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Abstract

This thesis details studies into soft and collinear radiation dressing QCD hard

process amplitudes. Primarily, we present a formalism which reduces the com-

putation of arbitrary multiplicities of soft and collinear QCD radiation in the

massless limit, dressing any QCD hard process, to a single Markovian evolution

equation. We present the evolution equation at leading logarithmic order, with

complete spin correlations, and notably without approximating the QCD colour

charge; though our formalism can be systematically extended beyond this order.

We investigate the formalism and find that it can be used to study the accu-

racy of modern day parton showers, motivate new parton showers with increased

accuracy, and study the factorisation properties of QCD processes in hadron col-

liders. From our studies, we introduce a new form of dipole shower, constructed

to inherit the accuracy of an angular-ordered shower without losing the benefits

and generalised applicability of a traditional dipole shower. We also study ob-

servables which suffer from coherence violating logarithms in proton evolution

at hadron colliders. We arrive at the conclusion that almost all observables at

hadron colliders will violate coherence to some degree. Only observables entirely

insensitive to wide-angle soft physics remain completely safe.

This thesis consists of five individual publications and supplementary material

providing context and greater detail. This thesis is also supplemented with an

extended discussion of introductory material on quantum chromodynamics and

quantum field theories more broadly.
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Preface

I have written this thesis with two goals, other than the thesis being suitable

to attain a PhD. Firstly I have tried to provide a sufficiently detailed summary

of the research, prior to my own, so that someone else working in QCD theory

can read my work with minimal effort. This is the purpose of Chapter 3 and

the prefaces provided before each paper. Secondly, I have covered some of the

relevant foundations of QCD and QFT that underpin my work. In my experience

so far, the people who benefit most from reading theses are those who are new

to the field of research. Perhaps a graduate student near the start of their

studies. My aim is that a graduate student with a mathematical inclination,

some experience of particle physics, QFT, and of group theory (such as I at the

start of my doctoral studies) would also benefit from reading this thesis and

would be able to understand my work (though perhaps with a little more than

minimal effort). To this end, I have also included Chapter 2. This chapter aims

to concisely cover much of the necessary foundations needed to work specifically

on the problems I have studied. Most of Chapter 2 would typically be left out of

a doctoral thesis and instead can be found scattered across some famous hefty

textbooks. My hope is that presenting this information in a concise form is

helpful to somebody (or at least myself in the future).

I would like to give a brief comment on writing style. I recognise that the

ability to write compelling and articulate prose is not a talent of mine - rather

something I must work hard on. To aid me, this thesis is largely written in the

plural first person, such as is common in scientific literature. During my studies

I have become accustomed to writing in this style and it is the style in which

my included publications are written. However, I will also sometimes employ

singular first person when making comments directly to the reader.



Chapter 1

Introduction

“It’s a dangerous business, Frodo, going out your door. You step onto the road,

and if you don’t keep your feet, there’s no knowing where you might be swept off

to.”

— Bilbo Baggins, J.R.R. Tolkien, The Fellowship of the Ring

In the modern era, the phenomenology of particle physics is predominantly studied by

exploring the properties of quantum fields. However, whilst theories of quantum fields have

provided some of the most accurate predictions physicists have ever made, quantum fields

are notoriously complicated. Quantum chromodynamics (QCD) is simultaneously one of

the most experimentally tested quantum field theories (QFTs) and also one of the most

difficult to use. In this thesis, we aim to address pertinent questions on how to accurately

extract predictions from QCD in collider experiments.

QCD is the mathematical formulation underpinning the currently prevailing theory of

the strong nuclear force. It describes the interaction of fundamental quantum fields for

quarks and gluons, and the particles that emerge from these fields. In principle, QCD

describes a huge range of phenomena: from the internal structure of nuclei within atoms,

to the degeneracy pressure of a neutron star, and to properties of the primordial plasma

less than a second after the big bang. QCD is unified with theories for electromagnetism

and the weak nuclear force (responsible for radiative decay) to give the Standard Model.

The Standard Model, as a QFT, [1] and Einstein’s general relativity [2] together form the

present frontier of experimentally verified fundamental physics. However, it is known that

this picture is incomplete.

The detailed study of data from collider experiments (such as the LHC [3], HERA [4],

LEP [5] and the Tevatron [6]) has provided some of most significant advancements in funda-

mental physics in the last several decades. This thesis aims to help continue this paradigm.

Until recently, relatively few processes with significant contributions from QCD have been
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studied at collider experiments with percent level precision. A large hurdle in achieving pre-

cise predictions from QCD has been accurately describing the large multiplicities of QCD

radiation produced at collider experiments. To this end, this thesis studies QCD radia-

tion. The goal of this thesis is to present a new unified formalism for the computation

of QCD radiation, applicable to any process at a collider experiment where large amounts

of momentum is transferred by particles in an inelastic collision. Studying this formalism

is interesting in its own right, however we also endeavour to use the formalism to derive

improvements to other, currently used, descriptions of QCD radiation.

This thesis is structured as follows. Chapter 2 presents an overview of QFTs with a focus

on deriving many of the elementary properties of QCD. A reasonably complete description

of QFTs and QCD would necessarily be far too extensive for inclusion in a single thesis.

Therefore, Chapter 2 reflects the biases of the author. It consists of only a selection of

the fundamental aspects of QCD that I consider most essential to the study of high energy

radiation in collider experiments, and the elementary building blocks of QFTs underpinning

QCD. Chapter 3 builds further on the foundations in Chapter 2, presenting many of the

foundational results used in the study of QCD radiation. To aid the reader, Chapter 3

starts with a ‘maths toolbox’ presenting mathematical techniques useful to the study of

QCD amplitudes. Chapter 4 presents the formalism we develop for the computation of

QCD radiation. We refer to the formalism as ‘parton branching at amplitude level’. We

study the formalism and from it re-derive several seminal results describing QCD at collider

experiments, most notably we study the collinear factorisation of QCD amplitudes with and

without Coulomb/Glauber gluons. Following this, Chapters 5, 6, and 7 use insight from

our parton branching formalism to highlight errors in and improvements to other widely

used descriptions of QCD radiation. Chapter 8 builds on insight from our study of collinear

factorisation to evaluate the significance of ‘coherence-violating logarithms’ in observables

one might measure at hadron collider experiments. Chapters 4 through 8 are presented in

the journal format. Finally, we conclude our findings in Chapter 9 and discuss prospects

for future research. An Appendix is included covering common and useful definitions.
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Chapter 2

Background

“If there’s any kind of magic in this world it must be in the attempt of under-

standing” ... “I know, it’s almost impossible to succeed .... but who cares really?

The answer must be in the attempt.”

— Celine, Before Sunrise

2.1 Quantum field theory

Quantum field theory is a broad theoretical framework that combines quantum mechanics

and classical field theory. Since its birth, it has seen a great deal of applications over many

fields in physics. It has been successfully applied to solid state physics, where it is used to

imbue the macroscopic properties of a material with quantum phenomena. A quintessential

example is the quantisation of the magnetic field of a ferromagnet. The quantum magnetic

field contains bosonic pseudo-particle excitations known as magnons; the superposition

of their wave functions generating the macroscopic magnetic field. In this situation the

quantum field theory is not fundamental but is an ‘effective field theory’ that describes the

system when viewed at an appropriate scale, the fundamental theory is provided by atomic

theory. However, there are also quantum field theories that are considered fundamental - at

least so far as experimental verification is concerned. These are the quantum field theories

of particle physics and the Standard Model. This chapter will provide an overview of these

theories with a particular focus on the fundamentals of quantum chromodynamics.

The starting point for quantum field theory was the development of the Klein-Gordon

[1, 2] equation describing the dynamics of both free scalar fields and particles;

(∂µ∂µ +m2)ϕ(x) = 0, (2.1)

where ϕ(x) is either a relativistic scalar field or the wave function of a relativistic scalar

particle, and m is the mass of the field/particle. The Klein-Gordon equation is constructed
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so that in momentum space it gives the Einstein relation

(−E2 + p 2 +m2)ϕ(p) = 0. (2.2)

Quantum field theory connects the relativistic Klein-Gordon scalar field with the rel-

ativistic Klein-Gordon particle by quantising the field: the field quanta are the particles.

We will illustrate this very quickly using canonical quantisation, initially in the Schrödinger

picture.1 The Klein-Gordon Lagrangian and Hamiltonian densities for a real scalar field are

LKG =
1

2
∂µϕ∂µϕ−

1

2
m2ϕ2, HKG =

1

2
π2 +

1

2
(∇ϕ)2 +

1

2
m2ϕ2, π =

∂L
∂(∂tϕ)

, (2.3)

where π is the conjugate field. The canonical quantisation conditions come from promoting

the field to being operator valued, ϕ→ ϕ̂. On top of this, Poisson brackets of the field and

its conjugate are promoted to commutators of the operators;

[ϕ̂(x), π̂(y)] = iδ3(x− y), [ϕ̂(x), ϕ̂(y)] = [π̂(x), π̂(y)] = 0. (2.4)

We can solve the system for ϕ̂(x) by making use of a Fourier decomposition

ϕ̂(x) =

∫
d3p

(2π)3
eip·xϕ̂(p). (2.5)

By applying the Klein-Gordon equation to ϕ̂(x) and imposing the quantisation commutation

relations, it can be found that

eip·xϕ̂(p) =
eip·x√

2(p 2 +m2)
1
2

â(p) +
e−ip·x√

2(p 2 +m2)
1
2

â†(p), (2.6)

where â(p) and â†(p) are ladder operators obeying the same commutation relations as in

the quantum harmonic oscillator:

[â(p), â†(q)] = (2π)3δ3(p− q). (2.7)

The ladder operators therefore act as creation and annihilation operators â(p) |p〉 = |∅〉 and

â†(p) |∅〉 = |p〉.2 The state |p〉 is a particle quantum, in the field ϕ̂(x), with 3-momentum

p and obeys the Klein-Gordon equation in operator form

(−Ê2 + p̂ 2 +m2) |p〉 = 0. (2.8)

1In the Schrödinger picture operators are time independent and states are time dependent. Conversely,
Heisenberg picture operators are time dependent and states are time independent.

2It is worth noting that the commutation relation for â(p) and â†(p) does not have a Lorentz invariant
normalisation. Consequently, neither does the bracket 〈p|q〉 = (2π)3δ3(p − q). A Lorentz invariant delta
function is given by (2π)32Epδ

3(p− q). Some authors choose to normalise the ladder operators as â(p)→
â(p)/

√
2Ep, ensuring brackets and commutators have Lorentz invariant normalisations. In practice the

choice of normalisation is largely aesthetic.

16



In the Schrödinger picture, the time evolution of a state is given by |ϕ(t)〉 = Û(t) |ϕ(0)〉
where Û(t) = exp(iĤt) and Ĥ is the Hamiltonian. Heisenberg picture operators, at a time

t, can be found from Schrödinger picture operators via ÔH(t) = Û(t)ÔSÛ(t)−1.

This is the only discussion of canonical quantisation in this thesis. Later we will need

to study quantisation in the context of gauged field theories and gauge fixing. In these

discussions we will employ the more sophisticated approach of path integral quantisation.

However, for each of the theories we discuss the two approaches are equivalent. Remem-

bering the canonical approach can be a helpful to guide intuition.

2.1.1 Dirac fields

The Klein-Gordon equation was a first attempt at relativistically covariant formulation

for quantum mechanics, however it had several limitations. The equation showed promise

in providing a description for the quantum mechanics of bosonic systems but it seemed

incompatible with fermionic systems and spin. Also, the equation was second order making

it difficult to solve. This motivated Dirac to find a linear equation. We will now give an

overview of the equation Dirac found [3, 4], from a modern perspective.3

In the previous section we summarised the quantum field theory of free Lorentz scalar

fields. Under active Lorentz transformations scalar fields transform as

Λ : ϕ(x) 7→ ϕ′(x) = ϕ(Λ−1x), where Λ ∈ SO(1, 3), (2.9)

where the same transformation sends coordinates x 7→ x′ = Λx.4 Let us now consider a

general field φ in some representation of the Lorentz group. This field must transform as

Λ : φ(x) 7→ φ′(x) = D(Λ)φ(Λ−1x), where Λ ∈ SO(1, 3) and D(Λ) ∈ repSO(1, 3), (2.10)

where repSO(1, 3) is some representation of the Lorentz group. In the following section we

will discuss the special case in which D(Λ) = Λ, i.e. the field is a vector field. In this section

we will explore the spinor representation.

Continuous transformations can be constructed by the exponentiation of group genera-

tors. A helpful parametrisation of a general transformation in the Lorentz group is

D(Λ) = e
1
2

ΩρτSρτ for Λ = e
1
2

ΩρτMρτ
, (2.11)

3The following discussion is based on those in [5, 6].
4Passive transformations are equivalent to co-ordinate redefinitions. Active transformations transform the

frame in which an object is defined: i.e. ϕ(x) which must be equal to ϕ′(x′) under an active transformation,
hence it is necessary that ϕ′(x) = ϕ(Λ−1x).
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where Ωρτ are the parameters defining the transformation, Mρτ are the six SO(1, 3) group

generators and Sρτ are the six repSO(1, 3) group generators. They are anti-symmetric

matrices that are members of the Lorentz Lie algebra;

[Sρτ , Sσν ] = gρνSτσ − gσνSτρ + gτσSρν − gρτSνσ, (2.12)

where g = Diag(1,−1,−1,−1) is the Minkowski metric. The question of finding a rep-

resentation effectively reduces to finding a set of matrices {Sρτ} that satisfy the above

commutation relations. One such representation is the spinor representation, for which

Sρτ can be constructed using a Clifford algebra. The Clifford algebra is defined by the

anti-commutator

{γµ, γν} = 2gµν1. (2.13)

A useful basis for the algebra is the chiral basis;

γµ =

(
0 σµ

σ̄µ 0

)
, (2.14)

where σ0 = 1, σ̄i = −σi, and σi are the Pauli spin matrices. Using the Clifford algebra we

can define Sρτ = 1
4 [γρ, γτ ]; it can be checked that this satisfies the Lorentz Lie algebra.

Now let us briefly explore the properties of a field that transforms under the spinor

representation of the Lorentz group. First let us look at rotations in space; the SO(3)

subgroup of SO(1, 3). Let’s consider rotations by angle θ around an axis n; i.e. Λ =

R(n, θ) ∈ SO(3). Three of the SO(1, 3) generators form the Lie algebra of the SO(3)

subgroup. These generators generate the rotation by θ, in doing so fixing Ωρτ . In turn Ωρτ

can then be used as input to find D(Λ). We obtain D(R(n, θ)) = R(n, θ/2). This is the

transformation rule for the rotation of a fermion.

As with a scalar field, we can insist that our new found fermion field also obeys Einstein’s

relation by setting

(∂µ∂µ +m2)φ(x) = 0. (2.15)

We can use the Clifford algebra to manipulate this expression. Note that

gµν∂µ∂ν =
1

2
{γµ, γν}∂µ∂ν = γµγν∂µ∂ν .

Using this we can factorise the Klein-Gordon equation;

(iγµ∂µ +m)(iγν∂ν −m)φ(x) = 0. (2.16)

As the second order differential operator on φ factorises, the set of solutions to the first order

differential equation (iγν∂ν − m)φ(x) = 0 necessarily obey Einstein’s relation. Solutions
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to the linear equation are traditionally labelled ψ(x) and are named Dirac fields. Thus we

arrive at the famous Dirac equation for a Dirac field,

(iγµ∂µ −m)ψ(x) = 0. (2.17)

The Dirac equation is Lorentz covariant, not invariant like the Klein Gordon equation. To

build Lorentz invariants we must introduce a conjugate field ψ̄(x) = ψ†(x)γ0. Using ψ̄(x)

we can write a Lorentz invariant Lagrangian density consistent with the Dirac equation;

LD = ψ̄(x)(i/∂ −m)ψ(x), (2.18)

where /∂ = γµ∂µ. The Dirac field can be canonically quantised in the Schrödinger picture

using techniques similar to the quantisation of the Klein-Gordon field; the techniques mod-

ified for fermionic degrees of freedom. Specifically, it’s required for fermionic fields that

commutators get replaced by anti-commutators

{ψ̂α(x), π̂ψ β(y)} = iδ3(x− y), {ψ̂α(x), ψ̂β(y)} = {π̂ψ α(x), π̂ψ β(y)} = 0, (2.19)

where α and β are spinor indices. The quantised free Dirac field in the Schrödinger picture

has the form

ψ̂α(x) =
∑
s

∫
d3p

(2π)3

1
√

2(p 2 +m2)
1
4

(
eip·xus(p)b̂s(p) + e−ip·xvs(p)ĉs †(p)

)
, (2.20)

where us(p) and vs(p) are the spinor solutions of spin s to the Dirac equation in momentum

space. b̂s(p) and ĉs †(p) are ladder operators for fermionic and anti-fermionic degrees of

freedom respectively, with spin s.5

2.1.2 The Maxwell Lagrangian

In the previous sections we discussed the construction of relativistically covariant field the-

ories. To build a field theory for fermions we had to employ some quite heavy mathematical

machinery; representation theory and new algebras. By contrast, the classical description

of electromagnetism is a manifestly Lorentz covariant field theory from the outset. In fact

classical electrodynamics motivated the first study of the Lorentz group. In this section we

will review some key features of electromagnetism. However, we will leave the quantisation

of the theory to a later section.

5It is important to note that when spinor indices are dropped, it is implicit that (anti-)commutators of
spinor fields refer only to the (anti-)commutation of operators in the field’s definition so that both terms
produced by the (anti-)commutator have the same dimension: i.e. ψ̂π̂ψ is a rank (1

1) tensor whilst π̂ψψ̂ is a
scalar. For instance {usb̂s, us †b̂s†} = {b̂s, b̂s†}usus †.
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A free electromagnetic field is described by the Maxwell Lagrangian density:

LMx = −1

4
FµνF

µν , where Fµν = ∂µAµ − ∂νAµ. (2.21)

Aµ is a vector potential for the electromagnetic field. Maxwell’s equations are obtained

from the equations of motion,

∂LMx

∂(∂µAν)
= −∂µFµν = 0, → (gµν∂σ∂

σ − ∂µ∂ν)Aν = 0, (2.22)

and the Bianchi identity (a consequence of our definition of Fµν),

∂[µFνσ] = 0. (2.23)

The Maxwell Lagrangian is invariant under a gauge transformation

Aµ → Aµ + ∂µα(x), (2.24)

for all reasonable functions α(x) (functions that are continuous and decay suitably fast as

x → ∞). At this stage, the gauge symmetry makes canonical quantisation tricky since it

causes the equations of motion to not be invertible. We will give the symmetry both a

geometric interpretation and tackle quantisation properly later (Sections 2.1.4 and 2.1.5).

2.1.3 Electrodynamics

Let us now put the work of our previous sections together and couple the electromagnetic

field to matter fermionic fields. The Lagrangian density for electrodynamics (EM fields

coupled to a charged current) is given by

LED = −1

4
FµνF

µν − ejµAµ, (2.25)

where jµ is some vector current and e is the coupling strength. There is only one bilinear

of Dirac spinors with the same mass dimension as jµ that transforms as a vector; ψ̄γµψ.

Putting the Maxwell Lagrangian together with the Dirac Lagrangian, with this coupling

term, we find the bare Lagrangian for quantum electrodynamics

LQED = −1

4
FµνF

µν + ψ̄(x)(i/∂ − eγµAµ −m)ψ(x). (2.26)

We can make a few observations. Firstly, the coupling between the vector field and the

Dirac field has broken the individual gauge invariance of the vector field. Secondly, the

Lagrangian is symmetric under a global U(1) symmetry; ψ(x) → eiαψ(x). If we apply

Noether’s theorem [7] (or see [8] for a more accessible discussion) we find that the global

symmetry ensures that the current jµ = ψ̄γµψ is conserved (∂µj
µ = 0). Thirdly, the

Lagrangian does have a gauge symmetry, however it is constructed from the composition

of a local U(1) transformation, ψ(x) → e−ieα(x)ψ(x), and a gauge transformation of the

vector field, Aµ → Aµ + ∂µα(x). In the next section, we will argue that this composite

transformation is a local U(1) gauge transformation of the combined theory.
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2.1.4 Gauge theories and Yang-Mills theory

Let us think more about the implications of LQED’s gauge symmetry. It is easy to see

that ψ(x) is transforming locally under the fundamental representation of U(1), but what

is governing how Aµ transforms?

Think back to general relativity. The covariant derivative of a field φa(x) in an arbitrary

representation of the Lorentz group is given by

∇µφa(x) = ∂µφ
a(x) + Γaµ cφ

c(x);

µ, ν are indices in the fundamental representation of the Lorentz group and roman indices

are indices over the representation in which φa(x) transforms. Γaµ c is the connection on the

space-time manifold of the theory. This derivative transforms covariantly under co-ordinate

transformations x→ J(x)x and φa(x)→ Da
b (x; J)φb(J(x)x); i.e.

∇µφa(x)→ Da
b (x; J)Jνµ(x)∇νφb(J(x)x).

This is ensured by the connection, Γaµ c, which is an object defined in the tangent space6

to the space-time manifold in which φa(x)’s basis exists that acts to compensate for the

variation of said basis. Dropping the arguments, the connection transforms as

Γaµ c → JνµD
a
bΓbν d(D

−1)dc − Jνµ(D−1)bc∂νD
a
b .

Now consider a situation where J = 1 but our representation of φa(x) is degenerate over

some isometries (gauge transformations). We can re-parametrise φa(x) by a gauge trans-

formation φa(x)→ Da
b (x)φb(x) where Da

b (x) ∈ G the isometry group of our representation.

Under this transformation ∇µφa(x)→ Da
b (x)∇µφb(x) and

Γaµ c → Da
bΓbµ d(D

−1)dc − (D−1)bc∂µD
a
b .

In the previous section we saw that LQED was invariant under a local U(1) transforma-

tion of the Dirac field, ψ(x) → e−ieα(x)ψ(x), if the electromagnetic field also transformed

via a gauge transformation as Aµ → Aµ + ∂µα(x). The transformation of the EM field can

be written in an alternative form,

Aµ → e−ieα(x)Aµe
ieα(x) +

i

e
eieα(x)∂µe

−ieα(x).

This is exactly how the connection transforms under a U(1) gauge transformation, up to

the factor i
e which arises from the normalisation pre-factors to Aµ. This gives us intuition

6Strictly speaking, the connection is defined in the principal fibre bundle of the space-time manifold as
it ‘connects’ the tangent space at a point, x, on the manifold to the tangent spaces at the points in the
infinitesimal neighbourhood of x.
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for what is going on. The fermion field is defined in a representation of the gauge group, in

this case the fundamental representation of U(1) which is trivial - hence why we didn’t have

to consider its gauge group representation when putting LD together. The vector field is

defined in the tangent space (strictly the tangent bundle) of our gauge group and plays the

role of a connection. Hence, this field is defined in a representation of the Lie algebra of the

group, also trivial for U(1). Therefore the gauge transformations that leave LQED invariant

are local U(1) transformations for which ψ(x) transforms in the fundamental representation

of U(1) and Aµ transforms in the fundamental representation of the Lie algebra of U(1)

(denoted u(1)). This motivates naming Aµ a gauge field.

Let us now consider generalising the Maxwell Lagrangian. We can do so by introducing

a gauge field defined in the Lie algebra of a more complicated group. Let us pick SU(N).

Now our gauge field is of the form ~Aµ = AaµT
a where T a are the generators of SU(N) in

the fundamental representation. The generators are N × N matrices, there are N2 − 1

of them, and they are elements of the group Lie algebra su(N). To build a Lagrangian

for ~Aµ first we must generalise Fµν to SU(N). Fµν is gauge covariant. We can rewrite

its definition in such a way as to make this manifest; Fµν = − i
e [Dµ, Dν ] where Dµ is the

gauge covariant derivative of a field transforming in the fundamental representation of U(1),

Dµ = (∂µ + ieAµ).7 Written in this form, it is easy to see that a gauge transformation on

Fµν gives e−ieα(x)Fµνe
ieα(x) = Fµν . We can extend this definition to an SU(N) gauge theory

by defining an appropriate SU(N) gauge derivative,

Dµ = (1N∂µ − ig ~Aµ). (2.27)

This derivative is gauge covariant when acting on any field, φ, that transforms in the

fundamental representation of SU(N); i.e. if φ → U(x)φ then Dµφ → U(x)Dµφ where

U(x) ∈ SU(N). Now by analogy to the U(1) case we can introduce a field strength tensor

~Fµν =
i

g
[Dµ, Dν ], (2.28)

where (~Fµν)ij = F aµνT
a
ij . By construction the field strength tensor transforms under an

SU(N) gauge transformation as ~Fµν → U(x)~FµνU(x)−1. Now we have ~Fµν we can define

a gauge invariant Lagrangian for the SU(N) gauge field - the Yang-Mills Lagrangian. The

Lagrangian density is

LYM = −1

2
Tr(~Fµν ~F

µν) = −1

4
F aµνF

µν a. (2.29)

7Continuing our analogies to general relativity, we can see that Fµν is just the curvature tensor in another
guise.
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This Lagrangian now comes equipped with two self interaction terms between the gauge

fields (these terms are given at the head of Section 2.2.1) and a global SU(N) symmetry.

This global symmetry results in a conserved current of gauge fields. We will come back to

the interaction terms and current later in the context of QCD. The Lagrangian has a gauge

symmetry under the transformations

~Aµ → U(x) ~AµU(x)−1 − i

g
(∂µU(x))U(x)−1, where U(x) ∈ SU(N). (2.30)

Finally, we have given the definition of a gauge covariant derivative when acting on a field

transforming in a representation of SU(N). However, it is helpful to also define the covariant

derivative of objects which are defined in su(N), the Lie algebra of SU(N); objects such as

the field tensor and the gauge fields. It can be checked that Dσ
~Fµν = ∂σ ~Fµν − ig[ ~Aσ, ~Fµν ]

transforms as required, Dσ
~Fµν → U(x)Dσ

~FµνU(x)−1. Using this gauge derivative, the

equations of motion are

Dµ
~Fµν = 0, D[µ

~Fνσ] = 0. (2.31)

2.1.5 Path integral quantisation

In this section we will review some of the important features of the path integral for quantum

fields. We will not derive the path integral since a derivation would be both lengthy and

wholly unnecessary for our work.8

When working with a quantum theory, we are interested in (in terms of making predic-

tions) the overlap of a state at a time ti with another state at a later time tf . An alternative

approach to quantisation is to simply define how to compute this transition. This is the

approach of path integral quantisation. The basic path integral for a transition in a general

quantum field theory from a state Ω at time ti to state Ω′ at time tf has the form

〈
Ω′(tf )|Ω(ti)

〉
= N

∫
b.c
D[{φ}] exp

(
i

∫ tf

ti

dt

∫
dd−1x L({φ})

)
. (2.32)

The set {φ} is the set of quantum degrees of freedom of the field theory; i.e. the fields.

The measure D[{φ}] integrates over every possible configuration of the degrees of freedom

between times ti and tf with the boundary conditions that the configurations correspond-

ing to states at times ti,f are fixed as |{φ(ti)}〉 = |Ω(ti)〉 and |{φ(tf )}〉 = |Ω′(tf )〉. N

is a normalisation factor, often compensating for divergences in the path integral itself.

8Furthermore, for some field theories (with non-linear kinetic terms or complicated non-polynomial po-
tentials) the path integral cannot be derived by the usual methods employed by physicists but instead must
be postulated. Moreover, a mathematician might argue that path integrals in quantum field theory cannot
be rigorously derived (except in some special cases). On this we will choose to bury our head in the sand.
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The path integral effectively assigns a phase to each configuration |{φ(t)}〉, computes their

superposition and then projects the outcome onto the |Ω′(tf )〉 state.

Eq. (2.32) is entirely obtuse as to how path integrals actually work. To help, let us

re-write the equation with all the limits in place in (1+1)D and with a single field φ(x),

〈
Ω′(tf )|Ω(ti)

〉
= lim

a→0
N(a)

∫
b.c

∏
xk,k′

dφ(xk,k′) exp

i ∑
tk∈[ti,tf ]

∑
allxk′

Ld(φ(xk,k′)) a
2

 ,

(2.33)

where xk,k′ = (tk, xk′)
T is a general point in latticed space-time with a lattice spacing a; i.e.

xk+n,k′+m − xk,k′ = (na,ma)T. Ld is the discretised Lagrangian density; built by making

substitutions of the form φ(x) → φ(xk,k′) and ∂tφ(x) → (φ(xk,k′) − φ(xk−1,k′))/a.9 Notice

that if the Lagrangian depends on derivatives then the phase, eia
2L(φ(xk,k′ )), assigned to each

field configuration φ(xk,k′) is also dependent on adjacent field configurations φ(xk±1,k′±1).

This propagates a dependence on the boundary conditions throughout the whole integral.

We will now itemise a few key points in the study of path integrals. Firstly the partition

function of a theory is defined as

Z = lim
T→∞(1−iε)

〈Ω(T )|Ω(−T )〉 = lim
T→∞(1−iε)

N

∫
b.c
D[{φ}] exp

(
i

∫ T

−T
dt

∫
dd−1x L({φ})

)
,

(2.34)

where |Ω(t)〉 is the ground (or vacuum) state of the theory at a time t. From now on we

will treat the T →∞(1− iε) limit as implicit in a ddx measure. Relatedly, the generating

partition functional is defined as

Z[{Jφ}] = N

∫
b.c
D[{φ}] exp

(
i

∫
ddx L({φ}) + iSgen[{Jφ}, {φ}]

)
, (2.35)

so that Z[{0}] = Z and

δ Z[{Jφ}]
δJφ(x1)

= N

∫
b.c
D[{φ}] iφ(x1) exp

(
i

∫
ddx L({φ}) + iSgen[{Jφ}, {φ}]

)
, (2.36)

where δ
δJφ(x) is a functional derivative;

δJφ(y)

δJφ(x)
= δd(x− y),

and where Sgen[{Jφ}, {φ}] is defined so that Z[{Jφ}] has the properties given. For example,

if the theory is of a single scalar field, {φ} = ϕ, then Sgen[{Jφ}, {φ}] =
∫

ddxJ(x)ϕ(x). The

9There can be some ambiguity in defining the discretised Lagrangian. These ambiguities can have con-
sequences whenever one tries to evaluate the path integral at finite a, either with the intention of finding
an approximate solution or with the intention to take the limit at a later stage. This affects research into
lattice QCD and other latticed field theories but it shan’t be discussed further in this thesis.

24



generating function can be used to compute correlation functions:

lim
T→∞(1−iε)

〈
Ω(T )

∣∣∣T{φ̂a(x1)...φ̂b(xn)}
∣∣∣Ω(−T )

〉
=

(−i)n
Z

δn Z[{Jφ}]
δJφa(x1)...δJφb(xn)

∣∣∣∣
all Jφ=0

,

(2.37)

where T{. . . } time-orders the operators in the braces; i.e.

T{φ̂a(x1)φ̂b(x2)} = φ̂a(x1)φ̂b(x2)
∣∣
t1>t2

± φ̂b(x2)φ̂a(x1)
∣∣
t2>t1

,

where the plus sign is for bosonic fields and the minus for fermionic. Notice that the

normalisation factor cancels between the numerator and denominator, thus it is typical to

ignore the factor and set N = 1. Finally a fermionic degree of freedom, ψa(x), appears

in path integrals as a Grassmann field. Grassmann fields can be decomposed as ψa(x) =∑
i Ψ

(i)
a (x)ωi where each Ψ

(i)
a (x) is a complex (not Grassmann) field with index a and each

ωi is a Grassmann number. We can get a feel for why Grassmann numbers emerge by

looking at one of their properties: Grassmann numbers anti-commute. This means that

{ωi, ωj} = 0 which can compared with the commutator for ‘normal’ numbers [a, b] = 0.

As the quantisation of fermionic fields is dependent on anti-commutators, the necessity for

Grassmann numbers arises naturally. Algebra with Grassmann numbers is both interesting

and important to quantum field theory but we point the reader to other literature for more

details [8].

2.1.5.1 Gauge fixing with vector fields in SU(N)

Up to now, we have avoided the issue of the quantisation of a gauge field. This was with

good reason. If we tried to apply the approach of canonical quantisation we would quickly

run into a stumbling block. In this approach it is necessary for us to constrain the form

of the field operator by taking the Fourier transform and ensuring that the field solves

the equations of motion for the theory in momentum space. However, the equations of

motion for a gauge field are not invertible: since the equations are covariant under gauge

transformations, they have a spectrum of gauge equivalent solutions. This prevents us from

uniquely specifying a consistent quantisation of the theory via a naive canonical quantisation

approach.10

Instead, let us consider quantising the theory via the path integral formalism. The

partition function for an SU(N) Yang-Mills theory is given by

Z =

∫
D[A] exp

(
−i
∫

ddx 1
4F

a
µνF

µν
a

)
. (2.38)

10The following discussion is based on that in [9].

25



If we tried to evaluate this partition function we would rapidly come across divergences.

Intuitively, divergences emerge because for every physical field configuration we include

we must also integrate over the infinite spectrum of unphysical degenerate configurations,

equivalent up to a gauge transformation. This is the same issue that made our equations of

motion not invertible. However, the partition function itself isn’t what matters to us when

trying to use a theory (under most circumstances). It is just a tool to compute correlators

of operators

〈Ω|T{Ô(A)} |Ω〉 = Z−1

∫
D[A] O(A) exp

(
−i
∫

ddx 1
4F

a
µνF

µν
a

)
, (2.39)

where Ô(A) is a gauge invariant operator built from the field operators Â. If we were to

fix the gauge we work in, it might allow the divergent gauge degrees of freedom to cancel

in the computation of correlators. This is the essence of the Faddeev and Popov trick [10]

for gauge fixing.

Consider a possible gauge fixing condition G(A) = 0. We want to try and ‘sneak’ this

into our Lagrangian in such as way that correlators remain unchanged. As a simple example,

consider trying to evaluate
∫

dxdyf(x, y) when we know that the condition y = w(x) will

make the integral much simpler. We could try multiplying by

1 =

∫
dw δ(w(x)− y).

Here it is important to note that the integrand is actually independent of y as x can always

adjust itself to compensate and that w(x) must be integrated over the same range as y.

Thus we are able to write∫
dxdyf(x, y) =

∫
dw δ(w(x)− y)dxdyf(x, y) = Y

∫
dxdy δ(w(x)− y) f(x,w(x)),

where Y is the total volume of the y integration, it now acts a global factor. The Faddeev

and Popov trick [10] is essentially the same procedure. It uses a gauge fixing condition,

G(A) = 0, to factorise the integration over degenerate gauge configurations out from the

partition function.

To begin the trick, we make an infinitesimal gauge transformation so that Aaµ 7→ Aα a
µ =

Aaµ + 1
gDµα

a(x) and use this as input to a generalisation of the Dirac delta function:

1 =

∫
D[α] δ∞(G( Aα )) det

(
δG( Aα )

δα

)
. (2.40)

Applying this to Eq. (2.39), we find∫
D[A] O(A) eiS[A] =

∫
D[α]

∫
D[ Aα ] O( Aα )eiS[ Aα ] δ∞(G( Aα )) det

(
δG( Aα )

δα

)
. (2.41)
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Where we used that D[ Aα ] = D[A], O ( Aα ) = O(A), and S[ Aα ] = S[A] since they each

are individually invariant under gauge transformations. Now let us assume a form for our

gauge fixing so that G( Aα )→ G( Aα )−w(x) where w(x) has no dependence on α. We can

also multiply Eq. (2.39) by a Gaussian integral over w(x) that is normalised to 1,∫
D[A] O(A) eiS[A] = N(ξ)

∫
D[w] exp

(
−i
∫

ddx
w2

2ξ

)∫
D[ Aα ] O( Aα ) eiS[ Aα ]. (2.42)

Using this expression in conjunction with Eq. 2.41, we can write∫
D[A] O(A) eiS[A]

= N(ξ)

∫
D[w,α, Aα ] O( Aα ) exp

(
iS[ Aα ]− i

∫
ddx

w2

2ξ

)
δ∞(G( Aα )) det

(
δG( Aα )

δα

)
.

(2.43)

Now we can perform the integral over w(x) using the delta function∫
D[A] O(A) e(iS[A])

= N(ξ)

∫
D[α, Aα ] O( Aα ) exp

(
iS[ Aα ]− i

∫
ddx

G( Aα )2

2ξ

)
det

(
δG( Aα )

δα

)
. (2.44)

The gauge fixing condition has now been integrated into the same exponent as the action

and could be absorbed into the definition of a quantum action. Finally, noting the following

identity with Grassmann fields, c and c̄,∫
D[c]D[c̄] exp

(
−i
∫

ddx c̄B c

)
= det(B), (2.45)

we remove the determinant and write∫
D[A] O(A) eiS[A]

= N(ξ)

∫
D[α, Aα , c̄, c] O ( Aα ) exp

[
iS[ Aα ]− i

∫
ddx

(
G( Aα )2

2ξ
+ c̄

δG( Aα )

δα
c

)]
. (2.46)

As every configuration of Aα is integrated over, it is no more than a dummy variable and

we can safely relabel Aα → A. Finally, if we pick G(A) so that it is a linear operation on

α(x), then the Grassmann term does not depend on α(x). As such, the integral over α

factorises out as a global prefactor, just as Y did in our toy example. Applying what has

been derived to Eq. (2.39), the matrix element can now be written as

〈Ω|T{Ô(A)} |Ω〉 =
N(ξ)

∫
D[α]

∫
D[A, c̄, c] O(A) exp

[
iS[A]− i

∫
ddx

(
G(A)2

2ξ + c̄ δG(A)
δα c

)]
N(ξ)

∫
D[α]

∫
D[A, c̄, c] exp

[
iS[A]− i

∫
ddx

(
G(A)2

2ξ + c̄ δG(A)
δα c

)] ,

=

∫
D[A, c̄, c] O(A) exp

[
iS[A]− i

∫
ddx

(
G(A)2

2ξ + c̄ δG(A)
δα c

)]
∫
D[A, c̄, c] exp

[
iS[A]− i

∫
ddx

(
G(A)2

2ξ + c̄ δG(A)
δα c

)] . (2.47)
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This procedure has fixed the gauge, removing the immediate problems with quantising the

theory. However, the procedure has introduced two new terms that must be incorporated

into the Lagrangian, one of which introduces new unphysical Grassmann fields known as

‘ghosts’.11 We can define a quantum partition function incorporating these new terms;

Z =

∫
D[A, c̄, c] exp

[
i

∫
ddx

(
−1

4F
a
µνF

µν
a −

G(A)2

2ξ
− c̄ δG(A)

δα
c

)]
. (2.48)

The terms in the parentheses can be identified as a quantum Lagrangian density. If we use

this Lagrangian we can canonically quantise without issue, as we did with scalar and Dirac

fields.

2.2 Quantum chromodynamics

2.2.1 Chromodynamics

Quantum chromodynamics (QCD) is the theory of quarks and the strong nuclear force.

The strong force is carried by the gluon field; an SU(3) Yang-Mills gauge field (with the

properties discussed in Section 2.1.4). Quarks are Dirac fermions; they come in six flavours

and are oscillations in the six quark fields. The quark fields are also gauged and transform in

the fundamental representation of SU(3). As a consequence of the SU(3) gauging each quark

field comes in three ‘colours’; red, green, and blue, one for each dimension of the fundamental

representation. Similarly there are eight components to the gluon field, often indexed by

colour anti-colour pairs, one for each generator of the fundamental representation. The

quark and gluon fields are coupled by a covariant derivative. Without further ado, the

Lagrangian density is given by

LQCD = −1

4
GaµνG

µν
a +

∑
f

ψ̄f i
(
i /Dij − δijmf

)
ψf j , (2.49)

where f indexes the six species of quark and where

Dµ
ijψj =

(
δij∂

µ − igst
a
ijA

µa
)
ψj , DµacAcν =

(
δac∂µ − igsf

abcAµ b
)
Acν ,

Gaµνt
a
ijψj =

i

gs
[Dµ, Dν ]ijψj , ta ∈ su(3)fund and fabc ∈ su(3)adj. (2.50)

More explicitly, the field tensor is equal to

Gaµν = ∂µA
a
ν − ∂νAaµ + gsf

abcAbµA
c
ν . (2.51)

11Depending on the gauge choice and representation of the gauge fields, the operator δG(A)
δα

may actually
require the ghost fields to also be in a rep of SU(3) or its Lie algebra, and therefore the ghost term should
strictly speaking be inside a trace. However, the trace is easily performed for the QCD ghost Lagrangian
and so not usually included.

28



Indices i and j are indices over the dimension of su(3)fund, they are in the set {1, 2, 3} and

are often labelled with colours red, green, and blue. Indices a, b, and c index the eight

generators, or equivalently the dimension of su(3)adj.

By construction, the QCD Lagrangian is invariant under SU(3) gauge transformations

ψf → U(x)ψf , ~Aµ → U(x) ~AµU(x)−1 − i

gs
(∂µU(x))U(x)−1, where U(x) ∈ SU(N).

(2.52)

QCD is also subject to many global symmetries, some of which we will now summarise with

their consequences.

� QCD is trivially invariant under a global SU(3) transformation. This gives a conserved

Noether current of jµa = ψ̄f iγ
µtaijψf j .

� QCD is invariant under transformations in the Poincaré group. This gives the con-

servation of the energy-momentum tensor.

� QCD is invariant under a global U(1) transformation ψf → eiθψf . This gives con-

servation of baryon number, B = 1
3(nq − nq̄) where nq is the number of quarks in a

process and nq̄ the number of anti-quarks.

� QCD is invariant under each of C (charge conjugation ψf → ψcf = iγ2ψ
∗
f in the chiral

basis and ~Aµ → − ~Aµ), P (parity inversion x→ −x), and T (time inversion t→ −t).

� In the limit that n quarks are massless or have the same mass, QCD is invariant

under a global SU(n) rotation between the quarks of ψf → Uf ′fψf where f and f ′ are

indices over the flavours of the n quarks. This gives a conserved current and charge

which, when n = 2, is known as isospin.

� In the massless limit there are also chiral and axial symmetries. These involve in-

dependent unitary rotations on chiral right and left states (ψR/L = (1 ± γ5)ψ where

γ5 = iγ0γ1γ2γ3). Both symmetries give rise to conserved currents, though the con-

served chiral current is anomalously broken by quantum corrections.

In reality, each quark has a distinct non-zero mass. As a result the latter two bullet points

describe approximate symmetries of QCD.

The equations of motion and continuity equations for chromodynamics are

Dac
µ G

µν c = −gs

∑
f

ψ̄f iγ
νtaijψf j ,

(
i /Dij − δijmf

)
ψf j = 0,

∂µψ̄f iγ
µtaijψf j = 0, D[µ

~Gνσ] = 0. (2.53)
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The QCD Lagrangian can be partitioned into kinetic terms and interaction terms; respec-

tively those that survive as gs → 0 and those that don’t. Note that the gluon field has

self interaction terms (in contrast to the photon which does not). A typical approach to

solving problems in QCD is to use perturbation theory, expanding in gs. The perturbative

series for cross-sections/probabilities only depends on even powers of gs, and so it is usual

to express the series in terms of αs = g2
s /4π.

2.2.2 Quantum Lagrangian

The QCD Lagrangian presented in the previous section is not yet suitable for quantum

computations. The gluon fields need gauge fixing and the theory must be quantised. We

can follow the gauge fixing procedure given in Section 2.1.5.1 and define a gauge fixed

quantum Lagrangian density:

LqQCD(A,ψ, ψ̄, c, c̄) = LQCD −
G(A)2

2ξ
− c̄ δG(A)

δα
c, (2.54)

where G(A) = 0 is our gauge fixing condition, ξ is a gauge fixing parameter, and c and c̄

are Grassmann ghost fields.

We can quantise QCD by giving its generating partition functional:

Z[{J}] =

∫
D[A,ψ, ψ̄, c, c̄] exp

(
i

∫
ddx LqQCD(A,ψ, ψ̄, c, c̄) + iSgen[{J}, {φ}]

)
, (2.55)

where {J} = {JµaA , J̄ψf , Jψ̄f , J̄c, Jc̄} and where

Sgen[{J}, {φ}] =

∫
ddx

∑
f

J̄ψf iψf i +
∑
f

ψ̄f iJψ̄f i + J̄cc+ c̄Jc̄ + JµaA Aaµ

 . (2.56)

Note that J̄ψf , Jψ̄f , J̄c, and Jc̄ are Grassmann valued.

2.2.3 The LSZ reduction formula and S-matrix

In this thesis we are interested in the computation of scattering amplitudes in QCD. These

are described by the QCD S-matrix. So far we have introduced QCD and quantised it so

that we can compute correlation functions of operators. We will now introduce S-matrices

and link their computation to the calculation of correlation functions.

S-matrices (scattering matrices) describe the transition by scattering of well separated,

localised in momentum space, particles from the distant past into well separated, localised

in momentum space, particles in the distant future. The S-matrix is defined by

lim
t→∞(1+iε)

〈p1, ..., pn; t|k1, ..., km;−t〉 = 〈p1, ..., pn| Ŝ |k1, ..., km〉 (2.57)
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where states on the left hand side are in the Schrödinger picture (they are time, t, depen-

dent)12 and states on the right are both defined at a common time (they can be taken to

be in any picture, Heisenberg, Schrödinger, or interaction picture).13 The S-matrix can

be viewed as a time evolution operator on the space of states that are well separated and

localised in momentum space. It is usual to decompose the S-matrix as Ŝ = 1 + iT̂ where

T̂ is the transition matrix (the identity term corresponds to the possibility that nothing

happens). As all amplitudes corresponding to physical states necessarily conserve momen-

tum, it is typical to pull out a momentum conserving delta function and define the matrix

element

M({k} → {p}) δd
∑

i

pi −
∑
j

kj

 = (2π)−d 〈p1, ..., pn| T̂ |k1, ..., km〉 . (2.58)

The work presented in this thesis contributes to the body of research looking to understand

properties of QCD matrix elements.

The LSZ reduction formula relates S-matrix elements to correlation functions. There-

fore, let us start by providing more detail on 2-point correlation functions,

− 1

Z

δ2Z[{J}]
δJ̄ψf i δJψ̄f ′ j

∣∣∣∣∣
all Jφ=0

= 〈Ω|T{ψ̂f i(x) ˆ̄ψf ′ j(y)} |Ω〉 . (2.59)

Consider inserting an identity operator 1 = |Ω〉 〈Ω| + ∑
λ |λ〉 〈λ|, where λ is an arbitrary

(not necessarily one particle) state, into the correlator. We can use the Lorentz invariance

of the theory to let

1 = |Ω〉 〈Ω|+
∑
λ

∫
dd−1p

(2π)32Eλp
|λp〉 〈λp| ,

where λ0 is a state of zero total momentum and λp is the same state boosted to have total

momentum p. Inserting this identity and using a little complex analysis we find14

〈Ω|T{ψ̂f i(x) ˆ̄ψf ′ j(y)} |Ω〉 =
∑
λ

∫
ddp

(2π)4

i 〈Ω| ψ̂f i(x) |λp〉 〈λp| ˆ̄ψf ′ j(y) |Ω〉
p2 −m2

λ + iε
. (2.60)

To finish computing the correlator we just need to evaluate 〈Ω| ψ̂f i(x) |λp〉. A proper

treatment of this bracket is complicated, we will handle it a little heuristically. To see what

12It is entirely possible to define the S-matrix in a Lorentz covariant fashion using the Heisenberg picture
for states. In this picture operators take on time dependence and unitary operators are inserted to control
for the observation of the particles being ‘free states’ in the distance past and distance future. The two
definitions for the S-matrix are thus related by a unitary transformation [11].

13We have not labelled each particle in the state with its quantum numbers or species, rather just its
momenta. We did this just to save space.

