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Abstract

Central exclusive production of a systemX in a collision between two hadrons h

is defined as hh→ h+X+hwith no other activity apart from the decay products

of X. This thesis presents predictions for the production cross section of a CP

violating supersymmetric Higgs boson and the radion of the Randall-Sundrum

model.

The ExHuME Monte Carlo generator was written to simulate central exclusive

processes and is described and explored. A comparison to di-jet observations

made by the DØ detector at the Tevatron, Fermilab between January and June

2004 is made and the distributions found support the predictions of ExHuME.
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Chapter 1

Introduction

High energy particle colliders probe the structure and interactions of matter at

the smallest scale possible. Hadron colliders offer the highest centre of mass

collision energy but, due to the composite structure of the proton and additional

interactions between the partons within the proton, they do not provide as clean

an environment as lepton colliders. Hadron collision events are overlayed with

a background QCD interaction that results from the disrupted hadrons. In addi-

tion, knowledge of the structure of the hadron is required in order to interpret

observations.

Central exclusive production [1–4], introduced in chapter 2, provides a clean

measuring environment for hadronic collisions. In a central exclusive event the

beam hadrons remain intact, rather than dissociating as normally happens in a

hadron collision. The outcome of a central exclusive event is therefore the central

system of interest (the mass of which shall be referred to as the central mass) and

two outgoing hadrons. Due to the fact that the outgoing protons remain intact,

the central system has its charge (C) and parity (P) quantum numbers constrained.

In addition, the component of intrinsic angular momentum in the beam direction

(Jz) is also constrained. The advantages of central exclusive production; reduced

QCD background; selection of Jz = 0 states and precise measurement of the

central mass via the missing mass method [5] may allow the study of states
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that are otherwise hard to observe. Two such states; a CP violating Minimally

Supersymmetric Standard Model (MSSM) Higgs boson [6] and the radion of the

Randall-Sundrum model [7] are explored in the context of central exclusive

production in chapter 3.

The missing mass method for determining the central mass requires that both

outgoing intact protons are tagged in proton detectors downstream from the

central detector. Such a system of proton taggers has been installed at the DØ

detector (chapter 5) of Fermilab and is described in chapter 6. One of the

problems for the moveable proton taggers is knowing the precise position of the

proton beam in relation to the tagger, and chapter 6 also discusses an analysis of

the beam position using the data taken by the tagger itself.

Whilst good evidence for the existence of central exclusive production has

now been collected [8, 9], the process has never conclusively been observed.

One channel with a sufficiently large cross section to be observable at the Teva-

tron is the exclusive production of a pair of di-jets. In order to aid the comparison

of the so-called Durham calculation of the exclusive process [2] to data the Ex-

HuME Monte Carlo simulation [10] was written, which is discussed in full in

chapter 4.

ExHuME allows predictions from the Durham calculation to be compared to

data currently available from both the DØ and CDF experiments and chapter 7

presents the first comparison to data taken at DØ. It is found that the distributions

predicted by ExHuME agree with the data.

13



Chapter 2

Theoretical Motivation

2.1 The Standard Model of Particle Physics

The Standard Model (SM) of particle physics, which describes the structure of

matter at the smallest scales yet probed, is built upon a foundation of symmetry.

Lorentz symmetry, under which the world line element dswith Minkowski metric

ηµν and coordinates xµ [11]

ds2 = ηµνdx
µdxν (2.1)

is invariant, provides the group with representations that are (among others) the

spin 1/2 fermion fields and the spin 1 vector boson fields. Lorentz scalar fields that

are invariant under Lorentz transformations are also allowed, but no fundamental

Lorentz scalar has ever been observed.

The interactions between the fields are described by requiring that the La-

grangian density of the Standard Model be invariant under the three local distinct

gauge transformations [12]

U(1)Y ⊗ SU(2)L ⊗ SU(3)C . (2.2)

where the subsriptL indicates that the SU(2) transformation acts on a left-handed

SU(2) doublet. A fermion field that carries hyper-charge Y , colour charge C or

carries weak isospin charge transforms as follows:

14



ψ 7→ eiY φ(xµ)ψ U(1)Y ,

ψ 7→ ei
τN
2
·αN (xµ)ψ SU(N)

(2.3)

where τN are the 2×2 or 3×3 unitary generator matrices of SU(2) or SU(3) and

φ (xµ) and α (xµ) are fields specifying the gauge transformations. Under the same

transformation the Lagrangian density for a massless fermion becomes:

∆Lf = iψ̄ /∂ψ 7→ iψ̄
(
/∂ + iY /∂φ (xµ)

)
ψ U(1)Y ,

∆Lf = iψ̄ /∂ψ 7→ iψ̄
(
/∂ + i τ2 · /∂α (xµ)

)
ψ SU(N).

(2.4)

To cancel the derivative of φ (xµ) or α (xµ) the covariant derivative is defined

that includes a new set of fields; the force carrying gauge bosons. For example,

the derivative ∂φ (xµ) is cancelled by the field Bµ (xν), which transforms under

U (1) as follows:

Bµ 7→ Bµ − ∂µφ (2.5)

and the covariant derivative, Dµ, that renders the Lagrangian density invariant

under U (1) transformations is

Dµ = ∂µ + iY Bµ. (2.6)

When the covariant derivative is used in place of /∂ in equation 2.4 the result

is gauge invariant, that is independent of φ (xµ) and αN (xµ)

∆Lf = iψ̄

(
/∂ + igs /AT

ij
a + igτ · /W + i

g′

2
Y /B

)
ψ (2.7)

which now has the gauge bosons of the gluon field, A, two charged W± fields,

a neutral W 3 field and a neutral B field. Fields only couple to a gauge boson if

they carry the requisite charge so that the generator of the gauge boson (T ij
a , τ or

Y ) returns a non-zero result when it acts on the field.

The fermions of the Standard Model are categorised according to the charges

that they carry. Chirality, χ, is the projection of either the upper or lower com-

ponent of the fermion representation of the Lorentz group:

15



χ±ψ =
1
2

(1± γ5)ψ. (2.8)

A particle with {χ+, χ−} = {0, 1} or {χ+, χ−} = {1, 0} is said to be left-handed

or right-handed respectively . The eigenstates of chirality for a massless fermion

coincide with the eigenstates of helicity, h, the projection of a particle’s intrinsic

angular momentum onto its momentum, p:

hψ =
Σ · p
|Σ · p|

ψ (2.9)

where Σ is the angular momentum operator. In the Standard Model only left-

handed particles carry weak isospin, so the three generators of SU(2), τ , return

zero when they operate on a right-handed particle ψR.

τψR = 0. (2.10)

The opposite is true of anti-particles; right-handed anti-particles carry weak

isospin, whereas left handed anti-particles do not.

The only fermions that possess colour charge, and hence couple to the gluon

field, are the quarks, of which there are six in total. The left-handed quarks are

arranged into three SU(2) doublets, while the right-handed quarks are six SU(2)

singlet states. Fermions that do not carry colour charge are called leptons, of

which there are six. As with the quarks, the left-handed leptons are arranged

into three SU(2) doublets: the electron and the electron neutrino (νe); the muon

and the muon neutrino (νµ) and the tau and the tau neutrino (ντ ). The quantum

numbers of the Standard Model fermions are shown in table 2.1.

Equation 2.7 does not include any mass terms for either the gauge bosons or

the fermions, which is at odds with the experimental observation that the two

charged W± bosons have a mass of 80.43 GeV [13], there is a neutral gauge

boson - the Z0- with a mass of 91.2 GeV and all of the quarks and the electron,

muon and tau have amass. Neutrinos were for a long time thought to bemassless,

but observation of oscillations between different neutrino species resulting from

neutrino mixing [14] implies that at least two of the three neutrino species also

16



Particle Hypercharge Isospin

Up Charm Top 1/3 1/2

Quarks

Left Down Strange Bottom 1/3 -1/2

Handed νe νµ ντ -1 1/2

Leptons

eL µL τL -1 -1/2

Up Charm Top 4/3 0

Quarks

Right Down Strange Bottom -2/3 0

Handed

Leptons

eR µR τR -2 0

Table 2.1: The Standard Model fermions and their quantum numbers.

have mass.

Adding mass terms, such as ∆LmW = m2
WW ·W to equation 2.7 breaks the

gauge invariance unless the masses are added in a very specific way. A Lorentz

scalar SU(2) doublet field named the Higgs field, Φ, with hyper-charge Y = 1

is introduced that couples to the W field. The Lagrangian density, ∆LH for the

Higgs field is:

∆LH = 1
2

(
∂µ − igτ ·Wµ − ig

′

2 Y B
µ
)

Φ̄
(
∂µ + igτ ·Wµ + ig

′

2 Y Bµ

)
Φ

−µ2Φ̄Φ− λ
(
Φ̄Φ
)2
.

(2.11)

If µ2 < 0 GeV2 and λ > 0 then the potential energy for the Higgs field has a

minimum when

|Φ|2 = −µ
2

2λ
=
v2

2
(2.12)

where v is the Vacuum Expectation Value (VEV) for the Higgs field and the

vacuum in its lowest energy state is filled with the Higgs field with amplitude

v/
√

2. The term coupling the W to the Φ in equation 2.11, when expanded

about the vacuum, results in a mass for the W:

17



∆LmW =
1
4
g2v2τ ·Wµτ ·Wµ (2.13)

giving the mass of the W , mW , as m2
W = gv2/4. The quantum of the Higgs

field, the Higgs boson, has a mass of µ/
√

2, but has never been observed. An

upper limit to the Higgs boson mass of 114 GeV was obtained by experiments

performed at the LEP collider [15]. The Higgs VEV, v, has been inferred from

measurements of theW± mass and electroweak coupling constant, g, to be 246

GeV.

Masses for fermions are generated by a so-called “Yukawa” coupling between

the left and right-handed fermion field and the Higgs field. The Yukawa term

coupling a fermion to the Higgs field is:

∆Lmf
= gf ψ̄RΦ̄ψL + h.c. (2.14)

where gf is the Yukawa coupling. The mass of the fermion is given bymf = gfv.

In the case that the neutrinos are massless there is no right handed neutrino, so

there is only one term like equation 2.14 for each lepton doublet. This is not the

case for the quark sector, where a mass must be generated for both the up and

down type quarks. If a gauge is chosen so that the ground state of the Higgs field

is Φ0:

Φ0 =

 0

v/
√

2

 (2.15)

then Φ0 generates a mass for the down-type quarks. A transformation can be

applied to the Higgs field:

Φ̃ = iτ2Φ =

 0 1

1 0

Φ

Φ̃0 =

 v/
√

2

0

 (2.16)

so that Φ̃0 generates a mass for the up-type quarks and the Yukawa terms for the
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quarks are:

∆Lmq = guūRΦ̃Q′L + gdd̄RΦQ′L + h.c. (2.17)

where gu and gd are the up and down quark Yukawa couplings, uR and dR are

right-handed up and down SU(2) singlets and Q′L is a left-handed SU(2) quark

doublet. The weak eigenstate Q′L is not an eigenstate of mass, with the result

that the mass eigenstates of the quarks are a superposition of weak eigenstates.

The 3×3 unitary matrix that transforms the weak eigenstate Q′L to the mass

eigenstate QL is called the Cabbibo-Kobayashi-Maskawa (CKM) matrix and is

determined by three angles and a single complex phase. The mixing means that

the propagating mass eigenstates of certain mesons, the B0 for example, contain

a small component of the anti meson (B̄0) weak eigenstate. The complex phase

of the CKM matrix results in a phase difference between the weak particle and

anti-particle content of the meson, which in turn means that the mass eigenstate

is not an eigenstate of the CP operator. The rate of decay to a CP eigenstate,

such as a pair of neutral pions, is then different for the B0 and B̄0. This effect is

called CP violation and can only occur if there are at least three generations of

quarks.

Theweak SU(2) and strong SU(3) forces are non-Abelian, that is, there are self

interaction terms for the appropriate gauge boson. The terms in the Lagrangian

density that produce interactions between gluons are:

∆Lgg = −1
4
Fµν

a F a
µν (2.18)

where F a
µν = ∂[µAν] + gsf

abcAµbAνc and fabc are the structure constants for

SU(3). The structure constants describe the gauge structure of the group through

a commutation relation with the generators of the group T a

[
T b, T c

]
= ifabcTa (2.19)

An important result of the gluon self-interaction is anti-screening of colour

charge. Diagrams such as those in figure 2.1 cause the colour charge observed
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Figure 2.1: Loops in the gluon propagator produce a running coupling. The left
hand diagram reduces the effective coupling at lower gluon energy, while the
dominant right hand diagram enhances the effective coupling at higher gluon
energy.

at long distances (in other words by long wavelength gluons) to be greater than

the colour charge observed by shorter range interactions.

The diagram on the left of figure 2.1 contains a virtual qq̄ dipole that reduces

the field strength and screens the colour charge, while the diagram on the right

with a virtual gluon pair produces anti-screening. The anti-screening effect is

larger than the screening effect and, as a result, the strong coupling constant

αs = g2
s/4π becomes larger as the energy scale at which an interaction occurs

decreases. The running of αs with scale Qt is approximately [16]

αs (Qt) '
2π(

11− 2
3Nf

)
ln (Qt/Λ)

(2.20)

where Nf is the number of coloured fermions with masses below Qt and ΛQCD

is a scale of O (100 MeV).

The coupling αs diverges at Qt = ΛQCD, therefore perturbative techniques

cannot be used to carry out QCD calculations in the low energy regime. Another

important feature of QCD that can be at least qualitatively explained by the

running of αs is confinement of the quarks. The gluon field between two quarks

at a large separation becomes so strong that it is not possible to pull two quarks

apart. A coloured object that is not bound to other coloured objects in a colour

singlet state can never be produced. Such a colour singlet state can consist of an
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even number of quark fields in which for every field of colour charge ci there is

a field of the anti-colour c̄i, for example, the colour state of a meson (|ψc〉) can

be written in terms of the colour states of two quark fields within the meson:

|ψc〉 =
∑

i

|Ci〉
∣∣C̄i

〉
(2.21)

where the |Ci〉 are the colour states of the (anti) quark fields and the summation is

over all three colour charges RGB. Alternatively, a colour singlet state can consist

of an odd number of quarks (in the common case of a hadron this number is three)

with all three (RGB) colours present and the overall system being antisymmetric

to the exchange of any two colours.

For further details of the Standard Model please see [12,16,17].

2.2 Supersymmetry

There exists a further space-time symmetry that can be imposed upon the La-

grangian density over and above those symmetries of the Standard Model. This

symmetry forces the Lagrangian to be invariant under transformations, Q, be-

tween fermionic and bosonic states |f〉 and |b〉 and is called supersymmetry

(SUSY) [18]:

Q |f〉 = |b〉 ,

QL 7→ L. (2.22)

In order for this symmetry to be possible, each Standard Model particle must

possess a super-partner with intrinsic angular momentum (spin) that differs by

half a unit from the SM particle. The SM particles and their super-partners

are arranged into so-called superfields. A scalar chiral supermultiplet consists

of a complex spin zero scalar field paired with a spin 1/2 two component Weyl

fermion. A four component fermionic field is composed of twoWeyl spinors; one

for the left-handed component and one for the right-handed. In the Minimally
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Supersymmetric Standard Model (MSSM) a scalar chiral superfield is therefore

assigned to each of the left and right-handed SM fermionic fields, which therefore

each possess a complex scalar superpartner field. For instance, the SM quarks

are each partnered by two spin zero squarks in the MSSM.

A gauge superfield consists of a spin one bosonic field partnered by a spin

1/2 Weyl spinor. Each of the SM gauge bosons therefore possess a spin 1/2

super-partner in the MSSM. The SM gluon, for instance, is partnered by the spin

1/2 gluino.

The Lagrangian of a supersymmetric theory can be specified by its superpo-

tential. IfW is the superpotential then the Lagrangian density is:

∆LSUSY = −1
2

(
∂2W

∂φi∂φj
ψiψj +

(
∂2W

∂φi∂φj

)∗
ψ†iψ

†
j

)
− ∂W

∂φi

(
∂W

∂φi

)∗
(2.23)

where ψi are two-component Weyl fermions and φi are the bosonic partners

of ψi. The superpotential has no dependence on the fermionic fields, only the

bosonic fields. For example, a superpotential that would generate a mass for a

set of fermionic fields coupled to their bosonic partners by a Yukawa coupling is:

Wex =
1
2
M ijφiφj +

1
6
yijkφiφjφk (2.24)

where M ij is the mass matrix for the fermions, yijk is the coupling between the

ith and jth fermion flavours and the kth bosonic flavour and there is an implicit

summation over the flavour indices i, j and k.

The super-partners of the Standard Model fields have never been observed,

which indicates that, if supersymmetry at the electroweak scale is a correct de-

scription of nature, the fermion/boson symmetry must be broken in someway. If it

were not broken, the super-partners to the Standard Model would have precisely

the same mass as the Standard Model particles and would have been observed.

Breaking SUSY requires terms in the superpotential that provide additional mass

for the unseen fields. Examples of the terms in the supersymmetric Lagrangian

density that break the symmetry between fermions and bosons for a bosonic
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superpartner φ are ∆Lbreak:

∆Lbreak = m2
sφ

†φ+
(

1
2
Bmφφ+

1
6
Aφφφ+ h.c.

)
(2.25)

where ms is a (soft) SUSY breaking mass and B and A are bilinear and trilinear

couplings.

An attractive feature of supersymmetry is that it naturally solves the hierarchy

problem of the Standard Model Higgs field. In the Standard Model, fermion loops

in the Higgs propagator produce quadratically divergent corrections to the Higgs

boson mass, ∆Mh:

∆M2
h =

g2
f

16π2

(
−2Λ2 + 6m2

f ln (Λ/mf )
)

(2.26)

where mf is the mass of the fermion in the loop, gf is its coupling to the Higgs

field and Λ is an ultraviolet cut-off to the loop integral; the scale at which some

new and unknown interaction must be taken into account. A natural value

for Λ is the Planck scale, Mp ∼ 1019 GeV. In any case, it is reasonable to

expect that interactions at the weak scale should not be affected by the very

high energy behaviour of the theory above Λ. This is identical to the way that

engineers of the nineteenth century were able to build successful steam engines

based upon calculations in thermodynamics without having any knowledge of the

underlying atomic structure or of the interactions of quantum electrodynamics.

The correction in equation 2.26, however, is very sensitive to the scale of the

unknown physics and this hierarchy between the electroweak scale, around

which the Higgs boson mass lies, and the scale Λ is known as the hierarchy

problem.

Supersymmetry solves the hierarchy problem because it introduces a boson

loop in the Higgs propagator for every Standard Model fermion loop. The boson

loops exactly cancel the Λ2 dependence of the Higgs boson mass, leaving the

safe ln (Λ/mf ) dependence.
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2.3 QCD at Hadron Colliders

Hard collisions between protons at hadron colliders such as the Tevatron or LHC

typically occur through the exchange of partons from within the beam particles.

The low energy interactions between the partons inside the proton cannot be

calculated perturbatively because αs is large in that domain. The high energy

interactions between the partons outside of the proton can, however, be treated

perturbatively.

The procedure to calculate the cross section (equation 2.27) for a given pro-

cess X is therefore to calculate the so-called “hard scatter,” the high energy

interaction between the partons that constitute the proton and to fold it with a

parton distribution function (PDF):

dσ (h1h2 → X) =
∑
i,j

∫
dx1dx2fi (x1, µ) fj (x2, µ) dσ̂ (ij → X) (2.27)

where x1 and x2 are the longitudinal momentum fractions of the parton species

i and j from the hadrons h1 and h2, f1 and f2 are the PDFs for partons i and j

and σ̂ (ij → X) is the cross section for the hard scatter.

