ(n+ν

2 ) if <(n) > |<(ν)|. (A.11)

Since Γ(s+ 1
2) =

√
π(2s)!/(22ss!) ∀s ∈ N, for even n > 0 this implies

∫ ∞
0
dr
K1(r)

r
rn =

π

2

1

n−1

1

2n

(
n!
n
2 !

)2

. (A.12)

whereupon, for n > 0,

∫ ∞
−∞

dr
K1(m|r|)
|r|

rn =

π
1

n−1

1

2n

(
n!
n
2 !

)2 1

mn
if n is even

0 if n is odd.

(A.13)

Therefore, the function

fK(r) = −m
π

K1(m|r|)
|r|

(A.14)

satisfies (A.9) for n > 0. The Bessel K function doesn’t quite work in the

convolution function, however, because in the case n = 0, its integral diverges.

This can be remedied by adjusting the n = 0 term by hand, giving

Ĥ
(x)
√ ψ(x) = mψ(x) +

∞∑
n=1

∫ ∞
−∞
dr fK(r)

rn

n!

dn

dxn
ψ(x)

= mψ(x)− m

π

∫ ∞
−∞
dr
K1(m|r|)
|r|

[ψ(x+r)− ψ(x)] . (A.15)

In three spatial dimensions, a Taylor expansion of the convolution formula

gives

125The Mellin transform φ(s) of f(r) is defined for all s ∈ C by

φ(s) ≡
∫ ∞

0

dr f(r) rs−1

and can be inverted using an integral along any line parallel to the imaginary axis in the
complex s plane, provided φ(s) is analytic in the neighbourhood of every point on the line
[81, §1.14(iv)].
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f ∗ ψ(x) ≡
∫
dr f(r)ψ(x + r) =

∞∑
n=0

∫
dr f(r)

1

n!
(r.∇)nψ(x). (A.16)

Focusing on the coefficient of the Cartesian coordinate rn3 , we see that if we

wish to generate the square root Hamiltonian (A.7) we require∫
dr f(r) rn3 = m

−1

n−1

1

2n

(
n!
n
2 !

)2( 1

m

)n
= −2m

π

∫ ∞
0
drK(mr) rn−1.

(A.17)

If we integrate K1(m|r|)rn3 over three dimensions (using spherical polar coor-

dinates), we find∫
drK1(|r|) rn3 =

∫ π

0
sin θ dθ

∫ 2π

0
dφ

∫ ∞
0
r2dr K1(r) rn cosn θ

=
4π

n+1

∫ ∞
0
drK1(r) rn+2. (A.18)

The presence of n in the prefactor suggests that we use first derivatives of the

Bessel K functions to construct a trial solution for f(r). Let

fK3(r) = A
r.∇(K1(m|r|)) + bK1(m|r|)

|r|α
(A.19)

where A, b and α are undetermined. Then∫
dr fK3(r) rn3 =

4πA

n+1

{∫ ∞
0
dr

∂

∂r
K1(mr) rn+3−α + b

∫ ∞
0
drK1(mr) rn+2−α

}
=

4πA

n+1

{[
K1(mr) rn+3−α]∞

0

+ [b− (n+2−α)]

∫ ∞
0
drK1(mr) rn+2−α

}
.(A.20)

The boundary term vanishes for positive integer n; equation (A.17) is then

satisfied if we take α = 3, b = −2 and A = m/2π2, giving:

fK3(r) =
m

2π2

r.∇(K1(m|r|))− 2K1(m|r|)
|r|3

=
mr

2π2

∂

∂r

(
K1(mr)

r2

)
=

m

2π2

−1
2mr[K0(mr) +K2(mr)]− 2K1(mr)

r2
. (A.21)
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To see if this can generate the full square root Hamiltonian, we need to check

the terms in the expansion of fK3 ∗ ψ(x) from (A.16) against the equivalent

terms in the expansion of Ĥ
(x)
√ from (A.7). The powers ni of each derivative

∂/∂xi in (A.16) can be made explicit using a trinomial expansion of (r.∇)n. We

avoid complications due to non-commuting differential operators by expanding

in a Cartesian basis. The result is

∞∑
{ni}

∫
dr fK3(r)

1

n!

n!

n1!n2!n3!