14Note that the time ordering has disappeared from the right hand side of the expression. Summing over
both possible orderings of the left hand side gives the right.
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is going on, we can compute the bracket in the free theory (αs = 0). In the free theory, we

can set |λp〉 = |p; s〉, a single particle state of definite momentum and spin.15 Therefore,

〈Ω| ψ̂f i(x) |p; s〉
∣∣
αs=0

= e−ip·xusf i(p). (2.61)

This result was found by using the expression for the canonically quantised free Dirac field

Eq. (2.19). us is a free space spinor solution to the Dirac equation with spin s. In the

free theory, m2
λ can be identified with the mass of the fermion. If we assume the correlator

is dominated by the single particle limit (we don’t pick up multi-particle resonances so

|λp〉 ≡ |p; s〉) then, by analogy to the free space solution, we can let

〈Ω| ψ̂f i(x) |λp〉 = e−ip·x
√
Z2u

sλ
f i(p),

and let m2
λ remain the mass of the fermion f .16

√
Z2 plays the role of an unspecified

normalisation that comes from our lack of knowledge of the ‘inner workings’ of |λp〉 in the

full theory. The sum over λ now acts as a sum over the quantum numbers involved, i.e.

spin. We can remove this sum by employing the identity
∑

s u
s
f i(p)ūsf ′ j(p) = (/p+m)δijδff ′ .

Hence we find

〈Ω|T{ψ̂f i(x) ˆ̄ψf ′ j(y)} |Ω〉 =

∫
ddp

(2π)4
e−ip·(x−y) i Z2 (/p+m)δijδff ′

p2 −m2 + iε
. (2.62)

This is the position space quark propagator. This procedure can be repeated to find the

gluon and ghost propagators which are given in the next section with the rest of the QCD

Feynman rules.17 It should be clear that in the free theory Z2 = 1. In the full theory it is

typical to handle Z2 perturbatively so that Z2 = 1 +O(αs). Absorbing the factor
√
Z2 into

the fields provides the basis for field renormalisation, which we will summarise in Section

2.2.5.

So far, we have outlined the computation of a 2-point correlator in the full theory.

When working with canonical quantisation, Wick’s theorem can be used to reduce all n-

point correlators to sums over products of 2-point correlators [8]. Alternatively, the same

result can be achieved via applying the chain rule to functional derivatives in the path

integral formalism. 2-point correlators often are represented as lines linking the two points.

The products of 2-point correlators come with various pre-factors found by expanding

(−i)n
Z

δnZ[{φ}, {J}]
δJφj · · · δJφi

∣∣∣∣
all Jφ=0

15For all other |λp〉 the bracket 〈Ω| ψ̂f i(x) |λp〉 is either proportional to
〈
Ω|λ′p′

〉
= 0, where λ′p′ is non-

vacuum state of total momentum p′, or ψ̂f i(x) |λp〉 = 0.
16The entire discussion in this section can be achieved without this assumption, however doing so compli-

cates matters. Chapter 7 of [8] provides a relatively complete and accessible discussion.
17In the case of gluons extra care must be taken since canonical quantisation is muddied by the issue of

gauge fixing. Instead of splitting the 2 point correlator into brackets of single canonically quantised fields,
the gluon propagator is typically found working directly with the partition functional where the propagator
emerges as the Green’s function that inverts the equation of motion.
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perturbatively for small couplings. The pre-factors can be given a diagrammatic interpreta-

tion as coming from vertices linking the 2-point correlators. This interpretation forms the

foundations for Feynman diagrams discussed in the following section.

As we mentioned at the head of this section, the LSZ reduction formula reduces the

computation of S-matrices to that of n-point correlators. We will now outline how this is

achieved. However, the full LSZ formula for QCD is unwieldy. Therefore we will instead

only describe the LSZ formula in momentum space for a theory with a single scalar field.

Whilst being more algebraically lengthy, the QCD formula is not dramatically different. By

inserting an identity (1 = |Ω〉 〈Ω| + ∑
λ |λ〉 〈λ|) into an n-point correlator and using the

same manipulations as we used above for the 2-point correlator, we find the relation∫
ddx1e

ix1·p1 〈Ω|T{ϕ(x1)...ϕ(xn)ϕ(y1)...ϕ(ym)} |Ω〉
∣∣∣∣
x0

1>x
0
i ∀ i>1

=
i
√
Z

p2
i −m2 + iε

〈p1|T{ϕ(x2)...ϕ(xn)ϕ(y1)...ϕ(ym)} |Ω〉 , (2.63)

where we have defined that for a scalar field with only single particle resonances,

〈Ω|ϕ(x1) |p1〉
∣∣
αs=0

= e−ip·x
√
Z. (2.64)

Just as with Dirac fields, we have introduced
√
Z to parametrise our ignorance of the full

theory.18 Equivalent relations can be found for the other possible time orderings. Repeated

application of this identity gives the LSZ reduction formula:

〈p1, ..., pn| Ŝ |k1, ..., km〉 =

 n∏
i=1

i
√
Z

p2
i −m2 + iε

k∏
j=1

i
√
Z

p2
j −m2 + iε

−1

G̃n,m, (2.65)

where

G̃n,m =

n∏
i=1

∫
ddxi e

ipi·xi
k∏
j=1

∫
ddyj e

−ikj ·yj 〈Ω|T{ϕ(x1)...ϕ(xn)ϕ(y1)...ϕ(ym)} |Ω〉 . (2.66)

2.2.3.1 Feynman rules in momentum space without renormalisation

In the previous section we illustrated how elements of the QCD S-matrix can be computed

via correlators over operators. In turn, those multi-point correlators can be computed by

re-arranging them into sums over products of 2-point correlators. These sums over products

of 2-point correlators can be computed perturbatively using Feynman diagrams. Ignoring

ghost fields, which are gauge dependent and discussed in the next section, momentum space

Feynman diagrams for QCD (without renormalisation) are constructed with the following

rules:
18
√
Z is not the square root of the partition function, despite both sharing the same label. Though this

labelling might be confusing, it is the commonly accepted notation in the literature [8, 9].
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� With vertices time-ordered from left and to right, 2-point correlators in the free theory

(gs = 0) are given by propagators

=

∫
ddx 〈Ω|T{ψ̂f i(x) ˆ̄ψf ′ j(y)} |Ω〉 eip·(y−x) =

i(/p+mf )δijδff
′

p2 −m2
f + iε

,

(2.67)

and

=

∫
ddx 〈Ω|T{Âaµ(x)Âbν(y)} |Ω〉 eiq·(y−x) =

−i dµν δab
q2 + iε

, (2.68)

where dµν is a gauge dependent function of q and will be given in the following section.

Anti-quarks have an arrow in the opposite direction (pointing backwards in time).

� Three point vertices are given by

= igst
a
ijγ

µδff
′
, (2.69)

and

= gsf
abc [gµν(p1 − p2)σ + gνσ(p2 − p3)µ + gσµ(p3 − p1)ν ] , (2.70)

where each vertex is implicitly momentum conserving.

� The four point vertex is given by

= −g2
s

 feabfecd(gµβgνα − gµαgνβ)
+feacfedb(gµαgβν − gµνgβα)
+feadfebc(gµνgβα − gµβgνα)

 , (2.71)

where, once again, this vertex is momentum conserving.

� The external leg factors are:

– u(p, s) for an initial state fermion with momentum p and spin s,

– ū(p, s) for a final state fermion with momentum p and spin s,
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– v̄(p, s) for an initial state anti-fermion with momentum p and spin s,

– v(p, s) for a final state anti-fermion with momentum p and spin s,

– ελ(p) for an initial state vector boson with momentum p and polarisation λ,

– ε∗λ(p) for a final state vector boson with momentum p and polarisation λ,

where u, v, ε are the usual free Dirac spinors and gauge polarisation vectors respec-

tively, functional forms are given in Section 3.1.3.

� An unconstrained momentum p in a loop should be integrated over using the measure∫ ddp
(2π)4 .

� A symmetry factor should be included for the exchange of identical particles. The

symmetry factors cancel for the exchange of fermion lines so only become relevant

when gluon lines are exchanged. However, two diagrams which are equivalent up to

the exchange of two fermion lines will have a relative minus sign between them.

� Include any necessary ghost lines and vertices. These are gauge dependent and are

discussed in the subsequent sections.

The amplitude for a Feynman diagram is built up by following the arrows on fermion lines in

reverse, as you go including the relevant terms from the list above. Terms relating to gluon

lines commute and so can be included in any order provided the indices match up.19 An

n-point correlator is computed by summing over every possible permutation of Feynman di-

agrams with n initial/final state particles of which there are the same number of initial/final

state quarks/gluons as there are quark/gluon fields in the correlator.20 When computing

a correlator, every line should be treated as internal and no external leg factors should be

included. S-matrices are computed by including external leg factors for initial/final state

particle lines instead of including a propagator; i.e. look at Eq. (2.65), all propagators for

initial or final state lines are divided out and replaced with an external leg factor (which is

unity for scalar fields).

19Note that the colour algebra does not commute, however we have given the Feynman rules in terms of
elements of the colour matrices which do commute.

20Note that

=

∫
ddx 〈Ω|T{ψ̂f i(x) ˆ̄ψf ′ j(y)} |Ω〉 eip·(y−x)

has one incoming quark and one outgoing (even though they are both the same quark).
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2.2.3.2 Gauge dependent terms and gluon propagators

To complete our set of Feynman rules we must select a gauge. We will discuss two common

gauge choices, both of which will be used in the thesis.

The Lorenz gauge condition is given by G(A) = ∂µ ~Aµ = 0. Firstly, let us look at the

effect gauge fixing has on the gauge sector: in this gauge G(A)2 = ∂µAaµ∂
νAaν . This gauge

has several advantages: it is explicitly Lorentz covariant and gives the simplest form of the

gauge boson propagator. In this gauge, the equation of motion for a free gluon field is(
gµν∂σ∂

σ − (1− ξ−1)∂µ∂ν
)
~Aν = 0. (2.72)

The gluon propagator, ∆νσ
ab , is the Green’s function for the equation of motion in momentum

space. Thus ∆νσ
ab is the solution to(

−gµνq2 + (1− ξ−1)qµqν
)

∆νσ
ab (q) = iδσµδab, (2.73)

which gives

∆µν
ab (q) =

−i dµν δab
q2 + iε

=
−i

q2 + iε

(
gµν − (1− ξ)q

µqν

q2

)
δab. (2.74)

ξ = 1 is known as the Feynman gauge and letting ξ → 0 the Landau gauge (despite the

singularity in the equation of motion, in most situations one can set ξ = 0 without need for

extra care). Keeping ξ unspecified is known as an Rξ gauge.

Now, let us evaluate the ghost Lagrangian in Lorenz gauge:

δG(A)

δαa
=

δ

δαa

(
∂µ ~A

µ +
1

gs
∂µD

µ~α

)
=
tc

gs
∂µD

µ ca. (2.75)

This is an operator on fields defined in the Lie algebra of SU(3), such as the gauge fields.

It’s therefore required that c → ~c and Lghost → TrLghost. Explicitly labelling the gauge

group indices on the ghost fields, this gives the following ghost Lagrangian,

LLorenz
ghost = −c̄a∂µ

(
δac∂µ − igsfabcAµ b

)
cc, (2.76)

where the extra factor of gs has been absorbed into the normalisation of the ghost fields.

In the Lorenz gauge the ghost Lagrangian couples the ghost and gluon fields. Ghosts are

unphysical and so can only appear as internal lines in Feynman diagrams. They contribute

to the Feynman rules:

� Two point ghost correlators are given by the ghost propagator

a b
=

∫
ddx 〈Ω|T{ĉ a(x)ˆ̄cb(y)} |Ω〉 eip·(y−x) =

iδab

p2 + iε
, (2.77)
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� A three point ghost vertex is given by

a c

b µ

p

= −gsfabcpµ, (2.78)

where the vertex is momentum conserving.

An alternative gauge choice is an axial-like gauge. This gauge is defined by G(A) =

|n|−1nµ ~Aµ = 0 where nµ is an arbitrary 4-vector. In context, the axial ghost Lagrangian is

δG(A)

δαa
=

δ

δαa

(
nµ
|n|

~Aµ +
1

gs

nµ

|n|D
µ~α

)
=
tc

gs

nµ
|n|D

µ ca,

∴ Laxial
ghost = −c̄ a n

µ

|n|δ
ac∂µc

c. (2.79)

Thus we see that in the axial gauge the ghost fields are not coupled to the gluon or quark

fields. As a result, the ghost fields factorise out the partition function integrals into the

normalisation pre-factor and therefore cancel in the computation of amplitudes.

Now let us give the form of the gluon propagator, ∆µν
ab (q); found by solving the equations

of motion. The propagator is given by

∆µν
ab (q) =

−i dµν δab
q2 + iε

=
−i

q2 + iε

(
gµν − nµqν + qµnν

n · q +
(n2 + ξq2)qµqν

(n · q)2

)
δab, (2.80)

where we have assumed n is normalised so that n2 = ±1 or 0. It is usual to choose nµ to be

light-like and to set ξ = 0 in order to kill the last term. This is known as a light-cone gauge

choice. In a light-cone gauge dµν(q) ≡ ∑p,p′ εp(q)ε
∗
p′(q) where εp is a physical polarisation

vector with polarisation p. This property makes the light-cone gauge particularly useful

for our purposes later on in this thesis as it allows amplitudes with virtual gluons to be

expressed in terms the same functions and kinematics as on-shell gluons.

The discussion of gauge fixing in QCD that we just provided is entirely sufficient for

our purposes in this thesis. However, there are subtleties that we glossed over (for instance

Gribov ambiguities and gauge orbits [12]). One such subtly we hid behind some choice

wording, “In context, the axial ghost Lagrangian is...” Let us elucidate this statement a bit

further by recalculating the axial Lagrangian,

δG(A)

δαa
=
tc

gs

nµ
|n|D

µ ca, ∴ Laxial
ghost = −c̄ a n

µ

|n|
(
δac∂µ − igsfabcAbµ

)
cc. (2.81)

In order to arrive at the Lagrangian given in Eq. (2.79) we employed the gauge fixing

condition nµ ~Aµ = 0, removing the second term. However, readers paying close attention

might be troubled by this step. In order to exponentiate the gauge fixing condition we
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set n · ~A(x) = ~w(x) and convoluted the ~w(x) dependence with a Gaussian. Therefore the

gauge fixing condition does not simply remove the second term, rather we integrate over

every field configuration for the second term weighted by a Gaussian. So let us analyse the

ghost Lagrangian with this term intact. First an observation, nµDac
µ c

c = 0 is not a wave

equation. Therefore the ghost fields do not propagate and so, if they contribute anything to

the Feynman rules, they must contribute a contact term. Now, let us return to the Faddeev

Popov trick. We showed that∫
D[A] O(A) eiS[A] =

∫
D[α]

∫
D[A] O(A)eiS[A] δ∞(G(A)) det

(
δG(A)

δα

)
. (2.82)

As it stands, the δ∞(G(A)) dependence does enforce the nµ ~Aµ = 0 gauge fixing condition.

Let us exponentiate the gauge fixing condition via an alternate means such that we preserve

the delta function, δ∞(G(A)). For this we can use the following analytic continuation of a

delta function

δ(x) = lim
ξ→i0−

e
− ix

2

2ξ

√
2πiξ

. (2.83)

Thus we find∫
D[A] O(A) eiS[A] = lim

ξ→i0−
N(ξ)

∫
D[α] det

(
δG(A)

δα

)∫
D[A] O(A)e

iS[A]−i
∫

ddx
G(A)2

2ξ .

(2.84)

Where the front factor and gauge integral cancel as usual in the computation of correlators.

The ξ → i0− limit seems subtle but it is simple for all amplitudes that are holomorphic

functions of ξ, in which case we can set ξ = 0 and ghosts decouple. Let us now compare the

computation of amplitudes in QCD in the axial gauge using Eq. (2.84) with the computation

of amplitudes in QCD in the axial gauge using Eq. (2.48),

Z[{J}] ≡
∫
D[A, c̄, c] exp

[
iS[{J}, {φ}]− i

∫
ddx

(
G(A)2

2ξ
+ c̄

δG(A)

δα
c

)]
≡ lim

ξ→i0−

∫
D[A] exp

[
iS[{J}, {φ}]− i

∫
ddx

G(A)2

2ξ

]
, (2.85)

where S[{J}, {φ}] = SQCD[{φ}] + Sgen[{J}, {φ}]. The equivalence sign is used as short-

hand for Z[{J}]/Z[{0}] is the same when computed with each expression. As the ghost

Lagrangian is independent of ξ and the equivalence holds for all values of ξ in the first

line, the two lines are only consistent if ghosts decouple and cancel in the computation

of amplitudes. Thus, in the axial gauge ghosts decouple from the computation of QCD

amplitudes. This is what we meant by “In context, the axial ghost Lagrangian is...” The

argument in this section implicitly assumes that amplitudes are holomorphic in ξ, however
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it can be argued that ghost fields decouple more generally. This can be achieved through

the Slavnov-Taylor identities, discussed in Section 2.2.4, or by studying gauge orbits in the

partition function and noting that the partition function must be independent of ~w(x) for

a fixed ~w(x) [12].

2.2.4 BRST symmetries and Ward identities

Gauge fixing removes the explicit SU(3) gauge symmetry of the QCD quantum action.

However, the action does still have symmetries.21 In particular, the BRST (Becchi, Rouet,

Stora [15], and Tyutin [16]) symmetry. The BRST symmetry is a ‘tuned’ infinitesimal

SU(3) gauge symmetry and so let us start by recapping how each field transforms under an

infinitesimal SU(3) gauge transformation. To begin, we can re-write the gauge fixing term

using an auxiliary field, ~B(x),

LGF = −G(A)2

2ξ
≡ ξ

2
Tr ~B2 − Tr ~BG(A). (2.86)

When Ba is integrated out of the path integral the standard gauge fixing term is recovered

(Ba can be thought of as a Lagrange multiplier). An infinitesimal gauge transformation

acts as,

U : φ 7→ φ+ δφ for U = exp (iεgs ~α) , where U ∈ SU(3) and ε→ 0,

δ ~Aµ = εDµ~α, δψf = iεgs ~αψf , δψ̄f = −igs ψ̄f ε~α,

δ~c = i [~c, ε~α], δ~̄c = i [~̄c, ε~α], δ ~B = i [ ~B, ε~α]. (2.87)

As ~B is an auxiliary field we are free to define ~B = [~̄c, ~α], and following this definition the

Jacobi identity can be employed so that δ ~B = 0. LQCD is invariant under this transformation

for arbitrary ε, however generally LGF +Lghost is not. The important observation by BRST

is that LGF + Lghost is invariant under the transformation if ε is a Grassman number and

if ~α obeys fermionic statistics. The combination εαa commutes with the fields (despite ε

and αa individually anti-commuting) meaning this is still a SU(3) transformation. BRST

set gs~α = i~c, thus ensuring that ~α is fermionic. The BRST transformations are

BRST : φ 7→ φ+ ε (Q,φ) where Q : φ 7→ (Q,φ) = ε−1δφ,

ε−1δ ~Aµ = [Q, ~Aµ] =
i

gs
Dµ~c,

ε−1δψf = {Q,ψf} = −~cψf , ε−1δψ̄f = {Q, ψ̄f} = − ψ̄f~c,

ε−1δ~c = {Q,~c } =
i

2gs
{~c,~c }, ε−1δ~̄c = {Q,~̄c } = − i

gs

~B, δ ~B = 0, (2.88)

21The discussion in this section is based on [8, 13, 14].

39



where Q is a fermionic generator that generates the transformations of the BRST symmetry,

and (Q,φ) = {Q,φ} for φ a fermionic field and (Q,φ) = [Q,φ] for φ a bosonic field.

Let us now consider applying a BRST transformation twice, i.e. (Q, (Q,φ)). It can be

checked that this gives

[Q, {Q, fermionic field}] = {Q, [Q,bosonic field]} = 0. (2.89)

By the Jacobi identity we see that the BRST symmetry is nilpotent, i.e. 1
2{Q,Q}φ = Q2φ =

0. We can use the nilpotency of Q to show that LGF + Lghost is invariant under the BRST

symmetry. We can write LGF + Lghost = {Q,Ψ } where

Ψ = 2iTr

(
~̄c

(
ξ

2
~B −G(A)

))
, (2.90)

hence22

Q : LGF + Lghost 7→ [Q, {Q,Ψ }] = Q2Ψ = 0.

Thus, as we stated at the head of this section, LqQCD (Eq. (2.54)) is invariant under BRST

transformations. Similarly it can be checked that the path integral measure is invariant

under BRST transformations (i.e. the symmetry is not anomalously broken by quantum

corrections).

Let us now introduce Ward identities. If a theory has a symmetry ({φ} → {φ′}) that

preserves the partition function, i.e. both the quantum action (as discussed in Section

2.2.2) and the integration measure over all fields are invariant under the symmetry, then

necessarily

(−i)n
Z[{φ}]

δnZ[{φ}, {J}]
δJφj · · · δJφi

∣∣∣∣
all Jφ=0

=
(−i)n
Z[{φ′}]

δnZ[{φ′}, {J}]
δJφj · · · δJφi

∣∣∣∣
all Jφ=0

, (2.91)

where φi, φj ∈ {φ}. In terms of expectation values of operators, this means that

〈Ω|T{O1({φ(x1)}) · · ·On({φ(xn)})} |Ω〉 = 〈Ω|T{O1({φ′(x1)}) · · ·On({φ′(xn)})} |Ω〉 ,
(2.92)

where O1({φ}), · · · , On({φ}) are operators built from the fields {φ}. This is a Ward iden-

tity and these relations constrain the form of all non-zero correlators in a theory. For a

simple example, let us consider the Poincaré symmetries of a theory. Firstly, translational

invariance {φ(x)} = {φ(x+ a)}. Dropping the field dependencies in favour of just position

dependencies, the Ward identity gives

〈Ω|T{O1(x1) · · ·On(xn)} |Ω〉 = 〈Ω|T{O1(x1 + a) · · ·On(xn + a)} |Ω〉 , (2.93)

22This argument assumes that G(A) is a linear function of ~A.
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from which we can deduce that correlators are only functions of relative distances, i.e.

xi−xj . Looking to the Lorentz subgroup, if we have the symmetry {φ(x)} = {Jφ(Λx)} for

Λ ∈ SO(1, 3) and J ∈ repSO(1, 3), the Ward identities require that

〈Ω|T{O1(x1) · · ·On(xn)} |Ω〉 = 〈Ω|T{O1(Λx1) · · ·On(Λxn)} |Ω〉 , (2.94)

where we have assumed the operators O1({φ}), · · · , On({φ}) are Lorentz scalars. Conse-

quently, correlators of Lorentz scalar operators can only be functions of Lorentz invariants.

Between this constraint and the previous, we know these operators must only be functions

of squares of relative distances, i.e. (xi − xj)2.

The insight gained from the Ward identities of the Poincaré symmetry may seem almost

trivial. However, Ward identities are found for every symmetry of the partition function

and can give powerful insight into the structure of correlators. Let us now look the Slavnov-

Taylor identities, which are the Ward identities from the BRST symmetry. The Slavnov-

Taylor identities are the non-Abelian generalisations of the Takahashi-Ward identities which

ensure that in QED unphysical modes (photons with longitudinal polarisations) always

cancel in observable states. The Slavnov-Taylor identities are given by

〈Ω|T{O({ψf , ~Aµ,~c})} |Ω〉 = 〈Ω|T{O({ψf + δψf , ~Aµ + δ ~Aµ,~c+ δ~c})} |Ω〉 , (2.95)

where O({ψf , ~Aµ,~c}) is any operator in QCD. The identities are typically re-arranged into

the form

〈Ω|T{O({ψf + δψf , ~Aµ + δ ~Aµ,~c+ δ~c})} |Ω〉 − 〈Ω|T{O({ψf , ~Aµ,~c})} |Ω〉
= 〈Ω|T{δBRSTO({ψf , ~Aµ,~c})} |Ω〉 = 0. (2.96)

This is the so called “master equation” for the Slavnov-Taylor identities. Let us see an

implication of this identity. Consider the correlator

〈Ω|T{~̄c(y) ~Aµ1(x1) ~Aµ2(x2) · · · ~Aµn(xn)} |Ω〉 = 0, (2.97)

where the dots represent n−3 more gluon fields. This correlator is zero as there is no vertex

in the theory which can produce a single ghost field. Using the “master equation” we have

〈Ω|T{δBRST

(
~̄c(y) ~Aµ1(x1) ~Aµ2(x2) · · · ~Aµn(xn)

)
} |Ω〉

= ε 〈Ω|T{(Q,~̄c(y)) ~Aµ1(x1) ~Aµ2(x2) · · · ~Aµn(xn)} |Ω〉
+ ε 〈Ω|T{~̄c(y)(Q, ~Aµ1(x1)) ~Aµ2(x2) · · · ~Aµn(xn)} |Ω〉+ · · ·

= 0, (2.98)

where the dots indicate summing over the application of Q to each successive gluon field.

Let us look only at terms with the same pole structure as the second line and contract the
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expression with εµ1 · · · εµn where each εµi is a physical transverse polarisation state. Only

the first term is non-zero: the other terms with the same pole structure either vanish for

the same reason as Eq. (2.97) (they contain a vertex with an odd number of ghosts) or are

proportional to ∂µi which contracts with εµi to give zero. Therefore

εµ1 · · · εµn 〈Ω|T{(Q,~̄c(y)) ~Aµ1(x1) ~Aµ2(x2) · · · ~Aµn(xn)} |Ω〉

= − i

gs
εµ1 · · · εµn 〈Ω|T{ ~B(y) ~Aµ1(x1) ~Aµ2(x2) · · · ~Aµn(xn)} |Ω〉 = 0. (2.99)

Looking back to the definition of ~B in Eq. (2.86), we can remove the auxiliary field from

the theory by setting23

~B =
G(A)

ξ
. (2.100)

Thus we find that

εµ1 · · · εµn 〈Ω|T{G(A(y)) ~Aµ1(x1) ~Aµ2(x2) · · · ~Aµn(xn)} |Ω〉 = 0. (2.101)

In the Lorenz gauge, and in momentum space, this gives

qνεµ1 · · · εµn 〈Ω|T{ ~Aν(q) ~Aµ1(p1) ~Aµ2(p2) · · · ~Aµn(pn)} |Ω〉 = 0. (2.102)

Thus the Slavnov-Taylor identities require that amplitudes with ‘unphysical’ longitudinally

polarised gluons in the final or initial state go to zero. Although we have only demonstrated

this for purely gluonic amplitudes, it is not too difficult to generalise the procedure to

including quarks and more ghost fields. Using an axial gauge, one also finds that

nνεµ1 · · · εµn 〈Ω|T{ ~Aν(q) ~Aµ1(p1) ~Aµ2(p2) · · · ~Aµn(pn)} |Ω〉 = 0, (2.103)

where nν is the axial gauge vector.

The Slavnov-Taylor identities have a lot of applications. From them it can also be shown

that: QCD amplitudes are fully gauge invariant under SU(3)c despite that LqQCD is not,

amplitudes with initial/final state ghosts always cancel to zero, amplitudes computed via

perturbative QCD obey unitarity (to all orders 2-point correlators never diverge faster than

p−2 and cross-sections obey the Froissart bound [17] so that σ < ln2 s for a centre of mass

energy s), and the theory is renormalisable.

23Handling the field ~B more carefully and integrating it out of theory achieves exactly this result.
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2.2.5 Renormalised quantum action

So far we have introduced the quantum action for QCD and we have set up the computation

of QCD S-matrix elements via Feynman rules. However, there is a problem lurking in our

discussion so far. When computing S-matrix elements beyond tree-level (or zeroth order),

the Feynman amplitudes diverge. Ultra-violet divergences (divergences due to arbitrarily

large momenta) are caused by unconstrained momenta in loops. For instance, consider the

gluon self energy diagram,

µ, a ν, b

σ, d

ρ, c

k + q

q

=
g2

s

2
facdf bcd

∫
d4k

(2π)4

−i
k2 + iε

−i
(k + q)2 + iε

Nµν , (2.104)

where Nµν is the numerator coming from the two triple gluon vertices

Nµν =[gµρ(q − k)σ + gρσ(2k + q)µ − gσµ(k + 2q)ρ]

× [δνρ(k − q)σ − gρσ(2k + q)ν + δνσ(k + 2q)ρ]. (2.105)

Simple power counting lets us see that this integral has parts which diverge logarithmically

and parts which diverge quadratically as E2
k + k2 → ∞, though it transpires that the

quadratic divergences cancel.

Divergences are unphysical. In reality we expect there to be something, as yet unknown,

limiting the loop integrals so that infinite energy/momentum modes are not included. If

our theory is to be usable in its current form, divergences should cancel in the computation

of any physically observable quantity, when expressed entirely in terms of other observable

quantities. We could attempt to cancel divergences term by term in every computation

that we undertake. However, this would be laborious and perhaps a better approach can

be found. This motivates us to consider renormalisation.24

Renormalisation is the process of substituting the ‘bare’ fields and parameters defining

the quantum action with ‘physical’ ones. The basic idea is that, at a given energy density

(or some other relevant scale), quantum fields will always come with an associated amount

of quantum noise. If we were to measure a quark, really we would be measuring the quark

plus the characteristic amount of QCD noise (in the form of real and virtual particles)

dressing the quark at the given scale. This will shift our measurement of its mass (or

charge) away from the ‘bare’ parameter in our Lagrangian. Similarly, the quantum noise

overlaying each quantum field will shift its value at each point in space-time away from the

24The following discussion is based on that found in [9] and uses results from [8].
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‘bare’ field in the Lagrangian. Every time we use the bare fields and parameters to compute

something physical, we are required to recompute the quantum noise. The computation

of the noise requires us to integrate over all possible modes, introducing dependence on

the unphysical infinite energy modes into each of our calculations. By substituting ‘bare’

parameters and fields for ‘physical’ ones, we aim to only compute the noise once - when doing

the substitution. If the theory is renormalisable, the UV diveregnces should all be absorbed

into this computation and no more should appear. Fortunately, QCD is renormalisable [18,

19].

The renormalisation procedure is necessarily not unique. Firstly we must define what

‘physical’ is. This will be a choice known as the renormalisation scheme. This is par-

ticularly hard for QCD, where confinement ensures the physically observable objects are

hadrons, not the quarks and gluons present in the Lagrangian. On top of this, we are

absorbing divergences into redefinitions of the ‘bare’ parameters and so this will depend on

the regularisation scheme we have used for these divergences. We will be using dimensional

regularisation (see Appendix A.4). Fortunately, upon the completion of a computation, the

differences between renormalisation schemes will always appear as a correction one order

higher than the accuracy of the computation (this is shown in Chapter 1 of [9]).

In our discussion of the LSZ reduction formula (Section 2.2.3), we have already come

across a parameter for our lack of knowledge of the quantum noise surrounding the propa-

gation of a fermion, Z ′2:

〈Ω|T{ψ̂f i(x) ˆ̄ψf ′ j(y)} |Ω〉 = Z ′2 〈Ω|T{ψ̂f i(x) ˆ̄ψf ′ j(y)} |Ω〉
∣∣
gs=0

. (2.106)

A similar parameter emerges when one looks at the propagation of a gluon, Z ′3:

〈Ω|T{Aaµ(x)Abν(y)} |Ω〉 = Z ′3 〈Ω|T{Aaµ(x)Abν(y)} |Ω〉
∣∣
gs=0

. (2.107)

As does a parameter, Z̃ ′2, when we look at the propagation of ghost fields.25 Inspired by

this, we can introduce parameters Z2, Z̃2, and Z3 to define our renormalised fields. It is

typical to give bare (not renormalised) fields a 0 subscript. We define the renormalised

fields as √
Z2ψ = ψ0,

√
Z̃2c = c0, and

√
Z3A

a
µ = Aa0µ. (2.108)

If we let Zi = Z ′i we have effectively made the choice that a ‘physical’ quark/gluon is one

which, between interactions, propagates like a free particle – this is known as an on-shell

scheme. Other schemes can be be introduced by letting each Z ′i, which multiply correlators

in Eqs. (2.106) and (2.107), differ from the Zi renormalising the field. The difference can

25We have added primes to each Z to avoid confusion later.
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be computed perturbatively. A common alternative choice is to let each Zi equal one plus

the divergent part of Z ′i: this is a minimal subtraction (MS) scheme and is equivalent to

saying a ‘physical’ parameter is just the ‘bare’ one with divergences removed. We must also

define a renormalised quark mass and strong coupling. Akin to how we handled fields26, we

introduce

gs = Z−1
g µ−εgs 0, and m = Z−1

m m0. (2.109)

The factor µ−ε is included so that the Lagrangian is consistently defined in d = 4 − 2ε

dimensions with a dimensionless coupling. µ is the renormalisation scale. The gauge fixing

parameter also needs renormalising. It is usual to choose

ξ = Z−1
3 ξ0, (2.110)

so that the gauge fixing term is independent of the renormalisation when one uses a covari-

ant gauge.27 The renormalised quantum Lagrangian in the Lorenz gauge, and at a fixed

renormalisation scale µ, is

Lrenorm
eff =− 1

4
Z2

(
∂µA

a
ν − ∂νAaµ + Z3Z

−1
g µεgsf

abcAbµA
c
ν

)2

+
∑
f

Z2 f ψ̄f i
(
iγµ
(
δij∂

µ − iZ3Zgµ
εgst

a
ijA

µa
)
− δijZmfmf

)
ψf j

− (∂µ ~Aµ)2

2ξ
− Z̃2c̄

a∂µ

(
δac∂µ − iZ3Zgµ

εgsf
abcAµ b

)
cc. (2.111)

In Section 2.2.3, we have already argued that Z ′2 = 1 + O(αs), corresponding to the

free theory plus perturbations. This is true for all Z ′i and Zi. Therefore it is typical

to expand each Zi as Zi = 1 + ∆Zi where each ∆Zi is computable from perturbation

theory. As mentioned earlier, the form of ∆Zi will be dependent on the renormalisation

and regularisation scheme. In an MS scheme ∆Zi absorbs only the divergent pieces from

26The following relations can be tied back to 3-point correlators, such as

〈Ω|T{ψ̂f i(x) ˆ̄ψf ′ j(x)Aaµ(x)} |Ω〉 ,

just as Z2 and Z3 were tied to 2-point correlators.
27Not covariant gauges require the components of ~Aµ to be renormalised with more care due to the

presence of external reference vectors. This forces the gauge fixing term to depend on the renormalisation
procedure.
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the 2-point and 3-point correlators. For instance, at order αs,∫
ddxeiq·(y−x) 〈Ω|T{ψ̂f i 0(x) ˆ̄ψf ′ j 0(y)} |Ω〉

=

∫
ddxeiq·(y−x) 〈Ω|T{ψ̂f i 0(x) ˆ̄ψf ′ j 0(y)} |Ω〉

∣∣
αs=0

+
i2(/q +mf 0)

(q2 −m2
f 0 + iε)2

[
q

]
(/q +mf 0),

=
i(/q +mf 0)δijδff

′

q2 −m2
f 0 + iε

(
1 +

g2
s 0CF

(4π)2

1

ε

(
3mf 0 − ξ(/q −mf 0)

) (/q +mf 0)

(q2 −m2
f 0 + iε)

+O(ε0)

)
,

(2.112)

where CF = (N2
c − 1)/2Nc. This can be compared against the same 2-point correlator

computed with renormalised fields, expanded to first order in ∆Zi,∫
ddp

(2π)4
eiq·(y−x) 〈Ω|T{

√
Z2ψ̂f i(x)

√
Z2

ˆ̄ψf ′ j(y)} |Ω〉

= δijδff ′
i (1 + ∆Z2 f ) (/q +mf 0)− i∆Zmfmf 0

/q+mf 0

/q−mf 0

q2 −m2
f 0 + iε

. (2.113)

Hence, in the MS scheme,

∆Z2 f = −g
2
sCFξ

(4π)2

1

ε
and ∆Zmf = −3g2

sCF

(4π)2

1

ε
. (2.114)

By considering other 2- and 3-point correlators, it can also be found that

∆Z̃2 =
g2

sCA

4(4π)2
(3− ξ)1

ε
, ∆Z3 = − g2

s

(4π)2

1

ε

(
CA

3ξ − 13

6
+

2nf
3

)
,

and ∆Zg = − g2
s

(4π)2

1

ε

(
CA

11

6
− nf

3

)
, (2.115)

where CA = Nc and nf is the total number of fermions.28

2.2.6 The running coupling

As we discussed in the previous section, there was a lot of arbitrariness in our choice of

renormalisation and regularisation schemes. Furthering the arbitrariness, the scheme we

specified for regularisation introduced a new, seemingly unconstrained, scale to the QCD

Lagrangian, µ, with the dimensions of an energy/momentum.29 Some of the arbitrariness

28Note that Zi are functions of gs not gs 0. At tree level the bare and renormalised couplings are equal
and so they appear interchangeable at the level of analysis we have discussed. However, at higher orders
they differ. The MS scheme is defined around removing divergences from the renormalised Lagrangian; these
divergences are multiplied by factors of the renormalised coupling, hence Zi are functions of the renormalised
coupling.

29Whilst this may seem like a consequence of our decision to use dimensional regularisation, a new scale
would have been introduced regardless of the scheme used. For instance an ultra-violet cut-off would intro-
duce the UV cut-off scale into each Zi.
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is removed by noting that the renormalisation scheme dependence cancels from calculations

order-by-order. However, the dependence on the new, currently unconstrained, scale re-

mains.30 To address this, it is of interest to understand how the theory changes as we vary

the scale. Changing the scale from one value to another can be achieved by renormalising

the theory a second time at the new value. The action of repeated renormalisations of the

theory forms a group (where the elements of the group are the functions/functors specifying

the renormalisation procedure). Thus studying the variation of a theory under a change in

scale is known as studying the renormalisation group. The effect of an infinitesimal change

in scale µ is computable from the renormalisation group equations. Here we will only in-

troduce the renormalisation group equation for the variation of the strong coupling with

scale.

In the previous section we renormalised the strong coupling (with dimensional regular-

isation) as

gs(µ) = Z−1
g µ−εgs 0. (2.116)

We now wish to find how gs varies with µ and eliminate its dependence on gs 0. Note that

gs 0 is independent of µ. Therefore

dgs(µ)

dµ
= −Z−2

g

dZg
dµ

µ−εgs 0 − εZ−1
g µ−1−εgs 0, (2.117)

which can be re-arranged to give

d ln gs

d lnµ
= −ε− gs

d lnZg
dg

d ln gs

d lnµ
, (2.118)

which is equal to

d ln gs

d lnµ
=

−ε
1 + gs

d lnZg
dgs

. (2.119)

In the minimal subtraction scheme, ∆Zg only absorbs terms with poles. Consequently Zg

has the expansion

Zg = 1 +
∞∑
n=1

Z
(n)
g

εn
, where Z(n)

g =
∞∑
k=n

c
(n)
k g2k

s . (2.120)

Now note that d ln gs

dµ is finite and therefore all pole terms must cancel as ε → 0. We can

expand it in gs,

d ln gs

d lnµ
= −ε

(
1− gsε

−1 dZ
(1)
g

dgs
+O(g2

s )

)
. (2.121)

30Though, as we will see in Eq. (2.125), varying the scale also appears as a correction one order higher
than the accuracy of the computation.
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Importantly, all terms O(g2
s ) have poles and so must cancel to zero. Therefore, as ε→ 0,

d ln gs

d lnµ
= gs

dZ
(1)
g

dgs
= β(gs). (2.122)

Finally, we can expand β(gs) in powers of gs,

β(gs) = −
∞∑
n=0

βn

(αs

4π

)n
, (2.123)

and β0 can be read off from Eq. (2.115),

β0 =
11

3
Nc −

2

3
nf . (2.124)

Thus we can solve for gs(µ) with the lowest order β function, although the solution is more

elegantly expressed in terms of αs,

αs(µ) =
αs(µ0)

1 + αs(µ0)
4π β0 ln

(
µ2

µ2
0

) , (2.125)

where αs(µ0) is a boundary condition.

There are a couple of things to note about αs(µ). Most importantly, as

µ2 → µ2
0e
−4π/αs(µ0)β0

the coupling diverges and as µ2/µ2
0 → ∞ the coupling goes to zero. The latter property

is called asymptotic freedom [20, 21], when µ is large (corresponding to short distances)

the coupling is small. In an MS scheme in d = 4− 2ε dimensions, for each order in αs the

dependence on µ can typically be written in a form similar to

αs

∫ ∞
0

µ2εp−2εdp2

p2 +M2
− αs

∫ ∞
µ2

µ2εp−2εdp2

p2
∼ αs ln

M2

µ2
,

where the first term represents a contribution from a divergent loop and the second term a

contribution from a ∆Zi (cancelling the p2 →∞ pole). M is a physical mass/energy scale

which is characteristic of the process being computed. Generally, the perturbative series

will converge fastest for M2 ∼ µ2, minimising the logarithm. This motivates choosing µ

to be a scale which characterises the phenomenon being studied (see Section 1.11 of [9]

for an extended discussion and [22] for an example of choosing µ for processes dominated

by IR QCD radiation). Therefore, asymptotic freedom implies QCD becomes increasingly

perturbative as we study processes which probe smaller and smaller distances. Conversely,

the coupling becoming large at large scales in position space implies that the theory becomes
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non-perturbative.31 There are two key scales in the discussion of αs(µ): the scale where

αs(µ) ∼ 1, at which the theory is becoming non-perturbative; and the scale at which αs(µ)

diverges, signalling complete break down of our perturbative approach, defined to be at

µ = ΛQCD. Hadrons are non-perturbative bound states, therefore we expect them to have

masses near ΛQCD. We can solve (2.122) a second time to express αs(µ) in terms of ΛQCD,

ln

(
µ

ΛQCD

)
= −

∫ ∞
gs(µ)

dgs

gsβ(gs)
, (2.126)

which at lowest order gives

αs(µ) =
4π

β0 ln

(
µ2

Λ2
QCD

) . (2.127)

From this we find that αs(µ) ∼ 1 for µ ∼ ΛQCDe
2π/β0 ≈ 4ΛQCD, assuming 3 active light

quarks at scales of order ΛQCD. ΛQCD must be found by fitting to experimental data. Such

fits vary depending on the renormalisation schemes used and the assumptions used to obtain

the fits. Typically ΛQCD is in the range of 200MeV to 300MeV [23].

2.3 Current frontiers of particle phenomenology

2.3.1 The Standard Model

There are four known fundamental forces of nature: the electromagnetic force (mediated by

photons), the strong interaction (mediated by gluons), the weak interaction (mediated by W

and Z bosons) and gravitation (perhaps mediated by gravitons). Quantum electrodynamics

is the theory of electromagnetism and quantum chromodynamics is the theory of the strong

interaction. The Standard Model (SM) [24] unifies QED and the weak interaction to form

the electroweak interaction. It also describes how all matter fields (including quarks) inter-

act with the unified electroweak force. As a part of the unification process, the SM includes

the Higgs mechanism [25–28] which describes how W and Z bosons become massive, and

how matter fields (including quarks) gain mass through the Yukawa couplings. It is not

currently known how to correctly unify the SM and gravity.

The Standard Model is a SU(3) × SU(2) × U(1) gauge theory of fermions and bosons.

The SU(3) sub-group is that of QCD. The SU(2) × U(1) subgroup is that of the unified

electroweak interaction. Without the Higgs mechanism, the electroweak interaction has four

31The diverging coupling also hints at QCD confinement, where viewed at large distances quarks and
gluons are bound into non-perturbative colour singlet states known as baryons. Quarks and gluons are never
seen individually. The growing coupling gives an intuitive explanation for this property. As quarks/gluons
are pulled part, it becomes increasing likely that a new particle/anti-particle pair will appear from the
vacuum forming bound states from the separated coloured particles.
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massless bosons for the four group generators, an SU(2) field ~Wµ and a U(1) field Bµ. The

Higgs mechanism causes spontaneous symmetry breaking to occur around the electroweak

scale (in the range of 0.1 − 1TeV). This breaks the SU(2) × U(1) group to SU(2). The

component of the SU(2)×U(1) fields which has the broken generator becomes a Goldstone

boson [29, 30]. Superpositions of the ~Wµ and Bµ fields with unbroken generators form the

W , Z and photon fields. The W and Z fields absorb the Goldstone field and in doing

so become massive. The Yukawa couplings couple the Higgs field and the matter fields.

Spontaneous symmetry breaking causes the Yukawa couplings to generate a mass term for

each fermion, proportional to the strength of their Yukawa coupling and the Higgs vacuum

expectation value. Consequently the Higgs field couples to matter fields proportionally to

their mass. The Yukawa couplings and the gauge couplings do not share the same eigenbasis

for the quark fields. The two are related by a unitary transformation mapping the mass basis

(from the Yukawa couplings) to the flavour basis (from the electroweak gauge couplings),

parametrised by the CKM mixing matrix [31, 32]. Pure QCD is usually only expressed in

the mass basis, as it is otherwise symmetrical under the exchange of flavour, and so the

CKM matrix is irrelevant (furthermore massless QCD does not distinguish between the two

bases). The CKM matrix only becomes of important when considering the weak interaction,

which couples to the flavour basis.

As we mentioned above, the SM does not include gravity, this alone would be motivation

for looking at theories which go beyond the Standard Model (BSM). However, there are

yet more known problems with the Standard Model. Chief amongst these problems, the

SM does not contain good candidates for explaining dark matter or dark energy. BSM

model-building tends to centre on finding dark matter candidates, as more is known about

the properties of any prospective dark matter candidate particle (i.e. the ranges of allowed

masses and relative coupling strengths to SM fields [33]). Popular models include, minimally

supersymmetric standard models (MSSMs) [34], axions [35], and sterile neutrinos [36, 37]

(often via a seesaw model), amongst others [38]. Models which are popular tend to be so

because they address multiple problems at the same time. Other known problems with the

SM include

1. Neutrino mixing: it has been experimentally verified that the neutrino mass and

flavour bases differ in a fashion similar to that described by the CKM matrix. However,

the relative weakness of the neutrino Yukawa couplings (due to the small, possibly

even zero, neutrino masses), and the absence of mixing between electrons, muons, and

taus (beyond small corrections due to the weak interaction), precludes the SM from

naturally explaining the mixing. Currently nuetrino mixing is introduced in the SM

by the ad hoc inclusion of the PMNS mixing matrix [39, 40].
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2. The hierarchy and naturalness problems: the Higgs mass is unstable due to quantum

corrections originating from the Higgs quartic self coupling. Consequently, if one tries

to imagine the SM interacting with gravity, it is hard to see how the Higgs mass

would remain stable at the electroweak scale and not cascade 19 orders of magnitude

towards the Planck mass. This is the hierarchy problem and it is closely related to the

naturalness problem. The naturalness problem is simply that it is hard to explain,

without fine tuning, why the fundamental constants of nature present in the SM and

gravity span such a large range of magnitudes, from meV (or less) for the lightest

neutrino to 1019GeV for the Planck mass.

3. The strong CP problem: the strong CP problem relates to the fine tuning of the

QCD vacuum. A careful study of the QCD vacuum leads to finding that topological

particles (instantons) are present, which require the addition of a new term to the

quantum action (the θ term) [41]. A similarly careful study of quantum corrections to

the QCD action finds that the axial symmetry is anomalously broken, also resulting

in a new term being added to the quantum Lagrangian [42]. The two terms cancel

each other when a parameter (θ) describing the QCD vacuum is fine tuned, however

without fine tuning they persist. The new terms are CP violating, and therefore can

be constrained experimentally by looking for CP violation in the strong interaction.

Experimental measurements of the neutron magnetic moment find no CP violation,

requiring θ to be fine tuned to the order 10−9 [43].

Sterile neutrinos are typically introduced as a dark matter candidate whilst also explaining

neutrino mixing [36, 37]. Axions were originally motivated to solve the strong CP problem

whilst also giving a dark matter candidate [35, 41, 42]. MSSMs have many attractive fea-

tures to theorists and have been used in attempts to solve all three of the above problems

[34] (though they are becoming highly constrained experimentally [38]). Supersymmetry

is often also used as a framework through which quantum fields and gravity can be uni-

fied (whether by supersymmetric string theories [44] or other theories of everything [38]).