The PDF specifies the parton content of the proton when probed at different

scales. The PDF is dependent on both the scale at which the proton is probed,

µ, and the fraction of the proton’s momentum that the parton carries, x. Physics

below the scale µ is included in the PDF, whilst that above the scale of µ is part

of the hard scatter and must be included in the perturbative calculation. The

calculation has been factorised into non-perturbative and perturbative parts and

for this reason µ is called the factorisation scale. If it were possible to calculate

the hard scatter to all orders in perturbation theory then all dependence on µ

would cancel from the calculation.

It is not possible to calculate the PDF perturbatively, but once it has been

measured at a given µ it can be evolved to other scales using the Dokshitzer-

Gribov-Lipatov-Altarelli-Parisi (DGLAP) equations [19–21]:
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Figure 2.2: A proton collision factorised into a hard scatter above scale µ, parton
distribution functions and soft underlying event

∂qi (x, µ)
∂ ln (µ)

=
αs (µ)

2π

∫ 1

x

dz

z

∑
j

qj (z, µ)Pqiqj (x/z) + g (z, µ)Pqig (x/z)

 ,

∂g (x, µ)
∂ ln (µ)

=
αs (µ)

2π

∫ 1

x

dz

z

∑
j

qj (z, µ)Pgqj (x/z) + g (z, µ)Pgg (x/z)


(2.28)

where α (µ) is the (running) strong coupling constant at scale µ, qi (x, µ) and

g (x, µ) are the distribution functions for the ith species of quark and the gluon

respectively and Pgg, Pqq and Pqg are the splitting functions giving the probability

that a parton splits. At leading order the splitting functions are:

Pgg (z) = 6
(

1− z

z
+

z

(1− z)+
+ z (1− z)

)
,
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Pqq (z) =
4
3

1 + z2

(1− z)+
,

Pqg (z) =
1
2

(
z2 + (1− z)2

)
(2.29)

where the + subscript on the factor 1/ (1− z)+ indicates that the so-called plus

distribution should be used to remove the soft divergence at z = 1. The plus

distributions satisfy

∫ 1

0
dz

f (z)
(1− z)+

=
∫ 1

0
dz
f (z)− f (1)

(1− z)
. (2.30)

At leading order it is only possible for a quark of species j to split to another

quark of the same species or a gluon, hence the summation over j in equation

2.28 is not necessary at leading order. At higher order, however, the summation

is necessary because the higher order splitting functions do permit splitting to a

different species via an intermediate gluon line.

The parton distributions have been measured at the HERA electron-proton

collider in deeply inelastic scattering [22] and those measurements (along with

others) have been used to provide PDFs for both the Tevatron and the LHC (see

for example [23,24]).

Removing a coloured parton completely disrupts the proton and leaves a

proton remnant with an overall colour charge. This colour charge does not affect

the hard scatter because the length scale on which the hard scatter occurs (1/µ

or shorter) is smaller than the scale on which the proton can resolve colour (1/µ

or longer). Each proton remnant system must, however, return to a colour singlet

state and it does so through the exchange of colour with the other coloured

objects in the collision. This process results in additional particle emission that

can hinder the clean measurement of the hard scattering process. In addition,

there may be soft radiation produced by multiple scatterings between the proton

lines, which is known as the underlying event.
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2.4 Central Exclusive Production

The diagram for central exclusive production is shown in figure 2.3. There is

no colour transferred from the two proton lines because a so-called “screening”

gluon is exchanged to balance the colour transferred from each proton to the

central hard system.

Q

x2

p4

p3

x1

p1

p2

Γ

Figure 2.3: Central exclusive production of a system Γ

Throughout this thesis the following symbols will be used :

• x1 = 1− p0
3

p0
1
is the fractional longitudinal momentum loss of proton 1 (upper

line in figure 2.3)

• x2 = 1 − p0
4

p0
2
is the longitudinal momentum loss of proton 2 (lower line in

figure 2.3)

• y = 1
2 log (x1/x2) is the rapidity of the central system

• s = (p1 + p2)
2 is the centre of mass beam collision energy

• t1 = (p3 − p1)
2 is the transverse momentum squared of outgoing proton 1

• t2 = (p4 − p2)
2 is the transverse momentum squared of outgoing proton 2

• ŝ = (p1 + p2 − p3 − p4)
2 is the central mass squared

• µ ∼
√
ŝ/2 is the factorisation or hard scale
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• Qt is the transverse momentum flowing around the loop in figure 2.3

The diffractive regime requires that −t� ŝ� s. The incoming and outgoing

proton four-momenta can be written in terms of so-called Sudakov parameters

p1 − p3 = α1p1 + β1p2 + p⊥1

p2 − p4 = α2p1 − β2p2 + p⊥2

(2.31)

where p⊥1 and p⊥2 are transverse to both incoming proton four-momenta, p⊥1 ·

p1 = p⊥1 · p2 = p⊥2 · p1 = p⊥2 · p2 = 0. In a proton collision at the TeV scale the

proton mass can be neglected, so

p2
3 = − (1− α1)β1s+ p2

⊥1 ' 0,

p2
4 = − (1− β2)α2s+ p2

⊥2 ' 0,
(2.32)

− t1
s = α1β1 + p2

⊥1
s ' β1 � 1,

− t2
s = α2β2 + p2

⊥2
s ' α2 � 1.

(2.33)

α1β2 +
p⊥1 · p⊥2

s
' ŝ

s
� 1.

Therefore 1 � α1 � β1, 1 � β2 � α2, p2
⊥1 ' t1 and p2

⊥2 ' t2. In the limit that

the protons are massless then they are not able to change helicity and, given that

the transverse momentum of the outgoing protons is very small, there can be no

angular momentum transferred from the proton lines to the central system, which

must therefore have zero spin projected on the z (beam) direction (Jz =0), zero

colour and zero charge.

The amplitude for figure 2.3 can be calculated with quarks replacing the

protons by making use of the Cutkowsky rules [25]. These state that the imaginary

part of the amplitude for a diagram with a loop, such as figure 2.3, can be

calculated by cutting the diagram in two (figure 2.4), placing the cut lines on-

shell and integrating over their phase space. The Cutkowsky rules can be derived

from a definition for the delta function, δ (z):
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Figure 2.4: Cutting the intermediate quark lines in the diagram for central exclu-
sive production.

δ (z) = lim
ε→0

−1
π
=m 1

z + iε
. (2.34)

The imaginary part of the amplitude for figure 2.4 is =m (qq̄ → q + Γ + q̄)

[26,27]:

=m (qq̄ → q + Γ + q̄) = 4
∫
d2Qt

Q4
t

(
N2

c − 1
)

ŝN2
c

α2
s · Γ (ŝ) (2.35)

where

Γ (ŝ) =
1
16

∑
ε1,ε2

∑
a,b

δabεµ1 ε
ν
2Mab

µν (gg → Γ) (2.36)

is the amplitude for gluon fusion to Γ averaged over the gluon polarisations, ε1

and ε2, and colours a and b.

The parton-level cross section must be converted to a proton-level cross

section by replacing the quark-gluon vertices with proton-gluon vertices. The

un-integrated gluon distribution functions, f (x, Qt), give the gluon content with

longitudinal momentum fraction x at scale Qt. The diagonal un-integrated gluon

distribution function is given by fd:

fd (x, Qt) =
∂g (x, Qt)
∂ ln

(
Q2

t

) (2.37)

where g (x, Qt) is the PDF evolved using the DGLAP equations (equation 2.28).
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Equation 2.37 is valid whenever the two gluons have the same longitudinal

momentum fraction x. In the case of figure 2.3, the screening gluon has a much

smaller x than the other and this is corrected for with a factor Rg [28] (see later

section 4.3).

A crucial component of the conversion to a proton-level cross section is

the Sudakov suppression factor, which gives the probability that the gluons at-

tached to the central system Γ do not emit additional radiation. The differential

probability that a gluon at scale µ/2 emits radiation at a scale k is given by

∂Ps (kT,µ/2) /∂k2
T :

∂Ps

∂k2
T

(kT,µ/2) =
αs (kT )
2πk2

T

∫ µ/(µ+kT )

0
(zPgg (z) + Pqg (z)) dz (2.38)

where Pgg (z) and Pqg (z) are the splitting functions for a gluon to split to a pair of

gluons or a quark and a gluon with momentum fraction z. The splitting function

Pgg makes the dominant contribution to equation 2.38.

The Sudakov suppression factor, T (Qt, µ) is determined by re-summing equa-

tion 2.38 integrated over all kT from Qt to µ/2:

T (Qt, µ) =

exp
(
−
∫ (µ/2)2

Q2
t

dk2
T

αs(kT )
2πk2

T

∫ µ/(µ+kT )
0 (zPgg (z) + Pqg (z)) dz

)
.

(2.39)

The screening gluon cannot be resolved from the other two gluons by radiation

belowQt, which is therefore forbidden and justifies the lower limit to the integral

in Eq. 2.39 . The Sudakov suppression factor therefore only has to forbid radiation

above Qt. The Sudakov suppression is vital because, without it, equation 2.35

diverges in the infra-red as Qt → 0. The Sudakov factor, however, falls fast

enough as Qt → 0 that it ensures the integral converges.

Combining all of these elements together, the full differential cross section for

central exclusive production of a system Γ may be written:
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ŝ
∂

∂ŝ∂y∂t1∂t2
σ (hh→ h+ Γ + h) = S exp [b (t1 + t2)] ŝ

∂L
∂ŝ∂y

σ̂ (gg → Γ) (2.40)

where the t dependence of the cross section is approximately

∂σ

∂ti
' exp (bti)

with b ' 4 GeV2. The cross section for gluon fusion to Γ is σ̂ and Γ must be

averaged in the amplitude over incoming the gluon colours and polarisations, as

in equation 2.36. The differential luminosity, ŝ ∂L
∂ŝ∂y , is given by

ŝ
∂L
∂ŝ∂y

=
(
π

8

∫
dQ2

t

Q4
t

fg (x1, Qt, µ) fg (x2, Qt, µ)
)2

(2.41)

where the off-diagonal un-integrated gluon distribution functions fg are approx-

imately:

fg (x1, Qt, µ) ' Rg
∂

∂ lnQ2
T

(√
T (Qt, µ)xg (x1, Qt)

)
(2.42)

where Rg is the factor that accounts for the screening gluon having different

longitudinal momentum fraction. The factor S in equation 2.40 is the soft survival

factor and is present in all diffractive cross sections. Further interactions between

the two proton linesmay produce additional emissions thatmake the event appear

to be non-difractive. A certain proportion of diffractive events are therefore “lost”

and the observed diffractive cross section is lower than the predicted cross section.

The soft survival factor accounts for this difference between the predicted and

observed cross sections.

The small size of the differential luminosity reduces the cross section com-

pared to non-diffractive production of the same system Γ. Exclusive production

conveys three major benefits, however, which make it worthwhile pursuing the

smaller cross section. The first of these is that, for central exclusive production,

there is no activity in a particle physics detector other than the system of interest,

Γ. Contrast that with non-diffractive production in which the soft underlying
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event fills the detector with the remnants of the hadrons. Even diffractive pro-

duction through Pomeron or Reggeon exchange results in Pomeron or Reggeon

remnants populating the detector. Note, however, that at the LHC it is expected

that, on average, around twenty proton collisions will occur per bunch crossing.

The second benefit of central exclusive production is that by installing proton

tagging detectors along the beam line a large distance from the central detector,

the outgoing and intact protons may be observed. By measuring the protons’

energies and transverse momenta, and knowing the collision energy, it is possible

to infer the so-called “missing mass” [5] in the central detector. The FP420

[29, 30] proposal at the LHC boasts of a possible 1 GeV resolution on the mass

of the central system. Not only could this be useful in measuring the masses

of resonances such as the Higgs boson, but it could also be used to calibrate

the observed jet energies to the actual jet energies. Further, because the tagged

outgoing protons remain intact, it is known that the central system must possess

zero angular momentum in the z (beam-line) direction. Constraining the spin

quantum numbers of any newly discovered particles at the LHC will be an

important task, whichmight otherwise require a linear collider of polarised lepton

beams.

The final advantage of central exclusive production is that the Jz = 0 “spin

selection rule” suppresses the QCD background to many processes. For exam-

ple, the dominant background to the Standard Model H → bb̄ channel is direct

production of a pair of b quarks. Ordinarily, this background is huge and results

in the H → bb̄ channel being unfavoured as the discovery channel. However,

in central exclusive production the two b quarks must be back to back and must

have the same helicities due to the Jz = 0 selection rule. There is destructive

interference in the leading order amplitude between the two possible spin con-

figurations and in the limit that the b quark mass is zero the cross section is

also zero. The full suppression of the leading order cross section is m2
b/ŝ, so if

√
ŝ ' 100 GeV for the Standard Model Higgs boson then the cross section for

the QCD background is suppressed by a factor of less than 0.002. Despite the

much lower production cross section in central exclusive production, the signal
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to background ratio may actually be more favourable. The QCD background is

not suppressed at the next to leading order (NLO), in which there is additional

gluon radiation from a quark line and it is therefore important to take the NLO

contribution to the cross section into account.
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Chapter 3

Exotic uses for Central Exclusive

Production

3.1 A CP Violating Supersymmetric Higgs Boson

There is an excess of matter over anti-matter in the Universe of the order of 1

part in 109, which means that for every matter particle there are approximately a

billion photons in the Universe today. This is usually explained by positing the

existence of CP violating interactions that occur at different rates for particles and

anti-particles.

The amount of CP violation present in the CKM matrix of the Standard

Model is nowhere near enough to account for the amount of matter present in

the Universe [31]. A potential source of CP violation that is not present in the

Standard Model lies in the Higgs sector of the MSSM. The MSSM requires the

existence of two Higgs doublets, Hu to generate a mass for the up type quarks

andHd to generate a mass for the down type quarks. The two Higgs doublets are

written

Hu =

 φ+
1

1√
2
(φ1 + ia1 + vu)

 , Hd =

 φ+
2

1√
2
(φ2 + ia2 + vd)

 (3.1)
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where φ±1,2 are the 4 charged degrees of freedom, φ1,2 are the uncharged CP

even degrees of freedom, a1,2 are two uncharged CP odd degrees of freedom

and vu,d are the vacuum expectation values (VEVs) of the Higgs doublets, whose

ratio is written as

vu

vd
= tan (β) . (3.2)

As in the Standard model, two of the charged degrees of freedom get “eaten”

by the longitudinal polarisation of the W± bosons and one of the CP odd

degrees of freedom gets eaten by the Z0 boson to leave two charged physical

Higgs bosons, two un-charged CP even degrees of freedom and an un-charged

CP odd degree of freedom. The physical CP odd degree of freedom is a mixture

of the a1 and a2 fields:

a = a1 sin (β) + a2 cos (β) . (3.3)

It is possible that squark loops in the Higgs boson propagator can produce

mixing between the CP even φ1,2 and the CP odd a in the mass eigenstates

of the Higgs fields. The resulting mass eigenstate is therefore not an eigenstate

of the CP operator and CP violation is introduced into the Higgs sector. The

mixing will be produced if there is a phase difference between the µ term of the

MSSM superpotential, which produces the tree-level mass for the Higgs fields (the

last term on the right of equation 3.6), and the trilinear SUSY breaking coupling

in the MSSM Lagrangian, which provide loop corrections to the Higgs bosons

propagators. Figure 3.1 shows the mixing between the φ1 and a via a sfermion

loop. One might think that the loop diagram of figure 3.1 would violate CP even

if the phase between the two diagrams were zero. However, if |+〉 is a CP even

eigenstate and |−〉 is a CP odd eigenstate then |±〉, the superposition of the two,

may also be an eigenstate of CP :

|±〉 = C1 |+〉+ iC2 |−〉

35



φ1 a
q̃e2iΦCP

Figure 3.1: The Higgs mass eigenstates are a mixture of all three weak eigenstates
due to mixing between the tree level µ term and through a coupling to the squarks
at the one loop level.

CP |±〉 = C1CP |+〉 − iC2CP |−〉

= |±〉 (3.4)

where C1 and C2 are the Clebsch-Gordon coefficients such that C2
1 + C2

2 = 1.

Physically, equation 3.4 means that the rate at which φ1 → a due to the loop in

the propagator of figure 3.1 is exactly the same as the rate at which a→ φ1, hence

there is no overall CP violation in the absence of a phase difference. If there

is a phase difference between the two diagrams, however, then the propagating

eigenstate is not an eigenstate of CP and CP violation results. The orthogonal

matrix that rotates between the weak (CP ) and mass eigenstates of the Higgs

bosons is O:


H1

H2

H3

 = O


φ1

φ2

a

 (3.5)

The CPX scenario [6] of the MSSM was designed to show off the effects of CP

violation in theHiggs sector of theMSSM. The CPX scenario introduces a complex

phase between the µ term coupling the two Higgs superfields and the trilinear

Yukawa coupling between the sfermions and the Higgs. The superpotential for

the Higgs sector of the CPX scenario is [32,33]:

∆WCPX = hlĤ
T
d iτ2L̂Ê + hdĤ

T
d iτ2Q̂D̂ + huQ̂

T iτ2
ˆ

Ĥ2Û − µĤT
d iτ2Ĥu (3.6)

36



where Ĥu and Ĥd are the Higgs superfields , L̂ and Ê are the right and left-handed

leptonic superfields and Û , D̂ and Q̂ are the superfields of the right-handed up

and down quarks and the left-handed quark SU(2) doublet. The second Pauli

matrix is denoted by τ2. Those soft SUSY breaking terms in the MSSM Lagrangian

that, in conjunction with the µ term of equation 3.6, produce the CP violation

are [32,33]:

∆LCPX = AlΦ
†
1L̃Ẽ +AdΦ

†
1Q̃D̃ −AuΦT

2 iτ2Q̃Ũ + h.c. (3.7)

where L̃, Ẽ, Q̃, Ũ and D̃ are the sleptons and squark fields, Al, Ad and Au are

trilinear couplings, Φ1,2 are the Higgs bosons.

The masses and couplings defined in the CPX scenarios are as follows: a

universal mass of 500 GeV for the third generation squarks, M̃t,b, and the SUSY

breaking massMSUSY ; a universal trilinear couplingA of magnitude |A| = 1 TeV;

a µ parameter of 2 TeV; a gluino mass of 1 TeV and a mass of 200 GeV for the

winos and the bino. The CP violation occurs at the one loop level in the Higgs

propagator (figure 3.1). The CP violating phase, ΦCP , is a phase difference

between µ and A, that is, if µ is real then A = e2iΦC |A|.

The Higgstrahlung search channel at LEP looked for Higgs radiated from a Z

boson:

e
−

e
+

Z
∗

Z

H

Figure 3.2: Higgstrahlung at the LEP collider.

If the lightest Higgs boson contains a significant contribution from the CP

odd a field then its coupling to the Z boson will be suppressed, reducing the

rate at which figure 3.2 occurs. It is not possible to suppress the couplings of all

three Higgs bosons to the Z, since the sum of the three Higgs-Z couplings, gHiZ ,
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obeys the rule [34]:

∑
i

g2
HiZ = g2

HS.M.Z
(3.8)

where gHS.M.Z is the standard model Higgs-ZZ vertex coupling. However, if H2

and H3 can both decay to a pair of H1 then the searches employed at LEP, which

anticipated four jets at most, will have failed to find the six jets that result from

H2,3 production and the H1 production rate is too low to be observed due to the

suppressed coupling. In this case, all three MSSM Higgs bosons under the CPX

scenario would have avoided detection at LEP, even if the lightest Higgs mass

were well below the 114 GeV limit placed on the Standard Model Higgs. This is

illustrated in figure 3.3 taken from [34], which shows un-probed regions in the

top two panes below tanβ = 5 in which the lightest MSSM Higgs boson has a

mass below 40 GeV.
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Figure 3.3: Regions of MSSM parameter space excluded by LEP in the CPX
scenario [34]. Four Different CP violating phases ΦCP are shown under the CPX
scenario. The white region is inconsistent with electroweak symmetry breaking,
the medium grey is excluded by Higgstrahlung (figure 3.2), the dark grey is
excluded by e+e− → Z∗ → HiHj and the black region is the overlap between
both searches. Significantly, there are regions, shown in the lightest shade of
grey, that are not covered by either search.