(
r1

∂

∂x1

)n1
(
r2

∂

∂x2

)n2
(
r3

∂

∂x3

)n3

ψ(x), (A.22)

with n ≡ n1 +n2 +n3, ni ∈ {0, 1, 2, ...}. The integrals over r can be broken

down as follows:∫
dr fK3(r) rn1

1 rn2
2 rn3

3 =
m

2π2

∫ π

0
dθ cosn3θ sinn−n3+1θ

∫ 2π

0
dφ sinn2φ cosn1φ

×
∫ ∞

0
dr rn+3 ∂

∂r

(
K1(mr)

r2

)
. (A.23)

When n1, n2 and n3 are all even, the θ and φ integrals give(
2n−n3+1

n+ 1

n3!n−n3
2 !n2 !

n!n3
2 !

)(
2π

2n1+n2

n1!n2!
n1
2 !n2

2 !n1+n2
2 !

)
=

4π

n+ 1

n
2 !

n1
2 !n2

2 !n3
2 !

n1!n2!n3!

n!
;

(A.24)

otherwise they vanish. Therefore, in (A.16), the n>0 terms of fK3 ∗ψ(x) are

∑
{ni even :n>0}

1

n1!n2!n3!

m

2π2

(
4π

n+ 1

n
2 !

n1
2 !n2

2 !n3
2 !

n1!n2!n3!

n!

)
(−n−1)

×

(
π

2

1

n−1

1

2n

(
n!
n
2 !

)2 1

mn

)
∂n1

∂xn1
1

∂n2

∂xn2
2

∂n3

∂xn3
3

ψ(x)

= m
∑

{ni:n>0}

−1

2n−1

1

22n

1

m2n

(2n)!

(n!)2

(
n!

n1!n2!n3!

)(
∂2

∂x2
1

)n1
(
∂2

∂x2
2

)n2
(
∂2

∂x2
3

)n3

ψ(x),

(A.25)

while the n=0 term, again, is divergent.126

The sum of partial derivatives in the expansion of the square root Hamil-

126The sum over even ni has been converted to a sum over all ni in the final line of (A.25)
by the replacement ni → 2ni within the sum.

139



tonian (A.7) is

m

∞∑
n=0

−1

2n−1

(2n)!

(2nn!)2

1

m2n

(
∂2

∂x2
1

+
∂2

∂x2
2

+
∂2

∂x2
3

)n
ψ(x)

= m
∑
{ni}

−1

2n−1

1

22n

1

m2n

(2n)!

(n!)2

(
n!

n1!n2!n3!

)(
∂2

∂x2
1

)n1
(
∂2

∂x2
2

)n2
(
∂2

∂x2
3

)n3

ψ(x).

(A.26)

The expressions are fully equivalent for n>0. Adding the n=0 term by hand,

we obtain (in a selection of equivalent forms),

Ĥ
(x)
√ ψ(x) = mψ(x) +

∞∑
n=1

∫
dr fK3(r)

1

n!
(r.∇x)nψ(x)

= mψ(x) +
m

2π2

∫
dr
−1

2mr[K0(mr)+K2(mr)]−2K1(mr)

r2

× [ψ(x+r)−ψ(x)]

= mψ(x) +
m

2π2

∫
dr r

∂

∂r

(
K1(mr)

r2

)
[ψ(x+r)−ψ(x)] (A.27)

= mψ(x)− m

2π2

∫
dr

K1(mr)

r2

[
3 [ψ(x+r)−ψ(x)] + r

∂

∂r
ψ(x+r)

]
.

A.3 Note on the structure of the Feshbach–Villars space of

states and the particle interpretation

The full space of states HFV may be divided into three sets: those |ψ〉 for

which 〈ψ|ψ〉>0, those for which 〈ψ|ψ〉<0 and those for which 〈ψ|ψ〉=0. The

first two of these can be considered as extensions of the vector spaces H(±)

FV
.