However, these theories all lack experimental validation. Further constraining the SM and

theories BSM requires increasingly precise and high energy experiments. With these exper-

iments, more precise predictions from theory are needed. It is here where studying QCD

plays a vital role.

2.3.2 Phenomenology at the Large Hadron Collider

The Large Hadron Collider (LHC) is the most powerful particle accelerator built to date.

After the first long shutdown, the collider accelerated bunches of protons (and separately
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ions) to 6.5TeV (2.56TeV/u for ions) inducing collisions at 4 detector sites [45]. These col-

lisions were produced and recorded between June 2015 and October 2018, a period referred

to as ‘run 2’. At full operation, during run 2, there were approximately 1 billion 13TeV

proton collisions per second. Since it first began operation in 2008, the LHC has been the

source of many of major experimental discoveries in particle physics: the discovery of the

Higgs boson [46, 47], precision measurements of the top quark [48, 49], measurement of the

Yukawa couplings [50], observations of exotic hadrons [51], precision measurements of rare

decays [52–54], and more [38]. On top of this, the LHC has been the source of many new

constraints on BSM models.

At the time of writing this thesis, the LHC is being further upgraded to the ‘high-

luminosity LHC’. Run 3 of data taking with the LHC is set to begin in March 2022 and the

high-luminosity LHC is to begin operation by the end of 2027 [55]. The goal of the upgrade

is to greatly increase the amount of data taken, increasing the precision of measurements

made. To match this, theoretical predictions must also become more precise. QCD is an

inescapable background to physics at the LHC, even when not being measured directly since

protons provide the initial state to every process. Furthering the importance of QCD, the

LHC produces huge amounts of QCD radiation. The non-perturbatively bound hadrons

observed in detectors are typically produced at scales near ΛQCD, three to four orders of

magnitude lower than the energy of proton collisions. Consequently, the particles produced

in the proton collisions continually radiate, losing energy and momentum until they reach

the scale of hadronisation. A detailed account of QCD radiation is crucial to producing

precise predictions from theory. Starting from the following chapter, this thesis is dedicated

to the study of QCD radiation within the context of high energy particle colliders.
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Chapter 3

Quantum chromodynamics in the
infra-red limit

“How do you go on, when in your heart you begin to understand... there is no

going back?”

—Frodo Baggins, J.R.R. Tolkien, The Return of the King

In the previous chapter we gave an introduction to QCD and its place in modern the-

oretical physics. By considering experiments at the LHC, we motivated the importance of

studying large multiplicities of QCD radiation in detail. This chapter builds on the previ-

ous by delving further into the details of QCD amplitudes. QCD radiation is dominated

by radiation emitted into and around points in phase-space where the amplitudes for QCD

particles diverge or become large. Ultra-violet divergences, such as we renormalised in the

previous chapter, are generally screened by phase-space boundaries (a proton of finite en-

ergy cannot emit a real infinite energy gluon) and so are less relevant for the computation

of real radiation. The divergences of interest to us are infra-red divergences. We will partic-

ularly be studying amplitudes in the neighbourhood of divergences due to particles emitted

at arbitrarily low energies or small angles. To aid us, we will first devote two sections to

introducing some mathematical methods that are useful to the study of amplitudes. Fol-

lowing these sections, we will derive many of the elementary results in the study of infra-red

QCD radiation.

3.1 A maths toolbox for kinematic factors in amplitudes

3.1.1 The method of regions

The method of regions is an approach to systematically expanding integrals around various

limits.1 These limits are usually associated with poles in the integrand or boundary condi-

1The discussion in this section is based around those in [1, 2].

56



tions on the integration. One can use the method of regions to expand either amplitudes

or the QCD partition function. When approached systematically, both applications are

in correspondence with each other. The expanded partition function constructs an effec-

tive field theory [3, 4], the Feynman diagrams from which reconstruct the expanded QCD

amplitudes. We will largely focus on the expansion of amplitudes directly.

To illustrate the fundamentals of the method of regions, let us do a toy example. Con-

sider the integral

I =

∫ ∞
0

dk
k

(k2 +m2)(k2 +M2)
=

ln(m/M)

m2 −M2
, (3.1)

in the limit m�M . As m/M → 0, I diverges. Around this limit, I has the expansion

I ≈ − ln(m/M)

M2

(
1 +

m2

M2
+ ...

)
. (3.2)

The first term is completely dominant in this limit, as it goes to infinity whilst the other

terms go to zero. Thus computing only this term would serve as a good approximation. We

could have more easily computed the expansion by dividing the integral into two regions

IM =

∫ ∞
Λ

dk
k

(k2 +m2)(k2 +M2)
, Im =

∫ Λ

0
dk

k

(k2 +m2)(k2 +M2)
, (3.3)

where we impose that m � Λ � M . In IM the domain of integration is always such that

k � m and so we can use such an expansion

IM ≈
∫ ∞

Λ
dk

k

k2(k2 +M2)

(
1− m2

k2
+ ...

)
. (3.4)

Similarly, in Im the domain is such that k �M . Thus

Im ≈
∫ Λ

0
dk

k

M2(k2 +m2)

(
1− k2

M2
+ ...

)
. (3.5)

At this point we can make an important observation: Λ regulates divergences in both IM

and Im. Had we applied either the k � m or k �M limits without partitioning the integral

domain we would have been faced with a need to introduce a regulator. We can integrate

both our expressions for IM and Im and find

IM ≈
1

2M2
ln

(
1 +

M2

Λ2

)
≈ − ln(Λ/M)

M2
+

Λ2

2M4
,

Im ≈
M2 +m2

2M4
ln

(
1 +

Λ2

m2

)
− Λ2

2M4
≈ − ln(m/Λ)

M2
− Λ2

2M4
. (3.6)

Thus

I = Im + IM ≈ −
ln(m/M)

M2
+O

(
m2 ln(m/M)

M4

)
. (3.7)

57



This is in agreement with the first term in the correct expansion we previously computed

in Eq. (3.2).

Our toy example illustrates the basic technique of the method of regions: identify all

useful expansions of an integrand and partition the domain of the integral so that the

expansions are always well defined. Though the method of regions seems a little laborious

in this example, as integrals become more complicated the method becomes very powerful.

Our toy model highlights a key feature, if the scale Λ is well chosen the complete answer

can be found from either Im or IM individually (by letting Λ ≈ M or m respectively).

With QCD, it is often the case that we can only compute one of the two complimentary

expansion regions, thus Λ will remain as a parameter in our calculation for which we will

need to choose an appropriate scale. Sometimes it is possible to find the correct value for

Λ by matching to other calculations, other times the variation due to Λ will remain as an

error on the theoretical prediction.

Now let us examine a generic QCD amplitude and identify the regions we will be expand-

ing in QCD. We will be working with QCD in the massless limit, for which all amplitudes

have the form

Aabc··· = Cabc···
∏
i

∫
d4qi
2π

N({q}, {p}, {ε(p)})∏
j [l

2
j ({q}, {p}) + iε]

, (3.8)

where “abc · · · ” are colour indices, Cabc··· is a colour factor, N({q}, {p}, {ε(p)}) is a numer-

ator, {q} is a set of loop momenta, {p} is a set of initial/final state momenta, {ε(p)} is a

set of polarisation vectors, and each lj is a linear combination of momenta in the sets {q}
and {p}. The ultraviolet divergences, renormalised in the previous chapter, occur when

N({q}, {p}, {ε(p)}) diverges faster than the denominator for large momenta. Infra-red di-

vergences are pinched singularities found when the denominator vanishes faster than the

numerator.2 It is in the regions of phase-spaces around these pinched divergences where

amplitudes for QCD radiation can become arbitrarily large, dominating the distribution

of the radiation. Therefore we wish to apply the method of regions to expand around the

pinched divergences.

The denominator only vanishes if at least one of l2j goes to zero. We can analyse the

routes l2j has to zero by power counting. From this analysis we will be able to apply the

method of regions to expand in the neighbourhood of these routes to zero. Let l2j = λ2L2
j

where L2
j is finite whilst λ2 → 0 and let us express lj in a light-cone basis,

lµj = l+j n
µ + l−j n̄

µ + lj⊥n
µ
⊥, (3.9)

2‘Pinched’ meaning that a suitable complex contour cannot be deformed in such a way as to avoid the
singularities.
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where n, n̄, n⊥ are auxiliary vectors which obey: n2 = n̄2 = 0, n · n̄ = 2, n ·n⊥ = n̄ ·n⊥ = 0,

and where both n, n̄ are normalised against their zeroth component. Thus

l2j = 2l+j l
−
j + (lj⊥)2n2

⊥. (3.10)

Following this, one usually defines a positive scalar k2
⊥ = −(lj⊥)2n2

⊥ to help simplfy expres-

sions. In order for l2j = λ2L2
j , one of the following must be the case:

l+j l
−
j = λ2L+

j L
−
j and lj⊥ = λLj⊥, (3.11)

or l+j l
−
j = L+

j L
−
j O(λ3) whilst lj⊥ = λLj⊥, (3.12)

or l+j l
−
j = λ2L+

j L
−
j whilst lj⊥ = Lj⊥O(λ2), (3.13)

where each of the light-cone components of Lj are finite. If lj is constrained to be a near

on-shell momentum, both l+j l
−
j and k2

⊥ must go to zero at the same rate. This constrains

the scalings of the components of lj to being of the first form. There are three scalings of

the components of lj consistent with this

(l+j , l
−
j , lj⊥) = (L+

j , λ
2L−j , λLj⊥), (3.14)

(l+j , l
−
j , lj⊥) = (λ2L+

j , L
−
j , λLj⊥), (3.15)

(l+j , l
−
j , lj⊥) = λ(L+

j , L
−
j , Lj⊥). (3.16)

Regions of phase-space with these scalings are typically known as the collinear, anti-

collinear, and soft regions respectively. If lj can be off-shell a fourth region becomes relevant:

(l+j , l
−
j , lj⊥) = (λ2L+

j , λ
2L−j , λLj⊥), or (λ2L+

j , λL
−
j , λLj⊥), or (λL+

j , λ
2L−j , λLj⊥). (3.17)

This is of the form shown in Eq. (3.12) and is known as the Coulomb (or Glauber) region.

Scalings of the form Eq. (3.13) are ultra-collinear and tend not to be relevant.3 Sometimes

it is necessary to distinguish between two lj and lj′ that are both going to zero but at

differing rates: l2j = λ2L2
j and l2j′ = λ4L2

j′ . This gives rise to three further regions

(l+j′ , l
−
j′ , lj′⊥) = λ(L+

j′ , λ
2L−j′ , λLj′⊥), (3.18)

(l+j′ , l
−
j′ , lj′⊥) = λ(λ2L+

j′ , L
−
j′ , λLj′⊥), (3.19)

(l+j′ , l
−
j′ , lj′⊥) = λ2(L+

j′ , L
−
j′ , Lj′⊥). (3.20)

These are the soft-collinear, soft-anti-collinear, and ultra-soft regions respectively.

In order to use the method of regions we must relate λ back to physical quantities in

the problem we are trying to solve. Usually this is achieved by letting λ = µ/Q where µ is

3Their scaling ensures that they would only be present in self-energy-like diagrams where the infra-red
safety of QCD ensures ultra-collinear poles are not present (at least at the accuracy considered in this thesis).
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some low scale, it could be taken to zero or some physical observable dependent value, and

where Q is the ‘hard’ scale, typically the transverse momentum or centre of mass energy of

the QCD process the radiation is originating from (for instance the transverse momentum

of a jet). The correct scales (µ and Q) can either be found by matching to complete fixed

order calculations or our lack of knowledge of the correct scales remains as an uncertainty

on our calculations.

3.1.2 The KLN theorem

The QCD S-matrix has infra-red divergences, as we highlighted in Section 3.1.1. So far we

have taken it for granted that these divergences will cancel. Understanding the mechanism

behind the cancellation of IR divergences is important to the study of QCD radiation, for

which we have argued the distribution of radiation is dominated by regions of phase-space

near the divergences. In this section we review the KLN (Kinoshita [5], Lee and Nauenberg

[6]) theorem, which proves that all logarithmic IR divergences in QCD and Standard Model

cross-sections do cancel. We take the approach of Lee and Nauenberg [6].

Let us start by recapping the QCD S-matrix

lim
t→∞(1+iε)

〈p1, ..., pn; t|k1, ..., km;−t〉 = 〈p1, ..., pn| Ŝ |k1, ..., km〉 ,

where lim
t→∞(1+iε)

Ŝ = Û(t0, t)Û
†(−t, t0), (3.21)

where Û(t0, t) is the time evolution operator of the theory from a common time t0 to t. For

what follows we assume the states |k1, ..., km〉 and |p1, ..., pn〉 are in the Heisenberg picture.

Consider diagonalising the theory. To do so we introduce two unitary transformations

Û+ and Û− which diagonalise the Hamiltonian Ĥ(t) at times t = ∞ + iε and −∞ − iε

respectively. By definition, and dropping the explicit time dependence,

Û †±(Ĥ0 + gsĤ1)Û± = Ê, (3.22)

where Ĥ0 + gsĤ1 = Ĥ. Ĥ0 is the free theory Hamiltonian and is diagonal (we assume

|k1, ..., km〉 and |p1, ..., pn〉 are eigenstates of the free theory). Ê is the diagonalised full

theory Hamiltonian, it projects out the energy of eigenstates states in the full theory. With

these we can write

lim
t→∞(1+iε)

〈p1, ..., pn; t|k1, ..., km;−t〉 =
〈
p1, ..., pn

∣∣Û †+Û+ŜÛ
†
−Û−

∣∣k1, ..., km

〉
. (3.23)

Û+ŜÛ
†
− = limt→∞+iε exp(−i

∫ t
−t dt′ Ê(t′)) is diagonal and acting on Û− |k1, ..., km〉 becomes

a phase which cancels, thus Ŝ ≡ Û †+Û−. Now let us look at perturbatively expanding Û±.

We can re-arrange its defining relation to give

(gsĤ1 + Ĥ0 − Ê)Û± = [Û±, Ê], (3.24)
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from which we can derive a perturbative expansion for the elements of Û±:

〈i| Û± |j〉 = (Û±)ij = δij +
gs(1− δij)(Ĥ1)ij
Ej − Ei ∓ iε

+O(g2
s ), (3.25)

where i and j index states in the theory and Eij = δijEj .
4 We assume the theory has

an infra-red regulator which ensures that no states are degenerate with each other: i.e.

an IR cut-off or equivalent which regulates the soft and collinear divergences discussed in

the previous section, including gluon and quark masses would achieve this. If the theory

contains states that become degenerate as the infra-red regulator goes to zero5 (some Ei →
Ej) the theory will have diverging S-matrix elements proportional to negative powers of

(Ej − Ei ∓ iε).
The key observation by Lee and Nauenberg (LN) is that as the IR regulator goes to

zero, despite the S-matrix diverging, the following sum is finite for arbitrary fixed a, b:∑
i′∈i+degen.

(Û±)ai′(Û
∗
±)bi′

=
∑

i′∈i+degen.

(
δi′aδi′b + δi′b

gs(1− δi′a)(Ĥ1)ai′

Ea − Ei′ ∓ iε
− δi′a

gs(1− δi′b)(Ĥ1)i′b
Ei′ − Eb ∓ iε

+O(g2
s )

)
, (3.26)

where the sum over “i′ ∈ i+ degen.” is over all states degenerate to i (including i). We can

quickly check this case by case: if i is degenerate with a but not b,∑
i′∈i+degen.

(Û±)ai′(Û
∗
±)bi′ =δib

gs(1− δia)(Ĥ1)ab
Ea − Eb ∓ iε

+ δab −
gs(1− δab)(Ĥ1)ab
Ea − Eb ∓ iε

+O(g2
s ), (3.27)

which is explicitly finite (there is no Ea − Ei denominator). Here the first line came from

i′ = i and the second from i′ = a. A similar result is found when i and b are degenerate but

a is not. Next if i, a, and b are degenerate,∑
i′∈i+degen.

(Û±)ai′(Û
∗
±)bi′ = 2δab −

gs(1− δab)(Ĥ1)ab
Ea − Eb ∓ iε

+
gs(1− δab)(Ĥ1)ab
Ea − Eb ∓ iε

+O(g2
s ). (3.28)

Finally, when i = a = b the sum is equal to 1 +O(g2
s ). Including more states degenerate to

i does not change matters. The probability for a transition from j to i is given by

Pij = | 〈i| Ŝ |j〉 |2 =
∑
a,b

(Û∗+)ai(Û+)bi(Û−)aj(Û
∗
−)bj . (3.29)

4The iε comes from defining U± at a complexified time. Ej are energies of the system and so also become
complexified.

5Each of the routes to zero for lj discussed in the previous section describe a way through which a
linear combination of momenta can become degenerate. For instance a state with no zero-energy-gluons is
equivalent to a state with an infinite number of zero-energy-gluons. The presence of a zero energy gluon in
a loop gives rise to propagators which have a soft scaling in the denominator. Regulating the lj divergence
removes the degeneracy, for instance by removing zero-energy-gluons.
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Using the finite sum above, we can recognise that a finite probability, P , if returned by

summing over the states degenerate to i and j:

P =
∑

i′∈i+degen.

∑
j′∈j+degen.

Pi′j′ =
∑
a,b

∑
i′∈i+degen.

(Û∗+)ai′(Û+)bi′
∑

j′∈j+degen.

(Û−)aj′(Û
∗
−)bj′ .

(3.30)

Note that this is an incoherent sum. It only makes sense to sum over degenerate states at

the level of computing probabilities not amplitudes. Amplitudes of degenerate states cannot

be made IR finite. This result, that P is finite, is the KLN theorem. Though we have only

demonstrated the KLN theorem to first order in the coupling, LN showed inductively that

it applies to all orders in perturbation theory. Kinoshita found this result independently by

directly studying the divergences of Feynman diagrams.

To all orders, the precise statement of the KLN theorem is: if we can introduce an infra-

red regulator, µ, (either a IR cut-off or mass scale) to the theory, which completely removes

IR degeneracies by introducing logarithmic dependence on the regulator (i.e. (Ei−Ej)−1 ∼
lnp µ for some power p), then LN probabilities

P (µ) =
∑

i′∈i+degen.

∑
j′∈j+degen.

Pi′j′(µ), (3.31)

do not depend logarithmically on µ and so are finite in the limit µ→ 0.

Practically speaking, there are two main sources of IR divergences, loops and the in-

tegration over the phase-space of external particles. The KLN theorem tells us that if we

sum inclusively over the IR divergences that appear at each order in perturbation theory,

all logarithmic divergences will cancel. To illustrate this, consider the computation of an n

particle QCD matrix element, Mn. At tree level, this matrix element (M(0)
n ) is finite, as

are the n particle differential cross-sections we can compute from it. If we were to compute

the first order correction to Mn due to one loop, which we label M(1)
n , the matrix element

will diverge. This is because M(1)
n is degenerate with the tree level matrix element in the

limit that the loop transfers no momentum (i.e. the loop momenta has a soft or collinear

scaling). Therefore, when computing a cross-section we must add toM(1)
n any other O(αs)

corrections to Mn which are also degenerate with M(0)
n . There is only one other O(αs)

degenerate correction to Mn, which is M(0)
n+1 where one of the n+ 1 particles has a soft or

collinear scaling relative to another of the n + 1 particles. The KLN theorem states that

the LN probability, P, is finite

P ∝ (M(0)
n )∗M(0)

n +

∫
dΠn+1M∗n+1Mn+1 + (M(1)

n )∗M(0)
n + (M(0)

n )∗M(1)
n , (3.32)
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where dΠn+1 is the phase-space measure of the soft or collinear particle. We will make

substantial use of this relation, mostly re-written into the form

Pole

{∫
dΠn+1M∗n+1Mn+1 + (M(1)

n )∗M(0)
n + (M(0)

n )∗M(1)
n

}
= 0, (3.33)

where ‘Pole’ is the operation to extract the pole terms from the bracketed expression. Note

that, for first order corrections, soft and collinear divergences can be independently regu-

larised with separate IR cut-offs6. Therefore the KLN theorem requires that soft divergences

cancel independently of collinear divergences and vice versa.

3.1.3 Spinor-helicity methods

The computation of Feynman diagrams is often complicated and algebraically tedious. How-

ever, in stark contrast, cross-sections and ‘bottom-line answers’ tend to appear surprisingly

simple. This leads to the common speculation that perhaps the Feynman diagram approach,

in its generality, is obscuring the potential simplicity of amplitudes. One particularly fruitful

approach to solving this dichotomy is the spinor-helicity formalism [7, 8].7

The spinor-helicity formalism aims to make manifest the Poincaré symmetries of a scat-

tering amplitude so that they can be better exploited. Transformations in the Poincaré

group can be crudely divided into two separate sub-groups: the group of transformations

that map a given momentum, k, on to another, p; and the ‘little group’ of transforms which

map a given momentum, k, onto itself. Transformations which rotate one spin or polarisa-

tion state into another, whilst preserving individual momenta, necessarily must be in the

little group. The representation of the little group for a particle state with momentum, k,

and spin, s, depends on its spin statistics:

U |k; s〉 =
∣∣k; s′

〉
, U ∈ rep. of little group. (3.34)

If the particle transforms as a vector in the Lorentz group, finding the little group and its

representation reduces to finding the set of transformations for which

Uµνkν = kν . (3.35)

If k is massive then U ∈ SO(3), and if k is massless U ∈ Eu(2) (the group of 2D Euclidean

isometries). In practice we focus on the SO(2) subgroup of Eu(2) for massless particles as

these transformations have a physical interpretation of rotating the spin of a definite helic-

ity state within the plane orthogonal to its polarisation. In the computation of amplitudes

6For instance a cut-off on the loop energy regularises the soft divergences but not the collinear divergences.
7The discussion in this section is based on those in [7, 9–11].
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for the scattering of vector particles, the internal properties of each particle are well rep-

resented by the SO(1, 3) Lorentz indices on the particle’s momenta. However, for fermions

the situation is more complex. Just as fermions transform under a different representation

of the Lorentz group compared to vector particles, fermions also transform under different

representations of the massive and massless little groups. The little group for massive Dirac

fermions is SU(2) ⊕ SU(2) ' SO(3)8, since these transformations map a Dirac spinor of

a space-like momentum k onto another Dirac spinor also of momentum k. Little group

transformations for massless Dirac fermions are elements of U(1)⊕U(1) ' SO(2). Typical

approaches to the calculation Feynman diagrams of fermionic amplitudes involve spin av-

eraging, or otherwise extracting 4-vectors from the Dirac spinors, reducing the amplitude

to products of 4-vectors with SO(1, 3) Lorentz indices. This can obscure information on

spin and the internal symmetries of particles in the amplitude since 4-vectors do not trans-

formation in the same representation of the little group as the fermions themselves. The

spinor-helicity formalism is a set of techniques to elegantly re-write amplitudes directly in

terms of spinors which do transform in the fermionic little group. We will now introduce

the formalism, beginning quite generally then focusing on developing these methods for

massless particles.

There are two starting observations from which spinor-helicity methods are derived.

Firstly a Dirac spinor can be decomposed into two ‘chiral spinors’. Each chiral spinor

transforms individually in the spinor rep of SO(1, 3). The decomposition is as follows:

ψ± =
1

2
(1± γ5)ψ, ψ = ψ+ + ψ−, where γ5 = iγ0γ1γ2γ3. (3.36)

This decomposition is particularly insightful in the chiral basis where,

ψ+ =

(
0
χ̃

)
, ψ− =

(
χ
0

)
. (3.37)

Here χ, χ̃ are two component spinors known as a Weyl spinors. Working more abstractly,

we can write the Dirac spinor as ψ = χ ⊕ χ̃. In this notation it is perhaps clear that

we can partition the little group so that χ transforms under SU(2) (or U(1) if massless)

and χ̃ under the conjugate group SU(2) (or U(1) if massless). To make their independent

transformation properties explicit the spinors are given indices as χα and χ̃α̇. Undotted

indices index the space on the left of the direct sum, dotted the space on the right. Note that

undotted covariant indices represent vectors whereas dotted contravariant indices represent

8Here the SU(2) transformations are conjugate to the SU(2) transformations in the fundamental repre-
sentation and don’t represent individual degrees of freedom.
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vectors.9 The two Weyl spinor representations are related by χα̇ = χ∗α = (εαβχ
β)∗, note

that εαβ = −εαβ.

We can introduce a helicity operator which is the operator for the projection of angular

momentum (due to spin) along the direction of momentum: ĥ = i
2εijkp̂iJjk where Jjk ∈

so(3) and p̂ is the 3-momentum operator. In the massless limit [γ5, ĥ] = 0 and so each

chiral state is also a state of definite helicity. Thus we can label each massless Weyl spinor

with a definite spin state projected onto the direction of motion; χα(p) ≡ χα(p,−) and

χ̃(p)α̇ ≡ χ̃(p,+)α̇, respectively referred to as left and right handed. In the free massless

case, ψ+ and ψ− both independently solve the Dirac equation /pψ± = 0. Written in terms of

the spinors this gives pµσµχ = 0 and pµσ̄µχ̃ = 0. Therefore we can deduce that det(pµσ
µ) =

det(pµσ̄
µ) = 0 for p2 = 0. The degeneracy includes the U(1) little group phase that can

be given to each Weyl spinor. These phases can be independently fixed as the two spinors

independently satisfy the Dirac equation. The complete free Dirac equation has the solutions

u(p, s) =

(
χ(p, s)α
χ̃(p, s)α̇

)
|E > 0, v(p, s) =

(
χ̃(p, s)α
χ(p, s)α̇

)
|E < 0, (3.38)

given that χ and χ̃ are positive energy Weyl spinors satisfying pµσµχ = 0, pµσ̄µχ̃ = 0, and

χα(p,+) = χ̃(p,−)α̇ = 0. If we take pµσµχ = 0, and act on it with a parity transformation,

we find that

P : (pµσµχ = 0) 7→ (pµσ̄µPχ = 0).

Therefore Pχ = χ̃ up to transformations in the little group. In other words, we can freely

set u(p, s) = v(p,−s). This sets χ̃(p)α̇ = χ(p)α̇ for free massless Weyl spinors. Solutions to

pµσµχ = 0 can be expressed in many ways, one of the most common is

χ =
√

2E

(
−e−iφ sin θ

2

cos θ2

)
, (3.39)

for momentum p = E(1, cosφ sin θ, sinφ sin θ, cos θ)T.

The second observation is that a null 4-vector k can be uniquely expressed as kαα̇ =

σµαα̇kµ.10 The null condition is encoded by k2 = det(kµσ
µ) = 0. Thus kαα̇ must be

degenerate and so can be expressed as the tensor product of two equal momentum free

massless Weyl spinors, kαα̇ = χ(k)αχ̃(k)α̇.11 The basic tenet of the spinor-helicity formalism

9The Clifford algebra can be interpreted as linking the left and right spaces. If we look to the Dirac
equation in terms of Weyl spinors, pµσµχ = mχ̃ and pµσ̄µχ̃ = mχ, we can see that necessarily σµ receives
indices as σα̇αµ and similarly σ̄µ as σ̄µαα̇.

10The relationship kαα̇ = σµαα̇kµ can be inverted as kµ ∝ 1
2
χ(k)ασµαα̇χ̃(k)α̇. The final relation is propor-

tional up to the little group phase that can be chosen to be unity.
11This follows since a 2× 2 degenerate matrix has 3 degrees of freedom. Each Weyl spinor has 2 degrees

of freedom but the pair are constrained to be of equal momentum, removing 1 degree of freedom. Now we
can check det(χ(k)αχ̃(k)α̇) = εαα̇χ(k)αχ̃(k)α̇ = χ(k)αχ̃(k)α ∝ k · k, which is zero. Hence we see the equal
momentum constraint enforces degeneracy on the matrix.
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is that amplitudes of fermions can be better expressed in terms of products of Weyl spinors of

the fermion momenta rather than momentum vectors, since the transformation properties

of spinors better encapsulates the symmetries of a fermionic system. To aid us, let us

introduce some further notation:

|k〉α̇ = χ̃(k)α̇, |k]α = χ(k)α, 〈k|α̇ = εα̇β̇χ̃(k)β̇ = χ̃(k)α̇, [k|α = εαβχ(k)β = χ(k)α,

(3.40)

from which we define the brackets

〈qk〉 = χ̃(q)α̇χ̃(k)α̇, [qk] = χ(q)αχ(k)α. (3.41)

Using the representation given in Eq. (3.39) we can compute these brackets for momenta

k = Ek(1, cosφ sin θ, sinφ sin θ, cos θ)T and q = Eq(1, 0, 0, 1)T. We find

〈qk〉 =
√

2q · keiφ, [qk] =
√

2q · ke−iφ+iπ. (3.42)

Here we see these U(1) little group phases due to rotations in the plane perpendicular to

the spin axis emerge, parametrised by φ. We can also readily see that 〈qk〉 = −〈kq〉 and

[qk] = − [kq], a consequence of Weyl spinors anti-commuting. Finally 〈qk〉∗ = [kq], which

means that 〈qk〉 [kq] = 2q · k. Further spinor identities are given in Appendix A.2.

As previously stated, our goal in employing this formalism is to completely express

amplitudes of fermions in terms of spinors. However, fermions in the Standard Model in-

teract via gauge bosons. These introduce polarisation vectors to our amplitudes. Therefore

we must now introduce a decompoistion for the polarisation vectors in terms of spinors.

Physical polarisation vectors must satisfy:

p · ε±(p) = 0, q · ε±(p) = 0, ελ(p) · ε∗λ′(p) = −δλλ′ , (3.43)

where q is an arbitrary auxiliary vector chosen to fix the gauge. The following two ansatz

satisfy these requirements,

εµ+(p) =
1√
2

〈q|σµ |p]
〈qp〉 , εµ−(p) = − 1√

2

[q| σ̄µ |p〉
[qp]

. (3.44)

We can check that, given this representation for polarisation vectors, a shift in the reference

vector, q → q′, is equivalent to a gauge transformation:

1√
2

〈q′|σµ |p]
〈q′p〉 = − 1√

2

〈q′|σµpν σ̄ν |q〉
〈qp〉 〈q′p〉 =

1√
2

〈q′| pνσν σ̄µ |q〉
〈qp〉 〈q′p〉 +

1√
2

〈q′| 2pνgµν |q〉
〈qp〉 〈q′p〉 ,

=
1√
2

〈q′p〉 [p| σ̄µ |q〉
〈qp〉 〈q′p〉 +

√
2 〈q′q〉 pµ
〈qp〉 〈q′p〉 =

1√
2

〈q|σµ |p]
〈qp〉 +O(pµ). (3.45)

Here we have made use of identities given in Appendix A.2. Terms linear in pµ are gauge

transformations that vanish thanks to the BRST symmetry, see Section 2.2.4.

We will make extensive use of the spinor-helicity formalism throughout this and later

chapters. As such we will withhold giving an example until Section 3.3.
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3.2 A maths toolbox for colour factors in amplitudes

3.2.1 Basis independent colour charge operators

Matrix elements in SU(Nc) gauge theories are typically defined to carry the SU(Nc) group

structure of the particles involved as colour indices; i.e.

Ma1...an
i1...im

where i1...im are indices in the fundamental representation of SU(Nc), corresponding to m

external quarks, and a1...an are indices in the adjoint representation of SU(Nc), correspond-

ing to n external gluons. In the QCD amplitudes we have looked at so far, colour matrices

have always been implicitly given in the SU(3) Gell-Mann basis – the most commonly used

basis for su(3)fund. However, it can be helpful to compute matrix elements using other

representations of SU(3). To aid us changing basis let us define

Ma1...an
i1...im

= 〈a1...an; i1...im |Mn+m〉 , (3.46)

where |Mn+m〉 is a state vector for an amplitude involving m external (anti-)quarks and n

external gluons. |a1...an; i1...im〉 is a basis vector in an n+m dimensional product space of

vectors in the Gell-Mann basis. It projects out the Gell-Mann basis representation of the

amplitude |Mn+m〉. There are many different bases which could be used to represent the

SU(3) product space in which |Mn+m〉 resides. We will now look to generalise the colour

charge so that it is an operator acting on |Mn+m〉. This will prove useful in its own right,

as well as making it easier to change basis.12

To begin, let us define a colour charge in the Gell-Mann basis for the emission of a gauge

boson with colour a:

(T ai )dc =



tadc i = ū,
tadc i = v̄,
−tacd i = u,
−tadc i = v,
ifdac i = ε,
−if cad i = ε∗.

(3.47)

Here the index i indexes the particle line which the colour charge is associated with - the

line of the ‘emitter’. For example an incoming fermion emitting a gauge boson would have

a colour charge (T au )dc = −tacd. In a general Feynman amplitude there is an ambiguity as to

what exactly is meant for one particle to emit another - which is the emitter, which is the

emitted? The answer one chooses does not matter provided it can be consistently applied

throughout the calculation. We will be using the colour charge for the computation of soft

12This thesis follows the definitions used in [12–14], though alternative definitions can be found [15].
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and collinear limits of amplitudes where the emitter is unambiguous. Usually the lower

indexes on the colour charge can be dropped, instead assuming matrix multiplication along

a given particle line. Finally T a †i T ai ≡ Ti · Ti = Ci1d is the Casimir matrix in the same

representation as particle i (i.e. d = 3 and Ci = CF if i is a quark, whilst d = 8 and Ci = CA

if i is a gluon).

We can use the Gell-Mann basis colour charge to define a colour charge operator:

〈di|Tai |ci〉 = (T ai )dici ,

〈d1, ..., di, ..., dn|Tai |c1, ..., ci, ..., cn〉 = δd1c1 ...(T
a
i )dici ...δdncn , (3.48)

where |ci〉 and |di〉 are basis vectors for the Gell-Mann basis.13 This colour operator has

the familiar properties,

[Tai ,Tbj ] =

{
ifabcTci i = j,
0 i 6= j.

(3.49)

Ti · Ti = Ci1. (3.50)

Tai is a ‘rectangular operator’, increasing the dimension of the colour product-space in which

an amplitude resides by adding the index a. Often we will drop the upper index on the

colour operator, in which case it should be understood that it is an operator that increases

the dimension of the SU(3) product space of an amplitude by 1 (i.e. in the Gell-Mann

basis 〈di, a|Ti |ci〉 = (T ai )dici). Finally, we know from the Slavnov-Taylor identities (Section

2.2.4) that a physical amplitude |M〉 is invariant under SU(3) gauge transformations:

eiα
a
∑n
i Tai |M〉 = |M〉 , (3.51)

which is a gauge transformation applied consistently across each of the ith SU(3) sub-spaces.

Expanding to first order we find a final identity,∑
i

Tai |n〉 = 0. (3.52)

This is known as colour conservation (by analogy to charge conservation in QED for which

the sum over all charges in a process is an invariant). When discussing soft-currents we

will see that colour conservation is related to the cancellation of unphysical longitudinal

polarisations of gluons. This should not be surprising as the SU(3) gauge symmetry of an

amplitude and the cancellation of longitudinal gluons are both consequences of the BRST

symmetry and its Ward identities.

13Sometimes we will write the colour charge operator as Ta
i . Generally speaking an amplitude has both a

colour and spin structure. We give operators that act individually on either the colour space or spin space
in the O style, whilst composite operators acting in both spaces we give in the O style. Spin averaged
amplitudes have a trivial spin space and so we can use Ta

i interchangeably with Tai .
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(a) Some topologies contributing to the ampli-
tude for of γ∗ → qq̄gg and their representation
in terms of colour flows.

(b) Topolgies contributing to the compuation of γ∗ →
qq̄gg at cross-section level, their representation in
terms of colour flows and corresponding colour factors
in terms of the number of colours N . The amplitude
is drawn to the left of the dashed line, the conjugate
amplitude is drawn to the right. Final state particles
are represented by lines bisceted by the dashed line.

Figure 3.1: Colour factors for γ∗ → qq̄gg computed using colour flow diagrams derived from
the Fierz identity. The virtual photon has no colour charge and so has not been included
on the diagrams, it could be attached at any point along the quark/anti-quark lines. These
diagrams were first presented in [16].

3.2.2 The colour flow basis

The colour flow basis is a powerful alternative to the Gell-Mann basis for amplitudes in

SU(Nc) gauge theories. It is found by using Fierz identity,

∑
a

taijt
a
kl =

1

2

(
δilδkj −

1

Nc
δijδkl

)
≡ 1

2

 i

j

l

k

− 1

2Nc

 i

j

l

k

 ,

(3.53)

to decompose the colour structure of an amplitude into (anti-)colour lines which follow the

contraction of indices on Kronecker deltas. Using this approach, we can compute colour

factors diagrammatically by exchanging gluon and quark lines in Feynman diagrams with

colour and anti-colour lines, see Figure 3.1. For a complete set of rules for colour flow

diagrams in QCD see [16]. When computing a cross-section, every colour/anti-colour line

will close to form a loop. Each loop corresponds to a factor of δii = Nc. Summing over all the

colour topologies gives the colour factor associated with the squared Feynman amplitudes

under consideration.
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With this diagrammatic approach we can think of |M〉 as being a vector in a product

space V1 ⊗ V2 ⊗ ... ⊗ Vn, for 2n (anti-)colour lines, where each Vi is a vector space in a

representation of SU(Nc) for each colour line anti-colour line pair14. The colour flow basis

(CFB) is a spanning set used to parametrise the product space V1 ⊗ V2 ⊗ ...⊗ Vn of colour

line anti-colour line pairs (or colour flows). It represents a particular permutation of colour

line anti-colour lines pairs by a vector |σn〉 where σn is an element of the permutation group

Sn. The most common convention for the colour flow basis is to index the colour lines in

an order corresponding to particle indices and relative to that labelling the permutations

of connected anti-colour by σ (see Figure 3.2). The complete CFB spanning set is

{|σn〉}; σn ∈ Sn. (3.54)

The CFB is defined to have the bracket

〈σn|τn〉 = Nn−T (σn,τn)
c ; σn, τn ∈ Sn (3.55)

where T (σ, τ) counts the minimum number of transpositions separating σ and τ in the

permutation group. Note that this bracket means the CFB is not orthonormal. The bracket

encodes the Fierz identity into the colour flow algebra and therefore ensures each element

of the CFB represents a colour flow diagram as one would find using the Fierz identity. The

CFB grows factorially with the number of colour flows (pairs of lines), meaning that it is

over-complete – hence why it is a spanning set.15

The problem with not orthonormal spanning sets

As previously mentioned, the CFB is not orthonormal. A typical way to approach a non-

orthogonal basis is to construct a dual basis, {|σn]}, defined so that

[σn
∣∣σ′n〉 = δσn,σ′n . (3.56)

This is the approach presented in [14]. With such a dual basis an identity operator,∑
σn

|σn〉 [σn| =
∑
σn

|σn] 〈σn| = 1, (3.57)

and projection operators can be constructed. However there is a problem with employing

this approach naively. It is not possible to construct a dual basis for an over-complete

14We employ crossing symmetry to represent incoming colour lines as outgoing anti-colour lines. Conse-
quently, the colour/anti-colour lines of any gauge invariant amplitude can always be grouped into connected
pairs.

15Systematically and efficiently finding complete sets of basis tensors in an arbitrarily large SU(N) product
space is a well studied but still fairly open problem ([17, 18] and references therein). However, it is known
that the number of basis tensors grows slower than the factorial of the product space’s dimension [18].
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1

2

3

4

1

2

3

1̄

2̄

3̄

|123〉 |213〉 |312〉 〈123|123〉 = N 3
c , 〈123|213〉 = N 2

c , 〈123|312〉 = Nc.

Figure 3.2: Diagrammatic representation of colour flow basis states and their inner products.
The left half of the figure shows three out of the six basis tensors required for a qggq̄ state,
originating from some process in the grey rectangle. The grey arrows indicate how leg
labels i = 1, .., 4 are mapped onto colour and anti-colour indices. The right hand part of the
figure illustrates how inner products relate to powers of Nc depending on how many loops
are formed after contraction, or equivalently the number of permutations between the two
colour-flow basis vectors as per Eq. (3.55). Figure based on the diagrams presented in [14].

spanning set. This is because for a spanning set to be over-complete the following must be

true: ∑
σn

λσn |σn〉 = 0 | ∃λσn 6= 0. (3.58)

However we can see that if a dual basis exists

∀σ′n, [σ′n|
∑
σn

λσn |σn〉 = λσ′n = 0. (3.59)

This is contradictory. However, despite this contradiction, a more sophisticated construction

does allow for a dual basis to be used in conjunction with the CFB.

Embedding-space trick

We can express |Mm〉, where m is the number of colour flows, using the following expansion

in the CFB

|Mm〉 =
∑
σm

Mσm |σm〉 , σm ∈ Sm. (3.60)

This expansion is not unique, due to the basis being over-complete, however we do not need

the expansion to be unique for the following discussion. Thus we can compute ‘squared

amplitudes’ as 〈
M′m|Mm

〉
=
∑
σ′m,σm

M′σ′mMσm

〈
σ′m|σm

〉
. (3.61)
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Let us introduce a new larger colour flow vector

|τnm〉 = |σm,m+ 1,m+ 2, ..., n〉 ; (3.62)

i.e. if σ4 = 4, 2, 3, 1 then τn4 = 4, 2, 3, 1, 5, 6, ..., n (we require that n > m). Note that

{|τnm〉} ⊂ {|σn〉}, (3.63)

and that Sm is a subgroup of Sn. Now, consider the limit n → ∞. We denote the over-

complete basis over an uncountably infinite number of colour flows as {|σ∞〉}16 and the

complete basis over the countable (finite) subset of colour flows as {|τ∞m 〉}. It is the case

that

lim
n→∞

{|τnm〉} := {|τ∞m 〉} ⊂ {|σ∞〉}, (3.64)

spans a subspace equivalent to that of {|σm〉}. Following these observations, we have the

bracket 〈
σ′m|σm

〉
=
〈τ ′nm |τnm〉
Nn−m
c

. (3.65)

As this expression evaluates to being independent of n we can take the limit〈
σ′m|σm

〉
= lim

n→∞

〈τ ′nm |τnm〉
Nn−m

c
. (3.66)

We can define a dual basis by embedding our representation of the CFB within the space

spanned by {|τ∞m 〉}, using this bracket and exploiting the n → ∞ limit.17 We can find a

representation for such a dual basis:

|τnm] = Nn−m
c

∑
σ′

NT (σ′m,σm)−n
c n−T (σ′m,σm)

∣∣τ ′nm 〉 , (3.67)

which satisfies [
τ ′nm |τnm

〉
= Nn−m

c δτ ′m,τm +Nn−m
c (1− δτ ′m,τm)O(n−T (σ′m,σm)). (3.68)

We can note that δτ ′m,τm ≡ δσ′m,σm . Thus we can employ a dual basis so that

[
σ′m|σm

〉
≡ lim

n→∞

[τ ′nm |τnm〉
Nn−m

c
= δσ′m,σm . (3.69)

We can use Eq. (3.65) as a new but essentially equivalent definition for a dot-product/bracket

in the CFB (replacing Eq. (3.55)). The outcome of this trick is that we can use a dual basis

16The number of basis tensors for an infinite product space of SU(N) is countably infinite [18].
17Formally this dual basis should be considered a dual set as it does not form a basis over the dual vector

space. Rather than forming a basis, the dual set exploits the structure of the CFB to define an operator
which acts as a dual to a state |σn〉. Specifically, we are exploiting that T (σ′m, σm) = 0 only when σ′m = σm
and that terms for which T (σ′m, σm) 6= 0 can be associated with a suppression.
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i ci c̄i λi λ̄i
quark yes no

√
TR 0

gluon yes yes
√
TR

√
TR

anti-quark no yes 0
√
TR

Table 3.1: The colour index specifications for the three types of QCD particle (quark, anti-
quark, and gluons). If the particle has a colour line index ci then the column is marked with
yes, likewise for an anti-colour line index c̄i. TR = 1/2 is the usual normalisation factor of
SU(N) group generators.

quite freely whilst performing computations in the colour flow basis; with the knowledge

that we are relying on the existence of this embedding and that if a representation of the

dual basis is ever explicitly needed then the embedding must be explicitly used.18 For our

purposes, a representation is never necessary as the dual basis mostly plays the roll of pro-

viding formal underpinning to the book-keeping of large colour flow diagrams, as per the

approach in [14].

3.2.3 1/Nc expansion

Now we have introduced the colour-flow basis and discussed some formalities associated

with its usage, let us give some direct examples leading us towards the 1/Nc expansion. We

begin by expressing amplitude density matrices as

|Mn〉 〈Mn| = A =
∑
τ,σ

Aτσ|τ〉〈σ|. (3.70)

Here on we drop the labels on τ and σ and assume they are both elements of the permutation

group Sn. The coefficients Aτσ are not simply the elements of the amplitude density matrix,

A, as one might find in the Gell-Mann basis, since the colour flow basis is not orthonormal.

Rather, the coefficients are related to A through a dual basis for which

[τ |A|σ] ≡ Aτσ. (3.71)

In order to work directly with the elements of an amplitude density matrix, a scalar product

matrix Sτσ = 〈τ |σ〉 has to be introduced:

Tr[A] = Tr[AS] =
∑
τ,σ

[τ |A|σ] 〈σ|τ〉 . (3.72)

18Unlike a dual basis, a dual set is in fact not unique. Therefore other constructions will exist and could
also be used.
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By carefully studying the Fierz identity’s application to the QCD Feynman rules, we

can decompose the colour charge operator associated to an external particle i as

Ti = λi tci − λ̄i t̄c̄i −
1

Nc
(λi − λ̄i) s , (3.73)

where the factors λi and λ̄i are defined in Table 3.1, and where the colour-line operators

t, t̄ and s are defined through their action on the basis states, i.e.

tα|σ〉 = tα

∣∣∣∣ 1 · · · α · · · n
σ(1) · · · σ(α) · · · σ(n)

〉
=

∣∣∣∣ 1 · · · α · · · n n+ 1
σ(1) · · · n+ 1 · · · σ(n) σ(α)

〉
,

(3.74)

and

t̄ᾱ|σ〉 = tσ−1(ᾱ)|σ〉 , (3.75)

for the inverse permutation σ−1 for which τ = σ−1(σ(τ)), and

s|σ〉 = s

∣∣∣∣ 1 · · · · · · n
σ(1) · · · · · · σ(n)

〉
=

∣∣∣∣ 1 · · · · · · n n+ 1
σ(1) · · · · · · σ(n) n+ 1

〉
. (3.76)

It can be checked from the above relations that colour charge operators cannot map two

distinct basis tensors |σ〉 and |τ〉 into the same tensor |ρ〉.
Colour-line operators and their products, such as tα · tβ = tβ · tα, are referred to as

‘colour reconnectors’ in [19]. It is helpful to note that s · tα = tα · s = 1 and s · s = Nc1.

For more details on expressing colour charges in the colour flow basis see [14].