By far the dominant decay mode of such a light Higgs boson would be

H → bb̄. It would be extremely difficult to detect this peak in the bb̄ jet production

cross section at the Tevatron and even more so at the LHC, in both cases due

to the large QCD background of b-jets (and falsely identified b-jets). It would

seem then that in such a scenario the MSSM Higgs sector is extremely difficult to

observe [34].

Central exclusive production of the lightest MSSM Higgs boson now shows

its usefulness. The QCD background is significantly reduced by the Jz = 0 spin
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Figure 3.4: Higgs boson production via gluon fusion.

selection rule, the absence of underlying event makes jet measurement easier

and, potentially, the outgoing proton taggers provide an accurate measurement

of the central mass.

3.1.1 Cross Section Calculation for CPX Higgs Boson Production

In order to calculate the cross section for a centrally produced CPX Higgs boson

one first needs the cross section for gluon fusion to a CPX Higgs, by way of heavy

quark or squark loops (figure 3.4).

The amplitude for gg → H1 is [35,36]:

Mab
ε1ε2 =

mH1αs (mH1) δ
ab

4π

{
Sg

1 (mH1)

(
ε1µε

µ
2 − 2

kµ
1 ε2µk

ν
2ε1ν

m2
H1

)

−2P g
1 (mH1)

εµνρλε
µ
1 ε

ν
2k

ρ
1k

λ
2

m2
H1

}
(3.9)

where k1,2 and ε1,2 are the momenta and polarisations of the incoming gluons,

a, b are the colours of the incoming gluons, mH1 is the mass of the Higgs boson

and Sg
1 and P g

1 are the 1-loop scalar and pseudo-scalar form factors for a pair of

gluons to couple to theH1 boson. In the limit that the fusing gluons have the same

polarisation, as is necessary for central exclusive production, the term εµνρλε
µ
1 ε

ν
2

vanishes and, additionally, since the gluons are approximately collinear the term

kµ
1 ε2µk

ν
2ε1ν also disappears. The scalar form factor Sg

1 is given by [37]:
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Sg
1 (mH1) =

∑
f

g1
sf

mH1

mf
Fsf (τf ) +

1
4

∑
f̃

∑
i=1,2

g1
f̃

mH1

m2
f̃

F0

(
τf̃

)
(3.10)

where the sums over f and f̃ are over all quark and squark flavours respectively

with masses mf and mf̃ . The additional sum over i in the second term accounts

for the fact that, since a spin 1/2 fermion has twice as many degrees of freedom

as a spin 0 sfermion, there are two squarks for every quark flavour. The couplings

g1
f̃
and g1

sf are of the H1 boson to the squark current and the scalar quark current

(as opposed to the pseudo-scalar current, which is not invariant under the parity

operator). The auxiliary functions Fsf and F0 arise from the loop integral in figure

3.4 and are

Fsf (τ) = τ−1
(
1 +

(
1− τ−1

)
f (τ)

)
F0 (τ) = τ−1

(
−1 + τ−1f (τ)

)
f(τ) =

 arcsin2 (
√
τ)

−1
4

(
ln
(

1+
√

1−τ−1

1−
√

1−τ−1

)
− iπ

)2

τ ≤ 1

τ > 1

(3.11)

where τ = m2
H1
/4m2

f . The coupling g1
sf is given by the terms in the MSSM

Lagrangian that couple fermionic currents to the Higgs bosonsHi, which are [36]:

∆LHf = −
gmf

2MW
f̄

(
vi
f

Rf
β

− i
R̄f

βα
i
f

Rf
β

γ5

)
fHi + h.c. (3.12)

where g is the electroweak coupling constant and MW is the mass of the W

boson. Note that the Standard Model Higgs-fermion coupling is gmf/2MW . The

terms vi
f and αi

f are elements from the matrix that rotates between the mass and

weak eigenstates of the three Higgs bosons. vi
f gives the φ1 (if f is a up-type

quark) or φ2 (if f is an down-type quark) content of the ith physical Higgs boson,

while αi
f gives the a content. Rf

β is cos (β) for down type quarks or sin (β) for up

type quarks and accounts for the different VEVs of the two Higgs doublets. The

term in γ5 couples to the pseudo-scalar current and is not needed to first order in

central exclusive production because it produces a helicity flip in the quark line
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at the Hqq vertex, which is not allowed due to the Jz = 0 selection rule. The

scalar coupling g1
sf is therefore given by

g1
sf =

gmf

2MW

v1
f

Rf
β

(3.13)

The couplings of the chiral states of the squarks to the weak eigenstates of the

Higgs bosons are given in [35]. These couplings must be rotated in order to give

the couplings of the mass eigenstates of the Higgs bosons to the mass eigenstates

of the squarks. For example, the coupling of the Higgs field φ1 to the t̃1 and t̃2

stop squark fields (two stop squarks are necessary to match the two possible spin

states of the top quark) is given by C̃t
φ1;t̃1;t̃2

:

C̃t
φ1;t̃1;t̃2

=
gmt

2mW sinβ
|µ| eiΦCP Aµ (3.14)

where mt is the mass of the top quark. The couplings of the mass eigenstate of

the Higgs to the mass eigenstates, t̃m{1,2} , of the stop squark are therefore given

by C̃hi;t̃mj ;t̃mk
:

C̃hi;t̃mj ;t̃mk
= Oa,iC̃

t
φa;t̃b;t̃c

U †j,bUc,k. (3.15)

where Oa,i is the mixing matrix between the ath Higgs field in the weak basis

(including the CP odd a) and the ith Higgs mass eigenstate, φa are the three

weak eigenstates of the Higgs fields and Uc,k is the mixing matrix between the

kth mass and cth chiral eigenstates of the t̃. There is an implicit sum over a, b and

c.

The computer program CPH+ [33,38] was used to provide all of the necessary

MSSM couplings in the weak and chiral basis, as well as the masses of the MSSM

particles. CPH+ was additionally modified to provide the rotation matrices from

the weak and chiral states of the Higgs and squarks to the propagating mass states.

The cross section for the hard sub-process, after averaging over the gluon

colours and polarisations, and assuming a narrow width for the Higgs boson is:
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σ̂gg→H1 (ŝ) =
αs (ŝ)2

16π

∣∣S1
g (ŝ)

∣∣2 δ(1−
m2

H1

ŝ

)
(3.16)

When convoluted with the differential luminosity of equation 2.41 and in-

tegrated over t1,2 and x1,2, equation 3.16 gives the cross section for central

exclusive production of the lightest Higgs boson in the CPX scenario.

3.1.2 Results for Central Production of a CP Violating Higgs Boson

The cross section for central exclusive production of the lightest CP violating

MSSM Higgs boson is shown in figure 3.5 [39] for both the Tevatron and the

LHC. Values for tan (β) of 4 and 5 were used, with a CP violating phase of

ΦCP = 90◦ in order that the region left un-probed by LEP in figure 3.3 could

be explored. The MRST 2002 [23] PDF set was used to provide the integrated

gluon distributions for the proton, from which the un-integrated distributions

were estimated using equation 2.42. A fixed Rg factor that accounts for the

skewed gluon distributions of 1.2 was used at the LHC and 1.4 at the Tevatron.

A constant soft survival factor of 0.02 (LHC) or 0.045 (Tevatron) [2,40] was used.

The cross section was integrated over all t1,2 and over x1,2 ≤ 0.1. The ratio of the

scalar form factor S1
g in the CPX scenario to that in the Standard Model is shown

in figure 3.6, which shows the contribution to the scalar form factor from bottom

quark loops only, bottom and top quark loops and bottom, top and stop loops.

Figures 3.5 and 3.6 are discussed in more detail in section 3.2.3.

3.2 Warped Extra Dimensions

The hierarchy problem is essentially caused by the weakness of gravity in relation

to the other fundamental forces; the small value of Newton’s constantGN implies

a very large scale; the Planck mass of Mp = 1/
√

8πGN . Theories with extra

dimensions solve the hierarchy problem by allowing gravity access to the volume

of the extra dimension(s) - called the bulk - while restricting the Standard Model

forces and particles to a four-dimensional slice of space-time called the brane.

The brane forces then appear much stronger than gravity not because the coupling
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Figure 3.5: The cross section for central exclusive production of the lightest
CP violating MSSM Higgs boson at the Tevatron (red dashed curve) and LHC
(solid) [39].
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constants are hugely different, but because gravity is radiating into the volume of

the bulk and the Planck scale as observed on the brane is enhanced by a factor

of VB, the volume of the bulk.

The Randall Sundrummodel [7,41] introduces a five-dimensional space-time

using a metric with the following line element:

ds2 = e−2kyds′2 − dy2 (3.17)

where ds′2 is the usual four-dimensional expression and y is the additional coor-

dinate in the bulk with a range of {0, rcπ}, the Standard Model living on a brane

at y = 0. An additional brane boundary to the bulk is introduced at y = rcπ,

which produces a discrete spectrum of Kaluza-Klein excitations (as opposed to a

continuous spectrum that would be obtained in the absence of a second brane).

rc is a compactification radius and k is a scale parameter which determines the

extent to which the space-time in the bulk is warped. Any field of mass m0 in

the bulk will be rescaled on the Standard Model brane and will be observed to

have a mass mbr

mbr = m0 exp (−krcπ) . (3.18)

So if m0 is around the Planck mass, the natural scale in the bulk, masses on

the brane will still be observed around the electroweak scale (O (100 GeV)) if

krc ∼ 35.

Along with gravitons on the Standard Model brane and their Kaluza Klein

excitations, there is also the possibility for excitations of the separation between

the two branes. The scalar field observed on the Standard Model brane as a result

of such excitations is the radion [42], normalised as follows:

φ0 =
e−ky0

√
6Mp

y (x) (3.19)

where y0 is the expectation value of the separation of the two branes. Critically,

the radion can mix with the kinetic energy terms for the Higgs field [43]:
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∆L = −1
2
{
1 + 6γ2ξ

}
φ0�

2φ0 −
1
2
φ0m

2
rφ0 −

1
2
h0

(
�2 +m2

0

)
h0 − 6γξφ0�

2h0

(3.20)

where h0 is the Higgs field in five dimensions, mr and mh are mass terms for the

radion and Higgs boson and γ = vh/Λr, the ratio of the VEVs of the Higgs and

radion fields. The first two terms in equation 3.20 are kinetic and mass terms for

the radion, the second two are kinetic and mass terms for the Higgs boson and

the last term in equation 3.20 produces the mixing between the fields, with ξ the

mixing parameter. The two mass eigenvalues are [43,44]:

m2
± =

1
2Z2

(
m2

r + βm2
h ±

([
m2

r + βm2
h

]2 − 4Z2m2
rm

2
h

)1/2
)

(3.21)

where Z2 = 1 + 6ξγ2 (1− 6ξ) and β = 1 + 6ξγ2. The mass eigenstates h and φ

are related to h0 and φ0 by:

 h0

φ0

 =

 d c

b a

 h

φ

 (3.22)

where a, b, c, and d are:

a = − cos (θ) /Z

b = sin (θ) /Z

c = sin (θ) + 6ξγ cos (θ) /Z

d = cos (θ)− 6ξγ sin (θ) /Z (3.23)

where tan (2θ) = 12γξZm2
h/
(
m2

φ −m2
h

(
Z2 − 36ξ2γ2

))
.

The radion field φ0 does not couple to the Z0 boson other than through its

mixing with the Higgs field, which in turn reduces the coupling of the mass

eigenstate of the Higgs boson to the Z0 boson. Thus if m+ (equation 3.21)

is above the scale probed by LEP and m− has its coupling to the Z0 boson
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suppressed through the mixing with the radion then both mass eigenstates may

avoid detection.

3.2.1 Cross Section Calculation for Central Exclusive Radion Produc-

tion

The hard sub-process cross section for gg → φr is of the same form as equation

3.16, but with the scalar form factor for the MSSM Higgs boson replaced with

the equivalent term for the radion. Using the Feynman rules given in [43, 45],

the amplitude for production of a radion or Higgs boson by gluon fusion in the

Randall-Sundrum model is:

Mab
ε1ε2 (gg → φr) =

iαsδ
ab

4πv
(k1 · k2g

µν − kµ
1k

ν
2 ) ε1νε2µ

[
2gfV

∑
q

Fsf (τq)− 14gr

]
(3.24)

where the summation over q is of the quark flavours running round the loop, v is

the VEV of the Higgs boson and gfV is the coupling of the radion or Higgs field

to the Z0 boson, depending on which is to be produced. The term gr is produced

by a coupling to the trace of the energy-momentum tensor for the gluons. The

couplings gfV and gr are given by:

gfV =

 g (d+ γb)

g (c+ γa)
, gr =

 γb

γa

Higgs

Radion
(3.25)

3.2.2 Results for Central Exclusive Radion Production

The parameters gfV and gr as well as the branching fractions and widths of the φ

and h were provided by Jai Sik Lee [46] as a function of the model parameters ξ,

Λφ, mh and mφ. The cross section equation 3.16 was then convoluted with the

differential luminosity to give the cross section for central exclusive production of

a radion or a Higgs at both the Tevatron and the LHC. The parameters pertinent to

the differential luminosity calculation were identical with those of section 3.1.2.

The cross section dependence on the Higgs boson and radion masses and the
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Figure 3.7: The production cross section for the Higgs boson (left column) and
the radion (right column) in the Randall-Sundrummodel at the LHC (top row) and
Tevatron (bottom row). Curves are shown with mixing parameter −3 ≤ ξ ≤ 3.

mixing parameter is shown in figure 3.7. A VEV for the radion of Λφ =5 TeV was

used as in [43]. The cross section folded with the branching fraction for a bb̄ pair

is shown in figure 3.8.

3.2.3 Discussion

The coupling of the Higgs boson to gluons by way of a squark or quark loop in the

CPX scenario suffers from a suppression compared to the Standard Model Higgs

boson (figure 3.6). The fact that the differential luminosity is very much higher

for the CPX scenario due to its reduced Higgs boson mass, however, results in a

similar sized cross section to a SM Higgs boson of 120 GeV [2,47,48].

The cross sections for radion and Higgs production in figure 3.7 show a

sudden turn off as the m2
− solution to equation 3.21 becomes negative. The dips
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Figure 3.8: The central exclusive cross sections for φ → bb̄ (right column) and
h→ bb̄ (left column) at the LHC (top row) and Tevatron (bottom row)

in the φ→ bb̄ cross section (figure 3.8) occur when there is cancellation between

the Higgs-fermion and radion-fermion coupling in the physical radion-fermion

coupling.

It initially appears that observation of either a radion or a CP violating Higgs

boson at the Tevatron may be possible, given a total integrated luminosity of

around 5 fb−1 and a cross section of between 1 and 10 fb if the background truly

is suppressed. However, the spin selection rule is weakened for the lighter states

where the cross section is significant. The background is suppressed by a factor

m2
q/m

2
R, where mq is the mass of the quark and mR is the mass of the resonant

state, hence the suppression is lower for lower mass states. Estimates of the

leading order background to 120 GeV Standard Model Higgs production at the

LHC [48] give a signal to background ratio of order unity. Given that the Tevatron
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will only collect around 5 fb−1 of integrated luminosity and the background for

a 50 GeV Higgs boson or radion is enhanced by a factor of around 1202/502 ' 6

relative to the Standard Model case, observation of either a radion or a CP

violating MSSM Higgs boson appears unlikely. Further, the signal to background

ratio is proportional to the Higgs boson width Γ (H → gg), which is suppressed

in the CPX scenario relative the Standard Model case (figure 3.6).

The case at the LHC shows more promise, both because of the increased pro-

duction cross section and because of the vastly increased luminosity. However,

as mentioned in section 2.4, the higher order contributions to the background

may be significant. Jet finding and detector geometry may also have an impact.

To carry out a more in-depth analysis of the physics potential of central exclusive

production at the LHC, or indeed the Tevatron, a full simulation of both the signal

and background is needed, which is the subject of the next chapter.
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Chapter 4

The ExHuME Generator

4.1 Motivation

A Monte Carlo simulation of a high energy physics collisions uses computer

generated random numbers to calculate the total cross section for a process in a

given kinematic range. Not only can the simulation calculate the cross section,

but it can also reproduce the distributions of kinematical quantities, for instance

the rapidity of the central system or the transverse momentum of the jets. A

Monte Carlo simulation can therefore be extremely useful in understanding the

distributions of final state particles from the hard process, the effect of kinematic

cuts and the seperation of signal events from background events.

In this chapter the principle behindMonte Carlo integration will be explained,

first with a simple example using the value of π and then using the more spe-

cific case of ExHuME, which simulates the central exclusive production process.

Finally, predictions from ExHuME for both the Tevatron and the Large Hadron

Collider will be shown.

4.2 Monte Carlo Integration

The value of π can be calculated by generating a sufficient number of random

numbers. Consider a circle of radius 1 inside a square of side 2 centred on the

origin (figure 4.1). The area of the square is 4 and π is defined to be the area of

51



Figure 4.1: Calculating π from random points within a square. Six of the eight
points lie within the circle, so the estimate for π from this limited sample of
random numbers is 3.

the circle. A set of N points within the square are chosen by generating pairs of

random numbers {xi, yi} and the number of these points that also lie within the

circle such that x2
i + y2

i = 1 is n. Given a large enough N the ratio n/N should

approach the ratio of the area of the circle to that of the square so the value of π

is given by

π = lim
N→∞

4× n

N
. (4.1)

The method for calculating π, once generalised to higher dimension and with

the function describing a circle replaced by a function describing the differential

cross section, forms the basis for a Monte Carlo generator. In the case of the

ExHuME generator the cross section is differential in at least 6 variables: the

transverse momenta squared of the two outgoing protons, t1 and t2, the frac-

tional longitudinal momentum losses of the two protons, x1 and x2, and the two

azimuthal angles of the outgoing protons, φ1 and φ2. The x1 and x2 are simply

related to the
√
ŝ and y and it is more convenient to supply those as input to the

function that calculates the differential cross section. Depending on the gluon

fusion sub-process there could be further variables, such as the opening angle

between two centrally produced partons.

To generate an event the six variables are picked at random and the differential
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cross section calculated at that point in phase space. One further randomnumber,

r, is then required that should be in the range {0, σmax}, where σmax is no lower

than the maximum value of the differential cross section that it is possible to

encounter. The value of σmax can be determined either by prior knowledge of

the shape of the differential cross section, for example the differential luminosity

of central exclusive diffraction is always peaked at y = 0, or by exploring the

phase space before generating the events. The event will be accepted if r lies

below the calculated value of the differential cross section (figure 4.2). The fact

that the differential luminosity is always peaked at y = 0 is the reason why it

is more convenient to use
√
ŝ and y instead of x1,2 as input to the differential

luminosity function.

s`max

s`

H
¶ Σ
������������
¶ s`
LMax

Σ

Figure 4.2: Using Monte Carlo techniques to integrate a differential cross section
over the mass of the central system. There are 3 points out of 25 lying beneath
the curve, so the cross section here is 3

25 ×
∂σ
∂ŝ

∣∣
max

× ŝmax

In the full six-dimensional integration the value of the cross section is given

by

σ =
n

N

∂6σ∏6
i=1 ∂zi

∣∣∣∣∣
Max

6∏
i=1

(zmax − zmin)i (4.2)
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where ∂σ/
∏6

i=1 ∂zi

∣∣∣
Max

is the maximum value of the differential cross section,

zi are the coordinates and n events are accepted out of N attempts to generate

an event. The n accepted events will produce the correct distributions of the zi

for the given differential cross section.