Any state inHFV may be written as a superposition |ψ〉 = α|ψ(+)〉+β|ψ(−)〉
of two normalised states |ψ(+)〉 ∈ H(+)

FV
and |ψ(−)〉 ∈ H(−)

FV
. Its norm-squared,

using (6.46), is 〈ψ|ψ〉 = |α|2−|β|2. If we assert that this mixed state can

be generated from a normalised state in H(+)

FV
by means of a pseudo-unitary

operator Û , we find that such a Û exists provided |α|2−|β|2 = 1. Similarly, any

state generated by pseudo-unitary transformation from a state in H(−)

FV
retains

a norm-squared of -1. These operators preserve the norm, i.e. 〈Ûψ|Ûψ〉 =

〈ψ|ψ〉, just as a unitary operator would preserve the norm of states in a Hilbert

space.

Thus, any state |ψ〉∈HFV having 〈ψ|ψ〉 > 0 is related by pseudo-unitary

transformation to a state in H(+)

FV
; and any state having 〈ψ|ψ〉 < 0 is related

by a pseudo-unitary transformation to a state in H(−)

FV
.

These extended sets of vectors are not vector spaces, since a superposition
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of states with positive norm-squared may itself have negative norm-squared.127

Any set ÛH(+)

FV
for a given pseudo-unitary Û , however, is a Hilbert

space. With this in mind we may picture the 〈ψ|ψ〉>0 half of HFV as a set of

leaves, each one being a Hilbert space, related to each other by pseudo-unitary

rotations. The 〈ψ|ψ〉<0 half is similarly arrayed. The 〈ψ|ψ〉=0 subset, whose

members do not belong to either half, is their common disjoint boundary.128

Given a general self-adjoint operator B̂ : HFV → HFV , there must exist an

operator Â related to it by a pseudo-unitary transformation Â = Û
−1

B
B̂ÛB for

which Â
(pΦ)

is diagonal. Note that this Â is a different operator on the space,

not merely a different representation of B̂. While operator B̂ in general mixes

states from H(+)

FV
and H(−)

FV
, operator Â does not. (The operator ÛB is not

unique, since there are pseudo-unitary operators that preserve the Φ-diagonal

status of Â.)

Each of the eigenstates of Â necessarily belong to one of the spaces H(±)

FV
.

Let us label them |A(±)

i 〉, with Â|A(±)

i 〉 = a
(±)

i |A
(±)

i 〉. Any such operator (in

the discrete case) can therefore be expressed in the form

Â =
∑
±

∑
i

a
(±)

i P̂A
(±)

i ≡
∑
i

(
a

(+)

i |A
(+)

i 〉〈A
(+)

i | − a
(−)

i |A
(−)

i 〉〈A
(−)

i |
)
, (A.28)

where the projection operators P̂A
(±)

i satisfy the completeness relation∑
±

∑
i

P̂A
(±)

i ≡
∑
i

(
|A(+)

i 〉〈A
(+)

i | − |A
(−)

i 〉〈A
(−)

i |
)

= I. (A.29)

This expression (or its continuous analogue) applies throughout the full space

of states HFV for any Φ-diagonal Â.

For our general self-adjoint operator B̂, we may express it in terms of

projection operators in an analogous way, with the same eigenvalues a
(±)

i and

P̂B
(±)

i ≡ ±ÛB |A
(±)

i 〉〈A
(±)

i |Û−1
B
. (A.30)

The positive and negative norm-squared eigenstates |B(±)

i 〉 = ÛB |A
(±)

i 〉 now

lie in the pair of vector spaces ÛBH
(±)

FV
, which are leaves of the full space HFV

127An example is Û |ψ
(+)

〉−α|ψ
(+)

〉, where Û is the pseudo-unitary operator that transforms

|ψ
(+)

〉 into α|ψ
(+)

〉+β|ψ
(−)

〉.
128In [64, §4B], Feshbach and Villars describe neutral particles using wavefunctions for

which σ1Ψ∗ = ±Ψ. This would appear to imply that 〈ψ|ψ〉 = 0, yet they employ a normali-
sation of 1.
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that in general lie askew from H(±)

FV
.