An important limit for QCD amplitudes is the large-Nc (planar) limit, first introduced

by ’t Hooft [20], from which we can define a large-Nc expansion (or 1/Nc expansion). The

limit is formally defined by letting Nc → ∞ whilst holding g2
sNc finite, referred to as the

’t Hooft coupling. By considering the possible contractions of colour indices, it should be

clear that the largest powers of Nc contributing to QCD cross-sections go as (αsNc)
n 19,

and so the large Nc limit defines an expansion in the colour structures of an amplitude:

leading colour ((αsNc)
n), next-to-leading colour ((αsNc)

n/Nc), NNL colour ((αsNc)
n/N2

c ),

and so forth. QCD colour structures can become very complicated to compute for large

multiplicities of radiation. However, often the leading colour terms (see dipole showers in

Section 3.5) or terms up to the NNL colour (see angular-ordered showers in Section 3.5)

can be remarkably simple. The colour flow basis provides a natural framework in which the

large-Nc expansion can be made. To this end we introduce the operation

Leading(l)
τσ [A] =

l∑
k=0

Aτσ
∣∣∣
1/Nk

c

δT (τ,σ),l−k , (3.77)

19For a loop to contract non-trivially, a colour line must loop back on itself as an anti-colour line. This
only happens at vertices in Feynman diagrams. Hence every non-trivial colour loop comes with at least one
vertex and so at least one power of αs in the cross-section.
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where

Aτσ
∣∣∣
1/Nk

c

(3.78)

indicates to pick terms from Aτσ which are suppressed by a factor of 1/Nk
c with respect to

the leading power of Nc in Aτσ. As per the previous sections, T (σ, τ) counts the minimum

number of transpositions separating σ and τ . Contributions from Aτσ|1/Nk
c

to the trace of

A all give an enhancement or a suppression by a single global power of Nc. Consequently,

if we set the ’t Hooft coupling to be unitary (i.e. let αs = N−1
c ), then

Tr
[
Leading(l) [A]

]
∝ N−lc . (3.79)

The leading colour piece is therefore found from

Leading(0)
τσ [A] = Aτσ

∣∣∣
1/N0

c

δτ,σ . (3.80)

This has the property that colour flows τ and σ must equal each other. In other words, only

products of matrix elements with conjugate matrix elements of the same colour structure

contribute to leading colour cross-sections. All quantum mechanical interference between

differing colour flows is sub-leading. This motivates the possibility of using a classical

branching process for the computation of leading colour QCD radiation (again see Section

3.5). In Chapter 6 we do just this and derive a description of leading colour QCD which is

a classical Markov chain. For more details on the colour expansion in the colour flow basis

see [14, 19].

3.3 One diverging emission or loop

In this section we will compute limits of two perturbative QCD amplitudes: |n+ 1〉, the

tree level amplitude for the scattering of n + 1 well separated on-shell massless quarks

and gluons; and
∣∣n(1)

〉
, the O(αs) 1-loop correction to |n〉.20 We allow for each of the n

external particles in |n〉 to be either incoming or outgoing, however we always assume that

the external particle of interest in |n+ 1〉 is outgoing. This section is organised as follows:

1. We compute the limit that an internal gluon line which forms a part of a loop becomes

soft. We show that, in this limit, the leading behaviour of
∣∣n(1)

〉
factorises as

∣∣n(1)
〉
≈

ln V
n
a,b |n〉 where ln V

n
a,b is an operator that dresses the amplitude with a soft loop.

The reason for the log in its definition will become clear in Section 3.4.

20This section is based around an amalgam of the seminal texts [7, 21–26].
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2. Next we consider the limit that one of the outgoing external particles in |n+ 1〉 is soft.

We show that, in this limit, the leading behaviour of |n+ 1〉 factorises as |n+ 1〉 =

Sn+1 |n〉 where Sn+1 is an operator for emitting a soft gluon. This computation is

greatly simplified by the application of the KLN theorem, which necessitates∫ b

a
dΠn+1S

†
n+1Sn+1 = −2Re{ln V

n
a,b},

where dΠn+1 is the phase-space measure for the soft particle and a, b limit the energy

of the soft particle in the laboratory frame. This relation ensures the cancellation of

logarithmic IR divergences as the energy of the soft particle is allowed to go to zero

(a→ 0).

3. Following this we show that in the limit that an internal line which forms a part of a

loop becomes collinear to a line joined to it through a vertex, the amplitude factorises

as
∣∣n(1)

〉
≈ ln Ṽn

a,b |n〉 where ln Ṽn
a,b is an operator that dresses the amplitude with a

collinear loop.

4. After this, we show that in the limit that one of the outgoing external particles

in |n+ 1〉 becomes collinear to another particle in |n+ 1〉, the amplitude’s leading

behaviour factorises as |n+ 1〉 = Cn+1 |n〉 where Cn+1 is an operator for emitting a

collinear particle. Again, this computation will be simplified by the application of the

KLN theorem.

5. Finally, we study some generalisations: divergences associated with higher powers of

αs, combining the emission/loop operators into a single object, and the unitarity of

said object.

We present this discussion assuming a fixed coupling (i.e. without UV renormalisation).

3.3.1 The soft limit of a loop

Let us now compute the leading behaviour of
∣∣n(1)

〉
in the limit that one of the internal lines

that makes up the loop has momentum kµ = λqµ where λ→ 0 and q is a finite 4-momentum.

This is a soft scaling as discussed in Section 3.1.1. We will perform this computation

using spin-averaged amplitudes since the soft limit is insensitive to spin, which we show in

the following section. There are 3 distinct groups of Feynman diagram topologies we can

consider: the momenta flowing through the vertices at the end of the soft line are distinct

and on-shell, one or both of the momentum flowing through the vertices at the end of the

line are distinct and off-shell, and the loop is self-energy-like. For each group of topologies

we also consider every permutation of the lines involved being gluonic, fermionic, or ghosts.
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

(m)

Figure 3.3: The Feynman diagrams contributing to
∣∣n(1)

〉
. We have not separated incoming

lines from outgoing, which means external lines to the left and right can be in either the
initial or final state. External solid lines are allowed to be fermionic or gluonic. The graphs
are in this style so that the loop momentum can be isolated as depicted. The ovals contain
the remaining lines and vertices in the graph. The grey ovals represent connected graphs
whilst the white ovals can be separated into two disconnected sub-graphs. In graphs (a)-(h)
we have singled out the (vertical) line which is becoming soft (or collinear in the subsequent
sections) and the loop closes in the grey oval. We refer to the loops in graphs (i)-(m) as
self-energy-like. In graphs (i)-(m) the grey ovals only depend on on-shell momenta. We
have omitted drawing every asymmetric permutation of gluon/fermion/ghost lines linking
the grey oval and the white oval.

The relevant graphs are shown in Figure 3.3. In this section we will primarily focus on the

calculation of graph 3.3(a), culminating in the factorised form given in Eq. (3.93). Following

this, we will observe that graphs 3.3(b) and 3.3(c) are functionally the same as graph 3.3(a)

due to the universality of the soft gluon limit, and we will argue that all other graphs give

a sub-leading contribution in the soft limit.

We will now compute the soft limit of graph 3.3(a). We can write the amplitude for a

gluon line, in the Feynman gauge, joining two fermion lines (A and B) to form a loop inside

77



∣∣n(1)
〉

as

∣∣∣n(1) : fA g fB

〉
= g2

s

∫
d4k

(2π)4

iuαs (pA)ūβs (pA)

p2
A + iε

iγµβγT
c
ij

iuγs̃ (pA − k)ūδs̃(pA − k)

(pA − k)2 + iε

× iuα
′
s′ (pB)ūβ

′

s′ (pB)

p2
B + iε

iγνβ′γ′T
c
lk

iuγ
′

s̃′ (pB + k)ūδ
′
s̃′(pB + k)

(pB + k)2 + iε

× −ig
µν

k2 + iε

∣∣w + 2
〉i
α

∣∣z + 2
〉l
α′
|n− w − z〉jkδδ′ , (3.81)

where the label fA g fB singles out the topology where a loop gluon is exchanged between

fermion particle lines A and B (see Figure 3.4). |n− w − z〉δδ′jk is an ‘incomplete’ tree-level

(n − w − z) particle amplitude, it is a function of pA − k and pB + k. Similarly
∣∣w + 2

〉α
i∣∣z + 2

〉α′
l

are ‘incomplete’ tree-level w+ 2 and z+ 2 particle amplitudes; they are functions

of pA and pB respectively but not k. The ‘incomplete’ amplitudes are related to complete

spin-averaged amplitudes for the scattering of on-shell particles by

|n− w − z〉 =
∑
s̃,s̃′

ūδs̃(pA − k)ūδ
′
s̃′(pB + k) |n− w − z〉δδ′ , (3.82)

given pA − k and pB + k are on-shell 4-momenta, and

|w + 2〉 =
∑
s

uαs (pA)
∣∣w + 2

〉
α
, |z + 2〉 =

∑
s′

uα
′
s′ (pB)

∣∣z + 2
〉
α′
, (3.83)

given pA and pB are on-shell 4-momenta. We have chosen to express the colour charge

operators for the emission from fermionic legs A and B in the Gell-Mann basis (TA 7→ T cij

and TB 7→ T clk) whilst keeping the rest of the colour structures abstracted. We do this so

that it is easier to see in which SU(N) sub-space each operator acts and apply the Feynman

rules given in Section 2.2.3. α, β, γ, δ are 4-component spinor indices and summation over

paired indices is implicit. We have assumed all momenta are outgoing, however this was

without loss of generality. To treat pA as incoming we need only systemically exchange

uαs (pA)→ vα−s(pA) and pA → −pA.

Firstly let us consider the case where pA and pB are on-shell. In this limit∑
s

uαs (pA)

p2
A + iε

∣∣w + 2
〉i
α
→
{

1 if w = 0,
∞ if w > 0,

(3.84)

as momentum conservation requires that if w > 0 then w of those particles must be either

exactly soft or exactly collinear to pA. The same is true for
∣∣z + 2

〉l
α′

. We wish to study

the limit where exactly one of the particle lines (i.e. the one with momentum k) is soft and

78



k

pApA − k

pB + k pB

|n− w − z〉

|w + 2〉

|z + 2〉

Figure 3.4: The topology contributing to
∣∣n(1)

〉
considered in Eq. (3.81). The grey boxes

represent incomplete amplitudes defined by the relations below Eq. (3.81). The loop with
momentum k is completed in |n− w − z〉. Just as in Figure 3.3, incoming lines have not
been separated from outgoing. External lines to the left and right can be in either the initial
or final state.

there are no other IR divergences. Hence, we find∣∣∣n(1) : fA g fB

〉
|p2
A=p2

B=0 =
∑
s,s′

g2
s

∫
d4k

(2π)4
ūβs (pA)iγµβγT

c
ij

iuγs̃ (pA − k)ūδs̃(pA − k)

−2pA · k + iε

× ūβ′s′ (pB)iγνβ′γ′T
c
lk

iuγ
′

s̃′ (pB + k)ūδ
′
s̃′(pB + k)

2pB · k + iε

× −ig
µν

k2 + iε
|n〉jkδδ′ . (3.85)

Now we can employ the soft limit so that us(pA − k) = us(pA) + O(λ). We can use the

relation ūs(p)γ
µus′(p) = 2pµδss′

21 so that∣∣∣n(1) : fA g fB

〉
|p2
A=p2

B=0 = g2
s

∫
d4k

(2π)4

i2 2pµA
−2pA · k + iε

−igµν
k2 + iε

i2 2pνB
2pB · k + iε

× TA · TB |n〉+O(λ), (3.86)

where we have restored the complete colour charge operators. Thus we can see that in the

limit we are considering the 1-loop n particle amplitude factorises into a tree-level n particle

amplitude and a colour space operator acting on that amplitude.

Before further proceeding, let us get a few technical details out the way. Firstly, we are

integrating over k and so in order to correctly approximate around the limit that kµ = λqµ

where λ → 0 we must use the method of regions. This means splitting the domain of

integration into regions defined around some Lorentz invariant ‘hard scale’ Q2 ∼ (pA+pB)2

so that we can define λ = k0/Q. There are 4 relevant regions for us; where k0 < Q and

k2 < Q2, where k0 < Q and k2 > Q2 or vice versa, and where k0 > Q and k2 > Q2. Note

that only the first and last regions listed allow for k to be on-shell and that only the first

region contains an infra-red pole, this is what we have computed. Following the method of

21Useful relations for free Dirac spinors are itemised in Appendix A.1.
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regions carefully, the domain of integration in Eq. (3.86) should be restricted so that k0 < Q

and k2 < Q2. As we discussed in Section 3.1.1, computing the other non-pole regions is

needed to know the correct value for Q2. This is not possible in the completely general case

but for specific cases can be found by matching to fixed order computations. We’ll discuss

this more at the end of this section.

Eq. (3.86) was derived assuming both A and B are outgoing. Let us now give the

relations allowing for incoming particles:∣∣∣n(1) : fA g fB

〉
|p2
A=p2

B=0 = g2
s

∫
d4k

(2π)4

i2 2pµA
−2pA · k + iε

−igµν
k2 + iε

i2 2pνB
−2pB · k + iε

× TA · TB |n〉+O(λ), (3.87)

if A is outgoing and B is incoming, and∣∣∣n(1) : fA g fB

〉
|p2
A=p2

B=0 = g2
s

∫
d4k

(2π)4

i2 2pµA
2pA · k + iε

−igµν
k2 + iε

i2 2pνB
−2pB · k + iε

× TA · TB |n〉+O(λ), (3.88)

if both A and B are incoming.

Now all that remains is to perform the integration. This is most easily done by decom-

posing the integral measure in the A,B zero-momentum frame as dk4 → dk0d2k
(A,B)
⊥ dθ

where k0 is the energy of k, k
(A,B)
⊥ is the transverse momentum of k, and θ is the angle

between k and pA (or pB).22 First looking at Eq. (3.87), the k0 integral can be performed

by the residue theorem: we pick up a pole from the gluon propagator with an accompanying

requirement that k2 = 0. The trivial azimuth in the d2k
(A,B)
⊥ integral can also be easily

performed. The final two integrals provide a non-integrable double pole, hence we will leave

them undone. We find that

Eq. (3.87) =
g2

s

4π2

∫ ∞
0

dk
(A,B)
⊥

dk
(A,B)
⊥

∫ π

0

dθ

sin θ
Θ(k

(A,B)
⊥ < Q)Θ(k0 < Q) TA · TB |n〉+O(λ).

(3.89)

Here the theta functions come from our application of the method of regions. The same

result is found when letting A be incoming and B be outgoing. Turning to Eq. (3.86), the k0

integral can again be performed by the residue theorem. The same gluon propagator pole is

found, and a second pole is also picked up from fermion B’s propagator. The gluon-progator-

pole term integrates to the same form as Eq. (3.89), however the fermion propagator pole

introduces a second term that is purely imaginary, known as the Coulomb/Glauber term23.

22Useful relations for decomposing phase-space measures are given in Appendix A.3.
23Technically the gluon loop momentum has a Coulomb/Glauber scaling when we pick up the residue

from the pole.
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All together,

Eq. (3.86) =
g2

s

4π2

∫ ∞
0

dk
(A,B)
⊥

dk
(A,B)
⊥

∫ π

0

dθ

sin θ
Θ(k

(A,B)
⊥ < Q)Θ(k0 < Q) TA · TB |n〉

− g2
s

4π2

∫ ∞
0

dk
(A,B)
⊥

dk
(A,B)
⊥

iπ Θ(k
(A,B)
⊥ < Q) TA · TB |n〉+O(λ). (3.90)

The same is found when both pA and pB are incoming. We can combine Eq. (3.89) and

Eq. (3.90) as∣∣∣n(1) : fA g fB

〉
|p2
A=p2

B=0 ≈
αs

π

∫ Q

0

dk
(A,B)
⊥

dk
(A,B)
⊥

(∫ π

0

dθ

sin θ
Θ(k0 < Q)− iπ δ̃AB

)
TA · TB |n〉 ,

(3.91)

where δ̃AB = 1 when A,B are both outgoing or both incoming and δ̃AB = 0 otherwise.

Now let us consider what happens when either pA or pB (or both) are relatively off-shell

(p2
A/B � pA/B · k).24 We can again start from Eq. (3.81) and, to be concrete, let pA be

off-shell. If we expand around the soft limit we find∣∣∣n(1) : fA g fB

〉
≈ g2

s

∫
d4k

(2π)4

iuαs (pA)ūβs (pA)

p2
A + iε

iγµβγT
c
ij

iuγs̃ (pA)ūδs̃(pA)

p2
A + iε

× iuα
′
s′ (pB)ūβ

′

s′ (pB)

p2
B + iε

iγνβ′γ′T
c
lk

iuγ
′

s̃′ (pB)ūδ
′
s̃′(pB)

2pB · k + iε

× −ig
µν

k2 + iε

∣∣w + 2
〉i
α

∣∣z + 2
〉l
α′
|n− w − z〉jkδδ′ . (3.92)

This term is linear in λ and so vanishes in the exact soft-limit. Therefore, at the accuracy

we are considering, we treat it as sub-leading and so set it to zero. Allowing both pA and

pB to be relatively off-shell gives a contribution cubic in λ and so is even further suppressed

in the soft limit.

Summing Eq. (3.91) and Eq. (3.92) gives the complete soft limit of graph 3.3(a). How-

ever, before we give the final result, let us consider when the soft gluon loop is self-energy-like

and attached to fermion vertices (graph 3.3(l)). We can once again start from Eq. (3.81)

and set pA = pB. In the case that pA is relatively off-shell the diagram is cubic in λ, as

we argued in the previous paragraph, and is therefore negligible. In case where pA is on-

shell, the diagram is proportional to p2
A and so is also equal to zero; see Eq. (3.87). Thus,

we can combine the self-energy-like graph with graph 3.3(a) and find the complete leading

contribution from soft gluon lines forming loops attached to fermion vertices:∣∣∣n(1) : fgf
〉
≈ αs

π

∑
pairs(A,B)

∫ Q

0

dk
(A,B)
⊥

dk
(A,B)
⊥

(∫ π

0

dθ

sin θ
Θ(k0 < Q)− iπ δ̃AB

)
TA · TB |n〉 ,

(3.93)

24The case where p2
A/B < pA/B · k but non-zero reduces to the same form where pA/B is exactly on-shell.
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where A and B are on-shell fermions in the amplitude |n〉. The subscripts on fgf have

been dropped since pairs of fermion lines A and B are summed over.

To complete our discussion of the leading behaviour of
∣∣n(1)

〉
, as a loop momentum

becomes soft, we must do two things. Firstly, compute the other possible loop topologies:

a loop gluon line becoming soft which is attached via vertices to other gluon lines (graphs

3.3(b) and 3.3(j)), a loop gluon line becoming soft which is attached via vertices to another

gluon line and another fermion line (graph 3.3(c)), a loop fermion line becoming soft (graphs

3.3(e), 3.3(f), 3.3(i), 3.3(l)), and graphs with ghost lines in the loop (the remaining graphs

in Figure 3.3). As we will shortly argue, we have already done all the hard work and these

topologies can be easily deduced from
∣∣n(1) : fgf

〉
. And secondly, we must complete our

application of the method of regions by discussing the contributions from non-pole regions.

The soft gluon limit is universal, regardless whether the gluon is emitted from a quark

or gluon the factorised soft operator is the same. This can be quickly seen by noting that

the triple vertex in a Feynman diagram with a gluon in the soft limit can be replaced by

= gsf
abc [gµν(p1 − p2)σ + gνσ(p2 − p3)µ + gσµ(p3 − p1)ν ] ,

≡ 2gsT1g
µνpσ1 +O(λ) ≡ −2gsT2g

µνpσ2 +O(λ), (3.94)

where p3 is soft. This leads to the numerator for a Feynman diagram with a soft gluon being

independent of whether the gluon is attached to other quarks or gluons; remember that the

soft limit leads to numerators of the form ūs(pA + k)gsγ
µTAus′(pA) = 2gsTApµAδss′ +O(λ)

when the gluon is connected to a quark. Thus
∣∣n(1) : fgf

〉
≈
∣∣n(1) : fgg

〉
≈
∣∣n(1) : ggg

〉
to first order in λ.25 Also note that an (anti-)quark becoming soft does not contribute to

the leading behaviour of an amplitude in the IR limit since the diagrams have the same

denominator structure as those of a soft gluon but the fermion propagator numerator scales

linearly in λ. Therefore soft fermion amplitudes (graphs 3.3(e), 3.3(f), 3.3(i), 3.3(l)) are

linear in λ. All together, the amplitude for topologies in the form of graph 3.3(c) is

∣∣∣n(1) : fgg
〉
≈ αs

π

∑
pairs(A,B)

∫ Q

0

dk
(A,B)
⊥

dk
(A,B)
⊥

(∫ π

0

dθ

sin θ
Θ(k0 < Q)− iπ δ̃AB

)
TA · TB |n〉 ,

(3.95)

25This is not accidental and can be attributed to an approximate supersymmetry of QCD. At tree-level
and ignoring colour charges, massless QCD amplitudes are equivalent to those of a super-symmetric Yang-
Mills theory with gluinos playing the role of quarks. This supersymmetry constrains the soft gluon limit to
being universal at tree level [25, 27] and therefore by the KLN theorem it must also be universal at one loop.
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where A is an on-shell fermion in |n〉 and B an on-shell gluon in |n〉. The amplitude for

topologies in the form of graph 3.3(c) is

∣∣∣n(1) : ggg
〉
≈ αs

π

∑
pairs(A,B)

∫ Q

0

dk
(A,B)
⊥

dk
(A,B)
⊥

(∫ π

0

dθ

sin θ
Θ(k0 < Q)− iπ δ̃AB

)
TA · TB |n〉 ,

(3.96)

where both A and B are on-shell gluons in |n〉, and the leading behaviour of an amplitude

containing a soft fermion line is ∣∣∣n(1) : soft f
〉
≈ 0. (3.97)

Finally, ghosts also do not provide a leading contribution. To see this, consider recreating

the generalised Feynman amplitude, Eq. (3.81), however letting either the momenta pA or

pB (or both) be the momentum of a ghost line. Depending on the diagram topology, the

loop momentum k will either be associated to a gluon or a ghost line. In both cases it

is not possible to place either pA or pB on-shell as this would require the ghosts to be in

either the final or initial state particles. Therefore, pA and pB must be off-shell, forcing the

diagram to be sub-leading – as was the case when the fermion momenta were off-shell. For

an alternative derivation, we can consider recreating Eq. (3.81) and let both lines associated

with momenta pA− k or pB + k be ghost lines. Again, depending on the diagram topology,

loop momentum k will either be associated to a gluon or a ghost line. The case where k is

associated with a gluon line is sub-leading following the same argument as we provided for

the other ghost diagrams considered in this paragraph. In the case where k is associated

with a ghost line, the diagram obeys the same scaling in λ as that of a soft fermion loop

and so is also sub-leading. Hence ∣∣∣n(1) : ghosts
〉
≈ 0. (3.98)

In total, the leading behaviour of a general one-loop amplitude where one of the loop

lines becomes soft is given by∣∣∣n(1)
〉

=
∣∣∣n(1) : fgf

〉
+
∣∣∣n(1) : fgg

〉
+
∣∣∣n(1) : ggg

〉
+
∣∣∣n(1) : (g → f)f(g → f)

〉
+
∣∣∣n(1) : ghosts

〉
≈ ln V

n
0,Q |n〉 , (3.99)

where

ln V
n
a,b =

αs

π

∑
pairs(A,B)

∫ b

a

dk
(A,B)
⊥

dk
(A,B)
⊥

(∫ π

0

dθ

sin θ
Θ(k0 < Q)− iπ δ̃AB

)
TA · TB, (3.100)

83



and where A and B are on-shell particles in |n〉. Note that since gauge transformations

cannot alter the scaling properties of an amplitude, and both |n〉 and
∣∣n(1)

〉
are indepen-

dently gauge invariant, ln V
n
a,b must be a gauge invariant operator. Though we derived it

using the Feynman gauge, the same result would be found using any other gauge.

To conclude, let us finish our discussion of the application of the method of regions. As

we mentioned previously, it is not generally possible to compute the other complimentary

regions and cancel the Q dependence. This is because the other regions do not factorise from

the amplitude in a process-independent way, as ln V
n
a,b did. This implies that the scale Q

is process-dependent. Complete fixed order calculations of various processes typically find

that Q should be a Lorentz invariant quantity describing the largest momentum transfer

in the process [28]. It is often the centre of mass energy, or the transverse momentum

away from the plane of a collision or interaction, or a characteristic Mandelstam variable.

The majority of the work in this thesis is process independent and so Q is left as a free

parameter. The approximated amplitude varies logarithmically with Q and so when Q can

not be precisely determined our usage of the method of regions has an error proportional to a

power of lnQ/Q′ where Q′ is the correct hard scale. It is usually assumed that Q/Q′ ∼ O(1)

and so the error will be small.

3.3.2 The soft limit of a real emission

We have computed the soft limit of a single loop and seen that the soft factor factorises

from the amplitude. We know from the KLN theorem that the logarithmic divergences from

a soft loop must cancel against those from the integration over the phase-space of a single

soft external particle. As we mentioned when outlining this section, should soft emissions

factorise as |n+ 1〉 = Sn+1 |n〉, the KLN theorem leads to the following operator relation∫ b

a
dΠn+1S

†
n+1Sn+1 = −2Re{ln V

n
a,b}, (3.101)

where dΠn+1 is the phase-space measure for the soft particle. In the previous section we

showed that only soft loops between external on-shell particles contribute to V
n
a,b. We also

found that the form of V
n
a,b was independent of the number of quarks or gluons in |n〉,

rather only depending on the total number of coloured particles. Therefore, Eq. (3.101)

informs us that to compute Sn+1 we only need to consider a when |n+ 1〉 contains a soft

gluon, j, emitted from an external on-shell quark, i.26 The matrix element for this topology

is

|n+ 1; si, λj〉 = igsε
∗
µ(pj , λj)ū(pi, si)Tiγµ

i(/pi + /pj)

(pi + pj)2 + iε
|n̂〉 , (3.102)

26We could have chosen i to be a gluon however this would have entailed slightly more algebra.
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where si is the spin of quark i, λj is the polarisation of gluon j, and where

ū(pi + pj , sij) |n̂〉 = |n; sij〉 . (3.103)

Here sij is the spin of the quark before emitting the gluon j. Now we take the soft limit,

pµj = λqµ where λ→ 0 and q is a finite 4-momentum, and keep only the leading terms:

|n+ 1; si, λj〉 = −gsε∗µ(pj , λj)ū(pi, si)Tiγµ
/pi

2pi · pj + iε
|n̂〉+O(λ0). (3.104)

Now note that in the massless limit we can use the relation (see Appendix A.1),

ū(pi, si)γ
µ
/pi ≈ ū(pi, si)γ

µ
∑
sij

u(pi + pj , sij)ū(pi + pj , sij) ≈ 2pµi ū(pi + pj , sij)δsi,sij ,

(3.105)

where the approximately equal to means to first order in the soft limit. Thus

|n+ 1; si, λj〉 = −gsTi
ε∗(pj , λj) · pi
pi · pj + iε

|n; sij〉 δsi,sij +O(λ0). (3.106)

This has the important property that the soft limit of the emitted gluon is independent of

the spin of the particle from which it was emitted. Thus, summing over all the possible

particles, i, from which j could of been emitted,

|n+ 1〉 = Sn+1 |n〉 δsi,sij +O(λ0), (3.107)

where

Sn+1 = −
∑
λj

∑
i

gsTi
ε∗(pj , λj) · pi
pi · pj + iε

. (3.108)

Sn+1 is known as the eikonal current. As per the previous discussion on ln V
n
a,b, the phase-

space for pj should be restricted in accordance with the method of regions (so that Ej < Ei

or an equivalent boundary). It can be checked that the current is gauge invariant by letting

ε∗ → ε∗ + αpj , which we know via the Slavnov-Taylor identities is equivalent to a BRST

gauge transformation:

−
∑
λj

∑
i

gsTi
(ε∗(pj , λj) + αpj) · pi

pi · pj + iε
= −

∑
λj

∑
i

gsTi
ε∗(pj , λj) · pi
pi · pj + iε

− 2αgs
∑
i

Ti = Sn+1,

(3.109)

where we used colour conservation so that
∑

i Ti |n〉 = 0. Finally, we can check the KLN

theorem,

S†n+1Sn+1 = g2
s

∑
λj

∑
i′

ε(pj , λj) · pi′
pi′ · pj − iε

∑
λj

∑
i

Ti′ · Ti
ε∗(pj , λj) · pi
pi · pj + iε

,

= −g2
s

∑
i 6=i′

Ti′ · Ti
pi′ · pi

(pi′ · pj)(pi · pj)
. (3.110)
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Noting that

2(pi′ · pj)(pi · pj)
pi′ · pi

= (p
(i′,i)
j⊥ )2, (3.111)

the squared transverse momentum of j in the (i′, i) zero-momentum frame, it can be checked

by re-labelling dummy indices for the summation over external particles that∫ b

a
dΠn+1S

†
n+1Sn+1 = −2Re{ln V

n
a,b}.

3.3.3 The collinear limit of a loop

Having studied the soft limit, we will now study the collinear limit. The procedure is similar

to that of a soft particle but with two key differences: we will be using an axial gauge, which

simplifies the analysis by removing ghosts, and we will be expanding around the collinear

limit with the scaling given in Section 3.1.1.

To begin our analysis, let us consider a gluon loop with loop momentum going collinear

to one of (or both of if the loop is self-energy-like) the momenta flowing through the vertices

to which it is attached. We can start from Eq. (3.85), derived in our discussion of soft gluons.

At this point we had not yet taken the soft limit but had argued that when the loop was

between off-shell momenta it was sub-leading in the IR limit. Eq. (3.85) was for a gluon loop

between two fermion lines in the Feynman gauge: replacing the Feynman gauge propagator

for the axial gauge,∣∣∣n(1) : fA g fB

〉
=
∑
s,s′

g2
s

∫
d4k

(2π)4
ūβs (pA)iγµβγT

c
ij

iuγs̃ (pA − k)ūδs̃(pA − k)

−2pA · k + iε

× ūβ′s′ (pB)iγνβ′γ′T
c
lk

iuγ
′

s̃′ (pB + k)ūδ
′
s̃′(pB + k)

2pB · k + iε

× −id
µν(q)

k2 + iε
|n〉jkδδ′ . (3.112)

where dµν(q) is the axial gauge numerator (Eq. (2.80)) with an auxiliary vector q.

Now let us consider the limit that k is collinear to pA and that pA 6= pB (graph 3.3(a)).

To help us, we use a Sudakov decomposition (Appendix A.3):

pµA = zPµ +
k2
⊥

z 2P · q q
µ + kµ⊥,

kµ = (1− z)Pµ +
k2
⊥

(1− z) 2P · q q
µ − kµ⊥, (3.113)

where kµ⊥ ∼ O(λ), λ→ 0, and P = k+ p+O(λ2).27 qµ is an auxiliary reference vector used

to define the decomposition. We have chosen qµ to coincide with the auxiliary vector in the

27Technically before using this decomposition we should have performed one of the k integrals, the residue
of the ε pole places k on-shell which the Sudakov decomposition exploits. However this does not effect the
power counting argument.
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numerator of the axial gauge gluon propagator. Power counting lets us see that the integral

measure is cubic in λ and denominators are quadratic. Once simplified, the numerator will

necessarily have the form

numerator = (αpµA + βkµ)dµν(q)(α′pµB + β′kµ) (3.114)

where α, β, α′, β′ are Lorentz invariant products of momenta. Note that in the axial gauge

kµdµν(q) = 0, and as k is going collinear to pA it is also the case that pµAdµν(q) = O(λ2).

Therefore the configuration from Eq. (3.85) is sub-leading in the collinear limit (it is O(λ)).

In order to get a configuration which is leading in the collinear limit, we require that

pA = pB. In the previous section we have argued that pA = pB can only occur at our level of

accuracy for self-energy-like topologies, where A and B are the same particle (graphs such

as 3.3(l)). Therefore, in the axial gauge, a collinear gluon loop joined by vertices to quarks

is only leading for self-energy-like topologies. This is a general feature of the axial gauge,

and using a similar approach to the one above it can be shown that only self-energy-like

topologies of loops dressing on-shell particles contribute to the leading collinear limit.

Let us now focus on a self-energy-like gluon loop dressing an on-shell quark (A) in the

amplitude
∣∣n(1)

〉
(graph 3.3(l) either of the two ovals removed). The amplitude for this is∣∣∣n(1) : qA g qA

〉
=
∑
s

g2
s

∫
d4k

(2π)4
ūβs (pA)iγµβγT

c
ij

iuγs̃ (pA − k)ūδs̃(pA − k)

−2pA · k + iε

× iγνδγ′T cjk
iuγ

′

s̃′ (pA)ūδ
′
s̃′(pA)

p2
A + iε

−idµν(q)

k2 + iε
|n〉kδ′ . (3.115)

We can re-express this as∣∣∣n(1) : qA g qA

〉
=
∑
s

g2
s

∫
d4k

(2π)4
ūβs (pA)iγµβγ

iuγs̃ (pA − k)ūδs̃(pA − k)

−2pA · k + iε

× iγνδγ′
iuγ

′

s̃′ (pA)

p2
A + iε

−idµν(q)

k2 + iε
T2
A |n〉 . (3.116)

Performing the residue integral over k0 picks up a pole forcing k on-shell. We can use the

Sudakov decomposition so that (after some lengthy algebra which is shown in more detail

in the next section28) the leading part is given by∣∣∣n(1) : qA g qA

〉
= −αs

π

∫
dk⊥
k⊥

∫
dz dφ

8π
Pqq(z)Θ(k)T2

A |n〉 , (3.117)

where Pqq(z) is the q → qg splitting function:

Pqq(z) =
1 + z2

1− z . (3.118)

28Better yet, the algebra can be quickly performed in a bespoke computer program such as Mathematica.
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Θ(k) is a theta function, ensuring that k is integrated only over a region consistent with

the method of regions, i.e. k⊥ < Q some hard scale and z < 1 ensuring both pA and k are

on-shell.

As we previously explained, leading collinear terms come from loops which are self-

energy-like. There are two further self-energy-like diagrams we can consider: g → qq̄ → g

(graph 3.3(i)), and g → gg → g (graph 3.3(j)). There is no further subtlety in computing

these loops, rather one must just “turn the handle” and get through the algebra. As we go

through the algebra in the next section on collinear external particles, we will just state the

answer for now. For g → qq̄ → g,∣∣∣n(1) : gA q gA

〉
= −αs

π

∫
dk⊥
k⊥

∫
dz dφ

8π
Pqg(z)Θ(k) |n〉 , (3.119)

where

Pqg(z) = nfTR(1− 2z(1− z)). (3.120)

Here nf is the number of light quarks (which can be approximated as massless), typically

taken as 3 for QCD. TR = 1/2 is the usual group theory normalisation constant for SU(3)

generators in the fundamental representation. For g → gg → g ,∣∣∣n(1) : gA g gA

〉
= −αs

π

∫
dk⊥
k⊥

∫
dz dφ

8π
Pgg(z)Θ(k)T2

A |n〉 , (3.121)

where29

Pgg(z) =

(
z(1− z) +

z

1− z +
1− z
z

)
. (3.122)

Concluding this section, the collinear limit of a single loop factorises from a one loop

amplitude as ∣∣∣n(1)
〉
≈ ln Ṽn

0,Q |n〉 , (3.123)

where

ln Ṽn
a,b = −αs

π

∑
A

∫ b

a

dk⊥
k⊥

∫
dz dφ

8π
Θ(k)

(
Pqq(z)T2

Aδ
(q)
A + Pqg(z)δ(g)

A + Pgg(z)T2
Aδ

(g)
A

)
,

(3.124)

and where A is an external particle in |n〉, and δ
(q)
A = 1 when A is a quark and zero otherwise

(vice versa for δ
(g)
A ).

29Often Pgg is defined with an additional factor of two. This is in relation to its role in initial state
radiation from hadrons, discussed in Section 3.4.2.2. It is also with relation to initial state radiation that
the splitting functions P are labelled with indices, therefore for final state particles Px→x′+y ≡ Px′x.
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3.3.4 The collinear limit of a real emission

We will now compute the leading behaviour of |n+ 1〉 in the limit where one of the external

particles becomes collinear to the momentum of the particle line to which it is connected

by a vertex. We will assume that all particles in |n+ 1〉 are outgoing as this simplifies

matters by removing flux factors and symmetry factors for initial state particles (discussed

in Section 3.4.2.2). The KLN theorem requires that the logarithmic divergences from the

integration over the phase-space of the collinear external particle are exactly equal and

opposite to those from a collinear loop, which factorised as∣∣∣n(1)
〉
≈ ln Ṽn

a,b |n〉 . (3.125)

Therefore |n+ 1〉 must also factorise in the collinear limit so that

|n+ 1〉 ≈ Cn+1 |n〉 , (3.126)

where ∫ b

a
dΠn+1C

†
n+1Cn+1 = −2Re{ln Ṽn

a,b}, (3.127)

and where dΠn+1 is the phase-space measure for the collinear particle. a and b limit the

transverse momentum of the collinear particle.30 We know that ln Ṽn+1
a,b has a colour struc-

ture proportional to a Casimir operator, originating from self-energy-like loops on external

legs. Cn+1 must also have this structure and so we only need look at Feynman diagrams for

collinear particles attached to other external legs and can assume that interference terms

give sub-leading contributions to the overall cross-section.31

q → qg

First, let us consider the case that the collinear particle is a gluon and is connected to an

external quark. We can think of this as a 1 → 2 particle transition where the quark splits

into a quark and a collinear gluon, hence this process is labelled as a q → qg splitting. The

matrix element, assuming the quark and gluon are in the final state, is

|n+ 1; si, λj〉 = igsε
∗
µ(pj , λj)ū(pi, si)Tijγµ

i(/pi + /pj)

(pi + pj)2 + iε
|n̂〉 , (3.128)

30Note that in Eq. (3.101) a and b limited the energy of the emission, whereas here a and b limit the
transverse momentum. This is because an infra-red cut-off on energy regularises soft divergences but not
collinear divergences. Whereas transverse momentum regularises collinear divergences. In fact, transverse
momentum can also be used to regularise soft divergences, however we chose to use energy in the initial
presentation of Sn+1 as it gives the intuitive picture that soft radiation comes from low energy gluons.

31These statements rely on the fact we are using the same axial gauge to compute |n+ 1〉 as we did to

compute
∣∣∣n(1)

〉
. Other gauges are less simple as they allow for Casimir operators to appear from interference

between not-self-energy-like terms.
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where pj is the gluon momentum, pi the quark momentum after splitting to produce the

gluon, and where

ū(pi + pj , sij) |n̂〉 ≈ z−1/2ū(pi, sij) |n̂〉 = |n; sij〉 . (3.129)

sij is the spin of the combined ij particle, and Tij the colour charge of the combined ij

particle. Here, and throughout this section, the approximately-equal-to sign means to first

order in the collinear limit where pj goes collinear to pi with collinear scaling given in

Section 3.1.1. We are using the same Sudakov decomposition as in the previous section

and as given in Appendix A.3, note that z ≈ Ei/(Ei + Ej). Looking only at terms with

Lorentz/spin structure in the numerator of Eq. (3.128):

L =̂ ε∗µ(pj)ū(pi)γ
µ(/pi + /pj) |n̂〉 = εµ(pj , λj)ū(pi, si)γ

µ
∑
sij

u(pij , sij) ū(pij , sij) |n̂〉 ,

= ε∗µ(pj , λj)
(
χ̃α(pi, si), χ

†
α̇(pi, si)

)( 0 σµ
αβ̇

σ̄µ α̇β 0

)

×
∑
sij

(
χβ(pij , sij)

χ̃†β̇(pij , sij)

)(
χ̃γ(pij , sij), χ

†
γ̇(pij , sij)

)
|n̂〉γ̇γ , (3.130)

where pij = pi + pj . Taking the massless limit of the Weyl spinors,

L =ε∗µ(pj , λj)χ̃
α(pi,

1
2)σµ

αβ̇
χ̃†β̇(pij ,

1
2)
(
χ̃γ(pij ,

1
2), 0

)
|n̂〉γ δ

(+ 1
2

)
si (3.131)

+ ε∗µ(pj , λj)χ
†
α̇(pi,−1

2)σ̄µ α̇βχβ(pij ,−1
2)
(

0, χ†γ̇(pij ,−1
2)
)
|n̂〉γ̇ δ(− 1

2
)

si . (3.132)

where δ
(± 1

2
)

s is unity when spin s = ±1
2 and is zero otherwise. Looking term by term at

each separate combination of spins, labelling L and |n〉 appropriately, and using the spinor

helicity notation from Section 3.1.3,

L+i+j = [pi|αε∗(pj ,+) · σαβ̇ |pij〉
β̇ (χ̃γ(pij ,

1
2), 0

)
|n̂〉γ =

√
2

[pipj ]

〈qpj〉
〈qpij〉

∣∣n; +1
2 ij

〉
, (3.133)

and

L+i−j = [pi|αε∗(pj ,−) · σαβ̇ |pij〉
β̇ (χ̃γ(pij ,

1
2), 0

)
|n̂〉γ ≈

√
2z

[piq]

[qpj ]
〈pjpi〉

∣∣n; +1
2 ij

〉
. (3.134)

As in Section 3.1.3, q is a reference vector used to specify ε∗. Changes in q are equivalent

to gauge transformations. By the CP invariance of QCD, Lsisj = L∗−si−sj
32, we can

immediately find

L−i−j = −
√

2
〈pipj〉
[qpj ]

[qpij ]
∣∣n;−1

2 ij

〉
, (3.135)

32Depending on the sign convention for spinor v, this could also read Lsisj = −L∗−si−sj .
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L−i+j ≈ −
√

2z
〈piq〉
〈qpj〉

[pjpi]
∣∣n;−1

2 ij

〉
. (3.136)

Each Lsisj can quickly be expressed as a function of z and single spinor bracket of pi and

pj , and the colour algebra can be reduced, by applying the KLN theorem to match our

calculation back to the loop calculation in the previous section. Note the following gauge

invariant ratios, 〈
n; +1

2 ij

∣∣L+i−j〈
n; +1

2 ij

∣∣L+i+j

≈ −z 〈pjpi〉
[pipj ]

≡ −zeiθ+i∓j ,〈
n;−1

2 ij

∣∣L−i+j〈
n; +1

2 ij

∣∣L+i+j

≈ −√z 〈piq〉 [pjpi] 〈qpj〉
[pipj ] 〈qpij〉 〈qpj〉

≈ z,〈
n;−1

2 ij

∣∣L−i−j〈
n; +1

2 ij

∣∣L+i+j

≈ −〈pipj〉
[pipj ]

≡ −eiθ+i∓j . (3.137)

where eiθ+i∓j is a complex phase that can be found using the representation given in

Eq. (3.39) to compute the spinor products. The squared matrix element for the q → qg

splitting is

〈n+ 1| n+ 1〉 =
g2

sTi · Ti
(2pi · pj)2

(
L†+i+jL+i+j + L†+i−jL+i−j + L†−i+jL−i+j + L†−i−jL−i−j

)
.

(3.138)

Inserting an identity operator,
∑

sij
|n; +sij〉 〈n; +sij |, between each L†sisjLsisj , and using

the ratios just given, we find that

〈n+ 1| n+ 1〉 ≈ g2
sTi · Ti

2(pi · pj)2

(
1 + z2

) (〈
n; +1

2 ij

∣∣L+i+j

)2
, (3.139)

Applying the KLN theorem to the cross-section, it is required that(〈
n; +1

2 ij

∣∣L+i+j

)2 ≈ 2pi · pj
CF(1 + z2)

Pqq. (3.140)

From this we can write the complete spin dependent q → qg splittings:

∣∣n+ 1; +1
2 ij → +1

2 i + 1j
〉
≈ gs

√
Pqq

CF(1 + z2)

1

〈pjpi〉
Tij
∣∣n; +1

2 ij

〉
, (3.141)

∣∣n+ 1;−1
2 ij → −1

2 i + 1j
〉
≈ gs

√
z2Pqq

CF(1 + z2)

1

〈pjpi〉
Tij
∣∣n;−1

2 ij

〉
, (3.142)

∣∣n+ 1; +1
2 ij → +1

2 i − 1j
〉
≈ gs

√
z2Pqq

CF(1 + z2)

1

[pipj ]
Tij
∣∣n; +1

2 ij

〉
, (3.143)

∣∣n+ 1;−1
2 ij → −1

2 i − 1j
〉
≈ gs

√
Pqq

CF(1 + z2)

1

[pipj ]
Tij
∣∣n;−1

2 ij

〉
, (3.144)
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where we have labelled the spin/helicity states of each particle involved after the semi-colon.

All other combinations of spins and helicities are 0. This was derived for the case of a quark

emtting a gluon, however the functions q̄ → q̄g functions are easily retrieved by letting

s̄ = −s (an application of crossing symmetry and CP invariance).

q → gq

The q → gq splitting can be evaluated by making the combined transformation (pi ↔
pj) ∧ (z 7→ 1− z) on the q → qg splitting:

∣∣n+ 1; +1
2 ij → +1i + 1

2 j

〉
≈ gs

√
Pgq

CF(2− 2z + z2)

1

〈pipj〉
Tij
∣∣n; +1

2 ij

〉
, (3.145)

∣∣n+ 1;−1
2 ij → +1i − 1

2 j

〉
≈ gs

√
(1− z)2Pgq
CF(2− 2z + z2)

1

〈pipj〉
Tij
∣∣n;−1

2 ij

〉
, (3.146)

∣∣n+ 1; +1
2 ij → −1i + 1

2 j

〉
≈ gs

√
(1− z)2Pgq
CF(2− 2z + z2)

1

[pjpi]
Tij
∣∣n; +1

2 ij

〉
, (3.147)

∣∣n+ 1;−1
2 ij → −1i − 1

2 j

〉
≈ gs

√
Pgq

CF(2− 2z + z2)

1

[pjpi]
Tij
∣∣n;−1

2 ij

〉
. (3.148)

All other combinations of spins and helicities are 0. Antiparticles are handled in the same

fashion as the q → qg splitting functions, by letting s̄ = −s.

g → qq

Now let us consider when the collinear particle is a quark and it is connected to an external

anti-quark. This is thought of as a 1 → 2 particle transition where a gluon splits into

an anti-quark and a collinear quark, labelled as a g → q̄q splitting. The matrix element,

assuming the quarks are in the final state, is

|n+ 1; si, sj〉 = igtaū(pj , sj)γ
µv(pi, si)

δaddµν(pi + pj)

(pi + pj)2 + iε
|n̂〉νd ,

= igst
a
(
χ̃α(pj , sj), χ

†
α̇(pj , sj)

)( 0 σµ
αβ̇

σ̄µ α̇β 0

)(
χ̃β(pi, si)

χ†β̇(pi, si)

)∑
λij

εµ(pij , λij)

2pi · pj
|n;λij〉a ,

(3.149)

where dµα(pi + pj) is the numerator of the gluon propagator in the axial gauge with a

light-like reference vector, see Eq. (2.80), and where

ε∗ν(pij , λij) |n̂〉ν = |n;λij〉 . (3.150)
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Again, looking just at the Lorentz/spin structure of the numerator of Eq. (3.149) in the

massless limit:

La = χ̃α(pj , sj)σ
µ

αβ̇
χ†β̇(pi, si)

∑
λij

εµ(pij , λij) |n;λij〉a

+ χ†α̇(pj , sj)σ̄
µ α̇βχ̃β(pi, si)

∑
λij

εµ(pij , λij) |n;λij〉a ,

=
∑
λij

[pj |σ · ε(pij , λij) |pi〉 |n;λij〉a δ
(+ 1

2
)

si δ
(+ 1

2
)

sj +
∑
λij

〈pj | σ̄ · ε(pij , λij)|pi] |n;λij〉a δ
(− 1

2
)

si δ
(− 1

2
)

sj ,

(3.151)

which can be split apart by spin state and simplified as

L+ij+i ≈
√

2(1− z) [pjq] 〈pjpi〉
[pijq]

|n; +1ij〉 , (3.152)

L−ij+i ≈
√

2z
[pjpi] 〈qpi〉
〈pijq〉

|n;−1ij〉 , (3.153)

L+ij−i ≈
√

2z
〈pjpi〉 [qpi]

[pijq]
|n; +1ij〉 , (3.154)

L−ij−i ≈
√

2(1− z)〈pjq〉 [pjpi]〈pijq〉
|n;−1ij〉 . (3.155)

By CP symmetry L+ij+i = L∗−ij−i and L−ij+i = L∗+ij−i . Again, we can use the KLN

theorem to express these splittings in Sudakov variables:

∣∣n+ 1; +1ij → +1
2 i + 1

2 j

〉
≈ gs

√
(1− z)2Pqg

1− 2z(1− z)
1

[pipj ]
|n; +1ij〉 , (3.156)

∣∣n+ 1;−1ij → +1
2 i + 1

2 j

〉
≈ gs

√
z2Pqg

1− 2z(1− z)
1

〈pjpi〉
|n;−1ij〉 , (3.157)

∣∣n+ 1; +1ij → −1
2 i − 1

2 j

〉
≈ gs

√
z2Pqg

1− 2z(1− z)
1

[pipj ]
|n; +1ij〉 , (3.158)

∣∣n+ 1;−1ij → −1
2 i − 1

2 j

〉
≈ gs

√
(1− z)2Pqg

1− 2z(1− z)
1

〈pjpi〉
|n;−1ij〉 . (3.159)

Here we derived the g → q̄q splitting functions. The g → qq̄ splitting functions can be

found by the combined transformations (pi ↔ pj) ∧ (z 7→ 1− z).

g → gg

Finally we consider when the collinear particle is a gluon and it is connected to an external

gluon. This configuration can either originate from a gluon triple vertex or quadruple

vertex. Quadruple vertices are sub-leading in the collinear limit as they necessarily have
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fewer divergent propagators.33 Thus we are looking to compute the matrix element for a

g → gg splitting via a triple gluon vertex. As we have now laid down the foundations for

these calculations several times, we shall skip straight to

L = ε∗α(pi, λi)ε
∗
β(pj , λj)

(
gαβ(pj − pi)γ

−gβγ(2pj + pi)
α + gγα(2pi + pj)

β
)∑
λij

εγ(pij , λij) |n;λij〉 , (3.160)

= ε∗(pi, λi) · ε∗(pj , λj)
∑
λij

(pj − pi) · ε(pij , λij) |n;λij〉 (1)

− 2ε∗(pi, λi) · pj
∑
λij

ε∗(pj , λj) · ε(pij , λij) |n;λij〉 (2)

+ 2ε∗(pj , λj) · pi
∑
λij

ε∗(pi, λi) · ε(pij , λij) |n;λij〉 . (3) (3.161)

We can express each line in terms of spinor products,

L
(1)
±ij→+i+j

=
1

2
√

2

(〈pi| σ̄µ|q]
[piq]

〈pj | σ̄µ|q]
[pjq]

)∗
(pj − pi) · ε(pij ,±1ij) |n;±1ij〉 = 0,

L
(1)
±ij→−i−j =

1

2
√

2

(
[pi|σµ |q〉
〈piq〉

[pj |σµ |q〉
〈pjq〉

)∗
(pj − pi) · ε(pij ,±1ij) |n;±1ij〉 = 0, (3.162)

by the Fierz identities (see Appendix A.2). Similarly

L
(2)
+ij→±i−j = L

(2)
−ij→±i+j = L

(3)
+ij→−i±j = L

(3)
−ij→+i±j = 0.