The ExHuME simulator [10] takes advantage of the factorisation illustrated

in figure 2.3 and the modularity available in the C++ programming language.

ExHuME provides a base cross section class, which contains the calculation of

the differential luminosity (equation 2.41), holds the values of physical constants

(such as particle masses and couplings) and keeps a record of the particle kine-

matics. An implementation of a CrossSection class should be passed to a class

called Event, which handles the Monte Carlo generation and calculates the cross

section as the final stage of the program. In this way, it is possible to access the

functions pertinent to the cross section calculation completely independently of

the event generation. For details on the usage of ExHuME see Appendix A.

4.3 The Implementation of the Differential Luminosity

The differential luminosity function is appropriate for either the LHC or the Teva-

tron, depending on the proton collision energy that is selected. The Sudakov fac-

tor T (Qt, µ) (equation 2.39) is calculated by integrating numerically over kt using

the implementation of Simpson’s method available in the CERN libraries [49]. To

leading order, the strong coupling constant, αs (kt), may be parameterised as

αs (kt) =
12π

(33− 2Nf ) log
(

k2
t

Λ2
QCD

) (4.3)

where Nf is the number of quark flavours available and ΛQCD is chosen such

that αs (Mz) ' 0.118 (Mz is the mass of the Z boson). For the hard scale a value

of µ = 0.618
√
ŝ is used [50].

T must be evaluated many times for each event because it lies within the

numerical integration over Q2
t in the expression for the differential luminosity

(equation 2.41). T itself involves a numerical integration, which would result in
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the integrand in the exponent of equation 2.39 being evaluated O
(
104
)
times

for each single evaluation of the differential luminosity. This is not prohibitive

using a modern computer, but it is not very efficient and slows down the program

a great deal. ExHuME avoids this speed penalty by caching the value of T in

a standard template library map indexed by µ each time that T is calculated.

When a subsequent call to T (µ) is made, ExHuME will check the map for entries

that closely bracket the current value of µ and, if they exist, will interpolate the

value of T rather than carry out the integral. Curves showing the dependence of

T on Qt for
√
ŝ ranging from 50 GeV to 200 GeV taken from ExHuME are shown

in figure 4.3. As expected, the suppression is largest at small Qt, although it is

necessary to freeze the value of αs to avoid the singularity at kt = ΛQCD. The

freezing is usually unimportant, however, as the dominant contribution to the

integral for a 120 GeV Higgs boson at the LHC comes from the region around

Qt = 2 GeV. A smaller value of ΛQCD results in a larger value of αs at the same

scale and hence enhances the probability for gluon emission and increases the

Sudakov suppression.

For the un-integrated gluon densities (equation 2.37) LHAPDF [51] is used

to provide the integrated gluon densities. The Rg factor that accounts for the

skewed effect is parameterised as [28,50]

Rg =

(
1 +

∂ln
(
g
(
x, Q2

t

))
∂x

(
0.82 + 0.56

∂ln
(
g
(
x, Q2

t

))
∂x

))
. (4.4)

Other than at small values of Qt or x, Rg can be approximated by a constant

value of 1.4 at Tevatron energies and 1.2 at LHC energies (figure 4.4).

The un-integrated gluon densities are approximated by [50,52]

fg = Rg

√
T (Qt, µ)

(
∂xg

(
x, Q2

t

)
∂ln
(
Q2

t

) − Ncαs (Qt)
2π

ln
(

Qt

3 (µ+Qt)

)
xg
(
x, Q2

t

))
(4.5)

with the differentiation with respect to Qt being carried out numerically. The

PDF has a lower limit to the range of Qt values for which it is valid and below

that point is frozen, leading to the term in ∂xg
(
x, Q2

t

)
/∂ln

(
Q2

t

)
in equation 4.5
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Figure 4.3: The Sudakov suppression, T (Qt, µ), as implemented in Ex-
HuME. Nf (equation 4.3) was taken as 5 and, apart from the curve labelled
ΛQCD = 200 MeV, ΛQCD was chosen at 80 MeV so that αs (Mz) ' 0.118.
Curves are shown for central masses of 50, 100, 120, 150 and 200 GeV, with
the higher masses having a greater Sudakov suppression due to the larger phase
space for emission of radiation that is available between Qt and µ. The curve
with ΛQCD = 200 MeV shows a slightly greater suppression (i.e. smaller T )
because the larger value of αs results in a greater probability of radiation from
the gluon lines.

vanishing. This produces the sharp peak seen in figure 4.5 as the PDF is abruptly

cut off. LHAPDF has the facility to extrapolate the PDF below the lower Qt limit,

which produces a smooth peak, but the extrapolation cannot be relied upon to

give sensible values for the PDF. The lower limit of the integration in equation

2.41 must be cut off in any case to avoid the Landau pole in αs at Qt = ΛQCD,

so ExHuME does not use the option to extrapolate the PDF. Cutting the integral

off does not usually affect the result a great deal, as can be seen by comparing to

the results contained in [27], where the author carrys out an extrapolation. The

results are not strongly dependent on a cut on Qt that is below 1 GeV because

the most significant region of the integrand lies between 1 and 2 GeV. Above

Qt = 2 GeV a change of variables is made in the integration parameter to 1/Q2
t so

that Q2
t can be taken to a large upper limit yet the integration parameter remains

small. The differential luminosity taken from ExHuME is shown in figures 4.6
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Figure 4.4: Rg at the LHC.

and 4.7. The dimensionless quantity M2∂2L/∂M2∂y shown in figures 4.6 and

4.7 has been integrated over t1,2 and is related to equation 2.41 by

M2 ∂2L

∂M2∂y
=

∫
dt1dt2 exp (b(t1 + t2))M2 ∂2L

∂M2∂y

=
1
b2
M2 ∂2L

∂M2∂y
. (4.6)
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implemented in ExHuME for Tevatron (left) and LHC (right) energies, both using
the MRST 2002 PDF. The default ExHuME setup parameterises Rg as in figure 4.4
and freezes the PDF below its lower Qt, which results in a kink in the curve.
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Figure 4.6: The mass (left column) and rapidity (right column) dependence of the
differential luminosity function from ExHuME at the Tevatron (top row) and LHC
(bottom row). The differential luminosity is given in equation 2.41
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4.4 Soft Survival Factor

The current version of ExHuME uses a constant soft survival factor S2 (section 2.4)

with default values of 0.03 for the LHC and 0.045 for the Tevatron. It is hoped

that a future release will implement a soft survival factor with dependence on

both the angle between the outgoing protons, φpp, and the momentum transfers

t1,2, as is the case in the model in [3]. Adding a non-constant S2 will both

harm the efficiency with which events are generated (section 4.5) due to the non-

trivial dependence on t1,2 and φ1,2 and will require further numerical integration

for each calculation of the differential luminosity. It is therefore desirable that

improvements to the speed and efficiency of ExHuME be made before the t and φ

dependence of S2 is added. Note that the soft survival factor does not significantly

affect the kinematic distributions of the central system and that in any case, the

model in [3] has an approximately flat t1,2 dependence for −t1,2 < (200 MeV)2 .

4.4.1 Sub Processes

The original three subprocesses available in ExHuME were Standard Model Higgs

boson production; direct production of a pair of (massive) quarks and direct

production of a pair of gluons. A recent study added gluino pair production [53]

and future work will include the 2 → 3 partonic level processes of gg → qq̄g,

gg → qq̄W , exclusive production of a pair of photons and χC production.

The cross section for gg → H used for Higgs boson production is

σ̂ (ŝ, y) =
α2

s

64π
g2

M2
W

λ (ŝ)

(∑
q

Fsf

(
ŝ/(4m2

q)
))2

(4.7)

where g is the electroweak coupling,MW is the mass of the W boson, mq is the

mass of the quark in the loop and the auxiliary function Fsf is given in equation

3.11. The total width, Γtot, and branching fractions of the Higgs boson are

calculated using the fortran program Hdecay [54], which is linked into ExHuME.

The Higgs boson line-shape function, λ (ŝ), is implemented as in [55]. A next to

leading order QCD correction factor, K is also used:
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K = 1 +
αs

π

(
π2 +

11
2

)
' 1.5. (4.8)

The differential cross sections for qq̄ and gg production [1,2], when averaged

over the gluon colours and polarisations (equation 2.36) and expressed in terms

of the angle θ between the outgoing partons and the beam direction are:

∂σ̂qq̄

∂ cos (θ)
=

4
3
πα2

s (ŝ)
ŝ sin4 (θ)

m2
q

ŝ

(
1− 4

m2
q

ŝ

)3/2

,

∂σ̂gg

∂ cos (θ)
= 18

πα2
s (ŝ)

ŝ sin4 (θ)
. (4.9)

It is more convenient to express equation 4.9 in terms of the angle θ in order to

produce a weighted distribution in θ (section 4.5).

4.5 Event Generation

The efficiency of event generation is n/N , that is, n events are generated for

every N attempts to generate an event, each of which requires the differential

cross section to be calculated. Ideally, the efficiency would be made as close to

one as possible in order that the differential cross section be computed as few

times as possible. If the gluon fusion sub-process is resonant production then

it would be very inefficient to simply pick the central mass
√
ŝ from a set of

uniformly distributed random numbers. For instance, a Standard Model Higgs

boson with a mass of 120 GeV has a width of 0.0036 GeV, so if the mass is

allowed to roam freely over a range even as small as a GeV it will very rarely fall

under the resonant peak.

To counter this, the random distributions of the kinematic variables can be

modified so that, for instance,
√
ŝ is most likely to be picked at the resonant mass.

Ideally the distribution of the random numbers for
√
ŝ would exactly match the

final output distribution. This distribution can be achieved by calculating the

following function:
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R
(√

ŝ
)

=

∫ ŝ
ŝ0

∂σ
∂ŝ′dŝ

′∫ ŝ1

ŝ0

∂σ
∂ŝ′dŝ

′
(4.10)

where ŝ is in the range {ŝ0, ŝ1}. R will always lie between 0 and 1 and the

weighted random distribution for
√
ŝ is given by

√
ŝ = R−1 (r) (4.11)

where R−1 is the inverse function to R and r is a random number distributed

uniformly in {0, 1}. This is shown in figure 4.8 where a set of uniform random

numbers on the vertical axis is mapped onto a Breit-Wigner distribution on the

horizontal axis using the integral of the Breit-Wigner shape.
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Figure 4.8: Producing a Breit-Wigner distribution for ŝ from a set of random
numbers distributed uniformly in {0, 1}.

ExHuME also uses this method to create a distribution for t1 and t2. Ignor-

ing the soft survival factor, the t dependence of the differential cross section is

eb(t1+t2). Using equation 4.10 for the t dependence gives

R (t) =
ebt − ebtmin

ebtmax − ebtmin
(4.12)

so that the weighted random number distribution used for t is
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t (r) =
1
b
ln
(
r
(
ebtmax − ebtmin

)
+ ebtmin

)
(4.13)

where r is a random number distributed uniformly in {0, 1}. Using this distri-

bution for t1 and t2 means that there is no need to reject events. Effectively the

rectangle around the peak in figure 4.2 has been replaced by the shape of the

differential cross section and the efficiency is one.

It is not always possible to evaluateR analytically and this is the case with the
√
ŝ dependence of the differential cross section. However, it is always possible to

evaluate R using numerical integration. ExHuME samples the differential cross

section and creates a look-up table of
√
ŝ indexed by R. The differential cross

section may be sharply peaked, so the look-up table is created in three iterations.

The first iteration calculates R at even intervals in
√
ŝ, while the second and

third iterations use the previous iteration of the look-up table and pick further

points evenly spaced in R so that the map is most detailed in regions where the

differential cross section is most sharply peaked. The beauty of this method is

that, unless the differential cross section is exceptionally pathological, it is valid

for any process. The same technique is used to sample the integrand in equation

2.41 for the numerical integration over Q2
t .

In constructing the map, the differential cross section is sampled over the

region of interest and the results are used to replace the rectangle of figure 4.2

with an approximation to the shape of the differential cross section (figure 4.10).

It is possible that the approximate fit might clip the top off the true shape of the

function; if ExHuME encounters such a point it will add a new point to the shape

of the fit and re-calculate the volume.
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Figure 4.10: A resonant differential cross section and an approximate fit to it.
The fit clips the top of the true function.

The efficiency of event generation for production of a resonance is usually
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around 40% and is almost independent of the allowed mass range that is chosen.

For example, even if the mass range is set between 50 and 1000 GeV for 120

GeV Higgs boson production, the efficiency is around 38%, compared to 39%

if the allowed mass range is set to be 120±1 GeV. The reason that the efficiency

is around 40% and not much higher is because the central rapidity is chosen

from a uniform distribution. This has to be done because the rapidity of an

event is not independent of its central mass; a higher central mass permits a

larger rapidity range. Figure 4.11 shows the cross section result that would be

obtained for each event were the simulation to be stopped at that point, as well

as the standard deviation of that result. The speed with which the cross section

converges towards the final result is sufficient to engender confidence in the

result, with fluctuations of less then 1% by the 10,000th event and reasonable

convergence with 1000-2000 events.
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Figure 4.11: Convergence of ExHuME over 10,000 events for Higgs boson pro-
duction (MH = 120 GeV). The top plot shows the evolution of the cross section
measurement, σi, towards the final cross section result σf . The lower plot shows
the standard deviation of the result versus number of events generated.

4.5.1 Parton Shower and Hadronisation

ExHuME produces a partonic system such as a Higgs boson or a pair of quarks.

To evolve the parton level system to a stable final state system that reaches the

detector, a parton shower and a hadronisation routine are needed. ExHuME

passes this duty to the Pythia Monte Carlo generator [56]. Happily, there is no

initial state radiation to take account of in central exclusive production, so all

66



that is necessary is for ExHuME to pass the four vectors of the outgoing partons

to Pythia make the necessary colour connections and execute Pythia’s parton

showering and hadronisation routines.

A parton shower routine uses the Sudakov form factor that gives the probability

that a parton does not radiate between two given scales. The parton shower has to

be cut off at some lower scale limit to avoid entering the non-perturbative regime.

The Sudakov form factor is used, then, as the generating function for a Monte

Carlo distribution of the scales at which the partons do split, with the condition

that the emitted partons are well ordered in virtuality; higher virtuality partons are

radiated first. The non-perturbative hadronisation model is used once the parton

shower has been run down to the lower cut off scale. Pythia uses the colour string

model in which strings under tension are stretched between all colour connected

objects. Once the energy stored in the string is sufficient to create a new pair

of coloured objects the string “snaps.” For further details of the Pythia parton

shower algorithm and hadronisation model see the Pythia manual [56].

4.6 Results from ExHuME

4.6.1 Higgs Boson Production

The cross section for central exclusive production of a 115 GeV Standard Model

Higgs boson at the Tevatron is predicted to be around 0.2 fb. Two such Higgs

Bosons would therefore be available in the combined integrated luminosity col-

lected by CDF and DØ over the course of the Tevatron Run II. Results for Higgs

boson production shall therefore be shown for the LHC only. The Higgs boson

production cross section at Higgs boson masses between 100 and 200 GeV is

shown in figure 4.12. Note that if the Higgs boson has a mass of around 140

GeV or more then the H → WW channel may well prove the most favourable

for studying the Higgs boson, especially given that it will be far easier to trigger

on aW jet rather than a b jet at the LHC [57].

Figure 4.13 is shown only for the purpose of verifying that ExHuME has

correctly reproduced the resonant peak. The rapidity distributions of the Higgs
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Figure 4.12: Standard model Higgs boson production cross section taken from
ExHuME. The CTEQ6 PDF set gives a slightly higher cross section than the MRST
2002 set. At masses around 180 GeV the H → ZZ decay channel starts to
become significant, which is why the WW channel falls away from the total
production cross section at that point.

boson and its most forward decay product at a mass of 120 GeV are shown

in figure 4.14 and confirm that most of the cross section lies entirely within a

rapidity range of ±4. The rapidity of the most forward decay product from a 150

GeV Higgs boson in the WW ∗ channel (all W decay modes) is also given for

comparison in the same figure and shows that the different decay mode makes

little difference to the rapidity coverage of the event.

The centrally peaked rapidity distribution of the Higgs boson is caused by

the gluon distributions favouring the lowest possible x; figure 4.15 shows the x

distributions for a 120 GeV Higgs boson. Given that the product x1x2 = m2
H/s,

there is an upper limit to the lower of the two x values, xMin and a lower limit to

the larger of the two x values, xMax. These limits correspond to the zero rapidity

case xMin = xMax = mH/
√
s ' 0.009 for a 120 GeV Higgs boson at the LHC.

Since xMax < 1, xMin is constrained to be between m2
H/s and mH/

√
s and the
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kinematically allowed range of xMin is far smaller than that for xMax. The gain

in gluon flux due to picking xmin below the limit is then more than offset by the

loss in gluon flux caused by having to pick xMax above the limit to maintain the

same central mass. This correlation between the x1,2, which favours a central

distribution of the Higgs boson rapidity, has led to an increase in the predicted

detector acceptances [58] for the proposed forward proton tagging system at

the LHC over other models in which the Higgs boson rapidity distribution is

flatter [59].

The t distribution of the protons is shown in figure 4.16 and, as expected,

returns the simple t dependence of ebt used. Adding a more complicated t depen-

dence to the soft survival factor will create correlations in the transverse momenta

of the outgoing protons and could change the proton tagger acceptances given

in [58].
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Figure 4.13: Mass of the centrally produced 120 GeV Higgs boson.

A cone algorithm defines a jet to be all particles lying within a cone of a

specified radius. The radius, Rc, of the cone at rapidity η and azimuthal angle φ

is defined as
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Figure 4.14: The rapidity of a 120 GeV Higgs boson (bottom left) and the rapidity
of the most forward particle (outgoing protons excepted) for a 120 GeV Higgs
boson in the H → bb̄ channel (top right) and 150 GeV Higgs boson in the
H →WW channel (bottom right).

R2
c = (∆η)2 + (∆φ)2 (4.14)

where ∆η and ∆φ are the extent of the cone in η − φ. Since rapidity is additive

under Lorentz boosts, the size ∆η of the cone is independent of the rapidity at

which the cone lies. Cone algorithms locate the centre of the cone by iteratively

merging or clustering neighbouring particle four-vectors.

An overlap parameter specifies how much of the energy inside one cone may

be derived from particles already lying inside other jets. The pxcone [60] cone
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Figure 4.15: The x distributions for a 120 GeV Higgs boson.

algorithm with a cone radius of 0.7 and overlap parameter of 0.5 was run on the

final state output from ExHuME and the ET distribution of the largest jet is shown

in figure 4.17.

4.6.2 Direct b Jet Production at the LHC

A major background to exclusive Higgs boson production at 120 GeV will be the

direct production of a pair of b flavoured jets. This is suppressed by a factor of

m2
b/m

2
H , so the higher order processes with additional gluon radiation, which are

not suppressed, may be very important. However, 2→3 partonic processes [61]

have not yet been implemented in ExHuME, although it is anticipated that they

will be added in the near future. For this reason only the 2→2 background to

Higgs boson production will be shown here.

The cross section for production of a bb̄ pair at the LHC with an allowed

central mass of between 119 and 121 GeV (the proton taggers are expected to

have a mass resolution of 1 GeV) in ExHuME is 2.65 fb using the MRST 2002

PDF set [23]. Figure 4.17 shows that the 1/E4
T dependence of the gg → qq̄

cross section produces an ET distribution that is completely different from the

signal of isotropic decay of the scalar Higgs boson, H → qq̄. A cut on the

ET of the jets can therefore be made to increase the statistical significance,

signal/
√

(signal + background). The significance versus the ET cut for an inte-
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Figure 4.16: The t distribution for a 120 GeV Higgs boson.

grated luminosity of 1 fb−1 is shown in figure 4.18, which reveals that an ET

cut should be made at approximately 32 GeV and that at least 25 fb−1 of total

integrated luminosity will be required for a 5σ discovery of the Higgs boson us-

ing central exclusive production. Further backgrounds such as inclusive double

pomeron exchange and exclusive bb̄g production exist. This, together with the

fact that the LHC experiments will not be able to trigger on and record every

event and that any forward proton taggers will have a finite acceptance in x1,2

and t1,2, will mean that more than 25 fb−1 will be needed.