If we are concerned with states in H(±)

FV
and we find ourselves with an

operator B̂ that is not Φ-diagonal, one way of welcoming it into the theory is

by adopting the operator B̂E ≡ 1
2(B̂ + Q̂B̂Q̂) in its stead. This operator129 is

Φ-diagonal, and it has the same matrix elements to B̂ throughout both of the

positive and negative energy spaces, i.e. 〈ψ(±)

1 |B̂E ψ
(±)

2 〉 = 〈ψ(±)

1 |B̂ ψ
(±)

2 〉 for any

pair of states in the same space H(±)

FV
. This equivalence extends to products of

B̂ with other diagonal operators: 〈ψ(±)

1 |ÂB̂E ψ
(±)

2 〉=〈ψ
(±)

1 |ÂB̂ ψ
(±)

2 〉, but not to

products with other non-diagonal operators: 〈ψ(±)

1 |B̂2
E ψ

(±)

2 〉 6=〈ψ
(±)

1 |B̂2 ψ
(±)

2 〉.
The failure of this prescription to cope with any non-linear function of

non-diagonal operators suggests that it is not an appropriate way to motivate

the introduction of a position operator for this theory (as Greiner does [63,

§1.12]). The derivation of a position operator for the Feshbach–Villars theory

in Section 6.4.5 flows instead from the implications of the quantum postulates

outlined in Section 4.

A.4 Interaction of a Feshbach–Villars particle with an electro-

magnetic field

A.4.1 Minimal coupling in the canonical position space

In the Feshbach–Villars theory, the interaction of a charged particle with an

electromagnetic field (A(x), φ(x)) is represented in the minimum coupling

prescription130 by the replacements ĤFV → ĤFV−q φ(x̂c) and p̂→ p̂−qA(x̂c).

It is assumed that the canonical position operator should be employed

here, in order that the Hamiltonian remains canonically local. With regard

to the discussion in Section 6.4.6, we may say that the electromagnetic field

enters the theory in the context of the unitary evolution of the system rather

than in the context of a measurement, and therefore acts pointwise in the

canonical representation.

In the Coulomb gauge, the vector potential shares a continuous basis with

129This is a generalisation of what is referred to as the ‘even part’ of an operator in [64,
§1G].

130This is a semi-classical representation of the field, as is usual for quantum mechanics
(as opposed to quantum field theory), in which the classical field as a function of position is
replaced by an identical function of position operators. The minimum coupling prescription,
in common with the classical mechanics of point particles, ignores any dynamical contribution
from electric or magnetic multipoles beyond order 1. In other words, only the charge q is
involved in the Hamiltonian.
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the momentum operator because [A(x̂c), p̂] = i(∇.A)(x̂c) = 0.

Using A(x̂c)|pα〉 = Ap|pα〉, we can write

Ĥ
(p)

FV
= (σ3 + iσ2)

(p−qAp)2

2m
+ σ3m + q φ(x̂

(p)

c ). (A.31)

If this Hamiltonian is diagonalised in momentum space, it becomes a convo-

lution integral over momenta [64, §2E], which obscures the basis vectors for

physical states. Let us focus on the straightforward case of a static magnetic

field, with φ(x̂c) = 0. By replacing p with p−Ap in the diagonalising matrix

(6.50), we obtain

Ĥ
(pΦ) ≡ U|p−qAp|Ĥ

(p)

FV
U−1
|p−qAp| = EAσ3 , (A.32)

where EA = E|p−qAp| ≡
√

(p−qAp)2 +m2. The momentum basis vectors

from which pure particle or antiparticle states are constructed are now

|p(±)〉 ≡ (m± EA)√
4mEA

|p1〉+
(m∓ EA)√

4mEA
|p2〉, (A.33)

in contrast to (6.47).

The electromagnetic potential has shifted the space of physical states from

H(±)

FV
to a different pair of spaces of the form ÛAH

(±)

FV
. This is a pseudo-unitary

rotation given in the momentum representation by Û
(p)

A = U−1
|p−qAp|Up. If an

external electromagnetic field is suddenly turned on, a system in a particle

state will find itself in a superposition of particle and antiparticle states with

respect to the new Hamiltonian. These will proceed to evolve independently,

with frequencies ±EA for each momentum mode, and the expectation values

of the position operator will oscillate in response. This suggests that Zitterbe-

wegung – apparent oscillations in position due to interference between positive

and negative energy states, which are not a feature of the Newton–Wigner rep-

resentation of a free particle – are nevertheless inevitable when time-dependent

perturbation theory is employed.