Consequently, L∓ij→±i±j = 0. Continuing with this line-by-line and term-by-term ap-

proach,

L
(1)
±ij→+i−j =

1√
2

〈pij∓| (pj − pi) · σ∓ |q∓〉
〈pij±| q∓〉

|n;±1ij〉 . (3.163)

L
(2)
−ij→+i−j = −

√
2
〈q| pj · σ̄|pi]
〈piq〉

|n;−ij〉 . (3.164)

L
(3)
+ij→+i−j =

√
2

[q|pi · σ |pj〉
[pjq]

|n; +ij〉 , (3.165)

33We can also argue that quadruple vertices are sub-leading by looking to the KLN theorem,∫
dΠn+1C

†
n+1Cn+1 = −2Re{ln Ṽn+1

a,b }.

The right-hand-side is O(αs) whilst including a quadruple vertex into Cn+1 would generate an O(α2
s ) term

on left-hand-side.
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where the first line borrows notation from Appendix A.2. Therefore

L+ij→+i−j ≈
[√

z

2

〈pipj〉 [pjq]
[pijn]

−
√

1− z
2

〈pjpi〉 [piq]
[pijn]

+
√

2
[qpi] 〈pipj〉

[pjq]

]
|n; +1ij〉 ,

≈
√

2z3

1− z 〈pipj〉 |n; +1ij〉 . (3.166)

L−ij→+i−j ≈
[√

z

2

[pipj ] 〈pjq〉
〈pijq〉

−
√

1− z
2

[pjpi] 〈piq〉
〈pijq〉

−
√

2
〈qpj〉 [pjpi]
〈piq〉

]
|n;−1ij〉 ,

≈
√

2(1− z)3

z
[pipj ] |n;−1ij〉 . (3.167)

Again using CP invariance, Lλij→λiλj = L∗−λij→−λi−λj , and therefore

L−ij→−i+j ≈ −
√

2z3

1− z [pipj ] |n;−1ij〉 . (3.168)

L+ij→−i+j ≈ −
√

2(1− z)3

z
〈pipj〉 |n; +1ij〉 . (3.169)

Finally, by applying the same approach we also find that

L+ij→+i+j ≈
√

2

z(1− z) [pipj ] |n; +ij〉 . (3.170)

And so, the full spin dependent g → gg splittings are

|n+ 1; +1ij → +1i + 1j〉 ≈ gs

√
1

z(1− z)
1

〈pjpi〉
Tij |n; +1ij〉 , (3.171)

|n+ 1; +1ij → −1i − 1j〉 ≈ 0, (3.172)

|n+ 1; +1ij → +1i − 1j〉 ≈ gs

√
z3

1− z
1

[pjpi]
Tij |n; +1ij〉 , (3.173)

|n+ 1; +1ij → −1i + 1j〉 ≈ gs

√
(1− z)3

z

1

[pipj ]
Tij |n; +1ij〉 , (3.174)

|n+ 1;−1ij → −1i − 1j〉 ≈ gs

√
1

z(1− z)
1

[pipj ]
Tij |n;−1ij〉 , (3.175)

|n+ 1;−1ij → +1i + 1j〉 ≈ 0, (3.176)

|n+ 1;−1ij → +1i − 1j〉 ≈ gs

√
(1− z)3

z

1

〈pjpi〉
Tij |n;−1ij〉 , (3.177)

|n+ 1;−1ij → −1i + 1j〉 ≈ gs

√
z3

1− z
1

〈pipj〉
Tij |n;−1ij〉 . (3.178)

We now have everything we need to provide a complete definition for Cn+1. However,

due to the large number of relevant spin states and transitions, the final expression for Cn+1

is lengthy. It is given in full in Section 4.7.
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3.3.5 Generalisations

Higher orders

Thus far we have derived the leading singularity structure for first order corrections to an

n particle tree-level amplitude, |n〉. We saw that the IR34 singularities factorise from |n〉
and can be handled as operators which act on |n〉 to ‘dress’ the amplitude with the leading

corrections from QCD radiation. The operators are related to each other by the KLN

theorem, ensuring poles cancel once first order corrections are inclusively summed over. It

is now pertinent for us to discuss the generalisation to higher order corrections to |n〉 from

QCD radiation.

We begin by looking at
∣∣n(2)

〉
, the two loop correction to |n〉. In our previous discus-

sions on soft and collinear loops we argued that loops between relatively off-shell particles

are sub-leading in the soft and collinear limits since the off-shell momenta screened the

propagator divergences. Consequently, ln V
n
a,b and ln Ṽn

a,b only recieved contributions from

loops between on-shell external legs. This argument holds regardless of the number of addi-

tional loops included in the internal structure of |n〉 provided those loops are also relatively

off-shell. Therefore, to analyse
∣∣n(2)

〉
we must make further use of the method of regions.

Let the two loop-momenta in
∣∣n(2)

〉
be k1 and k2. We must divide the regions of the loop

integral as∫
d4k1

(2π)4

∫
d4k2

(2π)4
=

∫
d4k1

(2π)4

∫
d4k2

(2π)4
Θ(k1⊥ < k2⊥) +

∫
d4k1

(2π)4

∫
d4k2

(2π)4
Θ(k2⊥ < k1⊥),

(3.179)

where k1⊥ and k2⊥ are transverse momenta which parametrise the divergences from the

propagators in each loop (i.e. placing a IR cut-off on both these transverse momenta

regularises the IR divergences). We use transverse momenta as they have consistent scalings

between both soft and collinear divergences and so the dicussion in this section can be

applied to both limits (see Section 3.1.1 where in both cases transverse momenta are linear

in λ)). Θ(k2⊥ < k1⊥) is step function.

There are three sets of topologies we must consider when analysing
∣∣n(2)

〉
: when both

loops k1 and k2 are attached with vertices to relatively off-shell particles, when only one of k1

and k2 are attached to vertices to on-shell particles, and when both k1 and k2 are attached

to on-shell particles. The first case, when all loop vertices involve off-shell momenta, is

sub-leading following our previous arguments. The second case is most interesting. Assume

k1 is attached to on-shell momenta and k2 is not. Only the Θ(k1⊥ < k2⊥) term is leading

34Some authors refer to the class of singularities we have studied thus far as IR and collinear (IRC),
reserving the term IR for just soft singularities. As all IRC singularities can be regulated with a shared IR
cut-off (i.e. gluon and quark masses or a transverse momentum cut-off), we are not so careful and will use
the terms IR and IRC somewhat interchangeably.

96



as when k2⊥ < k1⊥ the IR divergences are regularised for finite k2⊥. If both k2⊥ and k1⊥

go to zero at the same rate then the loop integrand in the k2⊥ < k1⊥ region can diverge

(as k1⊥ is allowed to go to zero) but the region of phase-space where this can happen is

infinitely smaller than the region where k2⊥ and k1⊥ go to zero individually.35 This combats

the divergence forcing the k2⊥ < k1⊥ term to be sub-leading, for example∫ y

x

dk1⊥
k1⊥

∫ y

k1⊥

dk2⊥ = y ln
y

x
+ x− y, (3.180)

diverges logarithmically as x→ 0, whilst∫ y

x
dk2⊥

∫ y

k2⊥

dk1⊥
k1⊥

= (y − x) ln y + (y − x) + x ln
x

yy/x
, (3.181)

does not diverge as x→ 0.36 Finally, in the third case where both loop momenta k1 and k2

flow through vertices of on-shell particles both regions are leading. In this case our labelling

of k1 and k2 was arbitary and so if we sum with the contribution where the two loops were

oppositely labelled a factor of 1/2 must be included. We can additionally note that when

the integrand is symmetrical under the exchange of labels 1 and 2,

1

2

∫
d4k1

(2π)4

∫
d4k2

(2π)4
=

∫
d4k1

(2π)4

∫
d4k2

(2π)4
Θ(k1⊥ < k2⊥). (3.182)

In all, summing over all the possible topologies for the loops (of which only loops from

on-shell particles are leading), applying the method of regions between the two loops, and

consistently re-labelling the most divergent loop momentum as ks and the less divergent

loop momentum kh (i.e. so that ks⊥ < kh⊥), we find that in the soft loop limit the leading

divergences are given by∣∣∣n(2)
〉
≈ ln V

n
0,Q(ks⊥)Θ(ks⊥ < kh⊥)

∣∣∣n(1)
〉
, (3.183)

where ln V
n
0,Q(ks⊥) is found by substituting k for ks in ln V

n
0,Q. Similarly, in the collinear

limit, ∣∣∣n(2)
〉
≈ ln Ṽn

0,Q(ks⊥)Θ(ks⊥ < kh⊥)
∣∣∣n(1)

〉
. (3.184)

Applying the results of the previous sections, in the limit that both loops are soft,∣∣∣n(2)
〉
≈ ln V

n
0,Q(ks⊥) ln V

n
0,Q(kh⊥)Θ(ks⊥ < kh⊥) |n〉 = ln V

n
0,Q(ks⊥) ln V

n
ks⊥,Q

(kh⊥) |n〉 ,
(3.185)

35In fact the region is one dimension lower, k2⊥ and k1⊥ going to zero at the same rate defines a line
through phase-space whilst each going individually is a plane (of which the line is just one path across).

36In QCD amplitudes it is often the case that terms equivalent to k2⊥ < k1⊥ do diverge, however they
never contribute to the leading divergence because of the argument we have given.
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and in the collinear limit,∣∣∣n(2)
〉
≈ ln Ṽn

0,Q(ks⊥) ln Ṽn
0,Q(kh⊥)Θ(ks⊥ < kh⊥) |n〉 = ln Ṽn

0,Q(ks⊥) ln Ṽn
ks⊥,Q

(kh⊥) |n〉 .
(3.186)

This is known as ‘strong ordering’. Here a transverse momentum is used an ‘ordering

variable’ (i.e. it appears in the step function because of our application of regional methods),

however at leading-order any kinematic quantity which parametrises the divergence and

scales with λ could be used. Strong ordering extends simply to higher orders, i.e. the

leading soft divergences from
∣∣n(m)

〉
are given by∣∣∣n(m)

〉
≈ ln V

n
0,Q(km⊥) ln V

n
km⊥,Q

(km−1⊥) . . . ln V
n
k3⊥,Q

(k2⊥) ln V
n
k2⊥,Q

(k1⊥) |n〉 . (3.187)

Strong ordering also extends naturally to consecutive soft or collinear external particles.

Combining soft and collinear operators

We have derived operators for dressing an amplitude |n〉 with the soft and collinear pole

structures from higher order QCD corrections. It is natural to ask if we can combine these

operators into a single operator. The definition of such an operator is a central part of the

discussion in Chapter 4 and so here we will only outline a key feature of the procedure:

double counting. We have introduced two operators for 1-loop IR divergences: ln V
n
0,Q

which handles soft poles, and ln Ṽn
0,Q which handles collinear divergences. However, it is

possible for a loop to become simultaneously soft and collinear. This limit gives the double

pole in both ln V
n
0,Q and ln Ṽn

0,Q. A combined operator ln Vn
0,Q for both soft and collinear

divergences should have three parts:

ln Vn
0,Q ∼ soft not collinear + collinear not soft + soft and collinear. (3.188)

Therefore, to avoid double counting,

ln Vn
0,Q = ln V

n
0,Q + ln Ṽn

0,Q − soft and collinear. (3.189)

The ‘soft and collinear’ piece can be found by either expanding ln Ṽn
0,Q to leading order in

the soft limit or by expanding ln V
n
0,Q to leading order in the collinear limit. Subtracting

off the ‘soft and collinear’ piece is sometimes referred to as a zero-bin subtraction since

the ‘soft and collinear’ piece integrates to zero when one uses an analytic continuation in

dimensional regulation where UV poles are cancelled against IR poles [1]. However, more

generally the ‘soft and collinear’ piece does not vanish and is the most divergent part of

the amplitude, thus providing the leading contribution to many processes one might wish

to compute.
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Unitarity

Let us consider an operator E which dresses an amplitude |n〉 with all the leading IR poles

from radiative corrections to the amplitude. Necessarily E†E has the αs expansion

E†E =1 +

∫
Πn+1

(
C†n+1Cn+1 + S†n+1Sn+1

)
+ ln V

n †
0,Q + ln V

n
0,Q + ln Ṽn †

0,Q + ln Ṽn
0,Q +O(α2

s ). (3.190)

where we have ignored the double counting of soft and collinear poles which does not effect

this discussion. The O(α2
s ) piece can be constructed by summing over every O(α2

s ) strongly

ordered permutation of the O(αs) operators: i.e. it will contain terms such as∫
Πn+1C

†
n+1Cn+1 ln Ṽn

pn+1⊥,Q

and ln V
n †
0,Q(k2) ln Ṽn

k2⊥,Q
. Applying the KLN theorem to E†E we find that it is required

that E†E = 1. This is expected since 〈n|E†E |n〉 sums over all states degenerate with

|n〉, thus it is a physical LN probability, and we defined E to only contain terms with the

leading poles and therefore it only depends logarithmically on a cut-off scale regulating

the divergences. Consequently, if we integrate inclusively over all IR radiation dressing an

amplitude, the operator E must be unitary. Therefore the application of the KLN theorem

to QCD radiation is often referred to as using unitarity. Some approaches to QCD radiation

take the unitarity of operators as a guiding principle and use it to help ‘booststrap’ (reverse

engineer) a description of QCD radiation [29, 30]. It is important to note that unitarity

is an operator level relationship. By making further approximations (which we summarise

in Section 3.5 and discuss in detail in Chapter 5) similar relationships, often referred to as

parton shower unitarity, can be found between the traces of the operators.

3.4 Resummation

The core methodology explored by this thesis, for the computation of QCD amplitudes, is

perturbation theory. However, perturbation theory comes with an inherent problem: the

strong coupling is not particularly small and so the convergence of the perturbative series

is often slow at best.37 Furthering this problem, the strong coupling runs, becoming large

at low scales. At the high scales of the large hadron collider αs(100GeV to 1TeV) ∼ 0.138

implying each order in the perturbation series gives a correction at least 10% of the previous,

37Here we ignore that formally the radius of convergence is zero and that a QCD perturbation series
actually forms an asymptotic series [31]. The point still stands as corrections to the asymptotic series can
remain large at high powers in the coupling.

38αs(MZ ≈ 91.1GeV) = 0.117± 0.002 [32].
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and at the scale of the hadrons seen in a detector αs ∼ 1. Also, as we have demonstrated,

the matrix elements for QCD radiation diverge in the IR limit, with higher order terms in

the perturbation series diverging faster than lower order terms. Though poles cancel from

physical quantities by the KLN theorem, matrix elements and cross-sections can remain

large in the regions of phase-space around poles. The relative size of the matrix elements in

the neighbourhoods of poles, and the lack of a small expansion parameter, is such that higher

order terms in the perturbation series can become as dominant as lower order terms. We will

formalise this statement in Section 3.4.2 when we introduce the logarithmic expansion of an

observable. However, for now we will just take it as motivation to resum the perturbative

series we have studied so far.

The basic resummation procedure is as follows:

1. Study an nth order correction to a matrix element,M, (or cross-section, σ) due QCD

radiation and, at that order, isolate the most dominant part of the matrix element by

using various approximations in limits relevant to the process being studied.

2. Write the dominant nth order correction in a closed form, factorised from the rest of

the matrix element (or cross-section), so that we can sum the radiative corrections as∑
n

(nth order correction).

3. Find a special function, F , whose expansion gives the sum over the dominant nth

order corrections and for which the expansion converges for αs < 1.

4. ‘Resum’ the radiative corrections to M (or σ) by defining the resummed matrix

element (or cross-section) as FM (or Fσ). This resummed matrix element (cross-

section) will now have an extended radius of convergence as αs approaches unity.39

This recipe is somewhat of an oversimplification, and there can be a tremendous amount

of work required between each step. However, it does illustrate the basic approach to

resummation in perturbative QCD.

3.4.1 Sudakov factors

The first step we will take towards the resummation of QCD radiative corrections is the

resummation of soft and collinear loops. In Section 3.3 we showed that m soft loops factorise

at leading order as∣∣∣n(m)
〉
≈ ln V

n
0,Q(km⊥) ln V

n
km⊥,Q

(km−1⊥) . . . ln V
n
k3⊥,Q

(k2⊥) ln V
n
k2⊥,Q

(k1⊥) |n〉 . (3.191)

39As we mentioned in the previous footnote, formally the radius of convergence is still zero but FM is a
term in a new assympotic series for which higher order corrections are smaller over a larger domain.
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This achieves point one of our recipe for resummation. In this case, point two is simple.

We can sum over the corrections to all orders by defining an operator

V
n
0,Q =

∞∑
m=0

ln V
n
0,Q(km⊥) ln V

n
km⊥,Q

(km−1⊥) . . . ln V
n
k3⊥,Q

(k2⊥) ln V
n
k2⊥,Q

(k1⊥). (3.192)

We have chosen notation which is suggestive of the corresponding special function. The

series expansion for a path ordered exponential is given by

Pexp

(∫ b

a
dxA(x)

)
:=1 +

∫ b

a
dxA(x) +

∫ b

a
dx1

∫ b

x1

dx2A(x1)A(x2)

+

∫ b

a
dx1

∫ b

x1

dx2

∫ b

x2

dx3A(x1)A(x2)A(x3) + . . . , (3.193)

where A(x) is matrix (operator) valued. It can be checked that in the limit [A(x),A(y)] = 0

the path ordered exponential is equivalent to the usual definition for matrix (operator)

exponentiation. Comparing Eq. (3.192) and Eq. (3.193) we see that strongly ordered soft

loops can be resummed as

V
n
a,b = Pexp

(
ln V

n
a,b

)
. (3.194)

In Eq. (3.193) the integral over the operator and the operator are factorised. To express

V
n
a,b in the same factorised fashion we define

ln V
n
a,b =

αs

π

∫ b

a

dk⊥
dk⊥

∑
pairs(A,B)

(∫ π

0

dθ

sin θ
θ(k, pA, pB)− iπ δ̃AB

)
TA · TB

≡ −αs

π

∫ b

a

dk⊥
dk⊥

Γ
n
(k⊥), (3.195)

where θ(k, pA, pB) = Θ(pA · pB − pA · k)Θ(pA · pB − pB · k), which is a Lorentz invariant

phase-space boundary equivalent at our accuracy to requiring k0 < EA, EB (the boundary

we inherited from the application of the method of regions). Γ
n
(k⊥) is known as the

soft anomalous dimension matrix. Therefore, soft loops dressing an amplitude |n〉 can be

resummed as
∞∑
m=0

∣∣∣n(m)
〉
≈ V0,Q |n〉 = Pexp

(
−αs

π

∫ Q

0

dk⊥
dk⊥

Γ(k⊥)

)
|n〉 , (3.196)

where we have dropped the n superscript on operators as is usual in the literature. Va,b is

an amplitude level soft Sudakov factor.

By following the same procedure, collinear loops can be resummed into an amplitude

level collinear Sudakov factor

Ṽa,b = Pexp
(

ln Ṽn
a,b

)
≡ Pexp

(
−αs

π

∫ b

a

dk⊥
dk⊥

Γ̃(k⊥)

)
, (3.197)

where Γ̃(k⊥) is the collinear anomalous dimension matrix.
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3.4.1.1 Anomalous dimension matrices

Anomalous dimension matrices arise naturally when we resum loops in the IR limit. How-

ever, they also appear in the renormalisation of amplitudes, affording them two comple-

mentary interpretations. Consider an n particle amplitude, dimensionally regularised at a

scale Q,

|N(ε,Q)〉 =
∑
m

∣∣∣n(m)(ε,Q)
〉
.

We know from the KLN theorem that IR ε poles must cancel in the computation of a

physical cross-section. Just like UV poles, the IR poles have the interpretation of coming

from a universal background of quantum noise, only this time it is the low frequency modes

causing the amplitudes themselves to diverge. In Section 2.2.5 we renormalised QCD to

remove the diverging UV modes from our calculations.40 Now we consider renormalising

|N(ε,Q)〉 at a renormalisation scale µ < Q in a minimal subtraction scheme so that the

renormalised amplitude has no IR diveregences. We define the renormalised amplitude41 as

|N(ε,Q, µ)〉 = Z−1(ε, µ) |N(ε,Q)〉 , (3.198)

where we know that Z will cancel from any LN probability which is fully inclusive over

radiation up to the scale Q. Z has a perturbative expansion

Z(ε, µ) = 1 +
∞∑
n=1

(αs

π

)
Z(n)(ε, µ), (3.199)

which can be computed Feynman diagrammatically. For instance, it is clear from our prior

discussions that Z(1)(ε, µ) can be read off from dimensionally regularising ln V
n
a,b and ln Ṽn

a,b.

Let us compute the variation in the renormalised amplitude as we vary the renormali-

sation scale,

d |N(ε,Q, µ)〉
d lnµ

= −d ln Z(ε, µ)

d lnµ
|N(ε,Q, µ)〉 . (3.200)

This leads to the defining relation for an anomalous dimension matrix

Γ(µ, ε) = −d ln Z(ε, µ)

d lnµ
. (3.201)

Note that Γ(µ, ε) is necessarily finite in the limit ε → 0. Expanding to first order in the

coupling

d |N(ε,Q, µ)〉
d lnµ

= − 1

π

dαsZ
(1)(ε, µ)

d lnµ
|N(ε,Q, µ)〉 . (3.202)

40Remember that in a renormalisable theory the UV modes can be fully absorbed into diverging bare
parameters in the Lagrangian to leave all amplitudes finite.

41The following discussion is based off that which is presented in [33].
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From which it can be shown that if Z renormalises only soft divergences then at one loop

Γ(µ, ε) = αs
π Γ(µ), and if Z renormalises only collinear divergences then at one loop Γ(µ, ε) =

αs
π Γ̃(µ). Assuming the following boundary conditions,

µ < Q, and |N(ε,Q, µ = Q)〉 = |n(ε,Q)〉 , (3.203)

Eq. (3.200) has the solution

|N(µ)〉 = Pexp

(
−
∫ Q

µ

dµ′

µ′
Γ(µ′)

)
|n(Q)〉 , (3.204)

where the ε dependence has been dropped since each term is finite without a regulator

and the dependence on the hard scale prior to renormalisation has also been dropped from

|N(µ)〉. This affords a new interpretation to Vµ,Q (and Ṽµ,Q). It renormalises an n par-

ticle amplitude from a hard scale Q to a lower scale µ by dressing the amplitude with

the quantum noise from soft (collinear) modes that span the two scales. The anomalous

dimension matrices are interpreted as generators for the evolution of amplitudes through

the renormalisation group along paths that preserve particle number. In the preface to

Chapter 4 we give a generalisation of Eq. (3.200) to include generators for the evolution

of amplitudes along renormalisation group flows which do not preserve particle number.

Chapter 4 explores the properties of this generalisation.

3.4.2 Computing observables

Up to this point, this thesis has concerned itself with the computation of QCD matrix ele-

ments using perturbation theory. Now we will make the connection to observables: quan-

tities measurable in experiments. At a collider experiment, an integrated observable is

computed from the cross-section σ for a process X → Y as

Σ({vi}) =
∏
i

∫
dwi

dσ(X → Y )∏
j dwj

u({wi}, {vi}), (3.205)

where Σ is the cross-section for the observable, wi are functions of the kinematics, vi are

parameters defining the observable, and u is a function enforcing the observable on the

phase-space. The simplest observable is the total integrated cross-section, for which u = 1

and Σ = σ. Another simple observable is a weighted cross-section known as the energy-

energy correlation [34–36]:

Σ(α) =
∑
i,j∈Y

∫
dθij

dσ(X → Y )

dθij

EiEj
Q2

Θ(θij > α). (3.206)

Here i and j index hadrons measured in the final state, Y , and θij is the angle between

them in the laboratory frame. Σ(α) is the cross-section for seeing an event in the detector
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with hadrons in the final state separated by an angle greater than α, weighted by the energy

of the separated hadrons, i.e. this observable is large for an event containing high energy

hadrons separated by angles greater than α, it is small for an event containing low energy

hadrons separated by angles greater than α, and zero for an event containing only hadrons

separated by angles less than α.

Broadly speaking, observables fall into three categories:

1. Event shape observables: these have the general form u({wi}, {vi}) = Θ(F ({wi}, {vi}))
for some function F . Event shapes tend to be some of the most simple and best studied

observables [37–41] and will be the most discussed in this thesis.

2. Weighted cross-sections: these have the general form

u({wi}, {vi}) =
∑
k

Gk({wi})Θ(Fk({wi}, {vi})),

for some functions Fk and Gk. Energy-energy correlations between various multiplic-

ities of particles are an example. [36]

3. Jet observables: these are algorithmically applied cuts to the phase-space of a dif-

ferential cross-section and sometimes re-weightings of the cross-section. They can be

challenging to express as single functions u({wi}, {vi}) but are widely used in collider

phenomenology and experiments. [42]

In this chapter, we have extensively discussed the KLN theorem, which necessitates that

whenever we compute a physically measurable quantity we must sum over all contributing

degenerate states. If we do not, cross-sections and probabilities will unphysically diverge.

The requirement to sum over degenerate states puts constraints on which observables are

‘valid’. Chief amongst these constraints is infra-red and collinear safety (IRC safety), which

requires that an observable is inclusive over exactly collinear and zero energy particles,

ensuring the cancellation of IR poles. Let us re-express u({wi}, {vi}) ≡ u({p1, p2, . . . }, {vi})
where {p1, p2, . . . } is the set of particle momenta on which the fully differential cross-section

dσ depends. IRC safety requires that

u({p1, p2, . . . , pi, . . . , pj , . . . }, {vi})→ u({p1, p2, . . . , pi + pj , . . . , pj−1, pj+1, . . . }, {vi}),
(3.207)

in the collinear limit where pi + pj → Ei+Ej
Ei

pi, and that

u({p1, p2, . . . , pi, . . . }, {vi})→ u({p1, p2, . . . , pi−1, pi+1, . . . }, {vi}), (3.208)
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in the soft limit where pµi → 0. For example, consider the energy-energy correlation:

u({p1, p2, . . . }, α) =
∑
i,j∈Y

EiEj
Q2

Θ(θij > α). (3.209)

In the limit that particle k is soft, Ek → 0, we find that

u({. . . , pk, . . . }, α) =
∑
i∈Y

EiEk
Q2

Θ(θik > α) +
∑

i,j∈Y |i,j 6=k

EiEj
Q2

Θ(θij > α)

→
∑

i,j∈Y |i,j 6=k

EiEj
Q2

Θ(θij > α) = u({. . . , pk−1, pk+1, . . . }, α). (3.210)

Similarly, in the collinear limit pk + pl → Ek+El
Ek

pk,

u({. . . ,pk, . . . , pl, . . . }, α)

= Ek
∑
i∈Y

Ei
Q2

Θ(θik > α) + El
∑
i∈Y

Ei
Q2

Θ(θil > α) +
∑

i,j∈Y |i,j 6=k,l

EiEj
Q2

Θ(θij > α)

→
∑
i∈Y

Ei(Ek + El)

Q2
Θ(θik > α) +

∑
i,j∈Y |i,j 6=k,l

EiEj
Q2

Θ(θij > α)

= u({. . . , pk + pl, . . . , pl−1, pl+1, . . . }, α). (3.211)

IRC safety ensures that IR poles from QCD radiation cancel and that amplitudes are

finite. However, it does not prevent QCD radiation from having a big effect. As we have

discussed previously, divergences from QCD radiation are logarithmic, consequently even

after cancelling they can leave large logarithms. To illustrate this, consider a process with

a hard scale Q to which we apply an IRC safe observable defined so that u is zero if the

total energy of the particles in the final state is greater than E0 and unity otherwise. When

computing the observable’s cross-section we will find integrals of the form,

αs

∫ Q

0

dE

E︸ ︷︷ ︸
from a soft loop

− αs

∫ E0

0

dE

E︸ ︷︷ ︸
from a soft external particle

= αs ln

(
Q

E0

)
. (3.212)

As E0 is reduced the logarithm gets larger and so the soft radiation generates an increasing

contribution to the amplitude. By looking at the structure of the anomalous dimension

matrices, Γ(µ), in the limit µ→ 0, it is easy to convince yourself that each order in αs sees

two new logarithmic IR divergences emerge (one soft and one collinear). Therefore, the nth

order perturbative correction to a simple one-parameter (v) observable, which diverges in

the limit that v → 0, will have the form,

Σ(n)(v) = αns Σ(0)(v)

2n∑
m=0

Cnm(v)(ln v)2n−m, (3.213)
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where Cnm(v) ∼ O(1) or 0 in the limit v → 1. Provided that every Cnm(v) is finite, the

leading term in the limit that v → 1 is the αnsC
n
0 (v)(ln v)2n piece, which originates from

n simultaneously soft and collinear (soft-collinear) gluons dressing the zeroth order cross-

section.42 For small v, where v ∼ e−α
−1
s , αnsC

n
0 (v)(ln v)2n and αn+1

s Cn+1
0 (v)(ln v)2n+2 give

comparable contributions to the cross-section and therefore need resumming. To this end,

we re-organise the perturbative series to the observable as

Σ(v)

Σ(0)(v)
=


∞∑
n=0

αnsC
n
0 (v)(ln v)2n

︸ ︷︷ ︸
leading expansion

+

∞∑
n=1

αnsC
n
1 (v)(ln v)2n−1

︸ ︷︷ ︸
NL expansion

+

∞∑
n=1

αnsC
n
2 (v)(ln v)2n−2

︸ ︷︷ ︸
NNL expansion

+ . . .

 ,

(3.214)

where NL standards for next-leading, NNL next-to-next-to-leading, and C0
0 = 1. Often

this organising of the perturbative series is referred to as the logarithmic accuracy in the

expansion of the observable [40] and is abbreviated as leading log in the expansion (LLΣ),

next-to-leading log in the expansion (NLLΣ), and so forth.

The goal of resummation is to resum as much of the logarithmic expansion as possible

into a special function which converges over the full range of αs < 1. However, we have a

hurdle to cross before we can do this. Throughout this thesis we have deferred off dealing

with an important part of the physics. QCD is non-perturbative at lower scales and the

particles we observe in detectors are low-scale non-perturbative hadrons. Just as resumma-

tion becomes important when accurately computing an observable with low scale particles,

so does non-perturbative physics become important at even lower scales. Along with the

resummation of QCD radiation, dealing with the non-perturbative aspects of QCD is a

substantial hurdle in the complete computation of an observable. In the following section

we discuss the factorisation of non-perturbative physics from perturbative physics. This

key feature of QCD cross-sections will allow us to compute observables using the resummed

perturbative physics that we have been developing so far.

3.4.2.1 Factorisation theorems

There are many factorisation theorems useful to the study of QCD. We have already seen

one example of factorisation when in Section 3.3 we derived the factorisation of soft and

collinear currents at first order. One of the fundamental factorisation theorems in the study

of perturbative QCD is Collins, Soper and Sterman [43–45] (CSS) factorisation. CSS showed

42Some observables are constructed such that they are insensitive to soft radiation [36] or insensitive to
collinear radiation [15]. In which case Cnm(v)→ 0 in the limit v → 1 for m < n since the KLN cancellation
of double poles can go ahead without leaving a large logarithm.
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that for e+e− collisions, deep inelastic scattering, and Drell-Yan processes non-perturbative

physics will factorise into distributions which can be independently evaluated from pertur-

batively computed cross-sections of partons (QCD particles which later hadronise to become

‘parts’ of hadrons).

The proto-typical CSS factorisation formula is that for Drell-Yan,

dσDY

dydQ2
=

∑
a,b

∫ 1

xA

dξA

∫ 1

xB

dξB
dσ̂abDY

(
xA
ξA
, xBξB , Q; µQ , αs(µ)

)
dydQ2

fa/A(ξA, µ)fb/B(ξB, µ) +O
(

Λ2
QCD

Q2

)
,

(3.215)

where dσDY is the complete differential Drell-Yan cross-section for two protons A,B and

dσ̂abDY is the partonic Drell-Yan cross-section for two partons a, b. fa/A(ξA, µ) is a parton

distribution function (PDF) and can be interpreted as the probability density for a parton

a to be found inside a hadron A carrying a fraction of the total hadron’s momentum ξA

(we make this more precise in the following section). Q is the hard scale, here the observed

invariant mass of the leptonic final state.

y =
1

2
ln

(
q · PA
q · PB

)
,

where q is the total momentum of the final state (i.e. q2 = Q2) and PA,B are the momenta

of hadrons A,B, and

xA = ey

√
Q2

(PA + PB)2
, xB = e−y

√
Q2

(PA + PB)2
.

Finally µ is a renormalisation scale at which the factorisation is defined (i.e. the scale of

the PDFs).

The factorisation formula for deep-inelastic scattering shares the same basic structure

dσDIS(x,Q2)

dxdQ2
=
∑
a

∫ 1

xA

dξ
dσ̂aDIS(xA/ξ,Q

2)

dxdQ2
fa/A(ξA, µ) +O

(
Λ2

QCD

Q2

)
, (3.216)

where dσDIS is the differential deep inelastic scattering cross-section a proton A and dσ̂aDIS

is the partonic deep inelastic scattering differential cross-section for an incoming parton a.

The similarity between these formulas (and other known factorisation formulas [45, 46])

leads to two of the core assumptions in perturbative QCD:

1. Non-perturbative physics factorises from perturbative physics as

dσ(X → Y ) = dσ(x→ y)⊗ (fx/X(µ)fy/Y (µ)) +O
(

ΛQCD

µ

)
, (3.217)
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where X is hadronic initial state and Y a hadronic final state. [46] σ̂(x → y) is a

partonic cross-section for an initial ensemble of partons x and final state ensemble

y (i.e. quarks and gluons). f are probability distributions for finding the parton

ensemble x (y) in the hadronic state X (Y ). Typically fX is a product of PDFs and

fY a product of fragmentation functions (PDFs but defined for outgoing particles).

The ‘⊗’ represents a convolution over parameters shared between dσ(x → y) and

fx/Xfy/Y , as well as a sum over all relevant partonic states x, y. This relation is

thought to hold up to corrections O
(

ΛQCD

µ

)
which are known as ‘power suppressed

corrections’. Operators suppressed by powers of the scale can correspond to larger

transfers of angular momentum [47] or other non-perturbative effects [48].

2. A PDF for a parton a typically appears entirely independent of a PDF for parton b,

this motivates the principle of parton-hadron duality. This principle states that the

process of hadronisation is localised in phase-space space and consequently does not

effect the basic ‘shape’ of the energy flows of a process up to corrections O
(

ΛQCD

µ

)
.

This leads to the following: let Ŷ be an operator which, up to power suppressed

corrections, maps a partonic state y onto a hadronic state Y :

Ŷ |y; pY1 , pY2 , · · ·〉 = |Y ; pY1 , pY2 , · · ·〉+O
(

ΛQCD

µ

)
, (3.218)

where pYi is the total momenta of the cluster of partons in the region of phase-space

in which hadron Yi ∈ Y is found. It is implicit that the state |y〉 sums over all y that

could hadronise to produce Y . Summing over all possible states Y forces Ŷ to act as

identity operator on |y; pY1 , pY2 , · · ·〉, hence∑
Y

dσX→Y ∼
∑
Y

| 〈Y | Ŝ |X〉 |2 =
∑
Y

| 〈y| Ŷ †Ŝ |X〉 |2 +O
(

ΛQCD

µ

)
= | 〈y| Ŝ |X〉 |2 +O

(
ΛQCD

µ

)
∼ dσX→y +O

(
ΛQCD

µ

)
. (3.219)

Consequently, parton-hadron duality implies that if we sum inclusively over the species

of hadrons in the final state of a process, then an observable computed on the process

can be equivalently computed from the partonic cross-section (using CSS factorisa-

tion).

These statements follow directly from CSS factorisation in e+e− collisions, deep inelastic

scattering, and Drell-Yan processes. CSS have also shown [44] that for suitably inclusive

observables these assumptions are also valid in proton-proton processes, such as at the

LHC. However, beyond these processes there are not currently any general proofs for the

assumptions. In this thesis we go with general consensus (for instance see these prevailing
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approaches to QCD resummation [39, 40]) by assuming the validity of these assumptions to

arbitrary processes with the caveat that µ is always less than some, observable dependent,

inclusivity scale43. This caveat ensures CSS’ work on proton-proton processes applies. In

Section 4.4.3 and later in Chapter 8 we show that if we assume Eq. (3.217) for µ less some

inclusivity scale, factorisation of the form in Eq. (3.217) does not follow simply for µ greater

than the inclusivity scale.

Another key factorisation theorem is that of hard process factorisation [45, 49]. This is

the factorisation of infra-red44 singular terms in dσ̂ into a hard process defined without low

scale QCD radiation and an operator containing the IR singularities. In this chapter we

have already done much of the groundwork towards proving this for leading singularities by

deriving the factorised soft and collinear currents atO(αs) and arguing for the generalisation

of these currents to higher orders by using strong ordering. More generally, hard process

factorisation is closely linked to the IR renormalisation, and factorisation, of Wilson loops

in amplitudes (see [1, 33, 50] and references therein for a more detailed accounts).

3.4.2.2 DGLAP evolution of a proton

In the previous section we introduced parton distribution functions (PDFs) to describe the

non-perturbative physics of hadrons at a given scale. Let us now briefly expand on the

definition of the PDFs and summarise how they evolve with changes in scale, following

the approach in [45]. The bare (not renormalised) unpolarised (spin averaged) PDFs are

formally defined as

fa/A(ξ)dξ =
∑
s

d(ξP+
A )

ξP+
A

∫
dk⊥ 〈PA| b̂†a,s(ξP+

A , k⊥)b̂a,s(ξP
+
A , k⊥) |PA〉 , (3.220)

where fa/A(ξ) is the PDF for finding a parton a inside a hadron A. PA is the momentum

of hadron A. P+
A is a light-cone component of PA, and is defined so that P−A = m2

A/2P
+
A

and P 2
A = 2P+

A P
−
A = m2

A. ξ is the fraction of momentum P+
A carried by a. b̂†a,s(ξP

+
A , k⊥) is

a creation operator for parton a with spin s and with momentum in light-cone coordinates

(k+, k−, k⊥) = (ξP+
A ,

k2
⊥

2ξP+
A

, k⊥). The combined operator b̂†a,sb̂a,s is the number density

operator (the continuous spectrum analogue to the harmonic oscillator number operator).

It is implicit that this correlation function is time-ordered with an ‘out state’ on the left

and ‘in state’ on the right.

Though the state |PA〉 represents a non-perturbative hadron, the operator structure

inside the correlator can be computed perturbatively provided we assume αs < 1 and

43An inclusivity scale is a scale for which all radiation emitted into regions of phase-space below the scale
is integrated/summed over completely; correspondingly leading terms from the radiation fully cancel, as per
the KLN theorem.

44Sometimes further specified as infra-red and collinear (IRC).
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therefore the scale we renormalise the theory at is µ� ΛQCD. The calculation itself requires

a fair amount of work (see [28, 45, 51], ordered in accessibility), however the bottom line

answer in d = 4− 2ε dimensions has the form

fa/A(ξ) = δaAδ(1− ξ)

− 1

ε

αs

π
CA S PaA(ξ) +

1

ε

αs

π
CA

∑
bA∈{qq,gq,gg}

∫
dξ′PbA(ξ′)δaAδ(1− ξ) +O(α2

s , ε
0). (3.221)

Here A is assumed to be purely partonic45, PAa is an appropriate collinear splitting function

determined by the colour charge of A (derived in Section 3.3), CA is the Casimir colour

factor that comes with each splitting function, and S is a symmetry factor that originates

from particles which are considered indistinguishable in the final state being distinguishable

in the initial state46. The zeroth order term corresponds to when hadron A is parton a. The

first order term has two parts, the first part comes from hadron A being identified as a parton

which has emitted another parton into the final state – in doing so A transitions so that it

contains parton a with a momentum fraction ξ. The second part of the first order correction

(proportional to δ(1 − ξ)) is the one-loop correction to hadron A being parton a. Ultra-

violet divergences have been renormalised and cancelled from the calculation. Importantly,

there is one uncancelled IR divergence of collinear origin (the soft limit is found when

ξ → 1, and the soft divergences cancel in this limit). The origin of this divergence is a

failure of the KLN theorem, which was perturbatively derived. In the KLN theorem, loop

divergences cancelled divergences from external particles because the external particles were

indistinguishable. However, in this calculation the symmetry factor S has appeared and

fa/A is sensitive to the momentum fraction of a even in the exact collinear limit, spoiling

indistinguishability. Both these properties prevent the cancellation of the collinear pole. It

is typical to re-write the first order correction in the form

fa/A(ξ) = δaAδ(1− ξ)−
1

ε

αs

π
PaA(ξ) +O(α2

s , ε
0). (3.222)

where PaA(ξ) are the Altarelli-Parisi splitting functions [23]:

Pqq(ξ) = CF

(
1 + ξ2

1− ξ

)
+

≡ CF

[
1 + ξ2

(1− ξ)+
+

3

2
δ(1− ξ)

]
,

Pgg(ξ) = 2CA

(
ξ

(1− ξ)+
+ ξ(1− ξ) +

1− ξ
ξ

)
+

1

6
(11CA − 4nfTR)δ(1− ξ),

Pgq(ξ) = CFPgq(ξ), Pqg(ξ) = Pgq(ξ). (3.223)

45i.e. A is an ensemble of exactly collinear quarks and gluons with a combined colour charge equivalent
to that of either a quark or gluon.

46i.e. after a 1→ 2 parton transition it matters which parton is in hadron A or was emitted from hadron
A, whereas in the final state switching the two partons is nothing more than a re-labelling. Hence, for a
transition g → gg, S = 2.
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Here we have used the ‘plus prescription’ which acts as a distribution on a function g defined

by the relation f(ξ)+g(ξ) = f(ξ)g(ξ)− f(ξ)g(1).

The single uncancelled IR divergence can be removed by renormalising the PDFs, leading

to the scale dependent PDFs used in the factorisation theorems of the previous section. The

renormalised PDFs obey a renormalisation group equation called the DGLAP equation

(after Dokshitzer [27], Gribov [52], Lipatov, and Altarelli & Parisi [23]). The DGLAP

equation is

µ
dfa/A(ξ, µ)

dµ
=
∑
b

∫ 1

ξ

dz

z

αs(µ)

π
Pab(z)fb/A(ξ/z, µ). (3.224)

In Section 4.5 we provide a re-derivation of the DGLAP equation (with a fixed coupling con-

stant) from the formalism we develop in the following chapters. We can see from Eq. (3.224),

which only depends on collinear splitting functions, that the DGLAP equation is only re-

summing the collinear radiation surrounding the hadrons. To this end, CSS factorisation is

often referred to as collinear factorisation since the factorisation formulas can be interpreted

as collinear radiation surrounding hadrons factorising from the rest of the cross-section. For

inclusive processes, it is typical to let µ ∼ Q, the hard scale of a process, which has the

affect of resumming all the collinear radiation dressing the initial hadrons into the PDFs.

This scale choice allows one to think of the initial state hadrons as coherent wave packets

which interact in the hard process, and has the effect of minimising logarithms in µ/Q

that emerge from the renormalisation procedure and reducing the size of power suppressed

corrections.

3.4.2.3 Resummation of an observable

Now we have discussed the factorisation of non-perturbative physics from perturbative

physics, we can proceed to discuss the resummation of large logarithms in the perturbative

expansion of an observable. We have already seen that loop contributions can be resummed

into exponential functions (Sudakov factors). We have also studied the KLN theorem, which

required the logarithmic divergences from loops to cancel against those of external particles.

Let us look at the effect this has on the computation of an observable at first order:∏
i

∫
dwi

dσn∏
j dwj

u({wi}, {vi})

≈
∏
i

∫
dwi

dσ
(0)
n∏

j dwj

1 +

∫ dΦn+1∏
j dwj
|M (0)

n+1|2∫
dΦn∏
j dwj
|M (0)

n |2

+
2
∫

dΦn∏
j dwj

Re{M (0) ∗
n M

(1)
n }∫

dΦn∏
j dwj
|M (0)

n |2
+O(α2

s )

u({wi}, {vi}), (3.225)
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where M
(m)
n+p is an n particle matrix element with m loops and dressed with p soft or collinear

real particles, and dΦn is the n parton phase-space measure. dσ
(0)
n is often referred to as

the hard process cross-section (so called because it is without soft and collinear radiation).