The central detector will not be perfect at identifying b flavoured jets, and

a certain number of jets that arise from gluons will be miss-identified as b jets.

This will further increase the background to Standard Model Higgs production,

depending on the b-tagging efficiency. However, the central exclusive production

of a pair of gluons has the same 1/E4
T dependence as the production of a pair

of quarks, so the ET cut should still be made at 32 GeV. The cross section given

by ExHuME for the production of a pair of gluons with a total central mass of

between 119 and 121 GeV is 24 pb.
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Figure 4.17: The ET of the largest ET jet for a 120 GeV Higgs boson in the
H → bb̄ channel (bottom left) and the background of direct bb̄ pair production
with a central mass between 119 and 121 GeV (bottom right). Also shown is
the largest jet ET from a 150 GeV Higgs boson in the H → WW ∗ channel (top
right).

4.6.3 Di-Jet Production at the Tevatron

Central exclusive production is not a feasible search channel for the Higgs boson

at the Tevatron, but higher rate process can still be studied in order to validate

the model. Such processes include exclusive χC production [62] and exclusive

di-photon production [9], although the lower mass of those systems may call

into question the leading order perturbative QCD calculation of central exclu-

sive production. The highest rate process, however, should be hadronic di-jet

production.

Half a million qq̄ and gg events were generated using ExHuME, with the

type of parton being in proportion to its cross section. The events were allowed

to have a central mass in the range {10, 80} GeV with a minimum transverse
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Figure 4.18: The statistical significance in σ per fb-1/2 of integrated luminosity1/2

Vs. the lower cut on ET that is made.

momentum for the outgoing partons of 3 GeV. Gluon production dominated

with the largest cross section of 2.8×106pb and, since the quark production cross

section is proportional to the quark mass squared, bb̄ production was the only

other notable contribution with a cross section of 7.0×103pb. The pxcone cone

algorithm with a cone radius of 0.7 and an overlap parameter of 0.5 was run on

the final state system in order to identify jets.

The central mass distribution from ExHuME is shown in figure 4.19 and reflects

both the fall in the differential luminosity with
√
ŝ and the 1/ŝ2 dependence of

the central gg → gg cross section. Figure 4.19 also demonstrates that, especially

for low mass events, not all of the final state particles will be identified with a

jet. If a cut is made on the largest jet ET of 7 GeV then many events are lost and

the distribution has a peak at around
√
ŝ = 20 GeV, even though, with a lower

√
ŝ limit of 14 GeV one might expect most events to contain one quark with an
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ET above 7 GeV at the parton level. The ET cut does not affect the upper end

of the
√
ŝ distribution. The ET distributions of the first and second jet are shown

in figure 4.20 and show that the ET of the second jet closely matches the first.
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Figure 4.19: The total central mass from ExHuME di-parton events with an al-
lowed mass range of 14 to 80 GeV. The top left shows all events, top right shows
all events in which there was a jet with ET >7 GeV, bottom left shows ET >15
GeV and bottom right shows ET >25 GeV.

A central mass of 15 GeV out of a collision energy of 2000 GeV at the

Tevatron requires approximately the same x1,2 as a central mass of 120 GeV at

the 14,000 GeV collision energy of the LHC. It should not be surprising then that

the x distributions for di-jet production (shown in figure 4.21) and the rapidity

coverage of the event (shown in figure 4.22) are similar to those for standard

model Higgs boson production in section 4.6.1. The xMin distribution for the

di-jets shows a kink at around 0.0075, roughly where the xMin distribution for
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Figure 4.20: The ET distributions of the largest jet from ExHuME (top left) and
the second largest jet (top right). Bottom left shows the ET distribution of the
second jet when there is a cut of 7 GeV on the ET of the first jet, and the bottom
right shows the same with a cut of 15 GeV.

the 120 GeV Higgs boson fades out. The difference arises because the upper

limit that was set on the central mass is very tight in the case of Higgs boson

production, but at 80 GeV is loose for the di-jets. This allows a region above

xMin = 7 GeV/
√
ŝ where x1 and x2 can be equal and still obey the mass cut.

The rapidity distributions of figure 4.22 show that, without a lower jet ET

cut, there are many soft events in which the entire event is confined to within

one unit of rapidity. Once the jet finder has been run and a jet ET cut is made,

these soft events disappear. Figure 4.22 also shows that most of the cross section

lies within DØ’s rapidity coverage of ±5.2, although a significant amount of the

cross section lies outside of DØ’s central region of approximately ±3.2 that has
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full coverage.

The particle multiplicity in figure 4.23 shows that the final state particles will

have an average of around 0.5 GeV of energy. Again, cutting on the jet ET

removes those events in which there were fewer than two jets.
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Figure 4.21: The largest (left) and smallest (right) x in the event.

The di-jet mass fraction,Rjj , is defined asMjj/
√
ŝ, whereMjj is the invariant

mass of the di-jet system. In central exclusive production, Rjj is expected to

approach unity. However, the jet finder does not include all of the particles in

the event in the di-jet system andRjj will be peaked below one. This is especially

true for low mass events in which the jets are soft. Figure 4.24 shows how cutting

out the softer jet events forces the Rjj distribution to the right.

With the ability to simulate central exclusive production at both the Tevatron

and the LHC comes the possibility to test the simulation against data that has been

and continues to be taken at the Tevatron. The remainder of this thesis describes

the DØ experiment at the Tevatron and efforts to make the first observation of

central exclusive production at DØ.
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Chapter 5

The DØ Experiment

5.1 The Tevatron

The Tevatron (figure 5.1) is a circular accelerator with a circumference of ap-

proximately 6.3 km that provides proton on anti-proton collisions to two general

purpose physics detectors on the Tevatron ring. These detectors are the Collider

Detector at Fermilab (CDF) and the DØ experiment. The later was used to obtain

the data used in this thesis.

Before entering the Tevatronmain ring, protons are sourced from hydrogen gas

that has been ionised with an electric spark. The H− ions are accelerated across

a series of gradients to an energy of 400 MeV and are also forced into bunches

of around 1011 protons. The electrons are removed from the H− ions, and the

resulting proton bunches are transferred to a circular booster, which accelerates

them to an energy of 8 GeV. After the booster comes the Main Injector and

finally the Tevatron ring itself. Anti-protons are produced by colliding 120 GeV

protons from the main injector with a nickel target. These collisions produce a

spray of many different particles, most of which are pions and not the desired

anti-protons. The small number of anti-protons that are produced, however, can

be isolated using a magnetic field.

Protons orbit the Tevatron at a rate of around 48 kHz, steered by 1.7 Tesla

magnets. The main Tevatron ring accelerates protons to 0.98 TeV, giving a centre

of mass collision energy of 1960 TeV. Quadrupole focusing magnets on either
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side of DØ squeeze the proton and anti-proton beams so that they have a smaller

cross section at the intersection point inside DØ. The time interval between bunch

crossings at DØ is 396 ns and there are 36 bunches of protons in the beam.

Figure 5.1: The Tevatron at Fermilab. Figure adapted from [63]
.

5.2 The DØ Detector

DØ is a general purpose physics detector with a typical “onion” structure of

several detector layers, which, from the centre out are: tracking system; solenoid;

calorimeter; toroidal magnet and finally the muon detector. In addition there is

also a luminosity monitor between the tracker and the calorimeter. The scale of

each of these components is shown in figure 5.2. The coordinate system used

at DØ is such that the protons travel in the positive z direction, the x direction

points from the centre of DØ towards the centre of the Tevatron ring and the y

direction is straight up. For an overview of DØ and its components during the
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Figure 5.2: The DØ detector [64].

Tevatron run II please see [64].

5.2.1 The Central Tracker

The central tracker is the inner-most part of DØ and was designed to accurately

pinpoint the tracks of any charged particles and, as a result, measure their trans-

verse momentum. There are two trackers: an outer central fiber tracker (CFT),

which produces 8 points along the track with a resolution of 100 µm and an

inner silicon microstrip tracker (SMT), which adds around 4 high precision points

to the track and massively improves the overall track measurement giving a res-

olution of 15 µm for a charged particle with 10 GeV of transverse momentum.

Both the CFT and SMT sit inside a 2 Tesla solenoidal magnet. Charged particles

follow curved trajectories inside the magnetic field, which allows the sign of the

charge and transverse momentum of the particle to be inferred from the direction

and radius of the track’s curvature, R = p⊥/ (0.3B), with B = 2 T and p⊥ the

transverse momentum.

The SMT consists of four concentric barrels around the beam pipe with 12

so-called F discs perpendicular to the beam. The most forward F disc is 53.1
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cm from the centre of the detector, and the most forward barrel is 31.8 cm from

the centre. There are a further four larger H discs forward of the F discs at a

pseudo-rapidity of approximately 2.5. Each F disc has a radius of 9.96 cm and

consists of 12 wedge shaped double sided silicon sensors. The barrel layers are

at radii of 2.72, 4.55, 7.58 and 10.5 cm around the beam and are composed of

either single or double sided “ladders” of sensors. The inner two layers of the

barrel have twelve ladders, the outer two layers have twenty four. The H discs

have a radius of 26 cm and consist of 48 single sided wedge shaped sensors

mounted in pairs back to back.

Silicon sensors are around 0.1 mm thick and consist of a layer of n-type

doped silicon bonded to a layer of p-type doped silicon, or un-doped silicon for

the single sided sensors. The layers of silicon are etched into thin strips, the strips

in the different layers being at an angle to each other in the double sided sensors.

An electric field is created across the silicon layers by applying a negative voltage

to the p-type side, which annihilates some of the holes. A positive voltage is

similarly applied to the n-type side. When a charged particle passes through the

sensor it excites the silicon atoms to create electron-hole pairs, which are pulled

apart in the electric field and collected on each side of the sensor. Since the

silicon strips on opposite sides of the double sided sensors are at an angle to each

other, the position at which the charged particle passed through the plane can

be determined from the n and p type strip that collected the charged electron or

hole respectively. There area a total of nearly 8× 105 channels to read out on the

SMT. For further details of the SMT please refer to [65].

The CFT has eight cylindrical layers around the beam pipe, with the inner

and outer most layers having radii of 20 cm and 52 cm respectively and having

a pseudo-rapidity coverage of approximately ±1.7. Each layer of the CFT hold

four layers of 835 µm thin scintillating fiber. Two of the four layers run parallel

to the beam direction, with one layer offset from the other. The other two layers

are at an angle of 3◦ to the first two layers.

When a charged particle passes through the scintillating material, photons of

visible light are produced, which are counted to provide a signal. The combi-
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Figure 5.3: The silicon microstrip tracker [65].

nation of fibers that are lit up in each cylinder gives an intersection at the point

where the charged particle passed.

5.2.2 The DØ Calorimeter

The calorimeter was designed to completely absorb the energy of any (Standard

Model) particle that enters it (other than a muon or a neutrino) and ultimately pro-

duce an electronic signal of collected charge that is proportional to the particle’s

energy.

The calorimeter is composed of cells, of which there are over 60,000. Each

cell contains a grounded plate made of dense absorbing material with which

the passing particles interact, slow down and produce a shower of secondary

particles. A readout sheet in the cell has a surface that is maintained at a high

voltage (2000 Volts), which creates an electric field between the readout sheet

and the grounded absorber. The shower particles leave an ionisation trail as

they pass through the liquid argon in which the absorber and readout sheet are

immersed. The ionisation trail drifts in the electric field, taking approximately

450 ns to cross the 2.3 mm gap between the absorber and readout sheet.

The absorber material is 238U, chosen for its high density and because neu-

trons in the showers, which would otherwise go undetected, induce fission in
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the 238U. During Run I, which had a bunch crossing interval of 3.5 µs, the

charge of the fission products could be collected and used to compensate for

the undetected energy of any neutrons. However, Run II has a bunch crossing

interval of 396 ns, so the charge integration time was reduced and the fission

products do not arrive in time. Note also that the bunch crossing interval is less

even than the drift time for the ionised trail in the liquid argon and the charge is

therefore integrated over a time of approximately 260 ns, so not all of the signal

charge can be collected.

The calorimeter cells are arranged into three distinct sections, each within its

own cryostat that keeps the liquid argon at 90K; the central calorimeter covers

a pseudo-rapidity range of approximately {-1, 1} and the two end calorimeters

covering approximately {±1, ± 5}. The region between the central and end

cryostats contains the intercryostat detector (ICD), which uses scintillating mate-

rial to give a measure of the energy lost through the intercryostat region. Within

the cryostats the calorimeter cells are arranged in a tower structure of approxi-

mately constant pseudo-rapidity (figure 5.4).

Electro-magnetic (EM) showers, those arising from the interactions of charged

particles or photons with the electrons in the calorimeter, are shorter than

hadronic showers, which come about from the interactions between hadrons

and the atomic nuclei of the calorimeter. The first four layers of the calorimeter,

therefore, make up the EM calorimeter and at three to four mm thick have thinner

absorption layers than the rest of the calorimeter. The next two to four layers form

the fine hadronic (FH) part of the calorimeter and have an absorber thickness of

six mm. The last three (one in the central calorimeter) layers compose the coarse

hadronic (CH) calorimeter and have 46.5 mm thick copper or steel absorption

plates.

In most of the calorimeter there are 64 cells around the azimuthal axis, with

each cell covering 0.1 in pseudo-rapidity. The exceptions to this are the regions

forward of η = 3.2, in which the cells are larger, covering a span of 0.2 in φ and

between 0.14 to as much as 0.85 in η for the most forward cells. This reduction

in granularity will not, in any case, affect this analysis as, for reason explained
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in chapter 7, events were required to have no activity forward of η = 3.2. The

other part of the calorimeter that has a different cell size is the third layer of the

EM calorimeter, where the cells are more granular to give a better resolution of

the EM jets.

The energy resolution during run I for a pion in the calorimeter as a function

of the pion momentum is shown in figure 5.5.

Figure 5.4: The calorimeter in cross section [64]. The interaction point is in the
bottom left corner and only a quarter of the calorimeter is shown.

5.2.3 The Luminosity Monitor

The luminosity monitor (LM) consists of a disc of scintillating material mounted

on each of the end calorimeters. An inelastic pp̄ collision will usually result in

radiation passing through the LM, which enables the total number of pp̄ colli-

sions to be estimated. The total inelastic cross section is related to the forward

elastic scattering amplitude, so the integrated luminosity collected can then be

estimated. The LM additionally permits a so-called fastz measurement of the z

position of the interaction vertex from the time interval between the hits in the

north and south luminosity monitors. The rate at which beam halo passes through

the LM is also monitored, with so-called AHalo an PHalo bits available to record

whether there was halo activity on the Anti-proton or Proton sides of DØ .
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Figure 5.5: The energy resolution of the central calorimeter for a pion and an
electron during Run I, taken from [66]

Figure 5.6: The luminosity monitor [64] showing the 24 plastic scintillating
wedges, the PMTs (red dots) and the beam line in the centre.

Each LM disc has a pseudo-rapidity coverage of 2.7 to 4.4 and consists of 24

15 cm long wedges at a distance of 140 cm from the centre of DØ . The light

produced in the wedges is detected by photo-multiplier tubes mounted on the

face of the discs. Figure 5.6 shows a LM disc.

5.2.4 The Muon System

Unlike electrons, muons produced with energies typical to the Tevatron do not

emit sufficient bremsstrahlung radiation to come to a halt within the calorimeter.

At energies above 1 GeV, muons do not lose a great deal of energy to ionisation,
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either, and being colourless, do not interact strongly with atomic nuclei. A muon

with an energy of around 3 GeV is said, then, to be a minimum ionising particle,

or MIP and will pass through the calorimeter. A detector is therefore required to

surround the calorimeter and identify the outgoing muons.

The muon system [64,67,68] is comprised of the central muon system, which

has a pseudo-rapidity reach of approximately 1.0 and two forward muon systems,

which cover the pseudo-rapidity region out to around 2.0. Both the central

and forward muon systems consist of three layers; A, B and C, with a toroidal

magnet between the innermost A layer and the middle B layer. The toroidal

magnet produces a 1.9 Tesla magnetic field within its yoke, which bends the path

followed by any muons passing through it. The deflection observed between the

A layer and the B and C layers can be used to gain a further measure of the

muon’s transverse momentum, although after already having passed through the

calorimeter the momentum will not be the same as at the interaction vertex.

The sensors used in the central muon system are proportional drift tubes

(PDTs). The PDTs are tubes with a wire anode running through the centre and

cathodes mounted on the inner sides of the tube above and below the anode.

A gas composed of 84% argon fills the chamber and is continuously pumped

through the detector such that the entire volume of gas is replaced three times a

day (the gas is, of course, purified before being recycled back into the detector).

When a muon passes through a PDT it ionises the gas, leaving the charge to be

collected on the anode held at 4.7 kV and the cathode held at 2.3kV over a drift

time of less than 500 ns. The B and C layers of the central muon system have

three decks of PDTs, while the A layer has four. There are 94 PDTs in total in the

central muon system.

The forwardmuon system uses mini drift tubes (MDTs) instead of PDTs. MDTs

work in essentially the same way as PDTs, but contain eight anode wires. As with

the central muon system, there are three layers with a toroidal magnet between

the innermost A layer and the middle B layer.

The calorimeter needs a support structure underneath. This support structure

must pass through the bottom side of the central muon system, so there is a region
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Figure 5.7: The muon tracking system [64].

without muon coverage on the underside of DØ. Figure 5.7 shows the structure

of the muon system.

The muon system additionally uses scintillators [68], which are much faster

to readout that PDTs, to assist in triggering and the identification of muons arising

from cosmic rays striking the upper atmosphere. The central muon system has

240 scintillation counters attached to the outer-most layers on the top and at the

sides and 132 counters on the underside of DØ. If a muon from a cosmic ray

passes through DØ it can be identified if it is not in time with the bunch crossing

or if the time difference between the scintillator signal on opposite sides of DØ

is consistent with a cosmic muon. The forward muon system has a total of 4608

counters mounted on three layers at both the north and south ends of DØ. The

scintillation counters can additionally aid in the identification of beam muons

that occur as a result of interactions between the beam halo and the beam pipe.

5.2.5 Triggering

At a bunch crossing rate of over 2.5 MHz it is not possible to read out in full every

channel from every event and write that data to tape, nor would it be desirable
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to do so, since the majority of bunch crossings do not contain any interesting

physics. DØ uses a full three level trigger to decide which events are interesting

and reduce the rate at which events are written to tape to around 50 Hz.

The L1 trigger decision must either be made faster than the interval between

bunch crossings, as was the case in Run I, or, while waiting for the L1 trigger

decision the full data read out from every DØ channel must be buffered in a

pipeline. Due to the increased bunch crossing rate for Run II, the level 1 trigger

was upgraded to a pipelined trigger. The rate at which data is passed from the L1

trigger to the level 2 (L2) trigger is less than 2kHz.

The L1 calorimeter trigger has available to it the total ET in the calorimeter as

well as missing ET and the energy in 12 EM towers and 1280 hadronic towers. A

set of thresholds exist, and if, for example, the totalET is greater than a threshold,

or the energy of a tower is greater than another threshold then a L1 trigger bit is

set. L1 bits are combined to make the decision. For instance, the JT_15TT_GapSN

trigger that will be used here requires two towers with more than 3 GeV of energy

and the FastZ, pHalo and AHalo bits must be off, that is the luminosity monitor

did not fire. The significance of the LM not firing is that there were no proton

remnants in the forward direction so, if there was any interaction at all it was

highly likely that the protons remained intact and the reaction was a diffractive or

forward elastic event. The absence of activity in the forward region is a so-called

rapidity gap.