A.4.2 The non-relativistic limit

The momentum space Feshbach–Villars equation for a charged particle in a

static magnetic field, then, is[
(σ3 + iσ2)

(p−qAp)2

2m
+ σ3m

]
Ψ(p, t) = i

∂

∂t
Ψ(p, t). (A.34)
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The solutions – cf. (6.45) – are

Ψ
(±)

(p, t) =
1√

4mEA

(
m± EA
m∓ EA

)
φ

(±)
(p) e∓iEAt. (A.35)

They have the following p2 � m2 approximation:

Ψ
(+)

(p, t) ≈

(
1

− (p−Ap)2

2m2

)
φ

(+)
(p) e−i(m+

(p−Ap)2

2m
)t

Ψ
(−)

(p, t) ≈

(
− (p−Ap)2

2m2

1

)
φ

(−)
(p) ei(m+

(p−Ap)2

2m
)t. (A.36)

In the non-relativistic limit, both eimtΨ
(+)

(p, t) and eimtĈΨ
(−)

(p, t) become

solutions of the Schrödinger equation with ĤS = (p̂± qA(x̂))2/2m.

As each solution has only one non-zero component to first order, the Fesh-

bach–Villars Hamiltonian effectively becomes ĤFV ≈ (m1̂ + ĤS ) ⊗ σ3. It

follows from the Schrödinger equation that eimtĤSe
−imtψ = (m1̂ + ĤS )ψ, so

with ψ = eimtΨ(+) the two dynamical equations become fully equivalent in

the limit.

In addition, the scale over which the position eigenstates are delocalised

is effectively made inaccessible in the theory by the requirement that p2�
m2. The non-relativistic theory is therefore recovered for physical states in

this limit, with particle and antiparticle states displaying equal masses and

opposite charges.

A.5 Observables in a spinor field

The following is a calculation of the commutator of two of the general (not

necessarily self-adjoint) operators from which observables may be constructed,

as outlined in Section 7.1.3. For clarity, the differential operators are taken

to act to the right only: the proof generalises trivially to operators acting in

both directions.

Consider a pair of operators

Â =

∫
RA
d4x ψa(x) Â

(x)
ab ψb(x)

B̂ =

∫
RB
d4x ψa(x) B̂

(x)
ab ψb(x).

where Â
(x)
ab and B̂

(x)
ab are differential operators of (finite) order NA and NB

respectively with respect to the spacetime coordinates x. Provided the fields
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are NA- and NB-times differentiable, we may express the effects of these differ-

ential operators as (quadruple) sums of infinitesimal spacetime translations:

Â
(x)
ab f(xµ) = lim

δx→0

N4
A∑

rµ=0

Arab(x
µ)f(xµ + rµδx)

B̂
(x)
ab f(xµ) = lim

δx→0

N4
B∑

sµ=0

Bs
ab(x

µ)f(xµ + sµδx).

The functions Arab(x) and Bs
ab(x) are now c-numbers – they commute with the

fields and with each other. In full, the commutator of the two operators is

[
Â , B̂

]
= lim

δx→0

∫
RA
d4x

∫
RB
d4y

∑
rs

Arab(x)Bs
cd(y)

×
[
ψa(x)ψb(x+ rδx) , ψc(y)ψd(y + sδx)

]
. (A.37)

The commutator on the right can be expressed in terms of the field anticom-

mutators

S1
ab(x−y) ≡ {ψa(x), ψb(y)}

S2
ab(x−y) ≡ {ψa(x), ψb(y)},

all of which we know to be zero when x−y is spacelike. This gives

ψa(x)
(
S2
bc(x+rδx−y)− ψc(y)ψb(x+rδx)

)
ψd(y+sδx)

− ψc(y)
(
S2
da(y+sδx−x)− ψa(x)ψd(y+sδx)

)
ψb(x+rδx)

= ψa(x)S2
bc(x+rδx−y)ψd(y+sδx)− ψc(y)S2

da(y+sδx−x)ψb(x+rδx)

− ψa(x) ψc(y)S1
db(y+sδx−x−rδx) + S

1
ca(y−x)ψd(y+sδx)ψb(x+rδx).

Restoring the differential operators,

[
Â , B̂

]
= lim

δx→0

∫
RA
d4x

∫
RB
d4y

(
ψa(x) Â

(x)
ab S

2
bc(x−y) B̂

(y)
cd ψd(y)

− ψc(y) B̂
(y)
cd S

2
da(y−x) Â

(x)
ab ψb(x)

− ψa(x) Â
(x)
ab ψc(y) B̂

(y)
cd S

1
db(y − x)

+ S
1
ca(y−x) B̂

(y)
cd ψd(y) Â

(x)
ab ψb(x)

)
.