On the RHS we have only kept the leading divergent pieces of the matrix elements, these

are the pieces that will produce large logs: i.e. the third line will be proportional to an

anomalous dimension, Re{
∫

dk⊥
k⊥

Γ(k⊥)}. Let us assume that the observable factorises as

u0({wi}, {vi})um({wi}, {vi}) so that

∏
i

∫
dwi

dσ
(0)
n∏

j dwj
u0({wi}, {vi})

∫
dΦn+m∏
j dwj

um({wi}, {vi})

= Σ(0)({vi})
∏
i

∫
dwi

∫
dΦn+m∏
j dwj

um({wi}, {vi}), (3.226)

where Σ(0)({vi}) is the zeroth order (Born) cross-section of the observable. If this is the

case, then the KLN theorem can be used so that the first order correction is written as

Σ(0)({vi})
∏
i

∫
dwi

∫ dΦn+1∏
j dwj
|M (0)

n+1|2∫
dΦn∏
j dwj
|M (0)

n |2
+

2
∫

dΦn∏
j dwj

Re{M (0) ∗
n M

(1)
n }∫

dΦn∏
j dwj
|M (0)

n |2

u1({wi}, {vi})

= −Σ(0)({vi})
∏
i

∫
dwi

∫ dΦn+1∏
j dwj
|M (0)

n+1|2∫
dΦn∏
j dwj
|M (0)

n |2
(1− u1({wi}, {vi})). (3.227)

If u1 is unity in some allowed regions of phase-space and zero elsewhere (for example u

is an event shape observable), this relation implies that the first order correction to the

observable can be computed by integrating the soft/collinear loop contribution over the

regions of phase-space not allowed by the observable. As we have shown, logarithmically

divergent terms from loops exponentiate – resumming their large logs. Therefore, should this

pattern continue to higher perturbative orders, we can postulate an ansatz that perturbative

contributions to the resummed observable exponentiate in the following form:

∏
i

∫
dwi

dσn∏
j dwj

u({wi}, {vi}) ≈ Σ(0)({vi})e
−

∏
i

∫
dwi

∫ dΦn+1∏
j dwj

|M(0)
n+1|

2

∫ dΦn∏
j dwj

|M(0)
n |2

(1−u1({wi},{vi}))

.

(3.228)

For many observables this is indeed the case and this ansatz correctly resums the LLΣ

logarithms, sometimes referred to as doubly logarithmic (DL) accuracy in the resummation.

In Section 4.5 we demonstrate that the ‘thrust distribution’ [37] resums in this fashion at

DL accuracy for an e+e− hard process and discuss observables for which this approach to

resummation fails. Shortly we will describe a broad class of event shape observables (rIRC
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safe observables) which resum in this fashion at DL accuracy for e+e− and proton-proton

hard processes.47

The generalisation of the ansatz for the resummation of a one-parameter event shape

observable in Eq. (3.228), to arbitrary logarithmic order, is

Σ(v) =
∏
i

∫
dwi

dσ(X → Y )∏
j dwj

u({wi}, vi)

=
∏
i

∫
dwi

dσ0(X → Y )∏
j dwj

FX→Y (αs, L)u0({wi}, v), (3.229)

where L = ln(1/v), and where

FX→Y (αs, L) = (1 + C(αs))e
Lg1(αsL)+g2(αsL)+

∑
n>0 α

n
s gn+2(αsL) (1 + S(αsL) +D(v)) .

(3.230)

Each function on the right-hand-side of this expression goes to zero as their argument goes

to zero. S(αsL) resums non-exponentiating terms, the most common of which are ‘non-

global logarithms’. An exponentiating observable is one for which S = 0. Lg1(αsL) is the

leading-log piece (LL). It resums all of the LLΣ terms and sometimes other sub-leading

terms in the expansion. g2(αsL) is the next-to-leading-log (NLL) piece. In exponentiating

observables, the LL term plus the NLL together resum the LLΣ and NLLΣ terms as well as

many further sub-leading terms in the expansion. D(v) is a ‘remainder’ function that does

not contribute logarithms to the resummation.

We can let X be a hadronic state with n hadrons and use the CSS factorisation of

non-perturbative physics so that

Σ(v) =
∏
i

∫
dwi

dσ0(x→ Y )∏
j dwj

⊗
([

n∏
i=1

fi(xi, µF)

]
Fx→Y (αs, L, µF, xi)

)
u0({wi}, v),

(3.231)

where fi(xi, µF) is a PDF for the ith hadron at a factorisation scale µF ∼ Q, the hard scale

of σ0(x → Y ), and ‘⊗’ is the usual convolution over momentum fractions, xi. Fx→Y has

been modified so that functions gj>1 gain contributions from the running of the PDFs,

∑
j=0

αjs gj+2(αsL) ⊃
n∑
i=1

ln
fi(xi, V (v)µF)

fi(xi, µF)
, (3.232)

where V (v) is some function of v that enforces the phase-space boundaries from the ob-

servable restricting collinear radiation from the initial state.48 Note that only collinear di-

vergences contribute to the renormalisation of the PDFs, hence they contribute only single

47The thrust distribution is an rIRC safe observable [53].
48Restricting the phase-space of collinear radiation from the initial state changes the first term on the

second line of Eq. (3.221) and therefore modifies the renormalisation of the PDFs.
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logarithms (at most O(αms L
m)) as double logarithms come from soft-collinear divergences.

Therefore the running of the PDFs does not contribute to Lg1(αsL).49

We have presented the ansatz for an exponentiating observable without giving a state-

ment on which observables it is applicable to. This is because a general statement on which

observables will or will not resum into this form, at an arbitrary accuracy, is not known.

However, it has been shown that a broad class of observables, known as continously-global

recursively IRC (rIRC) safe observables, exponentiate in this form at NNLLΣ accuracy

[39, 40] for proton-proton hard processes50 and will have this form at NNLL accuracy for

e+e− hard processes [41]. The precise definition of IRC safety is technical51. However,

in summary, continuously-global rIRC safety defines a class of one parameter event shape

observables which have the form u({wi}, v) = Θ(V ({wi})− v) where

� V ({wi}) is global, meaning that it is sensitive to radiation emitted into all parts of

phase-space.

� Following globalness, V ({wi}) must be continously-global. This requires that V ({wi})
has a uniform scaling across all parts of phase-space under the variation of the trans-

verse momenta of soft and collinear radiation: i.e. for an arbitrary soft or collinear

particle i, across the i’s complete phase-space V ({wi}) ∼ kai⊥ for some constant power

a.

� rIRC safety requires two things: that V ({wi}) has the same scaling properties under

the variation of the momenta of multiple soft and collinear partons as it does under the

variation of the momentum of one soft or collinear particle, and that there exists some

scale εv for which radiation satisfying V ({wi}) < εv does not significantly contribute

to the observable Σ(v), i.e. a phase-space restriction V ({wi}) > εv can be consistently

applied as an IR cut-off below which the KNL theorem would ensure the complete

cancellation of radiation.

In Sections 4.5, 6.4.1, 6.9, and Chapter 8 we give example resummations and fixed order

computations of both continuously-global rIRC safe observables and not-continuously-global

not-rIRC safe observables using the formalism we develop.

49This all hinges on the validity of non-perturbative factorisation for all scales µF < Q. In Chapter 8 we
demonstrate that this assumption is not valid for many observables and the PDFs can source contributions
to Lg1(αsL) via ‘coherence violating’ logarithms.

50We stress that the arguments demonstrating this accuracy all rest of the assumption of CSS factorisation
in proton-proton processes, though [40] does attempt to count for the possibility of CSS factorisation failing
and argue that the NNLLΣ accuracy remains untarnished.

51The precise definition is given in [39]. We point the reader to [54] for a simple overview and example
resummations.
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3.5 Parton showers

Parton showers provide an alternative to analytical resummation. They are the basis for all

purpose computer programs which can be used to compute an observable by Monte Carlo

integration. The programs simulate the distribution of partons one would see in a detector

by approximating the squared matrix elements for large multiplicities of QCD radiation

with classical branching algorithms and producing events (configurations of partons) with

weights proportional to the squared matrix elements.52 An observable is computed by

placing selection cuts on events (or re-weighting the events), corresponding to the action

of u({wi}, {vi}) across that phase-space of the partons, and then summing over the events

whilst normalising the distribution against the luminosity, approximating the limit that the

number of events goes to infinity. This approximates the Monte-Carlo integration of

ΣL({vi})
L

= lim
L′→∞

1

L′

∏
i

∫
dwi

dσL′(X → Y )∏
j dwj

u({wi}, {vi}),

where L is the luminosity, ΣL({vi}) is the observable cross-section at luminosity L, and

dσL′(X → Y ) the differential cross-section at luminosity L′.

There are multiple parton shower models on the market at the moment – each different

model using a different methodology to approximate the the squared matrix elements of

QCD radiation. Two of the most prevalent models are angular-ordered showers [57], and

dipole showers [58–60]. We provide complete derivations for these models in Chapter 6

and then give further details in Chapter 7. These derivations are performed with the goal

of finding improvements to these models; however, sufficient introductory material is also

given. Therefore, in this section we will only give a qualitative description of the models.

Other models, not discussed in this thesis, do also exist: i.e. antenna showers [61], and

hybrid models which combine approaches [62].

Angular-ordered showers

Angular-ordered showers are based around simulating the description of QCD radiation used

by a formalism for resummation known as coherent branching. Coherent branching exploits

a property known as coherence. When radiation is emitted from a charge distribution

(whether gravitational, EM or QCD) if the charge distribution is viewed from a sufficiently

large distance away the radiation interferes with itself such that it appears to have been

emitted ‘incoherently’ from the combined distribution: viewed from a distance a hydrogen

52Classical branching algorithms are used since, generally speaking, as the multiplicity of QCD radiation
increases the number of interference terms contributing to a cross-section grows factorially. Historically,
this has rendered the simulation of interference terms impractical. However, some modern approaches have
made substantial progress in attempts to simulate the full matrix elements [55, 56].
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θqq̄

θqg

pq̄

pq

pg

Figure 3.5: The labelling of particle momenta and angles for the g → qq̄ charge distribution
which emits further radiation (the gluon).

atom is electrically neutral. Only when viewed at a finer resolution scale can the individual

components of the distribution be resolved and so the radiation is emitted ‘coherently’ from

the components.

Let us make this intuition from coherence a little more concrete, following the approach

of [25]. Let the charge distribution be a freely propagating gluon which decayed into a quark

anti-quark pair. We want to compute the QCD radiation emitted from this distribution,

i.e. computing the emission of a soft gluon. We will begin by assuming the gluon is emitted

from the quark (see Figure 3.5). Before emitting the gluon, the quark is off-shell with a

momentum (pq+pg); all other momenta are on-shell and we assume the quarks are massless.

We can use the Heisenberg uncertainty relation to find the amount of time after the g → qq̄

transition at which the second gluon is emitted:

∆t ≈ Eq
M2

virtual

=
Eq

(pq + pg)2
≈ 1

Egθ2
qg

. (3.233)

We can express ∆t in terms of the wavelength of the gluon by substituting Egθqg ≈ k⊥ =

λ−1
⊥ , where λ⊥ is the transverse wavelength of the emitted gluon. The gluon can only

resolve the qq̄ pair when its transverse wavelength is less than the separation between the

two quarks (the usual diffraction limit of a wave). The separation s at a time ∆t after the

g → qq̄ transition is given by s ≈ θqq̄∆t. Therefore, radiation emitted from the distribution

can only resolve the distribution for λ⊥ < s which necessities that the radiation is emitted

at angles θqg < θqq̄ (or θq̄g < θqq̄). Radiation emitted at angles larger than the angular

separation of the qq̄ pair only resolve the combined distribution, equivalent to that of the

gluon present before the g → qq̄ transition.

Coherent branching and angular-ordered showers use coherence to compute squared

matrix elements from a Markov chain of collinearly emitted radiation ordered in angle:

i.e. radiation is emitted proportionally to collinear splitting functions (see 3.3) with the
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associated Casimir colour factors. First the widest angle radiation is emitted and then

radiation at successively smaller angles which builds up the unresolved sub-structure of the

charge distribution. We discuss the accuracy of the approach in detail in Chapter 6 and then

with particular focus on the accuracy of colour factors in Chapter 7. However, in summary,

the coherent branching formalism is sufficient to accurately compute the NLLΣ terms for

most observables, failing for observables with strong dependence on angular correlations or

for hard processes which do not form a colour singlet, and it can be used to resum many

continously-global 2-jet observables at NLL accuracy [37, 39].

Dipole showers

Dipole showers are defined around the leading colour limit of QCD. They exploit that

Leading(0)
[
〈Mn|S†n+1Sn+1 |Mn〉

]
= 2παsNc

∑
σ

∑
(i,j) c.c.∈σ

w
(n+1)
ij |Mσ

n |2, (3.234)

where Leading(0) is the operation for extracting the leading colour piece (introduced in

Section 3.2.3), Sn+1 is the eikonal current (see Section 3.3), Mσ
n is a matrix element for a

given colour flow σ, and the summation over ‘(i, j) c.c. ∈ σ’ is a sum over pairs of partons

i, j which are connected by a colour line in the colour flow σ. w
(n+1)
ij is the eikonal/soft

antenna function

w
(n+1)
ij =

pi · pj
pn+1 · pi pn+1 · pj

. (3.235)

Dipole showers approximate the squared matrix elements for QCD radiation by taking the

leading colour limit and using Monte-Carlo methods to sum over strongly ordered radiation

with emission kernels proportional to Eq. (3.234). This gives dipole showers broad LC and

LL accuracy since they compute squared matrix elements in the immediate neighbourhood

of soft and collinear poles with complete LC accuracy53. Addressing how the accuracy of

a dipole shower can be systematically improved beyond this is the purpose of Chapters 6

and 7.
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Chapter 4

Publication: Parton branching at
amplitude level

“The world is indeed full of peril, and in it there are many dark places; but still

there is much that is fair...”

— Haldir of Lórien, J.R.R. Tolkien, The Fellowship of the Ring

4.1 Preface

In this section we present work, by the author, on constructing an algorithm that evolves

hard processes at the amplitude level by dressing them iteratively with (massless) quarks,

gluons and loops. The algorithm is constructed by interleaving collinear emissions with

soft emissions and includes Coulomb/Glauber exchanges. The work was published as a

self contained research paper in 2019. After giving a small amount of background and

motivation, we present the work in the form it was published.

The research paper builds on a large body of work developing algorithms for dressing

hard processes with soft gluons [1–4]. Consequently, it jumps straight into the construction

of the algorithm. We will now give an overview of the assumptions used in the paper and

the prior work [1–4].

The primary assumption is that non-perturbative physics can be factorised from per-

turbative physics in the following form:∫
dσtotal(µ) =

∫
dσpartonic(µ) ◦ f(µ)

(
1 +O

((
ΛQCD

µ

)p))
, (4.1)

where µ� ΛQCD is a resolution scale above which physics can be considered perturbative

in the high energy limit, and f(µ) is a function describing the non-perturbative physics

(i.e. usually a product of parton distribution functions and/or fragmentation functions).

‘◦’ represents a convolution over shared kinematics. The boundaries on the phase-space
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integrals are process dependent, as is the positive constant p which parameterises the sen-

sitivity of the process to non-perturbative physics at the scale µ. Maximising µ, given the

constraints of the observable, minimises the effect of non-perturbative physics which is not

adequately described by f(µ). For inclusive processes, colour singlet hard processes (i.e.

e+e− and Drell-Yan), and deep inelastic scattering, this factorisation is a very rudimen-

tary application of the factorisation theorems by Collins, Soper, and Sterman (CSS) [5, 6]

where µ is typically taken to be the lowest scale relevant to the computation of the observ-

able (see the factorised cross-sections given in Section 3.4.2). For more complex processes,

such as proton-proton scattering producing QCD jets with an exclusive observable, it is an

assumption that CSS factorisation holds in exclusive regions of phase-space [6, 7]. When-

ever possible, we require that µ is less than or equal to a global inclusivity scale1 for an

observable. This requirement strengthens the validity of our use of CSS factorisation for

complicated processes since it removes the need to assume factorisation in exclusive regions

(as discussed in Section 3.4).

The algorithm we developed is for the computation of dσpartonic(µ) (for which we now

drop the subscript). Our next assumption is hard-process factorisation given a hard scale

Q� µ, ∫
dσ(µ) ≈

∫
dΠborn(µ) Tr(E(Q,µ, {p;µ}0, {p;Q}0) ·H(Q; {p;Q}0)). (4.2)

H(Q) is the hard process density matrix and E is an operator for dressing the hard process

with IRC singular terms from QCD radiation at a scale much lower than Q. Non-singular

terms (O(µ0/Q0)) from radiation have been dropped. The set {p;µ}n is the set of hard

process momenta, and the momenta of n lower scale partons dressing the hard process, as

measured at a scale µ. The boundary condition E(Q,Q) = 1 is used and ‘·’ represents a

convolution over the shared hard process momenta {p;Q}0. Hard process factorisation has

been proven for all inclusive QCD processes computed at leading-twist [8], and has been

shown to hold at least at leading-log accuracy for generalised exclusive processes in inelastic

collisions [9] (which is sufficient for our purposes). We can expand the partonic cross-section

in parton multiplicity ∫
dσ(µ) =

∫ ∑
n

dσn(µ) (4.3)

1An inclusivity scale is a characteristic scale for a process (for instance an energy or kt) below which, at
a given logarithmic accuracy, all real radiation cancels completely against loops as per the KLN theorem
(Section 3.1.2). The existence of an inclusivity scale is a requirement of infra-red safety. In principle
an inclusivity scale can be arbitrarily small, however safety against uncontrolled non-perturbative physics
requires that the scale be much greater than ΛQCD. Continuously global event shape observables typically
have inclusivity scales proportional to the hard process scale whilst exclusive processes typically have an
inclusivity scale proportional to a scale determining acceptance into exclusive regions (see Chp. 8 for more
details).
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and from this define

dσn = dΠborn(µ)Tr(En(Q,µ) ·H(Q)) = dΠborn(µ)Tr
(
En(Q,µ)H(Q)E†n(Q,µ)

)
, (4.4)

and

En(Q,µ)H(Q; {p;Q}0)E†n(Q,µ) = An(µ; {p;µ}n)
n∏
i=1

dΠi, (4.5)

where A0(Q; {p}0) = H(Q). This re-arrangement and set of definitions have been intro-

duced so that we can work with amplitude density matrices An ≡ |Mn〉 〈Mn| which have

computable perturbative expansions (the limits of the matrix elements computed in Section

3.3).

We wish to find an evolution equation for An(µ; {p}n). For two reasons, we are well

motivated to believe the evolution of An(µ; {p}n) under the variation of the scale, µ, should

be Markovian. Firstly the repeated application of hard process factorisation, separating

lower scale radiation from higher scale, generates a Markov series: i.e.2

E(Q,µ, {p;µ}0, {p;Q}0) 7→ E(Q1, µ, {p;µ}0, {p;Q1}0) · E(Q,Q1, {p;Q1}0, {p;Q}0). (4.6)

Secondly, renormalisation group equations are Markovian and E(Q,µ) has the form of a

renormalisation group operator on H(Q) (see Section 3.4). Therefore, assuming a Markovian

evolution equation for the variation of An(µ; {p}n) as µ decreases gives the following ansatz:

µ
∂An(µ; {p}n)

∂µ
=Γn(µ) An(µ; {p}n) + An(µ; {p}n) Γ†n(µ)

−
n∑
i=1

∫
dRin Di

n(µn) An−i(µn; {p}n−i) Di †
n (µn) µ δ(µ− µn). (4.7)

Di
n(µn) is an operator for dressing An−i(µn; {p}n−i) with i lower scale partons. Γn(µ) is an

anomalous dimension matrix: it acts as a ‘non-emission operator’ which dresses An(µ; {p}n)

with loops at the scale µ. Integration over the measure dRin handles momentum conserva-

tion. In the limit µ/Q � 1, fixed order calculations motivate the correct resolution scale

for the ansatz being a carefully chosen transverse momentum, q⊥ [1, 3, 10]. The detailed

definition of q⊥ is discussed in the paper.

Expanding the operators to first order in αs gives

q⊥
∂An(q⊥; {p}n)

∂q⊥
=Γ(0)

n (q⊥) An(q⊥; {p}n) + An(q⊥; {p}n) Γ(0) †
n (q⊥)

−
∫

dR1 (0)
n D1 (0)

n (qn⊥) An−1(qn⊥; {p}n−1) D1 (0) †
n (qn⊥) q⊥ δ(q⊥ − qn⊥).

(4.8)

2The following equation is schematic and is abusing the trace in Eq. (4.2) to simplify matters. Each
E should be separated into an operator acting to the left and an operator acting to the right of the hard
process, just as in Eq. (4.4).
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The operators on the RHS are computable from Feynman amplitudes by studying the O(αs)

corrections to n-parton amplitudes which are singular in the limit q⊥/Q → 0, giving the

leading power expansion of the operators (again see Section 3.3). The limit q⊥/Q → 0

exposes both soft and collinear poles. Therefore the operators describe the emission of real

and virtual, soft and collinear partons.

Throughout the rest of this thesis we drop the upper indices and always work with the

first-order, leading-power operators. The evolution equation is solved by the Markov series

An(q⊥; {p}n) =

∫
dRnVq⊥,qn⊥DnAn−1(qn⊥; {p}n−1)D†nV

†
q⊥,qn⊥

Θ(q⊥ ≤ qn⊥), (4.9)

where Va,b evolves a state An(b; {p}n) to a state at a lower scale An(a; {p}n). It is an

amplitude level Sudakov factor, defined as

Va,b = Pexp

(
−
∫ b

a

dq⊥
q⊥

Γn(q⊥)

)
. (4.10)

It is in this form that we present the Parton Branching algorithm in the following paper.3

A comment on context and the current ‘state of the art’

The following paper was originally published in 2019 and this thesis is now being written

in 2021. The field has progressed significantly since 2019 and several questions discussed

in the paper, which were unanswered, have now been answered. Most notably, since 2019

there has been extended discussions in the literature on how to achieve NLL accuracy in

parton shower algorithms [11–13] and successful implementations have been demonstrated

for e+e− hard processes [12, 14]. Small amendments have been made to what follows so as

to make discussions consistent with the most recent literature in 2021.
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Abstract

We present an algorithm that evolves hard processes at the amplitude level by dressing them

iteratively with (massless) quarks and gluons. The algorithm interleaves collinear emissions

with soft emissions and includes Coulomb/Glauber exchanges. It includes all orders in Nc,

is spin dependent and is able to accommodate kinematic recoils. Although it is specified at

leading logarithmic accuracy, the framework should be sufficient to go beyond. Coulomb

exchanges make the factorisation of collinear and soft emissions highly non-trivial. In the

absence of Coulomb exchanges, we show how factorisation works out and how a partial

factorisation is manifest in the presence of Coulomb exchanges. Finally, we illustrate the

use of the algorithm by deriving DGLAP evolution and computing the resummed thrust,

hemisphere jet mass and gaps-between-jets distributions in e+e−.

4.2 Introduction

Modern day experimental particle physics is often performed at hadron colliders. As an

unavoidable consequence, QCD corrections play a large role. Contributions from coloured

radiation, when evaluated Feynman diagrammatically, diverge at multiple points in the

phase space. When regularised and cancelled, the divergences may leave behind large

logarithms. The accurate inclusion of logarithmically enhanced corrections is of importance

to both the theoretical and experimental communities. Historically there have been two

main approaches to dealing with QCD radiative corrections: resummations and parton

showers.

Resummations look to re-organise the perturbative expansion by classifying the large

logarithms and then summing the perturbation series such that the most dominant loga-

rithmically enhanced terms are included. Towers of logarithms may be further simplified by

making the leading colour (LC) approximation. The re-organised expansions are referred

to by their logarithmic accuracy; leading log (LL), next-to-leading log (NLL), etc. This
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procedure has recently been further formalised by work in soft-collinear effective field theo-

ries [1–4]. From this perspective, resummations are renormalisation group flows that evolve

‘safe’ perturbative predictions into regions of phase space where perturbative expansions

would be otherwise ‘unsafe’.

In contrast, parton showers may be thought of as providing an all-purpose approximation

to the resummation procedure. Modern parton showers generate an evolving, classical

system of partons whilst cleverly encoding quantum interference effects (made possible by

working in the LC approximation). The majority of currently available parton showers claim

LL accuracy using the LC approximation [5–11]. The quest to better understand the data

from the LHC is a major driver for increasingly precise parton showers. At present, there is

a growing list of phenomena that parton showers do not encapsulate. This includes effects

sub-leading in colour, Coulomb/Glauber exchanges, super-leading logarithms [12–14] and

the violation of QCD coherence (or collinear factorisation) [15, 16]. Moreover, recent fixed-

order studies have cast further doubt on the accuracy of modern parton showers. It has been

shown in [17] that the Pythia [10, 11] and Dire [8] showers suffer from both incorrect next-

to-leading logarithms at leading colour and incorrect contributions from sub-leading colour

(NLC) at LL. Although these showers never claim NLL or NLC accuracy, the findings of

Dasgupta et al questions the fruitfulness of attempts to extend conventional parton showers

beyond LL and LC in general.4 In recent years, there has been movement towards finding

new constructions for partons showers; constructions more suited to including NLC or NLL

corrections [9, 21–28]. However, as of yet, success has been limited.

The algorithm we present here aims to provide a framework for the development of

future parton showers, enabling them to be systematically improved. We hope it will also

help make more rigorous the link between resummations and parton showers. Our starting

point is the soft-gluon evolution algorithm explored in [27], which we refer to as the FKS

algorithm. The evolution generated by the FKS algorithm is systematic to all orders in

colour and it accounts for the leading soft logarithms. The FKS algorithm was originally

used to derive the super-leading logarithms that may occur in hadron-hadron collisions [12,

13]. It has been analytically verified for a general hard process dressed with up to two soft

real emissions and one loop [29, 30]. It has also been shown to generate the BMS equation

[31] (it presumably also includes the NLC corrections to it) and it correctly accounts for the

leading non-global logarithms for various observables [27]. The main goal of this paper is to

improve the FKS algorithm by including collinear emissions, spin dependence and kinematic

4As of 2021, multiple conventional parton showers have been proposed which correctly resum LC NLLs for
observables with colour singlet hard processes [18, 19] and progress has been made towards implementing
sub-leading colour for global observables into parton showers [20]. However, extending this accuracy to
proton-proton hard processes remains elusive.
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recoil. The algorithm we present is Markovian and can be solved iteratively, making it well

suited for use as a parton shower.

The remainder of the paper is organised as follows. In the next section, we introduce

the algorithm in a form we refer to as variant A, in which we interleave soft and collinear

emissions. Variant A has the virtue of being a simple extension of the FKS algorithm,

though it suffers from unnecessarily complex colour evolution in the soft-collinear sector.

It also suffers from the fact that we cannot uniquely identify a parent parton in the case of

soft-gluon emission, which complicates the issue of longitudinal momentum conservation.

We are thus motivated to re-cast the algorithm in a more convenient form, which we refer

to as variant B. Specifically, in variant B we manipulate the colour structures of variant

A to isolate the full collinear splitting functions, after which we are able to implement

longitudinal momentum conservation in a simple way. We also spend some time illustrating

how recoils may be included in both variants, though this will only be relevant beyond

the LL approximation. As it stands, either variant A or B could be used to create a fully

functioning parton shower, though B will be computationally more efficient. In Section

4.3.5 we present a manifestly infra-red finite version of the algorithm. This reformulation

is particularly useful for the resummation of specific observables, though it is not so well

suited for use as a general purpose parton shower. This is because the infra-red singularities

are regularised by the explicit inclusion (and exponentiation) of a measurement function.

The second half of the paper is devoted to issues of collinear factorisation and to pro-

viding examples to illustrate how the algorithm is used. In Section 4.4 we discuss the

factorisation of collinear physics from soft physics. We start by considering the case when

Coulomb/Glauber exchanges are turned off (such as would be the case in e+e− collisions).

After this we discuss how Coulomb exchanges can be introduced one-by-one. We will see

that collinear factorisation occurs below the scale of the last Coulomb exchange. This dis-

cussion shows consistency between our approach and the proofs of collinear factorisation

by Collins, Soper and Sterman [32, 33]. After this, we show how DGLAP evolution for

the parton distribution functions emerges [34–36]. We finish the paper by illustrating the

use of the algorithm; by calculating the thrust, hemisphere jet mass, and gaps-between-jets

distributions in e+e−. We leave an extensive discussion of spin correlations to an appendix.

4.3 The algorithm

In this section we present the algorithm. It is Markovian and interleaves soft emissions and

virtual corrections with collinear emissions and virtual corrections, see Figure 4.1. Succes-

sive real emissions are strongly ordered in an appropriately defined transverse momentum.

We will present two variants of the algorithm, which we refer to as A and B. The two differ
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〈M(Q)|

Figure 4.1: A term contributing to evolution of the conjugate amplitude (it contributes
to A9). Red dashed lines represent the emission of soft gluons and collinear partons are
represented by blue dotted lines. Loops (Sudakov factors) have been neglected to avoid
clutter. We draw all particles heading to the right, away from the hard process, including
incoming particles. In contrast, evolution of the amplitude will have all particles drawn
heading to the left and away from the hard process.

only in where we put the soft-collinear emissions: in A they are in the soft sector and in

B they are in the collinear sector. The second approach allows us to exploit the colour-

diagonal nature of collinear emissions and it makes kinematic recoil more straightforward

to implement. Variant A has the virtue that it is an almost trivial extension of the purely

soft evolution presented in [27]. We present both A and B with the momentum mappings

after each real emission parametrised into two initially unspecified functions. This is so the

algorithm is able to accommodate partonic recoil. Later, in Section 4.3.4, we discuss specific

examples of recoil in action. For processes with coloured incoming partons, the algorithm

should be convoluted with parton distributions functions. We leave a full description of

how to do this to Section 4.5.

Before plunging in, we should explain the theoretical basis for what follows. Our algo-

rithm is based on Feynman diagram calculations [13, 27, 29, 34, 37–39] and, in its present

form, captures all of the logarithms associated with the leading amplitude-level singulari-

ties. It uses a fixed coupling as effects from the running coupling are considered beyond the

scope of this paper. Therefore the algorithm captures leading logarithms from wide-angle

soft emissions, hard-collinear emissions and simultaneously soft and collinear emissions.

This means the algorithm is guaranteed to capture only the most leading logarithms in the

expansion of the cross-section (LLΣ) to any observable. That said, it is also able to capture

the leading single non-global logarithms, even if the global part is double-logarithmic, as is

the case with the hemisphere jet mass for example (see Section 4.5). For any process involv-

ing incoming hadrons or measured outgoing hadrons, the single logarithms from DGLAP

evolution are recovered as well (i.e. parton distribution function and by a simple extension

fragmentation function evolution). Correctly capturing these logarithms requires the inclu-
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sion of kinematic recoil into the algorithm, which is typically considered sub-leading for the

computation of LLs. We believe our framework to be sufficiently flexible that we can, in

the future, extend it beyond the LLΣ approximation. The algorithm is fully differential in

parton kinematics making the extension to a running coupling simple and we have set up

the algorithm so that the complete conservation of momentum can be simply implemented.

4.3.1 Parton branching with interleaved soft and collinear evolution (A)

The algorithm evolves a hard-scattering matrix, H(Q; {p}), which is defined at some hard

scale Q and is a function of the hard-particle four-momenta, {p}. It does so by dressing

with successive soft and/or collinear real emissions and virtual corrections. H(Q; {p}) is

a tensor in the product space of colour and helicity5, defined as H(Q; {p}) ≡ (|colour〉 ⊗
|spin〉) ⊗ (〈colour| ⊗ 〈spin|). The hard-scattering matrix is defined so that Tr H(Q; {p}) is

the hard matrix element squared, summed over colour and spin6. Successive real emissions

are added via ‘rectangular’ operators, which act as a map increasing the dimension of the

representation of SU(3)×E(2) in which H(Q; {p}) resides. The virtual evolution operators

are ‘square’ and preserve the representation of H(Q; {p}). Specifically,

dσ0 = Tr
(
Vµ,QH(Q; {p})V†µ,Q

)
= Tr A0(µ; {p}),

dσ1 =

∫ nH+1∏
i=1

d4pi Tr
(
Vµ,q1⊥D1Vq1⊥,QH(Q; {p})V†q1⊥,QD†1V

†
µ,q1⊥

)
dΠ1

= Tr A1(µ; {p̃} ∪ q1) dΠ1,

dσn = Tr An(µ; {p}n)
n∏
i=1

dΠi, (4.11)

where

An(q⊥; {p̃}n−1 ∪ qn) =

∫ nH+n∏
i=1

d4piVq⊥,qn⊥DnAn−1(qn⊥; {p}n−1)D†nV
†
q⊥,qn⊥

Θ(q⊥ ≤ qn⊥).

(4.12)

At each step, the emission operators (Dn) add one new particle, of four-momentum qn, to

the set {p}n−1, to produce the set {p}n. We use pj ∈ {p}n = {P1, P2, · · ·PnH , q1, · · · qn} to

denote the momentum of the jth parton and 1 < j < nH + n, where nH is the number of

partons associated with the original hard process and n is the number of emitted partons.

Hidden in the emission operators is a map from {p}n−1 to a new set, {p̃}n−1. The difference

between these two sets is determined by the way we implement energy-momentum conser-

vation (i.e. the recoil prescription) and it is why there is an extra integral over pi (it is not

5This paper only concerns itself with massless partons and so all particles have a definite helicity.
6We may also choose to include averaging factors, a flux factor and the hard process phase-space, so that

it is then the hard-process differential cross section.
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a phase-space integral). The virtual evolution operators Va,b encode the loop corrections.

To avoid cumbersome notation we write {p}n = {p̃}n−1 ∪ {qn} is the set of n momenta

including the last emission, qn. We have not yet defined the ordering variable, qi⊥; we will

do that shortly. A generalised observable Σ, with measurement function un(q1, ..., qn), is

then given by7

Σ(µ) =

∫ ∑
n

dσn un(q1, ..., qn),

=

∫ ∑
n

(
n∏
i=1

dΠi

)
Tr An(µ; {p}n)un(q1, ..., qn), (4.13)

where dΠi is the phase-space for the ith emission (see below). µ should be taken either

to 0 or to the scale below which the observable is inclusive over all radiation. The virtual

(Sudakov) evolution operator is8

Va,b =Pexp

−αs
π

∑
i<j

∫ b

a

dk
(ij)
⊥

k
(ij)
⊥

(−Tgi · T
g
j )

{∫
dy dφ

4π
(k

(ij)
⊥ )2 p̃i · p̃j

(p̃i · k)(p̃j · k)
θij(k)− iπ δ̃ij

}

×Rsoft
ij (k, {p̃})− αs

π

∑
i

∫ b

a

dk
(i~n)
⊥

k
(i~n)
⊥

∑
υ∈{q,g}

Tῡ 2
i

∫
dz dφ

8π
P ◦υυi(z) θi(k)Rcoll

i (k, {p̃})

 ,
(4.14)

where i and j run over all external legs (those from the initial hard process and also previous

emissions in the evolution). δ̃ij = 1 if both partons i, j are incoming or both outgoing and

δ̃ij = 0 otherwise. θij(k) = Θ(pi · pj − k · (pj + pi)) and ensures that the phase space of the

integration corresponds to that of a real gluon. Likewise, the z integral is over the range9

z ∈

α
2
− 1

2

√
α2 − 4k

(i~n) 2
⊥

(n.p)2
,
α

2
+

1

2

√
α2 − 4k

(i~n) 2
⊥

(n.p)2

 , α =
2p · pi + pi · n p · n

(p · n)2
, (4.15)

which can be expressed via a single theta function

θi(k) = Θ((n · pi − n · k)n · p+ 2p · pi − 2p · k).

The vectors p and n = (1, ~n) will be defined shortly: to LLΣ accuracy p = pi and α = 1.

υi, υ ∈ {q, g} label parton species. ῡ = g in all cases except when υi = g and υ =

q, then ῡ = q. P◦υυi is the υi → υ hard-collinear splitting function and it is defined

in Appendix 4.7 along with the conventions we use for helicity states and antiparticles.

7For fixed Born-level kinematics. Generally the measurement function will depend upon the hard process
momenta Pj , which we do not show explicitly.

8The path ordering ensures that the operators are ordered in k
(ij)
⊥ with the largest to the right.

9We specify the range corresponding to emission off a final state particle, for emission off an initial state
particle exchange pi → p̃i.
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Rsoft
ij (k, {p}) and Rcoll

i (k, {p}) are concerned with the recoil prescription and are included to

preserve unitarity, they are defined in (4.21) and (4.22) below. k
(ij)
⊥ and y are the transverse

momentum and rapidity in the ij zero-momentum frame. To make the (unitarity) link to

the real emissions more explicit, we choose not to use the substitution

(k
(ij)
⊥ )2 p̃i · p̃j

(p̃i · k)(p̃j · k)
= 2. (4.16)

The real-emission operator is built using two operators:

Si =
∑
j

(
q

(j ~m)
i⊥

2p̃j · qi
Tgj ⊗ (p̃j · ε∗+(qi)S1i + p̃j · ε∗−(qi)S−1i)

)
Rsoft
ij ({p}, {p̃}, qi),

Ci =
∑
j

q
(j~n)
i⊥

2
√
zi

∆ij Pij R
coll
ij ({p}, {p̃}, qi), (4.17)

such that Di acts as

...DiOD†i ... = ...SiOS†i ...+ ...CiOC†i .... (4.18)

j again runs over all external legs and i labels the emitted parton. Si generates soft emissions

and Ci hard-collinear emissions. The symbol ∆ij is defined so that ∆ij∆ik = δjk and δfinal
j

(δinitial
j ) is unity when parton j is in the final (initial) state and zero otherwise. Pij are

the amplitude-level hard-collinear splitting functions and are defined in Appendix 4.7. The

splitting functions encode DGLAP evolution [34–36] including the spin-dependence. Tgi is a

basis independent colour charge operator. We have indexed each Tgi with the leg on which

it acts, i, and by whether it corresponds to the emission of a gluon or not (i.e. the index

q refers to a g → qq̄ splitting). Ssi updates the helicity state by adding the helicity of the

emitted parton, si. The operators S and T are also defined in Appendix 4.7.

In the soft sector we have introduced an auxiliary vector ~m. It is uniquely determined,

but only at cross-section level, since we require q
(i~m)
⊥ q

(j ~m′)
⊥ |pi 6=pj = (q

(ij)
⊥ )2, which corre-

sponds to choosing ~m to lie in the direction of j and ~m′ (the corresponding vector in the

conjugate amplitude) in the direction of i. It is only ever this combination that appears

at cross-section level. In the collinear sector, the momentum fraction zi is defined by (see

Figure 4.2):

zi =
p̃j · n
p · n for final-state emissions

and zi =
pj · n
p · n for initial-state emissions, (4.19)

where the light-like four-vector n satisfies n · q(j~n)
i⊥ = 0. The light-like four-vector p satisfies

p · q(j~n)
i⊥ = 0. Neglecting terms suppressed by the transverse momentum of the emission
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p̃j pj

qi
1− zi

(a)

p̃jpj

qi
1− zi

(b)

Figure 4.2: Defining the kinematics: (a) qi is emitted off an incoming leg; (b) qi is emitted
off an outgoing leg.

(which is permissible in the LLΣ approximation) we may take p = pj for final-state emissions

and p = p̃j for initial-state emissions, in which case zi is the light-cone momentum fraction.

The precise definition of p is dependent on the recoil prescription, as we illustrate in Section

4.3.4.

Now we can define the ordering variable, i.e. the definition of a and b in the Sudakov

operator Va,b. We use transverse momentum ordering, where the transverse momentum

should be defined by the parent partons of the emitted parton. Doing this means that we

really ought not to sum over partons in (4.17) and we should replace (4.12) by

An =
∑
jn,j′n

∫ nH+n∏
i=1

d4piVq⊥,qn⊥Djn
n An−1D

j′n†
n V†q⊥,qn⊥Θ(q⊥ ≤ qn⊥) (4.20)

where Djn
n is defined by

Dn =
∑
jn

Djn
n .

The ordering variable is then qn⊥ = q
(jnj′n)
n if the emission is soft or qn⊥ = q

(jn,~n)
n if the

emission is collinear. At LLΣ, this choice of ordering variable is somewhat arbitrary but

being a transverse momentum it is able to generate the super-leading logarithms correctly

[29]. That said, it is not equivalent to the ordering indicated by the results in [29, 30],

which is based on fixed-order Feynman diagram calculations. We have not yet figured out

a way to implement the latter ordering to all orders. In the remainder of the paper, we will

use the simpler (though potentially misleading) notation of equation (4.12).

The recoil functions, Rsoft ∗
ij Rsoft

ij′ and Rcoll ∗
ij Rcoll

ij , encode the maps that implement

energy-momentum conservation. As the algorithm proceeds, each Rsoft
ij and Rcoll

ij will al-

ways collect into the pairs just given. The functions only ever appear singularly to aid book

keeping10. The recoil functions should be constructed out of delta functions and algebraic

10Singular definitions would require R functions to contain integrals of delta functions which independently
evolve momenta in the amplitude and similarly for R∗ in the conjugate amplitude. The external momentum
integrals,

∫ ∏
k d4pk, would the be used to force the two separately evolving momenta to coincide. Giving

these definitions provides an entirely unnecessary extra complexity.
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pre-factors relating the momentum from the current step in the algorithm, {p}, to the mo-

mentum that will be carried forwards to the next step of the algorithm, {p̃} and qi. Rsoft
ij

and Rcoll
i are fixed by Rsoft

ij and Rcoll
ij , i.e.∫ ∏

k

d4pkR
soft ∗
ij ({p}, {p̃}, qi)Rsoft

ij′ ({p}, {p̃}, qi) = Rsoft
jj′ (qi, {p̃}), (4.21)

and ∫ ∏
k

d4pkR
coll ∗
ij ({p}, {p̃}, qi)Rcoll

ij ({p}, {p̃}, qi) = Rcoll
j (qi, {p̃}). (4.22)

In the LLΣ approximation, Rsoft
jj′ = Rcoll

j = 1. Si generates soft emissions and one might

suppose that a suitable choice of recoil (to LLΣ accuracy) is

Rsoft
ij Rsoft ∗

ij′ =
∏
k

δ4(pk − p̃k). (4.23)

We will shortly see that things are not quite so simple, and that this requires modification.

Ci generates hard-collinear emissions, however only the longitudinal component of the recoil

is hard. Therefore, in the LLΣ approximation, we may implement recoils in the collinear

sector via

Rcoll ∗
ij Rcoll

ij =
(
δ4(pj − z−1

i p̃j)δ
final
j + δ4(pj − zip̃j)δinitial

j

)∏
k 6=j

δ4(pk − p̃k). (4.24)

Finally, the phase-space is included via

dΠi =
2αs
π2q2

i⊥

d3qi
2Ei

. (4.25)

The pre-factor has been included to simplify the definitions of Si and Ci, as well as to make

each term in the algorithm dimensionless and keep explicit dependence on the ordering

variable in Di. To simplify the notation, in (4.25) and elsewhere, we will drop the dipole

labels on transverse momenta. It should be clear from the context which partons are

intended. In the case of (4.25), it means we should use the transverse momentum defined

by the parent parton and the vector ~n in the case of collinear emissions or q
(ij)
⊥ in the case

of soft emissions. It is often useful to note that

dΠi =
2αs
π

dqi⊥
qi⊥

dzi
1− zi

dφi
2π

=
2αs
π

dqi⊥
qi⊥

dy dφ

2π
, (4.26)

where y is the rapidity in the frame defining qi⊥. Using these last two relations the link

between real emissions and virtual corrections is clear, i.e. the square of the emission

operators
∫

D†iDi dΠi is, for e+e− collisions11, equal to minus twice the real part of the

exponent in (4.14).

11This caveat is necessary to avoid complications associated with emissions off coloured incoming legs.
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Using the naive recoil prescription of (4.23) and (4.24), the array of parton momenta

gets modified after a collinear emission, generated by Pij , but not after a soft emission

(except to add one new soft gluon of course). Specifically, this means acting with PijR
coll
ij

maps pj 7→ p̃j = zipj + O(q⊥) (for final state partons), and a parton with momentum

qi = (1 − z)pj + O(q⊥) is added. As usual, pj is the momentum of parton j prior to the

action of PijR
coll
ij . A more careful treatment of momenta is not required to reproduce the

leading logarithms for many observables. However, any observable dependent upon par-

ton distribution functions or fragmentation functions will be incorrectly calculated because

this naive recoil prescription does not reproduce DGLAP evolution. This is because the

terms with soft-collinear poles are handled in the ‘soft side’ of the algorithm and do not

conserve longitudinal momentum. This manifests as DGLAP evolution with an incorrect

plus prescription, i.e.(
1 + z2

1− z

)
+

=

(
2

1− z

)
+

− (1 + z)+
variant A7−→ −(1 + z)+, (4.27)

as the soft poles have been removed from the hard-collinear splitting functions defining Pij .

On the flip side, the algorithm works well for event shape observables in e+e− collisions.

We will refer to the framework in this section as variant A of the algorithm. Within variant

A, this problem could be solved by implementing a universal recoil for all emissions, soft

and collinear, i.e. ∫ ∏
k

d4 pkR
coll
ij Rcoll ∗

ij =

∫ ∏
k

d4pk
∑
j′

Rsoft
ij Rsoft ∗

ij′ . (4.28)

We will not consider universal recoils in this paper and will instead solve this ‘plus prescrip-

tion problem’ another way; by putting the soft-collinear emissions in the collinear sector of

the algorithm. Doing this will lead us to variant B of the algorithm. In Section 4.3.4, we

will use the insight gained from formulating B to show how to solve the plus-prescription

problem within the framework of A.

4.3.2 Parton branching using complete collinear splitting functions (B)

Soft-collinear poles can be exchanged reasonably simply between eikonal currents and

collinear splitting functions. We will now define variant B of our algorithm, which re-

stores the soft-collinear poles in the collinear splitting functions and removes them from the

eikonal currents. This is a good thing to do for two reasons:

1. Collinear evolution is generated by unit operators in colour space. Making this man-

ifest for the soft-collinear poles simplifies the colour evolution of the algorithm.
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2. Putting the soft-collinear poles into the collinear ‘side’ of the algorithm simplifies the

recoil prescription because every collinear emission has a uniquely identifiable parent.

Variant B is very similar in form to variant A:

Si =
∑
j

(
q

(j ~m)
i⊥

2p̃j · qi
Tgj ⊗ (p̃j · ε∗+(qi)S1i + p̃j · ε∗−(qi)S−1i)

)
Rsoft
ij ({p}, {p̃}, qi),

Ci =
∑
j

q
(j~n)
i⊥

2
√
zi

∆ij Pij R
coll
ij ({p}, {p̃}, qi), (4.29)

with

...DiOD†i ... = ...SiOS†i fjj′(qi, {p}, {p̃})...+ ...CiOC†i ... . (4.30)

The form of Si is the same as in A and the Sudakov changes as

Va,b =Pexp

−αs
π

∑
i<j

∫ b

a

dk
(ij)
⊥

k
(ij)
⊥

(−Tgi · T
g
j )

{∫
dy dφ

4π
(k

(ij)
⊥ )2 p̃i · p̃j

(p̃i · k)(p̃j · k)
θij(k)

×Fij(k, {p̃})− iπδ̃ij
}
Rsoft
ij −

αs
π

∑
i

∫ b

a

dk
(i~n)
⊥

k
(i~n)
⊥

∑
υ

Tῡ 2
i

∫
dz dφ

8π
P ◦υυi θi(k)Rcoll

i

]
.

The only changes relative to variant A are the appearance of fjj′(qi, {p}, {p̃}) and Fij(k, {p̃}),
which specify the prescription for the subtraction of soft-collinear poles from the eikonal

currents, and the replacement of Pij with Pij . Explicit dependence on Pij in Ci means

that CiOC†i now contains the full spin-dependent DGLAP splitting functions [40]. Unitarity

requires that∫ ∏
i

d4 pi fjj′(qi, {p}, {p̃})Rsoft ∗
ij Rsoft

ij′ = Fjj′(qi, {p̃})Rsoft
ij (qi, {p̃}). (4.31)

The functional forms of fjj′(qi, {p}, {p̃}) and Fjj′(qi, {p̃}) are uniquely fixed by the choice

of Rcoll
ij and Rsoft

ij once we have fixed Pij . Specifically, we can derive variant B from A by

adding and subtracting a function:

SB
i OSB †

i dΠi + CB
i OCB †

i dΠi = SA
i OSA †

i dΠi − siOs†i︸ ︷︷ ︸
≡SB

i OSB †
i dΠi

+ CA †
i OCA

i dΠi + siOs†i︸ ︷︷ ︸
≡CB

i OCB †
i dΠi

, (4.32)

where we have labelled each operator with a superscript indicating which variant it corre-

sponds to and where O is some general operator in colour and spin. The subtraction term

was constructed so that

siOs†i ≡
∑
j

(q
(j~n)
i⊥ )2

4zi
(PijOP†ij −PijOP

†
ij)R

coll
ij Rcoll ∗

ij dΠi (4.33)
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and after some manipulation is equal to

siOs†i =
2αs
π

∑
j

Tgj ⊗
(

S1i

〈qip̃j〉
+

S−1i

[qip̃j ]

)
OTg †j ⊗

(
S1i

〈qip̃j〉
+

S−1i

[qip̃j ]

)†

× qi · p̃j
dq

(j~n)
i⊥

q
(j~n)
i⊥

dy dφ

2π
θj(qi) (δfinal

j + δinitial
j (p̃j ↔ pj))R

coll
ij Rcoll ∗

ij . (4.34)

〈qip̃j〉 and [qip̃j ] are Weyl products in the spinor-helicity formalism [41]. Also note, siOs†i

is equal to the collinear limit of SA
i OSA †

i dΠi with q
(j ~m)
i⊥ ≈ q

(j~n)
i⊥ . To see the equality we

express polarisation vectors using spinor products,

εµ(qi,±1) =
1√
2

〈qi∓|σµ∓ |n∓〉
〈qi ± |n∓〉

, (4.35)

where σµ∓ = (1,∓σ1,∓σ2,∓σ3)T are vectors of Pauli matrices and n is an auxillary light-like

vector (best chosen to be either pj or pj′).