The L2 trigger, having received data from L1, constructs more complicated

objects. For instance, instead of using simple towers, the L2 trigger constructs

simple jets from clusters of towers. The maximum rate at which events can be

passed from L2 to the level 3 (L3) trigger is 1 kHz. The L3 trigger is a farm of

around 100 dual cpu commodity PCs. One cpu deals with one event at a time.

L3 has access to the full data read out of DØ and can execute complex software

algorithms, such as the full cone jet algorithm. Many types of events occur so

frequently that they fulfill the criteria to be accepted by L3 more often than the

50 Hz rate at which data can be written to tape. The rate of jet production, for

example, is so high that the 8 GeV jet trigger rate is too high. Many lists of trigger
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criteria therefore have a pre-scale applied, that is will only accept a fraction of

the events that would otherwise be accepted. Once an event has been accepted

by L3 it is written to tape for off-line reconstruction and analysis.

5.2.6 The Forward Proton Detector System

The Forward Proton Detector (FPD) system at DØ consists of 18 “Roman Pot”

detectors - so-called because of their similarity in appearance to an ancient urn -

arranged into nine spectrometers. Figure 5.8 shows the layout of spectrometers.

Figure 5.8: The FPD system at DØ [69]

On both the north “A side” (the Anti-protons strike the pots on this side) and

the south “P” side (the Protons strike this side) there is a set of quadrupole spec-

trometers. Each spectrometer consists of two Roman pot detectors separated by

a distance of 10 metres along the beam line, with the nearest pot at a distance of

23 metres from the centre of the DØ coordinate system at the nominal interaction

point. This distance puts the spectrometer past the three sets of quadrupole mag-

nets that focus the beam for collisions within DØ. The effect of the quadrupole

magnets on protons moving away from DØ is to spread the beam, and protons

that have been given a momentum transverse to the beam (t1,2) at the interaction

point end up being deflected out of the beam by a small angle. If the transverse

momentum and subsequent deflection is large enough then the proton will end

up passing through both the first and second quadrupole pot of the spectrometer.

This leaves a track that can be reconstructed to give the longitudinal momentum

loss (x1 or x2) and the transverse momentum squared (t1 or t2). There are four
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such quadrupole spectrometers on both sides of DØ; one above and below the

beam-line and one next to the beam line just inside and outside of the ring. The

four sets of quadrupole pots are called A1, A2, P1 and P2, denoting the first and

second sets of pots on the A and P sides.

The quadrupole spectrometers on their own do not give complete angular

coverage because there is a lower limit on the transverse momentum that the

proton can be given and still end up being bent into the pot. The dependence of

the cross section on t1,2 is approximately

∂σ

∂ti
' ebti (5.1)

with b = 4 GeV−2, so the region of most significant cross section is low t, the very

region that the quadrupole spectrometers cannot probe. For this reason, a dipole

spectrometer was also installed on the A side at a distance of 57 metres from

DØ, which is past the first beam bending magnet. The beam bending magnet

has been set up to bend a proton with 980 GeV of energy around the beam

line, but any proton that has lost some energy will be bent out of the beam. The

dipole spectrometer compliments the quadrupole spectrometers by providing full

angular coverage on the A side.

In order to maximise the x1,2 and t1,2 coverage, the proton detectors should be

as close to the beam as possible without causing too much disruption to the beam

itself through interaction with the halo of particles that surround it. However, at

the beginning of a store while the beam is being inserted into the Tevatron ring,

the position and size of the beam are not stable. For this reason, the pots are

attached to winding motors that can push them towards the beam or retract them

to their safe home position. The usual procedure at DØ is to insert the pots to a

position close to the beam once the instantaneous luminosity, LI , of the Tevatron

has fallen to or below LI = 45 × 1030 cm−2s−1 (1030cm−2 = 10−6pb−1). The

Beams Division keep the Tevatron running at as high a luminosity as possible for

as long as possible. As of September 2006, the peak instantaneous luminosity

achieved during run II at the Tevatron is LI = 229 × 1030 cm−2s−1 and a store

will routinely begin with a luminosity of LI = 70× 1030 cm−2s−1 or more. This
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means that there is only a limited period of time at the end of each beam store

during which the pots can be inserted into their operating positions and used to

take data. Since continuous high luminosity running began in 2006, the pots

have therefore not been used.

The position to which the pots can be inserted is limited by both the halo

rates at DØ and CDF and the rate with which the pots themselves are struck by

protons. As a general rule, if the halo rate increases by more than 10% then the

pots are causing too much disruption to the beam, and if the scalar rate for the

pots is continuously above 350 kHz then the pots are at risk of damage. Usually

the position of the quadrupole pots would be limited by the halo and the dipole

pots would be limited by the rate at which they are struck. The beam position

and size changes between stores (and even within stores), so the pots are not at

the same position for each store. Figure 5.9 shows the outcome of positioning a

(CDF) pot too close to the beam!

The proton detectors use scintillating fibres arranged in planes within a thin

window of steel in the pot, which separates the scintillating material at atmo-

spheric pressure from the ultra high vacuum of the beam pipe. The active area is

17.39× 17.39 mm2. There are six planes of fibres in each detector labelled u, u′,

v, v′, x and x′. The x axis runs along the edge of the window closest to the beam,

with the fibres in the x plane lying along the y direction perpendicular to the x

axis. There are 16 fibres in the x plane (figure 5.10) and the fibre width is around

0.8 mm (fibres can swell over time), which leaves a gap of 0.3 mm between each

fibre. There are 20 fibres in the u and v planes lying at ±45◦ to the x plane. The

primed planes are identical to the unprimed planes, but are offset by one third

of a fibre width. This results in 112 channels to read out per pot and a total of

2016 channels for the entire FPD system. The layout of fibres in a pot is shown

in figure 5.10.

In order to make accurate measurements of x1,2 and t1,2, the positions of the

pots relative to the beam are needed. The next chapter explores the possibility of

using the distribution of proton hits themselves to determine the location of the

beam with respect to each pot.
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Figure 5.9: Photograph of damage caused to a Tevatron beam collimator [70].
On the 5th of December 2003 there was a malfunction of a CDF pot, causing it
to move from its safe home position to a point beyond its maximum safe inward
position. The pot did not actually collide with the beam, but interactions with the
beam halo caused a shower of particles that heated the nearby super-conducting
magnets, which quenched. The loss of steering magnets caused the beam to hit
and bore a hole through the tungsten collimator target shown, as well as melt
a hole several centimetres deep through a much thicker steel collimator. The
resulting heating and deposition of beam energy around the Tevatron ring caused
sixteen out of the twenty eight Tevatron stations to quench - the largest quench
ever experienced at the Tevatron.
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1

Figure 5.10: The u (top left) v (top right) and x (bottom) planes of fibres [71].
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Chapter 6

Proton Hit Patterns in the Forward

Proton Detectors

Typically, the positions of the forward proton taggers would be determined by

fitting the data to the elastic pp̄→ pp̄ peak in the cross section. However, elastic

collisions produce nothing in the central detector that can be used to trigger

the detector, so either a special run of data taking must be made or the FPD

system itself must be able to trigger the electronics. This could prove especially

problematic for the proposed FP420 system [30] at the LHC because the decision

to trigger in the central detector lies outside of the light cone of the corresponding

hit in the proton taggers at 420 m. Similarly, at DØ, a large amount of data was

taken when the pots were present, but no trigger was available for them. It would

therefore be desirable to have a method for obtaining the pot positions without

needing to trigger on proton hits in the proton taggers.

The hope in this analysis was that the distribution of (anti)proton hits in the

pot window could be used to determine how far the beam was from the pot.

The beam is roughly elliptical in cross section and so should be surrounded by

elliptical contours of approximately equal proton flux. Over the course of a run

at DØ this should be revealed in a pot window as a set of contours along which

the density of proton hits is constant. One would expect many such contours

and by fitting curves to all of them it might be possible to determine the position

of the centre of the beam line from the centres of the elliptical curves.
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6.1 Reconstruction of the Proton Hit Positions

The raw fibre hit information from the pots is available in a ROOT [72] file format,

from which the proton hit positions had to be reconstructed. To discriminate

between fibres that are on and fibres that are off a pedestal file is needed. A

pedestal for each fibre channel is determined by measuring the amount of signal

charge collected in one bunch crossing interval when there is no beam in the

Tevatron. The pedestal file contains the average charge and the standard deviation

of the distribution of charges collected for each fibre and can be extracted from

data files in the DØ online system.

The raw fibre readings were compared to the pedestal and if the reading was

4 standard deviations or more above the pedestal average then the fibre was

declared to be on. If more than five fibres were on in a single pot layer then the

pot was deemed to be bad for that event and the entire pot was said to be off and

was ignored. Five fibres could be lit up either because a large number of halo

protons passed through the pot window or simply because of random noise. In

any case, such an event would contain so many hits in the pot that it would be

useless. A map was used mapping the fibres’ numbers to their positions in the

plane. Mapping corrections were needed to account for differences between the

fibres’ ordering in the data file and their physical ordering in the layer.

Having determined the positions of the lit fibres, the intersections of those

fibres were found as follows: if the intersection is between a u and a v fibre then

the x and y coordinates in the pot window are given by

x =
1
2

(−u + v)

y =
1
2

(u + v) (6.1)

whereas if the intersection is between a u and an x fibre then:

y = x + u (6.2)
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or if the intersection is between a v and an x fibre then:

y = −x + v. (6.3)

It is possible for several intersections to arise from a single proton, either

because of the overlapping fibres in the primed and unprimed planes or because

a proton could pass through a u, v and x fibre to leave a triangle of close

intersections (figure 6.1). Any intersection points lying within 1.62 mm of each

other (approximately two fibre widths) were therefore merged recursively to form

a single point at the average position.

x

u

v

Figure 6.1: The intersection of three nearby fibres that are merged to form a single
hit at the centre of the circle.

Over the course of a run the position of each proton hit in each pot window

was recorded and a density plot of the proton hits was made (figure 6.2). The

number of protons hitting a region of the pot window should be proportional to

the proton flux through the pot at that point, so figure 6.2 contains an image of

the beam halo profile together with the diffractive signal distribution.

The dipole pot windows show a clear structure of a lobe of (red) proton flux

poking into the pot window from the edge nearest the beam on the left hand

side. This oval profile approximately corresponds to the shape of the beam.

The quadrupole spectrometers, however, show no such obvious structure to

the pattern of hits, either because of noise or the much larger halo rate in the

quadrupole spectrometers. Figure 6.2 shows three images overlaid: the hits from
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the diffractive signal, the beam halo and detector noise. Each contribution may

produce a distinct structure in the pot. There will normally only be at most one

signal proton produced on each side per bunch crossing, so if there are two or

more hits in a single pot in a single event then at least one of those hits is caused

by either beam halo or noise. Conversely, those events in which there was at

most a single hit in each pot should have an enhanced contribution from the

diffractive signal distribution over the beam halo distribution. Plotting the proton

flux for only those events in which there was a single hit therefore improved the

definition of the lobe in the dipole pots (figure 6.3). No structure was revealed

in the quadrupole pots.
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No Protons

Many Protons

Figure 6.2: Proton flux patterns in the Roman pots. Left hand column shows the
A side spectrometers, with the dipole at the top and A2 at the bottom, and the
right column shows the P side quadrupole spectrometers, with P2 beneath P1.
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Figure 6.3: Proton flux in the D1 dipole pot window. The left hand density
plot shows all proton hits; the right hand plot shows those hits from events that
contained only a single pot hit. There is a clear enhancement to the definition of
the image of the lobe structure of the proton flux in the right hand plot.

6.2 Least Squares Fitting of an Ellipse

The oval shaped beam profile visible on the left hand side of the pot windows

in figure 6.3 raises the possibility that analysis of such images may provide an

alternative method to fitting the elastic pp̄ → pp̄ peak for locating the position

of the beam in relation to the pot window. Naively, one expects the beam

profile to be a circle centred on the nominal centre of the beam. Beam magnets,

collimators and separators modify the shape of the beam so it is not circular, so

the next simplest beam shape is an ellipse centred on the nominal beam centre.

Finding the centre of an ellipse fitted to the flux distribution of figure 6.3 therefore

gives a measurement of the position of the beam in relation to the pot, which is

crucial in making accurate measurements for x1,2 and t1,2.

The pot window was divided up into a grid of 10×10 square bins, each of

side 1.739 mm. After finding the proton hits for each event over the course of

a run, the number of hits in each bin was counted (figure 6.4). A run typically

contains around 100,000 events, but after selecting only those events in which

there was a single pot hit only around 5000 events would remain. The set of

points {x, y} lying on an ellipse obey the equation
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Figure 6.4: A schematic of the pot window divided into bins showing the number
of proton hits in each bin. An ellipse has been fitted through those bins with 7
hits and the centre of the beam lies at the centre of the ellipse. There are many
such elliptical curves that could be fitted through points with equal hit rate.

(x− x0)
2 + e2 (y − y0)

2 = r2 (6.4)

where the centre of the ellipse is at {x0, y0}, e is the eccentricity of the ellipse

and r is the length of one of the axes. The ellipse of equation 6.4 has its axes

parallel to the x and y axes of the coordinate system, so in general there is one

more degree of freedom to rotate the ellipse. A minimum of five points with

the same number of hits is therefore needed to define an ellipse, and in fact the

method used here requires six points [73], yet very few of the bins contained

precisely the same number of hits as another bin.

The solution is to interpolate points between the centres of adjacent bins.

So, for example, if a bin with 10 hits lay next to a bin with 13 hits then points

would be generated at one third and two thirds of the way along the line joining

the centres of the two bins, corresponding to points with 11 and 12 hits. In this
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Figure 6.5: A set of points in the pot window all with the same proton flux.

way, many sets of points in which each point has the same number of hits was

generated. An ellipse may be fitted to each set that contains six or more points.

One such set of points to which it is possible to fit an ellipse is shown in figure

6.5.

The ellipses were fitted using the method of direct least squares fitting de-

scribed in [73] that involves finding the eigenvectors of a 6×6 “constraint” matrix.

This method has the advantages that it is fast (it is not an iterative method) and is

guaranteed to converge upon a bounded elliptical solution for any set of six or

more points. Figure 6.6 shows some ellipses that have been fitted to ten points

chosen at random using the C++ implementation that was written for the fitting of

the pot hit data. When the data points lie exactly on an elliptical path (left plot)

the fitting routine works perfectly to recreate that curve, even if the data points

only lie on a small section of the ellipse. The middle and right hand plots of

figure 6.6 show ellipses that are fitted to points that have been smeared randomly

by ±10% from a true elliptical curve. So long as the points are distributed all the

way around the ellipse (middle plot) the fit is good. If the points are clustered

towards one end of the ellipse (right-hand plot) and are also smeared then the fit

tends to underestimate the true eccentricity of the ellipse as a result of enforcing

a closed loop. This has consequences for the pot calibration because the pot can
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only ever sample a small section of the beam profile.

Data Point

True Ellipse

Fitted Curve

Figure 6.6: Ellipses fitted to ten smeared points. The left hand figure shows
points that lie exactly on an ellipse, and the resulting fitted curve exactly matches
the true ellipse, even though the points only lie along a small section. The
middle figure shows points that have been smeared about an ellipse, but which
nevertheless lie all around the ellipse. The middle curve is a good fit to the true
ellipse. The right hand figure shows smeared points that lie only in the upper half
of the ellipse. The fitted ellipse underestimates the eccentricity of the true ellipse
in this last case.

To eliminate some of the low eccentricity fits made to noisy data points,

ellipses were only fitted to sets of points for which the number of proton hits was

five or more. Further, and any ellipse with an eccentricity of less than two was

discarded. Any ellipse with a centre that lay inside the pot window 3 mm or

more from the edge closest to the beam was also discarded because the beam

itself should never pass through the pot window.

AMonte Carlo sample of pot fibre hits in the dipole spectrometer from 10,000

events was provided using the simulation in [74]. The simulation used the 2003

positions and strengths for the beam magnets, compared to the data which was

taken in 2004. The difference in magnet strengths and positions explains the

difference in shape between the proton flux image for the simulation (figure 6.7,

left-hand plot) and the data (figure 6.2). The proton hits in the first dipole pot
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were reconstructed as in section 6.1 using the same code as used for the data

and the ellipse fitter was run on the resulting points. Two distinct families of

ellipses were visible in the Monte Carlo sample. One set was almost circular

and contained almost entirely within the pot window. A second set had a much

greater eccentricity and extended outside the pot window. The first of these

sets was attributed to fits to a small number of points near the edge of the pot

window and, given that they lay entirely within the pot, could not be related to

the position of the beam. To distinguish between these two groups of ellipses,

any ellipse with an eccentricity of less than two or with a centre that lay more

than 3 mm inside the pot window 3 mm was discarded.

After selecting on eccentricity, a set of 102 elliptical curves was found that

satisfied all requirements. The ellipses with the largest and smallest eccentricities

are shown in figure 6.7, together with the proton flux through the pot window.

Since the direct least square fit method tends to underestimate the eccentricity of

the true ellipse, the most eccentric ellipse found should give a lower limit to the

eccentricity of the true ellipse. This also means that the beam is further from the

pot than the centre of the most eccentric ellipse.

The beam in the Monte Carlo simulation lay at a distance of 8.72 mm from

the edge of the pot window, which is shown by a red line. The centre of the

largest ellipse, shown with a black dot, lay 8.66 mm from the pot window. The

x coordinate of the centre of the ellipse was 10.55 mm.

The ellipse fitting method can provide a useful limit on the position of the

beam under the ideal noise and background free conditions of a Monte Carlo

sample. In contrast, real data contains both noise and halo background. The

code was applied to the raw fibre data for 66,854 events from run 195802,

selected because of its typical number of events; if the method was to work for

most runs then it would have to work for this one. The resulting proton flux plot

and ellipses are shown on the right in figure 6.7.

The fit to the data has not produced a reasonable position for the beam, with

the centre of the most favourable ellipse lying 1.00 mm inside the pot window.

There are two major causes of this: unavoidable noise in the detector smears
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Figure 6.7: Ellipses fitted to Monte Carlo sample of diffractive pot fibre hits (left
plot) and fibre hits from data (right plot). In the Monte Carlo plot the most
eccentric ellipse is also the one with its centre furthest from the pot. The centre
of this ellipse (black dot) coincides almost exactly with the beam position (red
line). The centre of the ellipse shown in the right hand plot was the furthest from
the pot of any of the ellipses found. The least eccentric ellipse found is also
shown in both cases.
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the data points to which the ellipses are fitted and results in an underestimation

of the semi-major axis length; and the data contains beam halo and diffractive

signals overlaid. The beam halo lies in a “halo band”; halo protons tend to have

correlated coordinates in both pots in the spectrometer because halo protons

travel parallel to the beam, whereas signal protons travel at an angle to the beam.

The halo protons will then reveal themselves in a scatter plot of y1 versus y2 as

a correlation band, where y1 is the y position of the hit in the first pot and y2 is

the y position of the hit in the second pot. Rejecting hits which lie near the halo

band (or only taking hits from within the halo band) will then select the signal (or

halo) ellipses. Alternatively, it may be possible to extract the halo directly from

the proton flux plots of figure 6.2. It is unlikely that two signal hits would occur

in the same event, so any event with two hits almost certainly contains one beam

halo or noise hit and one hit which is either diffractive signal, noise or halo. By

subtracting the image for events with only a single hit from the image for two hits

it should be possible to arrive at the image left in the pot by the halo and noise

alone.

It is also possible to improve the ellipse fitting algorithm so that it is less

sensitive to noise. A method for reducing the low eccentricity bias of the elliptical

fits is given in [75], which takes the direct least square fit as a starting point and

improves upon it iteratively.