This is zero if regions RA and RB are entirely spacelike separated.
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[20] Nick S Jones and Llúıs Masanes. Interconversion of nonlocal correlations.

Physical Review A, 72:052312, Nov 2005.

[21] S Pironio, J D Bancal, and V Scarani. Extremal correlations of the

tripartite no-signaling polytope. Journal of Physics A: Mathematical and

Theoretical, 44(6):065303, 2011.

[22] William I Gasarch. The P=?NP poll. Sigact News, 33(2):34–47, 2002.

[23] D Avis, H Imai, T Ito, and Y Sasaki. Deriving tight Bell inequalities for

2 parties with many 2-valued observables from facets of cut polytopes.

eprint arXiv:quant-ph/0404014, April 2004.

[24] B S Cirel’son. Quantum generalizations of Bell’s inequality. Letters in

Mathematical Physics, 4(2):93–100, 1980.

[25] L Masanes. Necessary and sufficient condition for quantum-generated

correlations. eprint arXiv:quant-ph/0309137, September 2003.

[26] Adán Cabello. Proposed experiment to test the bounds of quantum cor-

relations. Physical Review Letters, 92:060403, Feb 2004.

[27] F A Bovino, G Castagnoli, I P Degiovanni, and S Castelletto. Exper-

imental evidence for bounds on quantum correlations. Physical Review

Letters, 92:060404, Feb 2004.

147



[28] Adán Cabello. Violating Bell’s inequality beyond Cirel’son’s bound. Phys-

ical Review Letters, 88:060403, Jan 2002.

[29] Y A Chen, T Yang, A N Zhang, Z Zhao, A Cabello, and J W Pan. Exper-

imental violation of Bells inequality beyond Tsirelsons bound. Physical

Review Letters, 97(17):170408, 2006.

[30] Rafael D. Sorkin. Quantum mechanics as quantum measure theory. Mod-

ern Physics Letters A, 9(33):3119–3127, 1994.

[31] U Sinha, C Couteau, T Jennewein, R Laflamme, and G Weihs. Ruling out

multi-order interference in quantum mechanics. Science, 329(5990):418–

421, 2010.

[32] Daniel K Park, Osama Moussa, and Raymond Laflamme. Three path

interference using nuclear magnetic resonance: a test of the consis-

tency of born’s rule. New Journal of Physics, 14(11):113025, 2012.

arXiv:1207.2321.

[33] David Craig, Fay Dowker, Joe Henson, Seth Major, David Rideout, and

Rafael D Sorkin. A Bell inequality analog in quantum measure theory.

Journal of Physics A: Mathematical and Theoretical, 40(3):501, 2007.

[34] F J Dyson. The threefold way. Algebraic structure of symmetry groups

and ensembles in quantum mechanics. Journal of Mathematical Physics,

3(1199), 1962.

[35] G Teschl. Mathematical methods in quantum mechanics: with applications

to Schrödinger operators, volume 99. American Mathematical Society,

2009.

[36] Wojciech Hubert Zurek. Environment-assisted invariance, entangle-

ment, and probabilities in quantum physics. Physical Review Letters,

90(12):120404, 2003.

[37] B S DeWitt and N Graham. The many-worlds interpretation of quantum

mechanics. In The Many-Worlds Interpretation of Quantum Mechanics,

volume 1, 1973.

[38] P A M Dirac. The principles of quantum mechanics. Oxford University

Press, USA, 1982.

[39] J Von Neumann. Mathematical foundations of quantum mechanics.

Princeton University Press, 1996.

148



[40] P Busch, M Grabowski, and P J Lahti. Operational quantum physics,

volume 31. Springer Verlag, 1995.

[41] Rob Spekkens. Foundations of quantum mechanics. Lec-

ture Series given to Perimeter Scholars International, 2012.

http://www.perimeterscholars.org/332.html.

[42] Ramamurti Shankar. Principles of quantum mechanics, volume 2. Plenum

Press New York, 1994.

[43] I M Gel’fand, G E Shilov, E Saletan, N I A Vilenkin, and M I Graev.