To complete the definition of variant B we must compute fjj′(qi, {p}, {p̃}) and Fjj′(qi, {p̃}).
Note that s†isi is proportional to the unit operator in colour and helicity. After taking the

trace over helicity space, (4.32) leads to

∑
j,j′

TgjOT
g †
j′

dq
(jj′)
i⊥

q
(jj′)
i⊥

dy dφ

4π
θjj′(qi)R

soft
ij Rsoft ∗

ij′ fjj′(qi, {p}, {p̃}) =

∑
j,j′

TgjOT
g †
j′

dq
(jj′)
i⊥

q
(jj′)
i⊥

dy dφ

4π
θjj′(qi)R

soft
ij Rsoft ∗

ij′ +
∑
j

TgjOT
g †
j

dq
(j~n)
i⊥

q
(j~n)
i⊥

dy dφ

4π
θj(qi)R

coll
ij Rcoll ∗

ij .

(4.36)

We can use colour conservation to factorise the colour operators and simplify the second

term on the right-hand side, i.e.

fjj′(qi, {p}, {p̃}) = 1− dq
(j~n)
i⊥

dq
(jj′)
i⊥

q
(jj′)
i⊥ θj(qi)

q
(j~n)
i⊥ θjj′(qi)

Rcoll ∗
ij Rcoll

ij

Rsoft ∗
ij Rsoft

ij′
(4.37)

and

Fjj′(qi, {pj}) = 1− dq
(j~n)
i⊥

dq
(jj′)
i⊥

q
(jj′)
i⊥ θj(qi)

q
(j~n)
i⊥ θjj′(qi)

Rcoll
j

Rsoft
jj′

. (4.38)

For a universal recoil it is possible to employ colour conservation and write

∑
j

TgjOT
g †
j

dq
(j~n)
i⊥

q
(j~n)
i⊥

dy dφ

4π
θj(qi)R

coll
ij Rcoll ∗

ij =
∑
j,j′

TgjOT
g †
j′

dq
(j~n)
i⊥

q
(j~n)
i⊥

dy dφ

4π
θj(qi)R

soft
ij Rsoft ∗

ij′ ,

(4.39)
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which enables us to re-write (4.37) as

fjj′(qi, {p}, {p̃}) = 1− dq
(j~n)
i⊥

dq
(jj′)
i⊥

q
(jj′)
i⊥ θj(qi)

q
(j~n)
i⊥ θjj′(qi)

. (4.40)

In the case of a universal recoil prescription, the effects of the recoil can be factorised out of

the emission operators and into a redefinition of the phase space measure. Recoil schemes

that may be universal include the more ‘true to Feynman diagrams’ global prescriptions

which put momenta of partons higher in the chain of emissions off-shell (e.g. see [42] and

references therein) and schemes which democratically share recoil across a jet or every

parton in the shower. Depending on their implementation, such schemes can be universal

since they globally redistribute momentum across the whole event as a n → n + 1 parton

processes. We leave the specification a universal recoil scheme to future work. For now we

re-iterate that it is only when considering effects beyond LLΣ that (4.40) and (4.37) differ.

Our implementation of recoil is not unique, and it remains to be seen (by performing

analytic calculations at NLL and beyond) the extent to which we will eventually be able

to capture the salient sub-leading logarithms in the framework of our algorithm. A slightly

different approach would be to start with variant B (recall we started from variant A above)

and assume (4.40) holds true. Variant A could then be constructed but it would now include

subtraction functions akin to fjj′ . In the case of universal recoils, none of this matters of

course.

4.3.3 Collinear subtractions and the ordering variable

Before moving on, we’d like to present a slightly more general approach to subtracting the

soft-collinear contribution. This calculation will shed some light on the role played by the

ordering variable. We start by writing12

ln Vab =
αs
2π

∑
i<j

Tgi · T
g
j

∫ b2

a2

dq2

q2

∫
d3k

2E

K2(pi, pj ; k)

π

pi · pj
pi · k pj · k

δ
(
q2 −K2(pi, pj ; k)

)
θij(k) ,

(4.41)

which holds for a general definition of the ordering variable, K2(pi, pj , k). In order to isolate

the collinear divergence, we should first expose, and factor, the soft divergence. To do this,

it is sufficient to consider any scaling which is linear in the emitted gluon’s momentum

components, such that we can re-write

ln Vab =
αs
2π

∑
i<j

Tgi · T
g
j

∫ b2

a2

dq2

q2

∫
d3k

2E

K2(pi, pj ; k)

π (S · k)2

ni · nj
ni · n nj · n

δ
(
q2 −K2(pi, pj ; k)

)
θij(k),

(4.42)

12We ignore ignore hard-collinear corrections and the effects of recoil in this section.
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where ni = qi/(S · qi), n = k/(S · k) and S is any time-like four-vector, which we choose to

satisfy S2 = 1. The soft divergence is now isolated from the eikonal term, which is singular

only in the collinear limits ni,j · n → 0. The collinear divergences can be subtracted. We

want the ordering variable to become independent of the other parton’s direction in the

collinear limit, such that the entire collinear divergence can be moved into a jet factor that

is trivial in colour space.

We choose to re-write the virtual evolution as ln Vab = ln Wab + ln Kab, where

lnWab =
αs
2π

∑
i<j

Tgi · T
g
j

∫ b2

a2

dq2

q2

∫
d3k

2E

1

π (S · k)2(
K2(pi, pj ; k)

ni · nj
ni · n n · nj

δ(q2 −K2(pi, pj ; k)) θij(k)

− K2(pi; k)

ni · n
δ(q2 −K2(pi; k))θi(k)− K2(pj ; k)

nj · n
δ(q2 −K2(pj ; k))θj(k)

)
, (4.43)

and colour conservation can now be used to obtain

ln Kab =
αs
2π

∑
i

(Tgi )
2

∫ b2

a2

dq2

q2

∫
d3k

2E

2

π (S · k)2

K2(pi; k)

ni · n
δ
(
q2 −K2(pi; k)

)
θi(k) . (4.44)

This factor contains the ordering variable in terms of a single emitter direction, which is

the limiting case of the dipole-type definition in each collinear limit, i.e. K2(pi, pj , k) →
K2(pi; k) as ni · n → 0. Given the Lorentz invariance of the virtual evolution and the

integration measure we can choose S = (1,~0).

In the case of energy ordering, we obtain the following for the subtracted soft evolution:

ln Wab

∣∣∣
energy

=
αs
π

∑
i<j

Tgi · T
g
j

∫ b

a

dE

E

∫
dΩ

4π

(
ni · nj − ni · n− nj · n

ni · n n · nj

)

=
αs
π

∑
i<j

Tgi · T
g
j

∫ b

a

dE

E
ln
ni · nj

2
(4.45)

where the angular integral can be performed using the same integral that gives rise to

angular ordering. And for the collinearly divergent factor:

ln Kab

∣∣∣
energy

=
αs
π

∑
i

(Tgi )
2

∫ b

a

dE

E

∫
dΩ

4π

2

ni · n
. (4.46)

There is no need for θij since this simply enforces that the emitted gluon should have energy

smaller than
√

1
2pi · pj in the ij zero momentum frame, which is automatically satisfied since

a < E < b.
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Now let us consider the case of transverse momentum ordering. This can be implemented

through

K2(pi, pj ; k) = (k
(ij)
⊥ )2 =

2 pi · k k · pj
pi · pj

, (4.47)

and

K2(p; k) ∼ 2p · k (4.48)

where the similarity sign refers to any function which approaches unity in the limit p·k → 0.

Making the minimal choice, the full evolution becomes

ln Vab

∣∣∣
kT

=
αs
π

∑
i<j

Tgi · T
g
j

∫ b

a

dk⊥
k⊥

∫
dz

1− z
dφ

2π
θij(k) (4.49)

and

ln Kab

∣∣∣
kT

=
αs
2π

∑
i

(Tgj )
2

∫ b

a

dk⊥
k⊥

∫ 1

α

dz

1− z + α

∫
dφ

2π

=
αs
2π

∑
i

(Tgj )
2

∫ b

a

dk⊥
k⊥

∫ 1−α

0

dz

1− z

∫
dφ

2π
(4.50)

where α = k2
⊥/(2S · pi)2. This is the same as the subtraction prescription we introduced

in the last section, with the only difference being that the lower limit on the z integral is

(approximately) equal to α in that case. Finally, using colour conservation we can compute

ln Vab − ln Kab and get

ln Wab

∣∣∣
kT

=
αs
π

∑
i<j

Tgi · T
g
j

∫ b

a

dk⊥
k⊥

∫
dy dφ

2π
(θij(k)− θi(k)) ,

=
αs
π

∑
i<j

Tgi · T
g
j

∫ b

a

dk⊥
k⊥

∫
dy dφ

2π
Fij(k) θij(k) ,

≈ αs
π

∑
i<j

Tgi · T
g
j

∫ b

a

dk⊥
k⊥

ln
ni · nj

2
, (4.51)

where the second line illustrates the equivalence with the subtraction scheme presented in

the previous section (recall we are ignoring recoil in this section). The approximately-equal-

to sign is because we neglect terms suppressed by powers of k2
⊥. As expected, this finite

term is the same as the energy ordering case in equation (4.45). The form factor exp(ln W)

captures all of the truly wide-angle soft-gluon physics and is essentially the same as the

fifth form factor introduced by Dokshitzer & Marchesini [43].
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4.3.4 A local recoil prescription

Next we will show how a more sophisticated recoil prescription (than (4.23) and (4.24))

can be implemented. The recoil we choose is based on the one in [44, 45], but extended to

work with colour off-diagonal evolution. The dipole recoil is itself based on Catani-Seymour

dipole factorisation and furthers the work in [46] so that recoil can be implemented in a

dipole parton shower. As a result, this recoil scheme shares similarities with the spectator

recoil prescriptions used in modern dipole showers such as Pythia and Dire [8, 11]. The

idea is not to present a definitive recoil prescription but rather to illustrate how one can be

implemented in our algorithm. To that end, we calculate Fij and Rcoll
ij . We also provide

a short discussion on the successes and limitations of the prescription. We then go on to

show that, at LL, the recoil prescription can be reduced to the naive recoil prescription

when implemented in variant B (but not variant A).

To keep things as simple as possible, we will consider the dipole recoil scheme in the

case of only coloured final-state partons. The extension to coloured initial-state partons is

straightforward and can be found by following Section 3.2 of [45]. First we will summarise

the dipole recoil for colour-diagonal evolution. It works by adding a spectator particle to

the standard description of a 1→ 2 collinear splitting (pj → p̃j , qi). This spectator particle

absorbs the recoil from the splitting, which would otherwise put pj off-shell. The spectator

particle has a second function: to specify the frame in which the transverse momentum of the

emission is computed. In [45] it was shown that one can obtain the correct colour-diagonal

evolution by choosing the parton that is colour connected to parton j as the spectator. We

will denote the momentum of the spectator parton by pjLR (the reason for the LR subscript

will become clear). The Sudakov decomposition is

p̃j = zipj − k⊥ +
(q

(jjLR)
⊥ )2

zi

pjLR

2pj · pjLR

, (q
(jjLR)
⊥ )2 = −k2

⊥,

qi = (1− zi)pj + k⊥ +
(q

(jjLR)
⊥ )2

1− zi
pjLR

2pj · pjLR

,

p̃jLR =

(
1− (q

(jjLR)
⊥ )2

zi(1− zi)
1

2pj · pjLR

)
pjLR , k⊥ · pj = k⊥ · pjLR = 0. (4.52)

This now defines a 2 → 3 splitting (pj , pjLR → qi, p̃j , p̃jLR) in which qi is emitted collinear

to pj . The prescription is momentum conserving, i.e.

pj + pjLR = qi + p̃j + p̃jLR

and it ensures that all particles are on-shell at each stage in the evolution. One can check

that this Sudakov decomposition does not change the functional form of the leading-order
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collinear splitting functions. Comparing to (4.19), we see that p and n are now fixed: p = pj

and n = pjLR . Working in the LC approximation, the effect of this prescription amounts to

a correction to the single-particle emission phase space [45], i.e.

dσ(qi, p̃j , p̃jLR) =
αs
2π

dσ(pj , pjLR)
dq

(jjLR)
⊥

q
(jjLR)
⊥

dzi Pυiυj (zi)
(

1− (q
(jjLR)
⊥ )2

zi(1− zi)
1

2pj · pjLR

)
.

(4.53)

This correction contributes soft-collinear NLLs and hard-collinear NNLLs [45].

The dipole recoil prescription was developed for a leading Nc shower and as such is

not completely sufficient for our purposes. That is because, beyond the LC approximation,

the left evolution (of the amplitude) and right evolution (of the conjugate amplitude) are

independent, which means they can evolve to produce colour off-diagonal terms. These are

terms for which the parton j is colour connected to different partons in the left and right

evolution. In such a case pjLR cannot be defined. Instead, we must introduce parton pjL ,

which is the colour connected parton to j in the left evolution, and parton pjR , which is

colour connected to j in the right evolution. We will now construct a recoil prescription

that extends the dipole recoil to include colour off-diagonal terms but collapses back to the

dipole recoil in the LC approximation.

To begin, we define a Sudakov decomposition for a 3 → 4 splitting (pj , pjL , pjR →
qi, p̃j , p̃jL , p̃jR). We aim to construct the decomposition so that recoil is shared equally

between pjL and pjR . We also wish to leave the collinear splitting functions unchanged.

Finally, we also require all partons involved to be on-shell. These constraints are fulfilled

by the decomposition:

p̃j = zipj − k⊥ +
(q

(j~n)
⊥ )2

zi

n

2pj · n
,

qi = (1− zi)pj + k⊥ +
(q

(j~n)
⊥ )2

1− zi
n

2pj · n
,

n = pjL + pjR(1− δjL,jR)−
√

2pjL · pjR
n̂2

n̂,

p̃jL = (1− γ) pjL + γ

√
pjL · pjR

2n̂2
n̂+ γl(1− δjL,jR),

p̃jR = (1− γ) pjR + γ

√
pjL · pjR

2n̂2
n̂− γl(1− δjL,jR),

(4.54)
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where

(q
(j~n)
⊥ )2 = −k2

⊥, 2q · p̃j =
(q

(j~n)
⊥ )2

zi(1− zi)
, n̂ · pjL = n̂ · pjR = 0,

γ =
(q

(j~n)
⊥ )2

zi(1− zi)
1

2pj · n
, k⊥ · pj = k⊥ · n = 0,

l2 =
pjL · pjR

2
, l ·

(
(1− γ)(pjL + pjR) + γ

√
pjL · pjR

2n̂2
n̂

)
= 0, (4.55)

where δjL,jR is the usual Kronecker delta symbol. Note that pj+pjL+pjR = qi+p̃j+p̃jL+p̃jR ,

and so momentum is conserved in the 3 → 4 splitting. Also note that when jL = jR =

jLR, i.e. the emission is colour-diagonal, this reduces to the dipole 2 → 3 scattering with

pj + pjLR = qi + p̃j + p̃jLR . Finally, note that every new term relative the dipole recoil

is accompanied by a factor γ, which is two orders higher than the leading terms in the

collinear limit and one order higher in the soft limit. Using this decomposition, the recoil

prescription for collinear emissions is

Rcoll ∗
ij Rcoll

ij = zi(Jij(zi, q(j~n)
i⊥ , pjL , pjR , l, n̂))2 δ4

(
p̃j − zipj + k⊥ −

(q
(j~n)
⊥ )2

zi

n

2pj · n

)

× δ4

(
p̃jL − (1− γ) pjL − γ

√
pjL · pjR

2n̂2
n̂− γl(1− δjL,jR)

)

× δ4

(
p̃jR − (1− γ) pjR − γ

√
pjL · pjR

2n̂2
n̂+ γl(1− δjL,jR)

) ∏
k 6=j,jL,jR

δ4(pk − p̃k),

(4.56)

where the Jacobian, Jij , can (in principle) be evaluated using

Jij =

∫ d4p′jLd4p′jRδ
4

p̃jL − (1− γ′) p′jL − γ′
√
p′
jL
· p′
jR

2n̂′2
n̂′ − γ′l(1− δjL,jR)


× δ4

p̃jR − (1− γ′) p′jR − γ′
√
p′
jL
· p′
jR

2n̂′2
n̂′ + γ′l(1− δjL,jR)

−1

+O
((

q
(j~n)
i⊥ /Q

)3
)
,

= 1 +O(γ) . (4.57)

One factor of ziJij ensures that the integral over the delta functions is correctly normalised

whilst the additional factor of Jij encodes the recoil corrections. This is the factor that was

absorbed into the phase-space in [45], i.e.

dσ(qi, p̃j , p̃jL , p̃jR) =
αs
2π

dσ(pj , pjL , pjR)
dq

(j~n)
i⊥

q
(j~n)
i⊥

dzi Pυiυj (zi)Jij . (4.58)
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We can extend this prescription to the soft sector using Catani-Seymour dipole factorisation

[46]. The dipole factorisation provides a unique way to split the parent dipole of a soft

emission into two halves, identifiable by their separate collinear poles:

p̃j′ · p̃j
(qi · p̃j′)(p̃j · qi)

=
p̃j′ · p̃j

qi · (p̃j′ + p̃j)p̃j · qi
+

p̃j′ · p̃j
p̃j′ · qi(p̃j′ + p̃j) · qi

.

This provides the means to implement a local recoil using the parton contributing to the

collinear pole in each half of the dipole. Thus we can write

Rsoft ∗
ij′ Rsoft

ij =
(q

(jj′)
i⊥ )2p̃j′ · p̃j

2qi · (p̃j′ + p̃j)(p̃j · qi)
Rcoll ∗
ij Rcoll

ij +
(q

(jj′)
i⊥ )2p̃j′ · p̃j

2(p̃j′ · qi)(p̃j′ + p̃j) · qi
Rcoll ∗
ij′ Rcoll

ij′ .

(4.59)

From this, Rsoft
ij and Rcoll

i can be evaluated:

Rsoft
jj′ (qi, {p}) =

(q
(jj′)
i⊥ )2pj′ · pj

2qi · (pj′ + pj)(pj · qi)
Jij + (j ↔ j′), Rcoll

j (qi, {p}) = Jij . (4.60)

We can now go ahead and determine the subtraction functions used to define variant B.

Using (4.37) and (4.38) we get

Fjj′(qi, {p}) = 1− dq
(j~n)
i⊥

dq
(jj′)
i⊥

q
(jj′)
i⊥ θj(qi)

q
(j~n)
i⊥ θjj′(qi)

Jij
Rsoft
jj′

. (4.61)

Before moving on we want to comment on the discussion in [17], which shows that the dipole

recoil scheme, as implemented in a dipole shower, fails at the level of the NLL even at LC

due to incorrectly assigning the longitudinal recoil after multiple emissions. It remains to

be seen whether this is also true in the scheme discussed here.

4.3.4.1 A LLΣ recoil prescription

We can now consider constructing a recoil prescription where we only keep the parts con-

tributing at LLΣ. Firstly note that in the strictly leading soft limit

Rcoll ∗
ij Rcoll

ij = Rsoft ∗
ij′ Rsoft

ij =
∏
k

δ4(pk − p̃k).

We can use this fact with variant B restricted to LLΣ accuracy and find

fjj′(qi, {p}, {p̃}) = Fjj′(qi, pj , pj′) = 1− dq
(j~n)
i⊥

dq
(jj′)
i⊥

q
(jj′)
i⊥ θj(qi)

q
(j~n)
i⊥ θjj′(qi)

. (4.62)

Using the naive recoil prescription,

Rcoll ∗
ij Rcoll

ij =
(
δ4(pj − z−1

i p̃j)δ
final
j + δ4(pj − zip̃j)δinitial

j

)∏
k 6=j

δ4(pk − p̃k),

Rsoft ∗
ij′ Rsoft

ij =
∏
k

δ4(pk − p̃k), Rsoft
ij = Rcoll

i = 1, (4.63)
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with (4.62), variant B fully captures the correct DGLAP evolution as longitudinal recoil

is now included in the soft-collinear region. This is not the case for variant A. We stress

that this observation is not a reflection of any fundamental difference between A and B

since, with a complete recoil prescription, A and B are equivalent. Indeed, we can use the

Catani-Seymour dipole factorisation [46], as previously discussed, to extend the naive recoil

prescription so that it does generate longitudinal recoil with variant A, i.e.

Rcoll ∗
ij Rcoll

ij =
(
δ4(pj − z−1

i p̃j)δ
final
j + δ4(pj − zip̃j)δinitial

j

)∏
k 6=j

δ4(pk − p̃k),

Rsoft ∗
ij′ Rsoft

ij =
(q

(jj′)
i⊥ )2p̃j′ · p̃j

2qi · (p̃j′ + p̃j)(p̃j · qi)
Rcoll ∗
ij Rcoll

ij +
(q

(jj′)
i⊥ )2p̃j′ · p̃j

2(p̃j′ · qi)(p̃j′ + p̃j) · qi
Rcoll ∗
ij′ Rcoll

ij′ .

(4.64)

With this, variant A also captures the correct DGLAP evolution.

4.3.5 A manifestly infra-red finite reformulation

It is possible to re-cast both variants of our algorithm such that the IR divergences, other

than those renormalised into parton distribution and fragmentation functions, explicitly

cancel at each iteration of the algorithm. We will demonstrate this for variant A, though

the procedure is pretty much identical for variant B. Our method closely follows that in

[27].

We begin by expressing a generalised measurement function in the soft and collinear

limits as follows

um(q1, ..., qm)
qj soft

= u(qj , {q1, ..., qj−1, qj+1, ..., qm})um−1(q1, ..., qj−1, qj+1, ..., qm), (4.65)

and

um(q1, ..., qm)
qj ||qi
= u(qj , {q1, ..., qi + qj , ..., qm})um−1(q1, ..., qi + qj , ..., qm), (4.66)

where u(qj , {q}) → 1 as j becomes exactly soft or collinear. For many observables, it is

possible to further pull apart the measurement function by defining an ‘out’ region, where

there is total inclusivity over radiation. For such observables we can write

u(qj , {q}) = Θout(qj) + Θin(qj)uin(qj , {q}), (4.67)

where Θin/out(qj) = 1 when qj is in the in/out region and zero otherwise. For a global
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observable, the out region has zero extent and so Θout(qj) = 0. First we define

Γ = Γu + Γu,

Γu =

∫
dS2

4π
(1− u(k, {q}))1

2D2
k +

∑
i<j

Tgi · T
g
j iπ δ̃ij , dS2 = dy dφ =

dz dφ

(1− z) ,

1
2D2

k =
∑
i<j

(−Tgi · T
g
j )(k

(ij)
⊥ )2 pi · pj

(pi · k)(pj · k)
θij(k)Rsoft

ij +
(1− z)

2

∑
i,υ

Tῡ 2
i P

◦
υυi θi(k)Rcoll

i ,

Va,b = Pexp

(
−αs
π

∫ b

a

dk⊥
k⊥

Γu

)
. (4.68)

After a simple path-ordered operator expansion,

Va,b =Va,b −
∫

dΠ1 u(k1, {q}) Va,k1⊥
1
2D2

1 Vk1⊥,b

+

∫
dΠ1dΠ2 Θ(k1⊥ − k2⊥)u(k1, {q})u(k2, {q}) Va,k2⊥

1
2D2

2 Vk2⊥,k1⊥
1
2D2

1 Vk1⊥,b − ...
(4.69)

the observable, Σ, can be expressed as

Σ(µ) =

∫ ∑
n

(
n∏
i=1

dΠi

)
Tr Bn(µ; {p}n) Φn(q1, ..., qn), (4.70)

where

Bn(q⊥; {p̃}n−1 ∪ qn)

= Vq⊥,qn⊥

[∫ ∏
i

d4pi δ
R
n DnBn−1(qn⊥; {p}n−1)D†n

−δVn
{

Bn−1(qn⊥; {p̃}n−1),
1

2
D2
n

}
u(qn, {p̃}n−1)

]
V
†
q⊥,qn⊥

Θ(qn⊥ − q⊥), (4.71)

with B0(q⊥) = Vq⊥,QH(Q)V
†
q⊥,Q

. We define δRn = 1 when parton n is real and δRn = 0 when

parton n is virtual, and similarly δVn = 1 − δRn . Φn(q1, ..., qn) is a measurement function

on the phase-space of real particles. We refer to [27] for its precise definition and here just

present an illustrative example:

(δR3 δ
V
2 δ

V
1 + δV3 δ

R
2 δ

R
1 + δR3 δ

V
2 δ

R
1 + δV3 δ

V
2 δ

V
1 )Φ3(q1, q2, q3)

= δR3 δ
V
2 δ

V
1 u1(q3) + δV3 δ

R
2 δ

R
1 u2(q1, q2) + δR3 δ

V
2 δ

R
1 u2(q1, q3) + δV3 δ

V
2 δ

V
1 . (4.72)

Written in this form, each Bn is explicitly infra-red finite provided the measurement

function is infra-red-collinear safe, and that the evolution is not convoluted with parton

distribution or fragmentation functions. In this case µ can be safely taken to zero. In the

case that the evolution is convoluted with parton distribution or fragmentation functions,
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collinear poles remain (one for each hadron). These poles are removed by renormalisation

of the parton distribution functions or fragmentation functions, generating their µ depen-

dence. Finally, note that for recursively-infra-red-safe continuously-global observables [9]

in e+e− collisions Bn = 0 for n ≥ 1 at single-log accuracy. If the observable depends on

fragmentation functions the n ≥ 1 contributions give rise to the DGLAP evolution of the

fragmentation functions (see Section 4.4).

4.4 Collinear factorisation

Up to this point we have been interleaving the emission of soft and collinear partons to

build up the complete amplitude. As is well known, it is possible to factorise the collinear

emissions into the evolution of parton distribution and fragmentation functions. In this

section, our aim is to explore collinear factorisation within the context of our algorithm.

The plan is as follows. First, we will derive the factorisation of collinear physics into

jet functions; one for each parton in the initial hard process. At first we do this ignoring

the presence of Coulomb exchanges. This result is sufficient to derive DGLAP evolution

(which we do in Section 4.5). After this, we go on to construct the complete factorisation of

collinear physics into jet functions on every hard or soft leg. Finally, we use a path-ordered

expansion of our Sudakov operators, Va,b, to re-insert Coulomb exchanges one-by-one into

the previous results. The result is that collinear evolution below the scale of the last

Coulomb exchange can be factorised. The outcome of which is the general factorisation of

collinear poles into parton distribution functions, as anticipated after the work of Collins,

Soper and Sterman [33].

We provide diagrammatic proofs where possible and only sketch in the text the algebra

that is going on behind the scenes. Throughout this section we leave aside the recoil

functions Rsoft, Rcoll, and the integrals corresponding to the momentum maps between

each iteration of the algorithm. This is to reduce the length of the algebra that remains,

and it is certainly valid to LLΣ accuracy since tracking longitudinal recoil is sufficiently

simple. We also drop the inclusion of measurement functions since they too have no affect

on the discussion. That said, in Sections 4.4.1.1 and 4.4.1.2, we present a summary of the

results with all of these functions re-instated (for both of variants A and B).

4.4.1 Factorisation on hard legs without Coulomb interactions

The main result of this subsection is the factorisation of collinear physics into jet functions;

one for each leg emerging from the hard scatter. We do this with Coulomb gluons removed

(δ̃ij = 0) and will discuss their re-introduction in Section 4.4.3. The following manipulations

can equally well be performed using either variant A or B of the algorithm. For concreteness
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B1
2

Col5 Col
†
5

H(Q)

Q

Q

Q

Q

Figure 4.3: Illustrating hard-leg factorisation. Red dashed lines represent the emission of
soft gluons and collinear emissions are represented by blue dotted lines. Circles indicate the
hard scale from which subsequent evolution proceeds. Loops (Sudakov factors) have been
neglected to avoid clutter.

〈M(Q)|

(a) A term contributing to the right
evolution (B3

6).

〈M(Q)|

(b) A term contributing to the right
evolution (Asoft

9 ).

Figure 4.4: The right evolution (the evolution of the conjugate amplitude) of a hard process
after 9 emissions. Red dashed lines represent the emission of soft gluons and collinear
emissions are represented by blue dotted lines. Loops (Sudakov factors) have been neglected
to avoid clutter.

we will use variant B whenever an operator needs to be given an explicit definition13. Let

us begin by simply stating the result:

Σ(µ) =

∫ ∑
n

(
n∏
i=1

dΠi

)
n∑

m=0

n−m∑
p=0

Tr
(
Col†m(µ) ◦Colm(µ) Bp

n−m−p(µ)
)
. (4.73)

Figure 4.3 illustrates what is going on diagrammatically (it shows a contribution with n = 8,

m = 5 and p = 1). The collinear evolution operators for hard legs, which provide an operator

description of a jet function, are constructed iteratively according to

Col0(q⊥) = Vcol
q⊥,Q

,

Colm(q⊥) = Vcol
q⊥,qm⊥

CmColm−1(qm⊥) Θ(q⊥ ≤ qm⊥), (4.74)

13In the case of variant A, for the most part, all that must be done is exchange Pij and Pυiυj with the

overlined versions Pij and Pυiυj .
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where

Vcol
a,b = exp

−αs
π

∑
j

∫ b

a

dk
(j~n)
⊥

k
(j~n)
⊥

∑
υ

Tῡ 2
j

∫
dz dφ

8π
P ◦υυj

 ,
Ci =

∑
j

q
(j~n)
i⊥

2
√
zi

∆ij Pij . (4.75)

In both operators j sums only over hard partons. The circle operation, ◦, indicates the

sharing of partons between Colm(µ) and Col†m(µ), i.e.

Colm(q⊥) ◦Col†m(q⊥) = Vcol
q⊥,qm⊥

Cm Colm−1(qm⊥) ◦Col†m−1(qm⊥) C
†
mVcol †

q⊥,qm⊥
. (4.76)

Bp
n−m−p(µ) are the scattering matrices evolved using the algorithm, modified so that all

collinear emissions from hard legs have been removed. Specifically,

Ãn−m(µ) =
n−1∑
p=0

Bp
n−p−m(µ), (4.77)

where Ãn−m(µ) is computed using (4.12) with the collinear evolution off hard legs removed,

i.e. with the replacements Di 7→ Di−Ci and Va,b 7→ Va,b(V
col
a,b)
−1. The number of collinear

emissions not off hard legs is indexed by p and n−p−m is the number of soft emissions (in

equation (4.73), m is the number of collinear emissions off hard legs). An example term,

contributing to B3
6(µ), is presented in Figure 4.4(a).

It may be helpful to contrast Bp
n(µ) with scattering matrices evolved using the FKS

algorithm [27]. We denote the FKS matrices as Asoft
n (µ) and they can be evaluated using

variant A with Pυiυj = 0; an example is shown in Figure 4.4(b). Note that B0
n(µ) 6= Asoft

n (µ)

for n ≥ 1 since B0
n(µ) still contains the collinear Sudakov factors ‘attached’ to soft partonic

legs. Also note that B0
0(µ) = Asoft

0 (µ) and Bi
0(µ) = 0 for all i > 0. In Section 4.4.2 we will

generalise the arguments presented here so that we can factorise collinear physics into jet

functions that multiply Asoft
n (µ). However, in this section we will not make any further use

of Asoft
n (µ).

Equation (4.73) can be written more simply by combining the collinear evolution oper-

ators (which are proportional to unit operators in colour space) into a single cross-section

level jet function, Col†m(µ) ◦ Colm(µ) = 1 ⊗ Colm(µ). Doing this enables (4.73) to be

written as

Σ(µ)|un=1 =

∫ ∑
n

(
n∏
i=1

dΠi

)
n∑

m=0

n−m∑
p=0

Trs
(
Colm(µ) Trc Bp

n−m−p(µ)
)
, (4.78)

where the traces are over colour, c, and helicity, s. However, we avoid working with collinear

factorisation in this form because it does not apply when Coulomb exchanges are present.
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Having stated the result, let us now proceed to show how it is derived. The following

commutation relations are important:[
Di −Ci,Cj

]
' 0,

[
Va,b(V

col
a,b)
−1,Cj

]
' 0,[

Va,b(V
col
a,b)
−1,Vcol

c,d

]
' 0,

[
Di −Ci,V

col
a,b

]
' 0. (4.79)

Here ' denotes equality when the operator acts on a matrix element, which is all we ever

encounter.

[Va,b(V
col
a,b)
−1,Vcol

c,d] ' 0 and [Di−Ci,V
col
a,b] ' 0 are trivial to show as Vcol

a,b is proportional

to the identity in colour-helicity space. Diagrammatically, proving

[Va,b(V
col
a,b)
−1,Vcol

c,d] ' 0

reduces to showing

|M〉〈M| = |M〉〈M| , (4.80)

and [Di −Ci,V
col
a,b] ' 0 to showing

|M〉〈M| i = |M〉〈M|
i

. (4.81)

As ever, a red dashed line is used to represent a soft parton and a blue dotted line represents

a collinear parton. The black dashed line indicates a cut (cut lines are on shell).

[Va,b(V
col
a,b)
−1,Cj ] ' 0 and [Di − Ci,Cj ] ' 0 can be shown by factorising kinematic

factors from the colour and helicity operators, then carefully tracking the action of the

colour operators so that colour conservation can be applied. Proving the commutators also

requires noting that both soft real emissions and soft Sudakov factors are identity operators

in helicity space, and that helicity states are orthogonal. [Va,b(V
col
a,b)
−1,Cj ] ' 0 presents

the biggest challenge. The derivation follows closely the discussion in [13]. It is most easily

illustrated by expressing the operators diagrammatically. Doing so reduces the problem to
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showing

〈M| |M〉
j

+ 〈M| |M〉
j

+ 〈M| |M〉
j

= 〈M| |M〉
j

. (4.82)

Also note that

[Va,b(V
col
a,b)
−1,Cj ] ' 0

implies [Di −Ci,Cj ] ' 0 since

〈M| |M〉
i

j
+ 〈M| |M〉

i

j

= 〈M| |M〉i
j

, (4.83)

which trivially follows from (4.82). Using these commutation relations, reconstructing the

separate strong orderings of collinear and soft physics in (4.73) is simply a case of careful

combinatorics and relabelling of momenta. For instance 〈M| |M〉
i

j
+ 〈M| |M〉

i

j

Θ(qj⊥ − qi⊥)Θ(qi⊥ − µ)Θ(Q− qj⊥)

+ 〈M| |M〉i
j

Θ(qi⊥ − qj⊥)Θ(qj⊥ − µ)Θ(Q− qi⊥)

= 〈M| |M〉i
j

Θ(qi⊥ − µ)Θ(Q− qi⊥)Θ(qj⊥ − µ)Θ(Q− qj⊥). (4.84)

For the sake of completeness, in the next section we will go ahead and put back Rsoft,

Rcoll, and the measurement functions. However, we have only proven correctness at LLΣ

accuracy. As such, Sections 4.4.1.1 and 4.4.1.2 are conjectures. It might be the case that

only certain classes of recoil prescription factorise in this way. We will focus on variant A in
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Section 4.4.1.1 and turn to variant B in Section 4.4.1.2, where we show how to re-instate the

plus prescription in the collinear splitting functions. We caution that both these versions of

the algorithm will not produce super-leading logarithms because Coulomb interactions have

been neglected. Therefore they are only suitable for processes with fewer than two coloured

particles in either the initial or final state of the hard process, i.e. e+e−, deep-inelastic

scattering and Drell-Yan.

4.4.1.1 The details

Now we summarise the results of the previous section and make a conjecture regarding the

inclusion of recoils (recall we left these out of the discussions in the previous section). For

concreteness we use variant A. The evolution has two phases. In the first phase soft gluons

are emitted:

σ(0, 0) = Ṽµ,QH(Q; {p})Ṽ†µ,Q = Ã0(µ; {p}),

dσ(1, 0) =

∫ ∏
i

d4piṼµ,q1⊥D̃1Ã0(q1⊥; {p})D̃†1Ṽ†µ,q1⊥dΠ1

= Ã1(µ; {p}1)dΠ1 ≡ B0
1(µ; {p}1)dΠ1,

dσ(2, 0) =

∫ ∏
i

d4piṼµ,q2⊥D̃2Ã1(q2⊥; {p})D̃†2Ṽ†µ,q2⊥dΠ1dΠ2

= Ã2(µ; {p}2)dΠ1dΠ2 ≡
(
B0

2(µ) + B1
1(µ)

)
dΠ1dΠ2,

dσ(n, 0) = Ãn(µ; {p}n)
n∏
i=1

dΠi ≡
n∑
p=0

Bp
n−p(µ)

n∏
i=1

dΠi, (4.85)

where D̃i = Di −Ci and

Ci =
∑
l

q
(l~n)
i⊥

2
√
zi

∆il PilR
coll
ij ({p}, {p̃}, qi), (4.86)

where l sums only over hard partons. And Ṽa,b = Va,b(Va,b)
−1 and

Va,b = exp

[
−αs
π

∑
l

∫ b

a

dk
(l~n)
⊥

k
(l~n)
⊥

∑
υ

Tῡ 2
l̄

∫
dz dφ

8π
P ◦υυl R

coll
l

]
. (4.87)

Again, the sum over l only includes hard partons. In dσ(n,m), n indicates the number

of soft emissions, which occur during the first phase of the evolution, and m indicates the

number of collinear emissions, which occur during the second phase of the evolution.
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The second phase of the evolution dresses the hard legs with collinear emissions:

dσ(n, 0) = Tr
(
Vµ,Q dσ(n, 0) V

†
µ,Q

)
= Tr (Ãn

n+0(µ; {p}n))

≡
n∑
p=0

Tr(Col†0(µ) ◦Col0(µ) Bp
n−p(µ)),

dσ(n, 1) =

∫ ∏
i

d4pi Tr
(
Vµ,qn+1⊥Cn+1Vqn+1⊥,Q dσ(n, 0)

×V
†
qn+1⊥,Q

C
†
n+1V

†
µ,qn+1⊥

)
dΠn+1 = Tr (Ãn

n+1(µ; {p}n+1))dΠn+1

≡
n∑
p=0

Tr(Col†1(µ) ◦Col1(µ) Bp
n−p(µ))dΠn+1,

dσ(n,m) = Tr (Ãn
n+m(µ; {p}n+m))

m∏
i=1

dΠn+i

≡
n∑
p=0

Tr(Col†m(µ) ◦Colm(µ) Bp
n−p(µ))

m∏
i=1

dΠn+i, (4.88)

where Ãn
n+m obeys the recurrence relation

Ãn
n+m(q⊥; {p̃}n+m−1 ∪ qn+m) =

∫ ∏
i

d4piVq⊥,qn+m⊥Cn+mÃn
n+m−1(qn+m⊥; {p}n+m−1)

×C
†
n+mV

†
q⊥,qn+m⊥

Θ(q⊥ ≤ qn+m⊥).

An observable can be calculated using

Σ(µ) =
∑
n

∫
dσn un(q1, ..., qn), (4.89)

where dσn =
∑n

m=0 dσ(n−m,m).

4.4.1.2 Recovering the ‘plus prescription’

Now let us turn to variant B. Recall that, in this variant of the algorithm collinear evolution

proceeds using the full DGLAP splitting functions. Things are precisely as in the last

subsection except that we now use the splitting operators without overlines (Pil) and the

functions f and F are to be included in the soft terms. We can go a little further and expand

out the Sudakov factors in order to recover the familiar DGLAP plus prescription. To that

end, we expand the collinear Sudakov factors (V) that appear in the second phase of the

evolution:

Va,b =1−
∫ b

a

dk1⊥
k1⊥

Γ1 +

∫ b

a

dk2⊥
k2⊥

Γ1

∫ b

k1

dk2⊥
k2⊥

Γ2 − ... (4.90)
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where

Γi =
αs
π

∑
l

∑
υ

Tῡ 2
l̄

∫
dzi dφi

8π
P ◦υυl R

coll
l . (4.91)

Once again, the sum over l is only over hard partons. Using this, we can regroup terms in

the same way as Section 4.3.5 to generate the plus prescription:

dσ(n, 0) = Tr (dσ(n, 0)) = Tr Ãn
n+0,

dσ(n, 1) =

∫ ∏
i

d4pi Tr
(
Dn+1dσ(n, 0) D

†
n+1

)
dΠn+1

= Tr Ãn
n+1(µ; {p}n+1)dΠn+1,

dσ(n,m) = Tr Ãn
n+m(µ; {p}n+m)

m∏
i=1

dΠn+i

≡
n∑
p=0

Tr
([

Col†m(µ) ◦Colm(µ) +O(αm+1
s )

]
Bp
n−p(µ)

) m∏
i=1

dΠn+i, (4.92)

where

Ãn
n+m(q⊥; {p̃}n+m−1 ∪ qn+m) = Dn+mÃn

n+m−1(qn+m⊥; {p}n+m−1)D
†
n+mΘ(q⊥ ≤ qn+m⊥),

using the boundary condition that

Ãn
n+1(q⊥) = Dn+1Ã

n
n+0D

†
n+1Θ(q⊥ ≤ qn+1⊥)Θ(qn+1⊥ ≤ Q), (4.93)

and

Di =
∑
l̄

q
(l̄~n)
i⊥
2

∆il̄ P
+
il̄
Rcoll
ij ({p}, {p̃}, qi). (4.94)

The sum over l̄ only includes hard partons. Pil has been redefined to include the plus

prescription and labelled P+
il̄

. The plus prescription is defined in Appendix 4.7. Observables

are computed using (4.89).

4.4.2 Complete collinear factorisation without Coulomb interactions

Now we are going to go ahead and factorise the collinear physics completely. Once again, the

manipulations are essentially the same for either variant of our algorithm. To be concrete,

we will use variant B whenever an exact definition must be given. As before, we will begin

by stating the final result:

Σ(µ) =

∫ ∑
n

(
n∏
i=1

dΠi

)
n∑

m=0

Tr
(
tCol†m(µ) ◦ tColm(µ)Asoft

n−m(µ)
)
, (4.95)
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where have we defined the following operators:

tCol0(q⊥) = Vtcol
q⊥,Q

,

tColm(q⊥) = Vtcol
q⊥,qm⊥

C̃m tColm−1(qm⊥) Θ(q⊥ ≤ qm⊥),

Vtcol
a,b = exp

−αs
π

∑
j

∫ b

a

dk
(j~n)
⊥

k
(j~n)
⊥

Θ(q
(j~n)
i⊥ ≤ pj⊥)

∑
υ

Tῡ 2
j

∫
dz dφ

8π
P ◦υυj

 ,
C̃i =

∑
j

q
(j~n)
i⊥

2
√
zi

∆ij Pij Θ(q
(j~n)
i⊥ ≤ pj⊥), (4.96)

and the index j runs over all partons (hard, collinear and soft). We continue to leave aside

the functions Rsoft, Rcoll, from emission operators and Sudakov factors. These can readily

be re-instated as in Sections 4.4.1.1 and 4.4.1.2. Asoft
n (µ) is as defined in Section 4.4.1

and evolves the same as An(µ) except that Ci 7→ 0 and Va,b 7→ Va,b(V
tcol
a,b )−1 ≡ Vsoft

a,b ,

i.e. it corresponds to summing over diagrams such as the one in Figure 4.4(b). Ignoring

the effects of recoil (and Coulomb exchanges) and using variant A, Asoft
n (µ) corresponds

to FKS evolution [27]. One of the possible contributions to tCol†4 is represented in Figure

4.5. In the figure, we have sacrificed the intuitive picture of a parton cascade in lieu of

providing more detail on the evolution. To construct Figure 4.5, we have employed the

Casimir structure of Vtcol
a,b to split it apart as

Vtcol
a,b =

∏
j

Uj
a,b

where

Uj
a,b = exp

[
−αs
π

∫ b

a

dk
(j~n)
⊥

k
(j~n)
⊥

Θ(q
(j~n)
i⊥ ≤ pj⊥)

∑
υ

Tῡ 2
j

∫
dz dφ

8π
P ◦υυj

]
, (4.97)

and the product over j is over all partons. In the figures we will be explicit with the

labelling so that it is clear whether Uj
a,b is associated with a hard parton (labelled by Q), a

soft parton or a collinear parton, i.e. j ∈ {Q, 1soft, 2soft, ..., (n −m)soft, 1coll, 2coll, ...,mcoll}.
Something more in the style of our previous diagrams is illustrated in Figure 4.6.

We will now prove (4.95) by induction. First, we assume that

Tr An(µ) =
n∑

m=0

Tr
(
tCol†m(µ) ◦ tColm(µ)Asoft

n−m(µ)
)
, (4.98)

where An is computed as usual from (4.12). We can see that this is true for n = 1 by
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UQ †
q1⊥,Q

U1coll †
µ,q1⊥

UQ †
q3⊥,q1⊥

U1soft †
q2⊥,p1⊥

U2soft †
q4⊥,p2⊥

U2coll †
µ,q2⊥

U1soft †
µ,q2⊥

U2soft †
µ,q4⊥

U4coll †
µ,q4⊥

UQ †
µ,q3⊥

p2⊥

p1⊥

Q q1⊥
q3⊥

q4⊥

q2⊥

U3coll †
µ,q3⊥

Figure 4.5: One of the possible contributions to tCol†4. Red dashed lines represent soft
gluons and blue dotted lines represent collinear partons. Each line is associated with a
Sudakov factor and circles indicate the scale from which the subsequent evolution proceeds.
Circles from which two lines leave indicate the action of the operator C̃. Circles from which
one line leaves indicate the scales inherited from the soft evolution phase (not shown).
Collinear scales {qi⊥} are ordered with respect to each other, as are soft scales {pi⊥}.
Scales connected along lines are also ordered, with the largest to the left and smallest to
the right.

expanding out the tCol operators and Asoft:

1∑
m=0

Tr
(
tCol†m(µ) ◦ tColm(µ)Asoft

n−m(µ)
)

= Tr
(
Vtcol
µ,q1⊥

C̃1V
tcol
q1⊥,Q

Vsoft
µ,QH(Q)Vsoft †

µ,Q Vtcol †
q1⊥,Q

C̃†1V
tcol †
µ,q1⊥

+Vtcol
µ,QVsoft

µ,q1⊥
S1V

soft
q1⊥,Q

H(Q)Vsoft †
q1⊥,Q

S†1V
soft †
µ,q1⊥

Vtcol †
µ,Q

)
= Tr

(
Vsoft
µ,q1⊥

Vtcol
µ,q1⊥

C1V
tcol
q1⊥,Q

Vsoft
q1⊥,Q

H(Q)Vsoft †
µ,Q Vtcol †

q1⊥,Q
C†1V

tcol †
µ,q1⊥

+U1
µ,q1⊥

Vcol
µ,q1⊥

Vsoft
µ,q1⊥

S1V
col
q1⊥,Q

Vsoft
q1⊥,Q

H(Q)Vsoft †
q1⊥,Q

S†1V
soft †
µ,q1⊥

Vtcol †
µ,Q

)
= Tr

(
Vµ,q1⊥D1Vq1⊥,QH(Q)V†q1⊥,QD†1V

†
µ,q1⊥

)
, (4.99)

where we have used C̃1 ≡ C1 ≡ C1 as it only acts on hard legs. We have also used the

commutators [Va,b(V
col
a,b)
−1,Vcol

c,d] ' 0 and [Va,b(V
col
a,b)
−1,Cj ] ' 0, derived in the previous

section, and Vc,a = Vc,bVb,a. Notice in the above expressions the theta functions present

in C̃1 and Vtcol
q1⊥,Q

are always unity on hard legs as the ordering guarantees their argument

is satisfied. We will now show that if (4.98) is true for An, it is also true for An+1.