To summarise, it has been shown that density maps of the proton flux through

the pot window can be made and that, for the dipole pots at least, there is a

visible structure to the proton density that corresponds to the profile of protons

around the beam. Ellipses were fitted to contours of equal proton density in a

sample of simulated events and data. In the simulated events it was found that,

no matter which contour was used to fit the ellipse, the centre of the fitted ellipse

always lay closer to the pot than the true centre of the beam line. The fitted

ellipses did, however, follow the visible contours of equal proton flux within the

pot and the ellipse with the centre furthest from the pot did approach the beam

centre. In the simulated events, then, the fitted ellipses can be used to provide a

point that is always closer to the pot than the nominal beam centre. The major

108



axis of the fitted ellipses also pass through or close to the centre of the beam. In

the data, however, the fitted ellipses are biased towards lower eccentricity due

to smearing of the number of proton hits. It is therefore still true that the centre

of the fitted ellipse is never further from the pot than the centre of the beam,

however, in this case the ellipse centre lay inside the pot, which clearly cannot

have been the beam position. Much more analysis and development would

therefore be needed to account for the smearing and low eccentricity bias before

this proposed technique could ever be used.

The method propsed by the FP420 collaboration to determine the proton

tagger positions at the LHC is to use the Beam Position Monitors (BPM), which

are necessary in any case for monitoring the position of the extremely high-

momentum proton beam. However, given that triggering on elastic pp̄ collisions

will be difficult (if not impossible) at 420 metres, a method similar to this that uses

the data from the pots themselves to determine the pot positions may provide an

alternative in the absence of the BPM.
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Chapter 7

Search for Exclusive Di-Jets at DØ

Having seen in section 4.6.3 that it is possible to test ExHuME, and the calculation

upon which it is based, against di-jet production at the Tevatron, pp̄→ p+ jj+ p̄,

this chapter describes attempts at DØ to isolate some exclusive di-jet events. The

aim of this preliminary analysis was to select events with a di-jet system that

contained a large fraction, Rjj , of the total mass available in the calorimeter. The

distributions in figure 4.24 reveal that making a cut on the transverse momentum,

P⊥, of the leading jet isolates high Rjj events in an exclusive sample, albeit at

the expense of the available cross section. By measuring the proton longitudinal

momentum losses, x1,2, in the calorimeter rather than by using the proton taggers

(the positions of which were not known for data taken at DØ, in any case) it

was possible to apply a relatively high P⊥ cut yet still probe the low x1,2 region.

Using the quadrupole spectrometers, on the other hand, would force a cut on

x1,2 because they do not have acceptance down to very low x1,2.

The proton longitudinal momentum losses, x1,2, were approximated by xcal1,2

using the following summations over the calorimeter cells with rapidity yi and

transverse momentum P⊥i
[76]:

xcal1 =
∑
cells

P⊥i
eyi/

√
s,

xcal2 =
∑
cells

P⊥i
e−yi/

√
s. (7.1)
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Then the total invariant mass of the central system,
√
ŝ, is approximately

√
ˆscal

√
ˆscal ≈

√
xcal1xcal2s. (7.2)

This analysis searched for events with
√
ŝ < 80 GeV with at least one jet. The

data used was taken during 2004 in the run range 188324 to 195839.

7.1 Candidate Event Selection

7.1.1 Inclusive Background Simulated with Pomwig

The main theoretical background to central exclusive production is inclusive di-

jet production through double Pomeron exchange or Reggeon exchange. The

Pomeron and Reggeon emerge as trajectories in Regge theory [77]. In the limit

that s � t it can be shown [25] that the amplitude, A for a 2 → 2 scattering

process relates to the collision energy s as follows:

A (s, t) ∝ sα(t) (7.3)

where α (t) is the location in the complex angular momentum plane of a pole

in the partial wave amplitude at a given value of t. Partial wave amplitudes are

used as the coefficients of the Legendre polynomials in an expansion of a cross

section or amplitude in terms of its angular momentum states, or the contributions

from those states. The total cross section is proportional to the forward (t = 0)

scattering amplitude, so there are two possibilities: if α (0) < 0 then the total cross

section will fall with increasing s or if α (0) > 0 then the total cross section will

rise with s. It is found that there are “trajectories” of α (t) that are linear in t and

provide different contributions to the cross section. The Pomeron trajectory has

α (0) > 0, whereas reggeon trajectories have α (0) < 0. The pomeron trajectory

corresponds to the exchange of a particle with the quantum numbers of the

vacuum. In QCD, the existence of the pomeron is explained as a “ladder” of

gluons (figure 7.1). However, the pomeron behaviour derived from aQCD ladder

does not explain the softer s dependence of the total pp→ ppcross section.
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Figure 7.1: A ladder of gluons.

In double Pomeron exchange, shown in figure 7.2, each of the (anti)protons

emits a colourless spin-zero Pomeron and the protons themselves remain intact,

just as in central exclusive production. Gluons from each of the Pomerons fuse

to form a di-jet system and the remnants of the Pomerons also produce jets,

which are normally forward of the central jets. In the case that the Pomeron rem-

nants are small or evade detection forward of the calorimeter’s coverage, double

Pomeron exchange has a very similar signature to central exclusive production.

A challenge for studies of central exclusive production is therefore separating the

double Pomeron from the central exclusive production.

Pomwig [78] is a Monte Carlo simulator of events involving single or double

Pomeron exchange and has been tested against date from the Tevatron and HERA,

see for example [22] for recent data fromHERA. Pomwig was used here to provide

a simulation of the double Pomeron exchange background.

7.1.2 Triggering

Events were selected that had the JT_15TT_GapSN trigger on, which requires two

3 GeV calorimeter towers and both the south and north luminosity monitor to be

off at Level 1 and a jet with at least 15 GeV of transverse momentum at Level 3.
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Figure 7.2: Production of a di-jet system through double Pomeron exchange
showing the remnant jets from the Pomerons.

In a sample of jet events found with a trigger that is independent of the jet

trigger, the jet trigger efficiency is defined as the fraction of events in which the

jet trigger is active. The efficiency of the inclusive 15 GeV jet trigger without

the luminosity monitor requirement is shown in figure 7.3 and shows that the

jet trigger turns on sharply at around 15 GeV but is approximately flat for jets

with ET > 20 GeV. At jet transverse energies below 20 GeV the trigger is biased

towards higher transverse energies. There are therefore two reasons why the

leading jet was required to have ET > 20 GeV: it ensures there is no bias due

to the trigger and, as shown in figure 4.24, it also favours high Rjj events. The

JT_15TT_GapSN trigger has a prescale in the range of 2 to 40, however this does

not affect the shape of kinematic distributions shown in this chapter.

7.1.3 Calorimeter Calibration and Noise

The energy that is deposited in a calorimeter cell is not identical with that reported

by the readout electronics. Not only that, but each individual calorimeter cell

has a different response to the same energy deposition. However, due to the

symmetry of the calorimeter about the φ direction, the φ distribution of the energy

deposited in the calorimeter over many bunch crossings should be isotropic. It is

therefore possible to derive a set of calibration constants for the calorimeter cells

that, when used to multiply the recorded cell energies, account for anisotropies
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Figure 7.3: The Level 3 jet trigger efficiency taken from [64] showing the turn on
at a jet transverse momentum P⊥ of about 15 GeV.

in the calorimeter response. The calibration constant for the ith calorimeter cell

may be approximated by Ci as follows:

Ci '
Etot

NEi
(7.4)

where N is the number of calorimeter cells that lie within the same layer and at

the same pseudo-rapidity as the ith cell, Etot is the total energy that is reported to

be deposited in theN cells over the course of many bunch crossings and Ei is the

total energy that is reported to be deposited in the ith cell over the same bunch

crossings. Applying such a calibration constant to the calorimeter cell energies

flattens the φ distribution of the energy deposited in the calorimeter.

A similar calibration can be applied in the longitudinal direction by using

a sample of di-jet events. For a given jet PT and radius, the distribution of

energy across the jet (known as the jet profile) should be the same for jets in two

different parts of the calorimeter. Since a jet spans several cells with different

pseudo-rapities, by forcing the jet profile to the same shape at all points in the

calorimeter a callibration constant can be obtained.

Calorimeter calibration constants for calorimeter cells were provided in a
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file [79] for the central calorimeter (|y| < 1). The calorimeter cell energies were

adjusted by multiplying by the calibration constant, where available.

Fluctuations in the grounding of the absorber in the calorimeter cells and cross

talk between cables produces noise in the energy measurement of a cell; even

when no radiation entered the cell it will still report a small (O(100 MeV)) energy

deposition. Even a small amount of noise can make quite a large contribution to

the ŝ measurement if the event is boosted and the noisy cell is on the other side

of the calorimeter to the boost direction. For example, if there is a low mass jet

with three-momentum pjet and a noisy cell that reports a small energy En with

momentum −Enpjet/ |pjet| then the calculated ŝ is approximately ŝnoise:

ŝnoise ' 2
√
En |pjet|. (7.5)

A noise threshold is therefore required, below which cells are not included in jets

or in the calculation of ŝ. Cell thresholds of 200 MeV and 400 MeV were used

in the EM and FH layers of the calorimeter respectively [80]. In addition, the

CH and ICD layers were discarded because of their high noise content. Ignoring

the noisy CH and ICD layers should not affect the Rjj measurement a great deal

since the missing contribution to the di-jet mass cancels to some extent with the

missing contribution to ŝ.

The “ring of fire” is a known problem with the DØ calorimeter in which all

cells in a ring of the same pseudo-rapidity report a large (O(10 GeV)) energy

deposition (figure 7.4). Ring of fire events are eliminated in double diffraction,

however, because the ŝ that is calculated from such a signal is too large to pass the

diffractive cuts. Ring of fire events were also vetoed by discarding bad luminosity

blocks (LBNS), which was done by removing all events for which the LBN was

listed in [81].

7.1.4 Jet Finder

The active cells in the calorimeter were combined into towers of the same φ and

η and the pxcone cone jet algorithm, available as part of the hztool library [60],

was run on the resulting set of four vectors. A jet radius of 0.7 with a maximum
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Figure 7.4: A “Ring of Fire” noise signal in the calorimeter.

overlap between jets of 0.5 was set. At least two jets were required to be identified

in the calorimeter, and, as already explained in the introduction to this chapter

and in section 7.1.2, the jet with the largest P⊥ was required to have at least

20 GeV of transverse momentum.

A jet energy scale (JES) correction would ideally be used to account for the

loss of measured energy through holes and dead material in the calorimeter and

to project the measured jet onto a particle level jet. However, the JES determined

by [82] assumes that the event is non-diffractive and has no rapidity gap and

hence includes the effect of both a soft underlying event and pile up on the jet

energy. The JES correction is therefore not valid for diffraction [83, 84] and was

not used. In any case, the JES will cancel in the numerator and denominator of

Rjj to some extent.

7.1.5 Gap Cut and x Correction

A rapidity gap cut at y = ycut requires that there be no activity in the calorimeter

forward of ycut above that permitted by the noise threshold. Diffractive events

are those for which ŝ � s and, in principle, no ycut need be specified in order

to define a diffractive event. However, the calorimeter does not have unlimited
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rapidity coverage, so it is possible for radiation to evade detection in the forward

regions, which results in an underestimation of the values for xcal1,2 . To ameliorate

this situation, a gap cut was made so that any events with activity above the noise

threshold towards the edge of the calorimeter were vetoed. If there is activity right

at the edge of the calorimeter then it is likely that there is also activity outside of

the calorimeter. Conversely, if there is no activity near the edge of the calorimeter

then it becomes less likely that there is a significant amount of radiation beyond

the calorimeter, other than the outgoing protons.

Requiring a rapidity gap also suppresses pile up and any soft underlying

event (section 2.3), which should not exist for double pomeron exchange or

central exclusive production. This is because any interactions in addition to

the diffractive process of interest are likely to fill in the rapidity gap. This cut

can pose a challenge when calculating the total integrated luminosity, which is

necessary for the calculation of a cross section, however, since data taken at a

high instantaneous luminosity is more likely to contain pile up and thus more

events that are vetoed by the gap cut.

By running the Pomwig Monte Carlo, the generated proton momentum losses

xtru1,2 can be compared to xcal1,2 (equation 7.1) and a table of the generated x1,2

versus the xcal1,2 reconstructed from final state particles emitted into the region

of geometrical acceptance of the calorimeter can be produced. Pomwig was

used to generate double diffractive di-jet events with an xtru1,2 range of 0.01 <

x1,2 < 0.06, which corresponds to an
√
ŝ range of 20 GeV <

√
ŝ < 120 GeV.

A minimum P⊥ for the hard scatter of P⊥ >14 GeV was also set to improve the

efficiency of the Pomwig generation without affecting the results.

The three-vectors of the final state hadrons output by Pomwig were adjusted

to lie along the nearest calorimeter tower and any particle with less than 1 GeV

of energy or lying outside of the geometrical acceptance of the calorimeter was

discarded. Adjusting the three-vectors and keeping the particle on shell resulted

in a corresponding adjustment of the particle’s energy and smeared the energy

distribution of the particles. The jet finder was run on the resulting system of

particles and events were selected with the lead jet P⊥ >20 GeV. For each event
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Figure 7.5: The fraction of events with xcal/xtru <0.7 versus the rapidity gap cut
that is made.

the ratio xcal/xtru was calculated.

In order to determine an optimum value for ycut a succession of rapidity

gap cuts in the range 2.0 < ycut < 5.5 were made on the Pomwig events and

the fraction of events that had xcal/xtru < 0.7 was calculated in each case, as

shown in figure 7.5. A larger rapidity gap requirement results in more reliable

estimates for x1,2 by rejecting those events that are likely to have a poor value

for xcal/xtru. The improvement in the estimate for x1,2 comes at the expense of

the total number of events left after the cut is made. Based on figure 7.5, the gap

cut in this analysis was made at ycut = 3.2 since a larger gap cut (i.e. lower ycut)

does not significantly improve the x1,2 reconstruction.

Scatter plots of correction factor xcal/xtru versus xcal with ycut = 3.2 are

shown in figure 7.6, together with the average and 1 σ band for the distributions

of points. It is possible to use figure 7.6 to correct the xcal1,2 reconstructed from

data back to the true x1,2, in which case the 1 σ band, which is approximately

0.2 wide, leads to a significant uncertainty of around 20% on the measurement

of the x1,2. Note that this uncertainty disappears if forward proton taggers are

used to measure x1,2 directly, which is a key requirement for making an accurate
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Figure 7.6: A scatter plot of the ratio xcal/xtru versus xcal from 100,000 Pomwig
events for the largest (left) and smallest (right) in the event. A gap cut of 3.2 was
made on both sides of the calorimeter and the largest jet was required to have
a PT >20 GeV. The average correction is shown as a line together with the 1 σ
band for the distribution.

measurement of the central exclusive production cross section. In any case, this

preliminary analysis uses uncorrected data points. Figure 7.6 shows a rise in the

average value of xcal/xtru with increasing xcal and in the left hand panel there is

a diagonal boundary, to the bottom right of which lie no points in the scatter plot.

This is a result of the Monte Carlo being run with xtru < 0.06, so as xcal → 0.06

xcal/xtru → 1.

7.1.6 Kinematic Cuts

A cut was made on the values of x1 and x2 such that

x1,2 < 0.04 (7.6)

which corresponds to an upper limit on the total invariant mass in the

calorimeter of approximately 80 GeV. Were x corrections to be made a central

mass of 80 GeV would be expected to give a true central mass of approximately

100 GeV. These cuts on x1,2 therefore satisfy the expectation for diffractive events

that 1 �
√
ŝ/s ' 0.05 This xcal distributions for the selected events are shown

compared to Monte Carlo (see next section) in figure 7.16
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Since |t1,2| .1 GeV2, the vectorial sum of the total P⊥ in the calorimeter

should be less than 2 GeV. However, calorimeter noise makes such a cut too

tight, so a cut on total PT in the calorimeter of 10 GeV was made.

7.2 Monte Carlo Comparison

Along with 9.5 million Pomwig di-jet events, 10 million di-jet events were gen-

erated in ExHuME in the central mass range 29 GeV <
√
ŝ < 120 GeV. The

strategy employed to ensure exactly the same analysis was applied to the Monte

Carlo samples as to the data was to format the Monte Carlo samples so that they

were in an identical format to the data and the same analysis program could

be run on both. In order to do this, the particle four-vectors from Monte Carlo

were adjusted slightly so that they aligned with the nearest calorimeter cell. This

also resulted in a smearing of the Monte Carlo particle ET s. Any Monte Carlo

particle that lay outside of the geometrical acceptance of the calorimeter was

also discarded.

The cross sections for the Pomwig and ExHuME samples before and after

analysis (summarised in section 7.4) are shown in table 7.1. Note that the

Pomwig cross sections given in table 7.1 do not include a soft survival factor,

whereas ExHuME uses a soft survival factor of 0.045 at a centre of mass energy

of 2TeV. The soft survival is an unknown parameter and, although there is no

known reason why the soft survival should be vastly different between ExHuME

and Pomwig, a soft survival for Pomwig of S =0.1 was explored, along with

S =0.045.

7.3 Threshold for Particle Detection

One of the effects that could cause non-exclusive di-jet events to appear to be

exclusive at DØ would be if the calorimeter systematically failed to detect soft

radiation below a certain threshold. The missed soft radiation would then not

be present in the calculation of ŝ and the value of Rjj would appear larger than

it should. Clearly, there is some threshold below which radiation cannot be
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Before Analysis After Analysis

Events (Generated) Cross Section [pb] Events (passed cuts) Cross Section [pb]

Threshold [GeV] 1 2 1 2

Pomwig 9.5×106 5×104 28121 23266 187000 155000

ExHuME 107 2×104 10881 6199 21800 12400

Table 7.1: Monte Carlo cross sections and number of events before and after
analysis. The ExHuME cross sections include a soft survival, S, of S =0.045,
whereas the Pomwig values do not.

detected. At the very least, the 200 MeV cut on cell energy to reduce noise

implies that no particle with less than 200 MeV may be observed. The true

threshold below which particles cannot be observed may be much higher.

The question then arises: how big does the threshold have to be before non-

exclusive (Pomwig) di-jets appear to be exclusive? To attempt to answer this, the

Monte Carlo samples were adjusted by discarding all particles with energy Ei for

which Ei < EThresh. Four different values for EThresh of 0.5, 1, 2, and 4 GeV

were applied to give four Monte Carlo samples for comparison with data.

7.4 Summary of Analysis cuts

The selection criteria and cuts applied to both data and Monte Carlo samples are

summarised here:

• Require JT_15TT_GapSN trigger to have fired (only applies to data).

• Require that the event is not present in the list of bad luminosity blocks.

• Remove from the data all EM calorimeter cells with less than 200 MeV

of energy and EM calorimeter cells with less than 400 MeV. Equivalently,

remove from the Monte Carlo sample all particles with energy less than

0.5, 1, 2 or 4 GeV.

• Require no radiation forward of y = 3.2.
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• Require xcal1xcal2 < 0.0016 (equation 7.1), corresponding to approximately
√

ˆscal < 80 GeV.

• Require xcal1 < 0.04 and xcal2 < 0.04.

• Run the cone algorithm with a radius of 0.7 and an overlap parameter of

0.5 on the calorimeter towers. Require at least two jets and the highest ET

jet must have ET > 20 GeV.

• Require the calorimeter to have missing ET no greater than 10 GeV.

7.5 Results

Out of the 300 runs processed 126 events passed all cuts. The distribution of

the angle φjj between the two leading jets in each event (figure 7.7) verifies that

the 126 candidate events contain a back-to-back di-jet system. Unless otherwise

stated, all curves shown in this section are normalised to unit area. Since the data

is not corrected for acceptance and other detector effects, the error bars indicate

statistical uncertainty only.