Generalized functions: Applications of harmonic analysis, volume 4. Aca-

demic press New York, 1968.

[44] R de la Madrid. The role of the rigged Hilbert space in quantum mechan-

ics. European Journal of Physics, 26:287–312, April 2005.

[45] Fred Kronz and Tracy Lupher. Quantum theory: von Neumann vs. Dirac.

In Edward N. Zalta, editor, The Stanford Encyclopedia of Philosophy.

Summer edition, 2012.

[46] Luca Bombelli, Joohan Lee, David Meyer, and Rafael D Sorkin. Space-

time as a causal set. Physical Review Letters, 59(5):521, 1987.

[47] Carlo Rovelli and Lee Smolin. Discreteness of area and volume in quantum

gravity. Nuclear Physics B, 442(3):593–619, 1995.

[48] Thomas Walter Bannerman Kibble, Frank H Berkshire, and T W B Kib-

ble. Classical mechanics, volume 5. World Scientific, 2004.

[49] Leonard Susskind and George Hrabovsky. The Theoretical Minimum:

What You Need to Know to Start Doing Physics. Basic Books, 2013.

[50] Kenichi Konishi and Giampiero Paffuti. Quantum mechanics: a new

introduction. Oxford University Press Oxford, 2009.

[51] Marc A Rieffel. Quantization and C*-algebras. Contemporary Mathemat-

ics, 167:67–67, 1994.

[52] Peter J Mohr, Barry N Taylor, and David B Newell. CODATA Recom-

mended Values of the Fundamental Physical Constants: 2010. Review of

Modern Physics, 84:1527–1605, 2012.

[53] Richard L Arnowitt, Stanley Deser, and Charles W Misner. The Dynam-

ics of general relativity. Gen.Rel.Grav., 40:1997–2027, 2008.

149



[54] Richard P Feynman, Albert R Hibbs, and Daniel F Styer. Quantum

Mechanics and Path Integrals: Emended Edition. Dover Publications,

2010.

[55] Hagen Kleinert. Path integrals in quantum mechanics, statistics, polymer

physics, and financial markets. World Scientific Publishing Company

Incorporated, 2009.

[56] Richard Phillips Feynman. Space-time approach to non-relativistic quan-

tum mechanics. Reviews of Modern Physics, 20(2):367, 1948.

[57] Milton Abramowitz and Irene Stegun, editors. Handbook of Mathematical

Functions with Formulas, Graphs, and Mathematical Tables. Dover, 1965.

[58] Ian H. Redmount and Wai-Mo Suen. Path integration in relativistic quan-

tum mechanics. International Journal of Modern Physics, A8:1629–1636,

1993.

[59] Petr Jizba and Hagen Kleinert. Superpositions of probability distribu-

tions. Physical Review E, 78(3):031122, 2008.

[60] Petr Jizba and Hagen Kleinert. Superstatistics approach to path integral

for a relativistic particle. Physical Review D, 82(8):085016, 2010.

[61] Barton Zwiebach. A first course in string theory. Cambridge university

press, 2004.

[62] S J Bernau. The square root of a positive self-adjoint operator. Journal

of the Australian Mathematical Society, 8(01):17–36, 1968.

[63] Walter Greiner. Relativistic quantum mechanics. Wave equations.

Springer, 2000.

[64] Herman Feshbach and Felix Villars. Elementary relativistic wave me-

chanics of spin 0 and spin 1/2 particles. Reviews of Modern Physics,

30(1):24–45, 1958.

[65] Theodore Duddell Newton and Eugene P Wigner. Localized states for

elementary systems. Reviews of Modern Physics, 21(3):400, 1949.

[66] Leslie L Foldy and Siegfried A Wouthuysen. On the Dirac theory of spin

1/2 particles and its non-relativistic limit. Physical Review, 78(1):29,

1950.

150



[67] James D Bjorken and Sidney David Drell. Relativistic quantum mechan-

ics, volume 2. McGraw-Hill New York, 1964.

[68] W.E. Longstaff. On tridiagonalization of matrices. Linear Algebra and

its Applications, 109(0):153 – 163, 1988.

[69] Herbert Goldstein. Classical mechanics. Addison-Wesley, 1980.

[70] David Wallace. In defence of naiveté: The conceptual status of lagrangian
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