Figure 7.8 shows the Rjj distribution for the data compared to Pomwig with

particle thresholds of 0.5, 1, 2 and 4GeV. The Pomwig prediction only fits the data

in the 4 GeV case. An important issue for this analysis is therefore to determine

whether the 200 and 400 MeV noise cuts on the calorimeter cell energies could

possibly imply that DØ would fail to detect a particle with less that 4 GeV of

energy. Although a properly functioning calorimeter should not fail to observe a

particle with close to 4 GeV, such a threshold would allow Pomwig to describe

the data and must be completely ruled out in order to conclusively show central

exclusive production.

To this end, the jet finder with a cone radius of R = 0.015 was run on both

the Monte Carlo sample and the calorimeter cells in the data. Such a cone radius

is slightly larger than the DØ calorimeter cell size and should correspond to one

calorimeter tower per jet. Figure 7.9 shows the energy spectrum of theR = 0.015

jets for data and Pomwig with thresholds of 0.5, 1 and 4 GeV on the Monte Carlo
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particle energy. The lowest energy bins for each of the curves in figure 7.9 have

been aligned with each other because they all correspond to the lowest energy

tower that is detectable, whatever that lower threshold may be. The important

qualitative feature of figure 7.9 is that the distribution of tower energies from

Pomwig is too flat if a threshold of 4 GeV is used.

The total number of jets, using a jet radius of 0.7, is shown in figure 7.10.

Both Pomwig and ExHuME predict the correct relative numbers of events if a

particle threshold of 1 GeV is used. If a threshold of 4 GeV is used then further

particles are removed from each event and some of the three-jet events become

two-jet events. The Pomwig curve with a 4 GeV threshold does not fit the data

as well as the curve with a 1 GeV threshold.

The total number of R = 0.015 jets in each event, NP is shown in figure 7.11.

Neither a threshold of 1 or 4 GeV fits the data. If a threshold of 4 GeV is used then

Pomwig predicts there are no events with greater than 10 R = 0.015 jets, whereas

the data show events with over 50 such jets. Taken together, figures 7.9-7.11

suggest that Pomwig with around a 1 GeV threshold is a better description of the

data than a 4 GeV threshold.

Figures 7.12 to 7.14 show the Rjj distributions in data compared to Monte

Carlo with different soft survival factors and particle thresholds. Figure 7.12,

with equal soft survival and a threshold of 1 GeV provides the best fit to the

data. Figure 7.14, with a threshold of 2 GeV predicts an extremely large spike at

Rjj =1, although even in this case, Pomwig alone is insufficient to describe the

data.

Figure 7.15 show the rapidity distribution of the central system, with the

Monte Carlo predictions normalised so that they are aligned with the data points

at y =0. Both Pomwig and ExHuME with a threshold of 1 GeV provide a

reasonable fit to the data, although the combined plot with equal soft survival

factors is slightly better than either of the individual Monte Carlo curves.

Despite the similar rapidity distributions for ExHuME and Pomwig, the x1,2

distributions are quite different because central exclusive production favours a

lower central mass compared to double Pomeron exchange. This is shown
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in figure 7.16 where the observed xcal are plotted together with the Pomwig

and ExHuME predictions. Pomwig predicts that the maximum xcal value, x1

continues to rise past 0.04, whereas the data show that it flattens off, which

ExHuME predicts. Similarly, ExHuME agrees with the peak in the minimum x

value of about 0.02, whereas Pomwig predicts a peak at a somewhat higher value

of around 0.03.

Events were selected with Rjj >0.85, which is slightly to the right of the

crossing points of the ExHuME and Pomwig curves in figure 7.12. For these

events, of which there were 64 in total, the number in which the leading jet

had ET > E′T were counted for successive values of E′T from 20 to 35 GeV,

effectively giving the quantity σ (ET > E′T ) /σ (Rjj > 0.85):

σ (ET > E′T )
σ (Rjj > 0.85)

=
1
N

∫ ∞

E′
T

∂N

∂ET
dET . (7.7)

The quantity in equation 7.7 is shown in figure 7.17 for data, Pomwig and

ExHuME with particle thresholds of 1 GeV. In each case the first point has been

set to unity on the vertical axis. Pomwig and ExHuME are indistinguishable in

figure 7.17 and both provide a good fit to the data. The jet ET behaviour of

the so-called Saclay model, which is implemented in the DPEMC Monte Carlo

simulator [59], is expected to differ from that of the calculation implemented in

ExHuME. Quantities such as that in equation 7.7, as plotted in figure 7.17 should

show significant differences between ExHuME and DPEMC.

Finally, figure 7.18 shows the location of calorimeter activity above the noise

thresholds in the η-φ plane. The top diagram shows an event with moderate Rjj

of Rjj = 0.68, the region dominated by double pomeron exchange (Pomwig),

whilst the bottom diagram shows the event with the largest Rjj found in the data

set, which is indistinguishable from Rjj =1.
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Figure 7.7: The angle φjj between the two leading jets in data and Pomwig
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Figure 7.8: The observed Rjj distribution and the Rjj calculated in events gen-
erated by Pomwig with particle thresholds of 0.5, 1, 2, and 4 GeV
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from Pomwig with particle energy thresholds of 0.5, 1 and 4 GeV. The Pomwig
curves have been shifted to the left by the threshold values in order that they may
line up with the data.
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Figure 7.10: The Number of R = 0.7 jets, NJ , in each event in data, Pomwig and
ExHuME with 1 GeV particle thresholds. The number of jets is also shown for
Pomwig with a 4 GeV particle threshold.
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Figure 7.11: The R = 0.015 jet multiplicity, Np, in data and from Pomwig with
particle thresholds of 1 and 4 GeV.
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Figure 7.12: The di-jet mass fractionRjj . The Monte Carlo plots have a threshold
on particle energy of 1 GeV and Pomwig and ExHuME have equal soft survival
factors.
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Figure 7.13: The di-jet mass fractionRjj . The Monte Carlo plots have a threshold
on particle energy of 1 GeV. Pomwig and ExHuME have soft survival factors of
S = 0.1 and S = 0.045 respectively.
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Figure 7.14: The di-jet mass fractionRjj . The Monte Carlo plots have a threshold
on particle energy of 2 GeV and Pomwig and ExHuME have equal soft survival
factors.
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Figure 7.15: The rapidity distribution of the central system in data, Pomwig and
ExHuME.
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7.6 Discussion

Previous and on-going searches for central exclusive production made by the

CDF collaboration have concentrated on the lower Rjj region by requiring that

the leading jet has ET of only 10 GeV. As illustrated in figure 4.24, using a low

jet ET cut preserves many low Rjj events, which makes the excess at high Rjj

difficult to observe above the background of double pomeron exchange. Further,

CDF use forward proton taggers as a trigger criterion, which have acceptance

only for x > 0.03, whereas the expected x1,2 values for a di-jet system in which

both jets have ET = 10 GeV is around x1,2 ' 0.01.

Figures 7.12 to 7.14 all indicate that around 60 events have been found that

do not fit the Pomwig expectation for the Rjj distribution as Rjj → 1. Although

figure 7.8 shows that detector effects could explain the excess of high Rjj events,

the same figure also suggests that the DØ calorimeter would need to fail to

detect particles with 4 GeV of energy in order for this to be the case. Such a

failure would impact even the precision on the top quark mass measurement [85].

Further, figures 7.9, 7.11 and 7.10 do not agree with a 4 GeV threshold. Given

that double pomeron exchange does not describe the data in the high Rjj region,

another process must be introduced in order to explain the data. As simulated by

ExHuME, central exclusive production certainly can provide such an explanation

and a fit for the excess of high Rjj events. Although the high Rjj events are

not double pomeron exchange, whether they are truly exclusive may only be

determined by also observing the intact outgoing protons.

In figures 7.12 and especially 7.13 there is a deficiency between the combined

expectation for Pomwig and ExHuME and the data points at around 0.75 < Rjj <

0.95. However, ExHuME currently lacks the 2 → 3 partonic process, which will

almost certainly fill in the dip in the Rjj distribution once it is added in the near

future.

Further analysis, including a full detector simulation of the output from both

Pomwig and ExHuME, is essential in order to prove conclusively that the excess

events with large Rjj truly are central exclusive. Note that using the true x1,2,

known either by using the Roman pots or by calibrating against a full detector
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simulation Monte Carlo, will result in a shift to the left in the Rjj distributions of

figure 7.12 of approximately 0.2 to 0.3 for the data points and both sets of Monte

Carlo predictions. It will not be possible to determine the central exclusive cross

section to any great accuracy without using the Roman pots, since calibrating the

true x1,2 with a full Monte Carlo simulation will invariably result in a 20-30%

uncertainty (section 7.1.5).

If further analysis does show conclusive evidence for central exclusive pro-

duction then distributions such as those in figures 7.15 and 7.17 should be able

to distinguish between the KMR calculation implemented within ExHuME and

other estimations [59,86] for the central exclusive process.
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Chapter 8

Concluding Remarks

Central exclusive production could provide a uniquely clean environment in

which to study QCD or as yet unobserved processes that can be mediated by

gluon fusion. Chapter 3 gave details and predictions from two scenarios in which

central exclusive production could be a crucial discovery channel for observing

new phenomena. Central exclusive production could also prove invaluable in

determining the quantum numbers of newly discovered states [87].

Having shown that central exclusive production is useful and interesting,

it became necessary to produce a Monte Carlo simulation in order to make

predictions for both the Tevatron and the LHC. ExHuME, detailed in chapter 4

and appendix A, provides the only current simulation of the KMR calculation of

the central exclusive process.

The next few years promise to be both interesting and challenging for the

study of central exclusive production. While the analysis presented here provides

evidence for central exclusive production and similar analysis made by CDF also

produced strong evidence, exclusive di-jets must yet be fully confirmed at the

Tevatron by tagging the outgoing protons on both sides. The proposed FP420

project poses further challenges, noteably the lack of a diffractive trigger for

either forward gaps or the proton taggers, but would surely return great rewards

in terms of a clean measuring environment at the LHC. ExHuME should hopefully

continue to be a useful tool for analysis at the Tevatron and for overcoming some

of the challenges of FP420.
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One of the challenges faced by DØ was knowing the position of the proton

taggers in the absence of an elastic trigger and, unlike FP420, without a beam

position monitor. Chapter 6 explored the possibility of solving this problem using

the pattern of proton hits in the pots themselves.

In order to validate the ExHuME simulation, a comparison was made to data

taken at DØ for central exclusive di-jet production. The data show that there are

unexplained events with a high Rjj measurement. This is evidence that central

exclusive production is present and, further, ExHuME does not disagree with

the experimental distributions in any significant way. Despite this, it cannot be

concluded that central exclusive production has been observed and that ExHuME

is the correct description because the outgoing protons were not observed and

detector effects are not known completely. Crucially, however, ExHuME was

able to inform the analysis that a higher jet E⊥ cut and lower values of x1,2 may

lead to an improved separation between exclusive events and double Pomeron

exchange compared to the analysis carried out at CDF.
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Appendix A

The ExHuME Monte Carlo

A.1 Design

ExHuME is written in a modular way using C++. There are two main classes that

are needed to generate central exclusive events. The first is a CrossSection class

that calculates the differential luminosity, the gluon fusion sub-process and the

kinematics of any outgoing particles. The second class needed is an Event class

that generates the events.

A.2 The CrossSection Class

The CrossSection class exploits the factorisation of the cross section into a

central sub-process and a differential luminosity calculation. CrossSection

is an abstract base class containing the calculation of the effective luminosity

of the gluon-gluon collision with a virtual method for the gluon fusion sub-

process. Complete processes are created by inheriting from the CrossSection

and explicitly defining a sub-process. This makes it relatively simple to implement

new processes in addition to the currently implemented Standard Model Higgs,

di-gluon and di-quark processes.
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CrossSection Methods

The constructor for the CrossSection class is

CrossSection(int, char**),

which allows the user to pass a card file from the command line that changes

the default values used in the luminosity calculation (see Appendix A.5). The

constructors for the derived classes are Higgs(int, char**), QQ(int, char**),

GG(int,char**) or Dummy(int, char**) for Higgs, di-quark and di-gluon pro-

duction respectively. Dummy does not calculate a sub-process and can be used to

access the differential luminosity.

The invariant mass and rapidity of the central system and the momentum

transfers and azimuthal angles, φ1,2, of the outgoing protons can be set by the

CrossSection method

void SetKinematics(

const double &mass, const double &rapidity,

const double &t1, const double &t2,

const double &phi1, const double &phi2);.

The method

double Differential()

then returns the differential cross section. The 4-vectors of the outgoing pro-

tons can be accessed by the methods

HepLorentzVector GetProton1() and

HepLorentzVector GetProton2().

The sub-process parton level information can be extracted by the method
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std::vector<Particle> GetPartons()

which returns the outgoing particles from the gluon fusion matrix element prior to

decay, parton showering and hadronisation. The Particle class that GetPartons()

returns contains the particle momentum, p, the PDG ID code, id and vertex, vtx.

It is also possible to access the kinematics of the cross section by the following

methods:

double GetRoot_s();

Returns the invariant mass of the colliding beams.

double GetsHat();

Returns the invariant mass squared of the central system.

double GetSqrtsHat();

Returns the invariant mass of the central system.

double Getx1();

Gets the value of x1.

double Getx2();

Gets the value of x2.

double Gett1();

Gets the value of t1.

double Gett2();

Gets the value of t2.
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double GetPhi1();

Gets the value of φ1, the azimuthal angle between the outgoing proton 1 and the

x direction.

double GetPhi2();

Gets the value of φ2, the azimuthal angle between the outgoing proton 2 and the

x direction.

double GetEta();

Gets the rapidity, y, of the central system.

Hadronisation is performed via the method

void Hadronise()

which places the event record into an external hepevt common block that can

be written to file.

There are a number of sub-process specific methods. The Higgs decay type

can be set by the method

SetHiggsDecay(const int&)

with the PDG code of the decay products as the argument. Similarly the quark

type in qq̄ can be set by the method

SetQuarkType(const int&)

which defaults to bb̄ production. In addition, the GG and QQ classes contain

the method

SetThetaMin(const double&)
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which sets the minimum (and maximum) polar angle of an outgoing parton

relative to the beamline in the rest frame of the central system. The default value

is cos θ = 0.95.

A.3 The Event Class

The Event class generates events, calculates the total cross section and reports the

efficiency with which events were generated once event generation has finished.

Event contains a pointer to a CrossSection and the user specifies which sub-

process is to be generated in the constructor for the Event. A weighting algorithm

is initialised and used to return the mass distribution of the differential cross

section at a rapidity zero and is effective even for a narrow resonance such as the

Higgs. The variables t1 and t2 are distributed according to eb(t1+t2) whilst φ1, φ2

and y are uniformly distributed.

Event Methods

The event is defined by calling the constructor

Event(CrossSection& P, const unsigned int R),

where P is a CrossSectionwith the sub-process defined and R is a random num-

ber seed. There are a number of methods that can be used to set the kinematic

ranges of the parameters used to define the event:

void Setx1Max(const double&);

Sets the upper limit of x1.

void Setx2Max(const double&);

Sets the upper limit of x2.
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void Sett1Max(const double&);

Sets the upper limit of t1 (t ≤ 0).

void Sett1Min(const double&);

Sets the lower limit of t1.

void Sett2Max(const double&);

Sets the upper limit of t2.

void Sett2Min(const double&);

Sets the lower limit of t2.

void SetMassRange(const double & minimum, const double & maximum);

Sets the lower and upper limits of the mass range respectively.

The last method that is used before event generation is

void SetParameterSpace(),

which must be called in order to initialise the event generation. Individual events

are generated by the method

void Generate().

Finally, the total cross section from the events generated can be calculated by the

method

double CrossSectionCalculation()

and the efficiency via
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double GetEfficiency().

A.4 Using ExHuME

Installing ExHuME

The current version of ExHuME is 1.3.2, (major release . physics processes . bug

fixes ) and is available from [88] or on request from the authors. In its standard

form ExHuME must be linked at compilation to Pythia [56], CLHEP [89] and

either LHAPDF [51] or the CERN PDFLIB [90]. It would also be possible to

modify ExHuME to use Herwig [91] instead of Pythia for the hadronisation or to

use a stand alone PDF instead of either LHAPDF or PDFLIB. By default ExHuME

sets the location of the directory containing the grid or parameter files for LHAPDF

to be wherever the program is executed from. A symbolic link should be created

to wherever the grid and parameter files actually reside. For further information

please see the respective documentation for each of these programs .

Example Main Program

In this section we demonstrate a simple main program that generates 5000

H → WW ∗ events for a Higgs with the default mass of 120 GeV. We also

show how to extract simple information from the hepevt record.

The following headers are for ExHuME:

#include "Event.h"

#include "Higgs.h"

int main(int argc, char** argv){

Declare a new Higgs CrossSection:

Exhume::Higgs higgs(argc,argv);
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and set the Higgs to decay only to W bosons:

higgs.SetHiggsDecay(24); // 24 is the PDG code for W

Declare an event with the Higgs as the cross section and a random number

seed of 1111.

Exhume::Event HiggsEvent(higgs,1111);

The allowed range of gluon fusion invariant masses must be set. As long as the

range is much bigger than the width of the resonance the results will not be

sensitive to the range chosen. This is not the case whenever the central system

does not have a narrow width, for example in di-gluon and di-quark production.

In this example we set the mass range to be between 115 and 125 GeV, some 3

orders of magnitude larger than the Standard Model Higgs Boson width at 0.0036

GeV.

HiggsEvent.SetMassRange(115,125);

This must be called before event generation can begin:

HiggsEvent.SetParameterSpace();

double x1;

int Nobj;

std::vector<Exhume::Particle> HiggsInfo;

for ( int i = 0 ; i ! = 5000 ;i++i ){

The next line generates a single event:
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HiggsEvent.Generate();

Access the longitudinal momentum loss of proton 1 for this event:

x1 = process.Getx1();

and the information about the Higgs:

HiggsInfo = process.GetPartons();

Get the number of particles in the hepevt common block:

Nobj = hepevt_.nhep;

}

std::cout<<" Cross section = "

<<HiggsEvent.CrossSectionCalculation()<<std::endl;

std::cout<<" Efficiency of event generation = "

<<HiggsEvent.GetEfficiency()<<std::endl;

return(0);

}

The program allows (but does not demand) a card file to be given on the com-

mand line that overrides the default parameters. Such a card file could look like

HiggsMass 140

TopMass 180

which would be appropriate for investigating the effects of varying the higgs

and top masses.
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A.5 The ExHuME Control Parameters

ExHuME can be controlled by passing a card file from the command line that

can contain the control parameters given in table A.1. The collider can be set

to the LHC (1), the Tevatron (0) or neither (−1). Choosing a collider sets the

proton collision energy,
√
s, the survival factor S2 and Rg, which accounts for

the skewed effect in the un-integrated gluons. Choosing neither means that the

user must set these parameters. The PDF values are the PDF set numbers accepted

by the LHAPDF library. Freeze is a scale below which αs is frozen.

Parameter Name Type Default
α AlphaEW double 0.0072974
MW WMass double 80.33
MZ ZMass double 91.127
MH HiggsMass double 120.0
Mt TopMass double 175.0
Mb BottomMass double 4.6
Mc CharmMass double 1.42
Ms StrangeMass double 0.19
Mτ TauMass double 1.77
Mµ MuonMass double 0.1057
v HiggsVev double 246.0
Q2
⊥min MinQt2 double 0.64

ΛQCD (MeV ) LambdaQCD double 80 (MeV )
Freeze double Q⊥min

b B double 4.0
collider FNAL_or_LHC int 1
s s double 1.96× 108

s
1
2 root_s double 14000.0
Rg Rg double 1.2
S2 Survive double 0.03
PDF PDF int 20250

Table A.1: ExHuME control parameters
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