We begin by noting that from the Markovian way our algorithm evolves, we can write

An+1 ≡ Ân(µ, q1⊥) where Ân(µ, q1⊥) is computed using our algorithm (as described in

(4.12)) however with the evolution initiated by Ĥ(q1⊥) = D1Vq1⊥,QH(Q)V†q1⊥,QD†1 and
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Soft evolution Collinear evolution (tCol†8)scale

〈Q|

Q

Q

p1⊥

p2⊥

1

2

3 p3⊥

Figure 4.6: A diagram illustrating factorised parton evolution. Red dashed lines represent
the emission of soft gluons and blue dotted lines represent collinear emissions. Circles
represent the hard scale from which the subsequent evolution proceeds. Loops (Sudakov
factors) have not been drawn.

with the parton momentum indexed as 2, 3, 4, ... . From this we can use (4.98) to write

Tr An+1(µ) = Tr Ân(µ, q1⊥) =
n∑

m=0

Tr
(

ˆtCol
†
m(µ, q1⊥) ◦ ˆtColm(µ, q1⊥)Âsoft

n−m(µ, q1⊥)
)
,

(4.100)

where Âsoft
n−m(µ, q1⊥) are generated by the same algorithm as Asoft

n−m(µ) however using

Ĥ(q1⊥) as the initial condition. ˆtColm(µ, q1⊥) are generated using the iterative relation in

(4.96) but with an initial condition ˆtCol0(q⊥, q1⊥) = Vtcol
q⊥,q1⊥

. Next we split apart Ĥ(q1⊥)

as

Ĥ(q1⊥) =S1V
tcol
q1⊥,Q

Vsoft
q1⊥,Q

H(Q)Vsoft †
q1⊥,Q

Vtcol †
q1⊥,Q

S†1

+ C̃1V
tcol
q1⊥,Q

Vsoft
q1⊥,Q

H(Q)Vsoft †
q1⊥,Q

Vtcol †
q1⊥,Q

C̃†1. (4.101)

Using the commutation relations from Section 4.4.1, we can move the collinear operators in

Ĥ(q1⊥) past the soft operators which construct Âsoft
n−m(µ, q1⊥) to arrive at

Tr An+1(µ) =

n∑
m=0

Tr
(
Vtcol †
q1⊥,Q

ˆtCol
†
m(µ, q1⊥) ◦ ˆtColm(µ, q1⊥)Vtcol

q1⊥,Q
Asoft
n+1−m(µ,Q)

)
+

n∑
m=0

Tr
(
Vtcol †
q1⊥,Q

C̃†1
ˆtCol
†
m(µ, q1⊥) ◦ ˆtColm(µ, q1⊥)C̃1V

tcol
q1⊥,Q

Asoft
n−m(µ,Q)

)
. (4.102)

We can now combine the collinear operators using

ˆtColm(µ, q1⊥)C̃1V
tcol
q1⊥,Q

= tColm+1(µ)θ(qcoll
1⊥ > qsoft

1⊥ )
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and

ˆtColm(µ, q1⊥)Vtcol
q1⊥,Q

= tColm(µ)θ(qcoll
1⊥ < qsoft

1⊥ ),

where in the second equality we need to relabel the momenta of collinear partons again so

that they are indexed as 1, 2, 3, ... . We have denoted the momentum of the hardest collinear

emission generated by the collinear operators, tCol, as qcoll
1 and the hardest soft momentum

in Asoft
n−m(µ,Q) as qsoft

1 . Combining the two sums and theta functions, we arrive at

Tr An+1(µ) =
n+1∑
m=0

Tr
(
tCol†m(µ) ◦ tColm(µ)Asoft

n+1−m(µ)
)
. (4.103)

Thus we have proven that (4.95) holds for n → n + 1. It is important to note the role of

the theta functions in the definitions of C̃i and Vtcol
a,b . These ensure that the commutation

relations from Section 4.4.1 can always applied. They do this by squeezing to zero the phase

space of any collinear partons generated by C̃1 and Vtcol
q1⊥,Q

from not-hard legs. To illustrate

this point, we will consider the relevant Feynman diagrams: 〈M| |M〉
i

j
+ 〈M| |M〉

i

j

Θ(qj⊥ − qi⊥)Θ(qi⊥ − µ)Θ(Q− qj⊥)

+

 〈M| |M〉i
j

+ 〈M| |M〉i
j

Θ(qi⊥ − qj⊥)Θ(qj⊥ − µ)Θ(Q− qi⊥)

= 〈M| |M〉i
j

Θ(qi⊥ − µ)Θ(Q− qi⊥)Θ(qj⊥ − µ)Θ(Q− qj⊥)

+ 〈M| |M〉i
j

Θ(qi⊥ − qj⊥)Θ(qj⊥ − µ)Θ(Q− qi⊥). (4.104)

Note that the last term on either side of the equation cannot be manipulated using our

commutators and there are no more diagrams we could include which they may cancel

against. Nevertheless terms of this form are generated by our algorithm. They represent

a collinear parton, emitted from a soft parton, restricted so that its transverse momentum

is smaller than the transverse momentum of the soft parton. Using C̃i, equation (4.104)

reduces to

〈M|D†1D†2D2D1 |M〉Θ(q1⊥ − q2⊥)Θ(q2⊥ − µ)Θ(Q− q1⊥)

= 〈M|S†1C̃†2C̃2S1 |M〉Θ(Q > q1⊥ > µ)Θ(Q > q2⊥ > µ). (4.105)
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4.4.3 Partial collinear factorisation with Coulomb interactions

Soft

evolution

fromQ to k1⊥

UQ †
q1⊥,Q

U1coll †
µ,q1⊥

UQ †
q3⊥,q1⊥

U1soft †
q2⊥,p1⊥

q1⊥

UQ †
k1⊥,q3⊥

U2coll †
k1⊥,q2⊥

U1soft †
k1⊥,q2⊥

q3⊥

k1⊥

Q

p1⊥ q2⊥

U3coll †
k1⊥,q3⊥

k1⊥

Soft

evolution

from k1⊥

to k2⊥

q4⊥

p2⊥

p3⊥
k2⊥

Figure 4.7: A diagram illustrating factorised parton evolution including Coulomb exchanges.
Red dashed lines represent soft gluons and blue dotted lines represent collinear partons.
Each line is associated with a Sudakov factor. Circles represent the scale from which the
subsequent evolution proceeds. Circles from which two lines leave represent the action
of the operator C̃. Circles from which one line leaves contain the scale information from
the preceeding soft evolution. Coulomb exchanges are indicated by vertical zig-zag lines.
Momenta are ordered from ‘left to right’, as in Figure 4.5, including Coulomb exchanges.
(The top half of the diagram lies to the ‘left’ of the bottom half.)

Though it is not possible to use the identities in (4.79) to factorise collinear physics past a

Coulomb exchange (iπ term), it is possible to perform a partial factorisation. Our approach

is to expand each Sudakov operator as a series in the number of Coulomb exchanges it

resums. Consequently, this enables An to be expanded as a series in the number of Coulomb

exchanges. We can then factorise soft physics from collinear physics either side of a Coulomb

exchange, using our work in the previous section. The partial factorisation is illustrated in
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Figure 4.7. We begin by expanding the Sudakov operator:

Va,b =V̂a,b −
αs
π

∑
i1<j1

∫ b

a

dk
(i1j1)
1⊥

k
(i1j1)
1⊥

V̂a,k1⊥(Tgi1 · T
g
j1

) iπ δ̃i1j1V̂k1⊥,b

+
(αs
π

)2 ∑
i2<j2

∫ b

a

dk
(i1j1)
1⊥

k
(i1j1)
1⊥

∑
i1<j1

∫ k
(i1j1)
1⊥

a

dk
(i2j2)
2⊥

k
(i2j2)
2⊥

V̂a,k2⊥(Tgi2 · T
g
j2

) iπ δ̃i2j2

× V̂k2⊥,k1⊥(Tgi1 · T
g
j1

) iπδ̃i1j1V̂k1⊥,b − ..., (4.106)

where V̂a,b is equal to Va,b with δ̃ij = 0. Consider using this expanded Sudakov in a parton

cascade. The theta functions describing the integral limits on each iπ term can be used to

constrain the limits on the transverse momenta of subsequent emissions (after the iπ). For

instance

D3Vq3⊥,q2⊥D2Vq2⊥,q1⊥D1

= ... + D3

∫ q2⊥

q3⊥

dk2⊥
k2⊥

V̂q3⊥,k2⊥

∑
i2<j2

(Tgi2 · T
g
j2

) iπ V̂k2⊥,q2⊥

×D2

∫ q1⊥

q2⊥

dk1⊥
k1⊥

V̂q2⊥,k1⊥

∑
i1<j1

(Tgi1 · T
g
j1

) iπ V̂k1⊥,q1⊥D1 + ... ,

≡ ... + D3

∫ Q

µ

dk2⊥
k2⊥

V̂q3⊥,k2⊥

∑
i2<j2

(Tgi2 · T
g
j2

) iπ V̂k2⊥,q2⊥

×D2

∫ Q

µ

dk1⊥
k1⊥

V̂q2⊥,k1⊥

∑
i1<j1

(Tgi1 · T
g
j1

) iπ V̂k1⊥,q1⊥D1

×Θ(k2⊥ > q3⊥)Θ(k1⊥ > q2⊥ > k1⊥)Θ(q1⊥ > k1⊥) + .... . (4.107)

Therefore, we can treat each Coulomb scale as hard relative to the emissions that follow it

and soft relative to the emission before it. Thus we can perform a factorised evolution on

a hard process up to the scale of the first iπ term (k1⊥). We can take the output from this

evolution,

∑
n

An(k1⊥) =− αs
π

∑
i2<j2

dk
(i1j1)
1⊥

k
(i1j1)
1⊥

iπδ̃i1j1
∑
n

n∑
m=0

× Tr

Asoft
n−m(k1⊥)

∑
i1<j1

Col†m(k1⊥) ◦ (Tgi1 · T
g
j1

)Colm(k1⊥)

 , (4.108)

and use it as a new hard process H(k1⊥) from which a second factorised evolution can be

initiated. This process can be iterated for each iπ term in the expansion, as illustrated in

Figure 4.7. To complete the computation of Σ, each ki⊥ must be integrated over the range

[µ,Q]. Interestingly, note that any term in the evolution terminating on a iπ term to the
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left of the hard process will cancel against an equivalent term terminating with an iπ term

to the right. Hence collinear emissions can always be factorized below the scale of the last

Coulomb exchange. This is consistent with the collinear factorisation shown by Collins,

Soper and Sterman [32, 33].

4.4.4 Observations on factorisation

Before we leave our discussion on factorisation a few comments are in order. Firstly, we

have not been able to achieve factorisation of collinear emissions past Coulomb exchanges.

This is to be expected and there is already extensive literature exploring this subject [13,

15, 16, 33, 47–51]. That said, it should be possible to factorise more completely than we

have done, by re-expressing the evolution so that all Coulomb terms are only attached to

the initial state partons [16], i.e. so we would have complete factorisation on all final state

legs.

Secondly, in order to factorise the collinear physics on all legs we had to keep track

of intermediate soft scales, from which to initialise the collinear evolution. The number

of scales required is equal to the number of soft emissions that occurred prior to factori-

sation. This means the fully factorised algorithm is no-longer Markovian. We anticipate

that our attempts to factorise the collinear physics should bring us in to contact with exact

resummations and soft-collinear effective theory (SCET).

It also should be noted that by factorising collinear emissions from the soft evolution,

the soft evolution can be explicitly seen to be independent of spin. This is less evident in

the interleaved variants of the algorithm. Soft gluons, and subsequent collinear partons,

trapped between Coulomb exchanges might conceivably contribute non-trivial spin correla-

tions. This is because, despite equal probabilities for the probability of emission of positive

and negative helicity gluons, a collinear emission originating from a soft gluon may depend

on its helicity (specifically g → qq splitting). This has also been explored in the literature,

where it has been noted that soft gluons in the presence of Coulomb/Glauber exchanges can

generate spin asymmetries [50]. Further discussions on the spin evolution of the algorithm

after factorisation can be found in Appendix 4.8.

It is also interesting to consider the consequences of factorisation in the case of vari-

ant B with a universal recoil. A universal recoil allows B to be partitioned in terms of

colour-diagonal evolution generated by Ci and colour off-diagonal evolution generated by

Si. Hence, provided the recoil prescription does not change the commutators in (4.79), the

proofs of collinear factorisation we have presented become proofs of the complete factorisa-

tion of colour-diagonal physics from colour off-diagonal. This is for observables insensitive

to the presence of Coulomb exchanges. Since we know that Coulomb exchanges can be
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factorised onto the initial state [16], this means that there is a complete factorisation of

colour-diagonal from colour off-diagonal physics in lepton-lepton, deep-inelastic and Drell-

Yan scattering.

Finally, we should remark that it is possible to write down infra-red finite versions of

each of the factorised versions of our algorithm, using the procedure in Section 4.3.5.

4.5 Phenomenology and resummations

In this section we will first demonstrate how DGLAP evolution emerges. After that, we

illustrate the use of the algorithm by calculating thrust at LLΣ accuracy, the hemisphere

jet mass and gaps-between-jets in e+e− at LLΣ with the leading non-global logarithms.

4.5.1 DGLAP evolution

We will now show how our algorithm can be used to generate DGLAP evolution, which

resums the collinear physics into the running of parton distribution functions. We focus

on unpolarised incoming hadrons that collide and produce some high-pT system of interest.

We will neglect threshold effects as sub-leading, which is shown carefully in [52–54]. The

methods employed in this section can readily be extended to other processes, including

those dependent on fragmentation functions.

DGLAP evolution [36, 38] states that

µ
∂fi(x, µ)

∂µ
=
αs
π

∑
j

∫ 1

x

dz

z
Pij(z) fj(x/z, µ), (4.109)

where fi(x, µ) is the parton distribution function for partons of type i. Pij(z) are the

regularised splitting functions defined at the end of Appendix 4.7. Iterative solutions can

be found by expanding the parton distributions:

fi(x,Q) = f
(0)
i (x) +

∞∑
n=1

(αs
π

)n
f

(n)
i (x,Q), (4.110)

where f
(n)
i (x, µ) = 0 for all n ≥ 1. This gives

f
(n+1)
i (x, qm−1⊥) =

∫ qm−1⊥

µ

dqm⊥
qm⊥

∑
j

∫ 1

x

dzm
zm

Pij(zm)f
(n)
j (x/zm, qm⊥), (4.111)

which has a separable solution of the form f
(n)
i (x,Q) = f

(n)
i (x) 1

n! lnn(Q/µ), where f
(n)
i (x)

satisfies

f
(n+1)
i (x) =

∑
j

∫ 1

x

dzm
zm

Pij(zm)f
(n)
j (x/zm). (4.112)
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{f (0)a f
(0)
b }⋆

= {f (1)a (xa)f
(1)
b (xb)}⋆

a

b

a

b

+2 + 2 + 4

a a

b b

a

b

xb

xa

a

b

xa

xb

= {f (0)a (xa/z)f
(1)
b (xb)}⋆ +2 {f (0)a (xa)f

(1)
b (xb)}⋆

a

b

xa/z xa

1− z

xb

Figure 4.8: How DGLAP and fragmentation evolution can be constructed from the αs
expansion of our algorithm. The vertical dashed lines here correspond to a cut on all
external legs (incoming and outgoing) and the grey blobs represent the hard process, i.e.
the amplitude evolves from the right grey blob to the vertical dashed line and the conjugate
amplitude evolves from the left grey blob to the vertical dashed line. Solid lines indicate
hard partons and blue lines collinear partons.

We can write this in terms of the unregularised splitting functions (e.g. see [38])

f
(n+1)
i (x) =

∑
j

∫ 1

0

dzm
zm

(
Pij(zm)f

(n)
j (x/zm)− z2

mPji(zm)f
(n)
i (x)

)
, (4.113)

where f
(n)
j (x) = 0 for x > 1 and we have removed factors of nf from Pqg.

For hadron-hadron collisions, we label the two incoming partons as a and b and their

momentum fractions in the hard process as xa and xb. We can take the factorised expression

corresponding to variant B of our algorithm (4.73) and attach parton distribution functions:

Σ =

∫ ∑
n

(
n∏
i=1

dΠi

)
n∑

m=0

n−m∑
p=0

∫
dxadxb Tr

(
Col†m(µ) ◦Colm(µ)

×Bp
n−m−p(µ)

)
?
{
f (0)
a (xam)f

(0)
b (xbm)

}
.

(4.114)

xam and xbm are the momentum fractions of partons a and b respectively after m collinear

emissions generated by Col†m(µ) ◦ Colm(µ); they can be related back to xa and xb by

momentum conservation along the collinear cascade. The ? operator acts to attach parton

distributions of the correct flavour/species to partons a and b. There is a technicality

relating to parton flavour. That is because DGLAP evolution cares about quark flavour
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whilst we have defined the splitting operators to sum over quark flavours (in the case

g → qq̄). We could have avoided this technicality by defining the splitting operators per

flavour (i.e. set nf = 1 throughout Appendix 4.7). Then we would have to sum over quark

flavours throughout the rest of the paper. Instead, we choose to handle quark flavour by

keeping track of flavour along the evolution chain, and whenever a g → qq̄ splitting occurs

we label the subsequent parton flavour generically, i.e. for two-flavours the relevant set of

parton flavours would be {u, ū, d, d̄, q, g}. Note that since we evolve away from the hard

scattering, a g → qq̄ branching from an incoming g actually corresponds to a q → qg (or

q̄ → q̄g) splitting in the usual DGLAP sense. This can be seen in (4.132), where the terms

involving δinitial
j and sj = ±1 involve the Pgq splitting function (the Pqg splitting function

appears in the corresponding δinitial terms). With this in mind we have that

dσ ?
{
fA fB

}
=
∑
α,β

dσα,β f
A
α f

B
β , (4.115)

where α and β label parton type. For nf = 2, we would have α, β ∈ {u, ū, d, d̄, q, g}, and

2nffq is the singlet distribution function, i.e. fq = (u + ū + d + d̄)/(2nf ) for nf = 2. For

completeness, we here also attach labels A and B to indicate the type of hadron (we will

drop that label elsewhere in this section).

After expanding Col†m(µ)◦Colm(µ) in powers of αs, then spin averaging at every vertex,

substituting for (4.112) and evaluating the transverse momentum integrals, we find

Σ =

∫ ∑
n

n∑
m=0

n−m∑
p=0

(
n−m∏
i=1

dΠi

)

×
∫

dxadxb Tr
(
Bp
n−m−p(µ)

)
?
{
fa(xa, Q)fb(xb, Q) +O(αm+1

s )
}
. (4.116)

Figure 4.8 illustrates how terms in our algorithm should be grouped in order to generate the

iterative relation in (4.113) and so arrive at (4.116). Hence we see that variant B iteratively

generates DGLAP evolution up to the hard scale. The derivation of fragmentation function

evolution of final-state partons proceeds similarly.

For processes where Coulomb exchanges are relevant, DGLAP evolution is generated up

to the scale of the last Coulomb exchange. Also note that, in the infra-red finite reformu-

lations of A and B, DGLAP can be found in the Bn for n ≥ 1.

4.5.2 Example resummations

In this subsection we show how to resum a number of observables in e+e− → hadrons. The

idea is to use well-known results to illustrate the use of the algorithm and how to handle it’s

colour structures. The simplicity of the hard process means we can use H(Q) = N−1
c σH1 for
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the hard-scattering matrix. We perform all calculations using the LLΣ recoil from Section

4.3.4.1.

4.5.2.1 Thrust

The resummed thrust distribution was initially computed at LL accuracy in [55], then at

NLL in [56]. The current state-of-the-art computation is at N3LL [57]. Thrust is defined as

T = max
n

∑
∀p |p · n|∑
∀p |p|

, (4.117)

where the thrust axis n points along the initial hard parton axis at leading-order in the

soft and collinear limits; see Section 3.1 in [56]. We will only need to define thrust for 3

partons; of which 2 are hard (p1 and p2) and one is soft (k). We can work in the dipole zero-

momentum frame using pq = Eq(1, 0, 0, 1), pq̄ = Eq̄(1, 0, 0,−1), k = (k⊥ cosh y,~k⊥, k⊥ sinh y),

and we can fix 2Eq = 2Eq̄ = Q. Thrust is evaluated as

T = 1− k⊥ cosh |y| − k⊥ sinh |y|
Q

+O
(
k2
⊥
Q2

)
. (4.118)

When calculated in the hard-collinear limit, we can let T = 1 +O(k2
⊥) as all partons lie on

the thrust axis up to sub-leading contributions. The thrust distribution RT is defined as

RT =

∫
dT ′

1

Tr(H(Q))

dΣ

dT ′
. (4.119)

As thrust is global, the calculation is most readily performed using the manifestly infra-

red finite version of variant A (see Section 4.3.5). Using this, all terms with one or more

emissions cancel exactly. The measurement function u(k, {∅}) is

u(k, {∅}) = Θ

(
1− k

(qq̄)
⊥ cosh |y| − k(qq̄)

⊥ sinh |y|
Q

− T
)
. (4.120)

This is unity for a hard-collinear emission, since |y| → ∞ at LL accuracy. This kills the

hard-collinear terms, since they contain a factor (1 − u(k, {∅})) = 0, which is as expected

since they contribute no double logarithms. Thus we can immediately write

Σ(T ) = Tr(V0,QV
†
0,Q)σH

= Tr

(
exp

[
2αs
π

Tgq · Tgq̄
∫ Q

0

dk
(qq̄)
⊥

k
(qq̄)
⊥

∫
dS2

4π
θij(k)

×Θ

(
T − 1 +

k
(qq̄)
⊥ cosh |y| − k(qq̄)

⊥ sinh |y|
Q

)
k2
⊥

pq · pq̄
(pq · k)(pq̄ · k)

])
N−1
c σH.

(4.121)
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After integrating

Σ(T ) = Tr

(
exp

[
2αs
π

Tgq · Tgq̄
∫ Q

0

dk
(qq̄)
⊥

k
(qq̄)
⊥

2

∫ ∞
0

dy θij(k)Θ
(
k⊥
Q e
−y − (1− T )

)])
N−1
c σH,

= Tr

(
exp

[
αs
π
Tgq · Tgq̄ ln2

(
1

1− T

)])
N−1
c σH. (4.122)

Here we used the fact that θij(k) restricts the integration so that k0 < Q. The colour trace

can be evaluated to give

Σ(T )

N−1
c σH

= Tr(1) +
αs
π

ln2

(
1

1− T

)
Tr
(
Tgq · Tgq̄

)
+

1

2!

[
αs
π

ln2

(
1

1− T

)]2

Tr
(
Tgq · Tgq̄Tgq · Tgq̄

)
+ ...

= Tr(1)− αs
π

ln2

(
1

1− T

)
Tr
(
Tgq · Tgq

)
+

1

2!

[
αs
π

ln2

(
1

1− T

)]2

Tr
(
Tgq · TgqTgq · Tgq

)
+ ...

= Tr(1)− αs
π
CF ln2

(
1

1− T

)
Tr(1) +

[
αs
π
C2

F ln2

(
1

1− T

)]2

Tr(1) + ...

= Nc exp

[
−αs
π
CF ln2

(
1

1− T

)]
. (4.123)

And so we obtain the familiar result:

RT =

∫
dT ′

1

Tr(H(Q))

dΣ

dT ′

= −αs
π
CF

∫
dT ′

ln (1− T ′)
1− T ′ exp

[
−αs
π
CF ln2

(
1

1− T ′
)]

. (4.124)

4.5.2.2 Hemisphere jet mass

The hemisphere jet mass is subject to non-global logarithms, which greatly increase the

challenge of resummation. It was first resummed at LL and LC in [58]. The current state-

of-the-art is split between fixed-order computation (α5
s with leading colour [59] and α4

s

with full colour [60]) and resummation using numerical techniques to introduce full colour

dependence with sub-leading logarithms [61]. The measurement function corresponding to

the hemisphere jet mass in e+e− → hadrons is

u±({qi}) =
∏

q∈{qi}

(
Θ(q ∈ S∓2 ) + Θ(q ∈ S±2 )Θ(ρ−m±)

)
, (4.125)

where S+
2 and S−2 are the hemispheres centred on the two primary jets. m± is the total

invariant mass in the S±2 hemisphere and ρ is the cut on hemisphere mass. The measurement
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function can be simplified by considering m±

m2
± =

∑
qi,qj∈S±2

2qi · qj =
∑

qi,qj∈S±2

2EiEj

(
1−

√
1− q2

i⊥
E2
i

)
. (4.126)

At the order we will perform the calculation we only need to consider one emission, hence

u±(q1) = Θ(q1 ∈ S∓2 ) + Θ(q1 ∈ S±2 )Θ

(
ρ2 − 2E1E± + 2E1E±

√
1− q2

1⊥/E
2
1

)
,

=

{
Θ(q1 ∈ S∓2 ) + Θ(q1 ∈ S±2 )Θ

(
ρ2 −Q(q1⊥ cosh y − q1⊥ sinh y)

)
forE1 � E±,

Θ(q1 ∈ S∓2 ) + Θ(q1 ∈ S±2 )Θ
(
ρ2 − E±

E1
q2

1⊥)
)

for q1⊥ � E1,

where E± is the energy of the quark/anti-quark defining the S±2 hemisphere and Q = 2E±.

Note the similarity between this and the measurement function for thrust, which is expected

since it is well known that, at lowest-order, thrust can be expressed as the sum over the

two hemisphere jet masses defined by the thrust axis.

Again, we can use the manifestly infra-red finite version of A to find Σ(ρ):

Σ(ρ) =Tr(V0,QV
†
0,Q)N−1

c σH +

∫
dΠ1Tr

[
V0,q1⊥D1Vq1⊥,QV

†
q1⊥,Q

D†1V
†
0,q1⊥

u(q1)

V0,q1⊥

{
Vq1⊥,QV

†
q1⊥,Q

,
1

2
D2

1

}
V
†
0,q1⊥

u(q1, {∅})
]

Θ(Q− q1⊥)N−1
c σH + ...

(4.127)

From the calculation in the previous section, we can immediately write

Tr(V0,QV
†
0,Q) = Nc exp

[
−2αs

π
CF ln2

(
Q

ρ

)]
. (4.128)

This gives the global contribution. The non-global contributions are found by evaluating the

remaining terms (corresponding to summing over real emissions in (4.70)). This calculation

can be found in [27], where the non-global terms are evaluated using the FKS algorithm,

which is entirely sufficient in this case. Hence we find

Σ(ρ) =σH exp

[
−2αs

π
CF ln2 (Q/ρ)

](
1− CACFζ(2)

(αs
π

)2 ln(Q/ρ)2

2

−C2
ACFζ(3)

(αs
π

)3 ln(Q/ρ)3

3!
+ ...

)
. (4.129)

4.5.2.3 Gaps-between-jets

The LLΣ measurement function in the case of gaps-between-jets is

un(q1, .., qn) =

n∏
m=1

(Θout(qm) + Θin(qm)Θ(Q0 − qm,⊥)), (4.130)
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where the ‘in’ region corresponds to two cones centred on the two leading jets and the ‘out’

region is the region between these cones. The observable vetoes emissions in the out region

that have transverse momentum greater than Q0. At order α5
s this observable is sensitive

to super-leading logarithms [12, 13]. These will be correctly calculated using variants A, B

and their manifestly infra-red finite versions, but not their factorised form unless Coulomb

exchanges are interleaved as in Section 4.4.3). Using the manifestly infra-red finite version

of variant A we correctly find that

Σ(µ) = σH exp

[
−2αsCF

π
Y ln(Q/Q0)

] (
1 +O(α2

s)
)
, (4.131)

where Y is the rapidity range of the out region and the
(
1 +O(α2

s)
)

factor is the stack

of non-global logarithms, which can be computed by considering real gluon emission into

the out region, as encoded in (4.70). These were calculated up to O(α5
s) in [12, 13, 62].

We note a kinematic maximum on the rapidity of an emitted gluon, i.e. 2|y| < Ymax =

ln
(

Q
2Q0

+
√

Q
2Q0
− 1
)

. This means that as Y → Ymax all soft radiation goes into the in

region. At leading-order in the soft approximation Ymax = ln(Q/Q0), i.e. for Y ≥ Ymax the

observable becomes doubly logarithmic.

4.6 Conclusions

Our primary goal in writing this paper is to provide the theoretical basis for the future

development of a computer code that is able systematically to resum enhanced logarithms

due to soft and/or collinear partons including quantum mechanical interference effects. The

algorithm we present, and its variants, are (mostly) Markovian and their recursive nature

makes them well suited for the task. First steps towards this goal are under development,

using the CVolver code to perform the colour evolution [63–65].

The algorithms in this paper correctly account for the leading soft and/or collinear

logarithms, though we have been careful to try and present them in such a way as to make

the extension beyond leading order. For example, we have taken account of the momentum

re-mappings that are necessary in order to account for energy-momentum conservation and

we have included g → qq̄ transitions which are strictly single logarithmic.

4.7 Appendix: Splitting functions

The splitting operator Pij (see Figure 4.2), which is explicitly used in variant B of our

algorithm, is built from the spin dependent DGLAP splitting functions [40, 66]. It is an

operator in colour and helicity spaces and is defined using the spinor-helicity formalism [41].

We use the convention v(p, λ) = CūT(p, λ) where C = iγ2γ0, which defines our crossing
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symmetry to have no global minus sign. Using rotational symmetry and parity invariance

one generally can writeM({λi}) =M∗({−λi}) whereM is a matrix element and {λi} the

set of helicity states on which M depends. Together these define the correct treatment for

antiparticles, which should evolve as if they are particles with the opposite helicity. Thus

Pij is

Pij = δsj , 12
δfinal
j

(√
Pqq

2CF(1 + z2
i )

1

〈qip̃j〉
(Tgj ⊗ S+1i) +

√
z2
i Pqq

2CF(1 + z2
i )

1

[p̃jqi]
(Tgj ⊗ S−1i)

+

√
Pgq

2CF(2− 2zi + z2
i )

1

〈p̃jqi〉
Wij(Tgj ⊗ S+1i) +

√
(1− zi)2Pgq

2CF(2− 2zi + z2
i )

1

[qip̃j ]
Wij(Tgj ⊗ S−1i)

)

+ δsj ,− 1
2
δfinal
j

(√
Pqq

2CF(1 + z2
i )

1

[p̃jqi]
(Tgj ⊗ S−1i) +

√
z2
i Pqq

2CF(1 + z2
i )

1

〈qip̃j〉
(Tgj ⊗ S+1i)

+

√
Pgq

2CF(2− 2zi + z2
i )

1

[qip̃j ]
Wij(Tgj ⊗ S−1i) +

√
(1− zi)2Pgq

2CF(2− 2zi + z2
i )

1

〈p̃jqi〉
Wij(Tgj ⊗ S+1i)

)

+ δsj ,1δ
final
j

(√
(1− zi)2Pqg

2TR(1− 2zi(1− zi))
1

[p̃jqi]
(Wij − 1)(Tqj ⊗ P1

jP2
jS

+ 1
2 i)

+

√
z2
i Pqg

2TR(1− 2zi(1− zi))
1

[p̃jqi]
(Wij − 1)(Tqj ⊗ P2

jS
− 1

2 i)

+

√
Pgg

2CA(1− zi + z2
i )2

1

〈qip̃j〉
(Tgj ⊗ S+1i)

+

√
z4
i Pgg

2CA(1− zi + z2
i )2

1

[qip̃j ]
(Tgj ⊗ S−1i) +

√
Pgg(1− zi)4

2CA(1− zi + z2
i )2

1

[p̃jqi]
(Tgj ⊗ P1

jS+1i)

)

+ δsj ,−1δ
final
j

(√
(1− zi)2Pqg

2TR(1− 2zi(1− zi))
1

〈qip̃j〉
(Wij − 1)(Tqj ⊗ P1

jP2
jS
− 1

2 i)

+

√
z2
i Pqg

2TR(1− 2zi(1− zi))
1

〈qip̃j〉
(Wij − 1)(Tqj ⊗ P2

jS
+ 1

2 i)

+

√
Pgg

2CA(1− zi + z2
i )2

1

[p̃jqi]
(Tgj ⊗ S−1i)

+

√
z4
i Pgg

2CA(1− zi + z2
i )2

1

〈p̃jqi〉
(Tgj ⊗ S+1i) +

√
Pgg(1− zi)4

2CA(1− zi + z2
i )2

1

〈qip̃j〉
(Tgj ⊗ P1

jS−1i)

)
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+ δsj , 12
δinitial
j

√
1

zi

(√
Pqq

CF(1 + z2
i )

1

〈qipj〉
(Tgj ⊗ S+1i) +

√
z2
i Pqq

CF(1 + z2
i )

1

[pjqi]
(Tgj ⊗ S−1i)

+

√
(1− zi)2Pqg

nfCF (1− 2zi(1− zi))
1

[pjqi]
Wij(Tgj ⊗ S+1i)

+

√
z2
i Pqg

nfCF (1− 2zi(1− zi))
1

〈qipj〉
Wij(Tgj ⊗ S−1i)

)

+ δsj ,− 1
2
δinitial
j

√
1

zi

(√
Pqq

CF(1 + z2
i )

1

[pjqi]
(Tgj ⊗ S−1i) +

√
z2
i Pqq

CF(1 + z2
i )

1

〈qipj〉
(Tgj ⊗ S+1i)

+

√
(1− zi)2Pqg

nfCF (1− 2zi(1− zi))
1

〈qipj〉
Wij(Tgj ⊗ S−1i)

+

√
z2
i Pqg

nfCF (1− 2zi(1− zi))
1

[pjqi]
Wij(Tgj ⊗ S+1i)

)

+ δsj ,1δ
initial
j

√
1

zi

(√
2nfPgq

TR(2− 2zi + z2
i )

1

〈pjqi〉
(Tqj ⊗ P2

jS
+ 1

2 i)

+

√
2nf (1− zi)2Pgq
TR(2− 2zi + z2

i )

1

[qipj ]
(Tqj ⊗ P1

jP2
jS
− 1

2 i) +

√
Pgg

CA(1− zi + z2
i )2

1

〈qipj〉
(Tgj ⊗ S+1i)

+

√
z4
i Pgg

CA(1− zi + z2
i )2

1

[qipj ]
(Tgj ⊗ S−1i) +

√
Pgg(1− zi)4

CA(1− zi + z2
i )2

1

〈qipj〉
(Tgj ⊗ P1

jS−1i)

)

+ δsj ,−1δ
initial
j

√
1

zi

(√
2nfPgq

TR(2− 2zi + z2
i )

1

[qipj ]
(Tqj ⊗ P2

jS
− 1

2 i)

+

√
2nf (1− zi)2Pgq
TR(2− 2zi + z2

i )

1

〈pjqi〉
(Tqj ⊗ P1

jP2
jS

+ 1
2 i) +

√
Pgg

CA(1− zi + z2
i )2

1

[pjqi]
(Tgj ⊗ S−1i)

+

√
z4
i Pgg

CA(1− zi + z2
i )2

1

〈pjqi〉
(Tgj ⊗ S+1i) +

√
Pgg(1− zi)4

CA(1− zi + z2
i )2

1

[pjqi]
(Tgj ⊗ P1

jS+1i)

)
.

(4.132)

Here sj is the spin/helicity of parton j and zi is the momentum fraction between parton i

and its parent parton, j (as in (4.19)). Tgj are the basis-independent colour-charge operators

for the emission of a gluon [27, 67]. Tqj is the colour charge operator for the emission of a

qq̄ pair from a gluon. In the colour flow basis it is

Tqj =
√
TR1−

√
TR

N
τj , (4.133)

where τj exchanges the anti-colour lines associated with the colour line of parton j. For

example, let parton j have colour line c2 and anti-colour c̄5, τj would exchange anti-colour

lines c̄2 and c̄5. A full definition of τj , and other colour flow operators, can be found in [27],

172



where τj is written sα,β. Note Tqj · T
q
j = TR1.14 We have defined Ss as the operator that

adds a parton with helicity s. Just as Tgi · T
g
i = Ci1, it can be shown that Ss · Ss = 1. We

have also defined a ‘swap’ operator, Wij , which swaps the colour and helicity of particles i

and j. Finally, we defined P1
i as the operator that flips the helicity of parton i and P2

i that

halves the helicity of i. There is some freedom in how we introduce operators to keep track

of the evolving helicity state (for example one could have instead made use of (Ss)†, which

deletes a parton of helicity s). Examples to illustrate the use of these helicity operators can

be found in Appendix 4.8. The (unregularised) collinear splitting functions are

Pqq = CF
1 + z2

1− z ,

Pgq = CF
1 + (1− z)2

z
,

Pqg = nfTR(1− 2z(1− z)),

Pgg = 2CA

(
z(1− z) +

z

1− z +
1− z
z

)
. (4.134)

It should be understood that Pij always acts as

PijOP†ij =
∑
υ, si, s′i

S
(υj→υ)

si,s′i
Tῡj ⊗ S(υj→υ)

si OTῡ †j ⊗ S(υj→υ) †
s′i

, (4.135)

where S(υj→υ)
si is a generalised spin operator and S

(υj→υ)

si,s′i
is a c-number coefficient corre-

sponding to a υj → υ splitting. For example, when j is a quark

PijOP†ij = S
(q→q)
1,1 Tgj ⊗ S1i OTg †j ⊗ S1i † + S

(q→q)
1,−1 Tgj ⊗ S1i OTg †j ⊗ S−1i †

+ S
(q→q)
−1,1 Tgj ⊗ S−1i OTg †j ⊗ S1i † + S

(q→q)
−1,−1T

g
j ⊗ S−1i OTg †j ⊗ S−1i †

+ S
(q→g)
1,1 Tgj ⊗WijS1i OTg †j ⊗ S1i †Wij + S

(q→g)
1,−1 Tgj ⊗WijS1i OTg †j ⊗ S−1i †Wij

+ S
(q→g)
−1,1 Tgj ⊗WijS−1i OTg †j ⊗ S1i †Wij + S

(q→g)
−1,−1T

g
j ⊗WijS−1i OTg †j ⊗ S−1i †Wij ,

(4.136)

where∑
υ, si

S(q→υ)
si,si = Pqq C−1

F

(
δfinal
j

4 qi · p̃j
+

δinitial
j

2 zi qi · pj

)
+ Pgq C−1

F

(
δfinal
j

4 qi · p̃j
+

δinitial
j

2 zi qi · pj

)
. (4.137)

The Sudakov factors in variant B can be written in a variety of ways using∫ 1−x

x
dz Pgg = 2

∫ 1−x

x
dz zPgg and

∫ 1−x

x
dz (Pqq + Pgq) = 2

∫ 1−x

x
dz zPqq.

Note also that there is a subtle factor of two difference between initial state and final state

splittings in Pij . The factor arises as partons in the initial state must be convoluted with

14Strictly speaking this is only valid when acting on a physical matrix element.
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PDFs which changes the pole structure of splittings and increases the number of diagrams

that must be summed over relative to splittings in the final state. In the final state (without

fragmentation function dependence), soft poles from real emissions can be found at both

z = 1 and z = 0. These poles cancel the poles from loop diagrams. For real emissions in

the initial state, the z = 0 poles are absent due to kinematics whilst the z = 1 poles cancel

the poles from loops. The factor of 2 ensures the correct pattern of cancellations.

Finally, we also note the factors of nf , the number of quark flavours, in Pij . They are

present since we sum democratically over flavours whenever there is a g → qq̄ branching.

Note that since we always evolve away from the hard process this means that we sum over

quark flavours in the case of an initial-state q → gq branching. Care must be taken however,

since if the branching cascade terminates with an initial-state quark (or anti-quark) then it

is necessary to divide by a factor of nf before convoluting with the corresponding parton

distribution function. The same holds in the case where fragmentation functions are needed.

In Section 4.5, we introduced the ? notation to handle this. Of course, one could set nf = 1

in the above splitting operators, after which it would be necessary to sum over flavours as

appropriate.

For variant A, we need the hard-collinear emission operator Pij . This operator is defined

at cross-section level through the relation

PijOP
†
ij = PijOP†ij − δfinal

j Tgj ⊗
(

S1i
√

1− zi 〈qip̃j〉
+

S−1i
√

1− zi[p̃jqi]
+

WijS1i

√
zi 〈p̃jqi〉

+
WijS−1i

√
zi[qip̃j ]

)
× OTg †j ⊗

(
S1i

√
1− zi 〈qip̃j〉

+
S−1i

√
1− zi[p̃jqi]

+
WijS1i

√
zi 〈p̃jqi〉

+
WijS−1i

√
zi[qip̃j ]

)†
− 2δinitial

j Tgj ⊗
(

S1i
√

1− zi 〈qipj〉
+

S−1i
√

1− zi[pjqi]

)
× OTg †j ⊗

(
S1i

√
1− zi 〈qipj〉

+
S−1i

√
1− zi[pjqi]

)†
, (4.138)

where O is a generalised operator. Note that ...PijOP†ij ... is not necessarily Casimir in

colour. However, as we observed in section 4.4, ignoring Coulomb contributions, the

collinear physics can be factorised and becomes colour-diagonal after taking the trace.

Therefore, for processes where Coulomb terms do not contribute (e.g. e+e− and DIS)

we could use the emergent colour-diagonal structure to greatly simplify the Pij and Pij

operators. For example, we could redefine Pij with a simpler amplitude-level statement.
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To this end, we can introduce the hard-collinear splitting functions;

Pqq = Pqq − 2CF
1

1− z = −CF(1 + z),

P initial
gg = Pgg − 2CA

1

1− z = 2CA

(
1

z
+ z(1− z)− 2

)
Pfinal
gg = Pgg − 2CA

1

1− z − 2CA
1

z
= 2CA (z(1− z)− 2)

Pfinal
gq = Pgq − 2CF

1

z
= CF

(
1 + (1− z)2

z
− 2

z

)
, P initial

gq = Pgq,

Pqg = Pqg. (4.139)

The newly simplified Pij is equal to the operator found by substituting P 7→ P inside Pij ,

i.e.

δfinal
j Pgq 7→ δfinal

j Pfinal
gq and δinitial

j Pgq 7→ δinitial
j P initial

gq .

This new Pij operator is constructed so that when used in the LHS of (4.138) the expression

becomes exact after a trace is taken. Additionally, it correctly computes spin correlations

after collinear factorisation. Simplifying the collinear emission operators would be very

pertinent to an efficient computational implementation of our algorithm.

P ◦υiυj and P ◦υiυj are splitting functions used exclusively in our Sudakov factors and they

are defined with all colour factors removed:

P ◦qq = P ◦qq −
1

1− z = −1

2
(1 + z),

P ◦gq = P ◦gq −
1

z
=

1 + (1− z)2

2z
− 1

z
,

P ◦qg = P ◦qg = nf (1− 2z(1− z)),

P ◦gg = P ◦gg −
1

1− z −
1

z
= (z(1− z)− 2) . (4.140)

In Section 4.4.1.2 and Section 4.5 we make use of the plus prescription (see (4.94)).

Applying the plus prescription means∫ 1

0
dx f(x)+ g(x) =

∫ 1

0
dx [f(x)g(x)− f(x)g(1)]. (4.141)

The plus prescription is, in our case, is defined by∫
dxP(x)+OP†(x)+ u(x) =

∫
dx

[
P(x)OP†(x)u(x)

−P†V(x)PV(x)O u(1)

2
−OP†V(x)PV(x)

u(1)

2

]
,

(4.142)

where the structure of the subtraction terms is determined by the corresponding structure

of the virtual corrections and this simply means that PV is determined using (4.132) but
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with parton j always treated as if it is final state. The two splitting functions affected by

the plus prescription are

Pqq = CF

(
1 + z2

1− z

)
+

≡ CF

[
1 + z2

(1− z)+
+

3

2
δ(1− z)

]
,

Pgg = 2CA

(
z

(1− z)+
+ z(1− z) +

1− z
z

)
+

1

6
(11CA − 4nfTR)δ(1− z). (4.143)

For the other parton branchings, Pij = Pij where i, j labels parton type.

4.8 Appendix: Connecting to other work on spin

Our goal in this appendix is to show how our treatment of spin connects with the work of

others, specifically that of Collins [68] and Knowles [69]. We will begin by re-capping the

calculation of the tree-level q → qg collinear splitting using the standard notation. The

matrix element is

Mn+1
s1...siλj

(..., pi, pj) = igT af ε
∗a
λj µ

(pj)ūsi(pi)γ
µ

i/pij
p2
ij + iε

M̂n
s1...(..., pij), (4.144)

where pij = pi + pj . Mn
s1...sn is the spin-dependent n-particle matrix element, carrying

n spin indices. M̂n is defined so that ūsij (pij)M̂n
s1...(..., pij) = Mn

s1...sij (..., pij). In the

collinear limit, /pij is on shell and so we can express it as a product of on-shell spinors, i.e.

/pij =
∑

sij
usij (pij)ūsij (pij). We can then further simplify by replacing Dirac spinors with

massless Weyl spinors, defined in the chiral basis as us = (xs α, y
†α̇
s )T. To avoid clutter, we

will temporarily drop colour factors, factors of g and the denominator of the propagator.

We find

Mn+1
s1...siλj

(..., pi, pj) ∝ ε∗λj µ(pj)y
α
1
2

(pi)σ
µ

αβ̇
y†β̇1

2

(pij)Mn
s1...

1
2

(..., pij)δsi 1
2

+ ε∗λj µ(pj)x
†
− 1

2
α̇
(pi)σ̄

µ α̇βx− 1
2
β(pij)Mn

s1...− 1
2

(..., pij)δsi− 1
2
. (4.145)

We can now employ the spinor-helicity formalism [41]. Also applying a Sudakov decompo-

sition, as defined in Section 4.3.2, the matrix element becomes

Mn+1
s1...siλj

(..., pi, pj) =gTf

√
Pqq

CF(1 + z2)

1

〈pjpi〉
Mn

s1...
1
2

(..., pij)δsi, 12
δλj ,1

+ gTf

√
z2Pqq

CF(1 + z2)

1

〈pjpi〉
Mn

s1...− 1
2

(..., pij)δsi,− 1
2
δλj ,1

+ gTf

√
z2Pqq

CF(1 + z2)

1

[pipj ]
Mn

s1...
1
2

(..., pij)δsi, 12
δλj ,−1

+ gTf

√
Pqq

CF(1 + z2)

1

[pipj ]
Mn

s1...− 1
2

(..., pij)δsi,− 1
2
δλj ,−1. (4.146)
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Therefore, for each fixed value of λj there is an amplitude level decay matrixD(λj)
sisij describing

the transition of a quark with spin sij to two partons with spin si and λs so thatMn+1
s1...siλj

=

D(λj)
sisijMn

s1...sij , which can be determined from the above expression. Equivalent calculations

lead to decay matrices for each possible collinear splitting. When computed for initial-state

collinear splittings, these matrices are amplitude-level spin-density matrices and we denote

them with an S instead of a D.

Current parton showers deal with spin by algorithmically evaluating cross-section level

spin density matrices. Consider a 2 → 2 scattering, where each hard parton is coloured.

Then

dσ ∝ ρ(1)
s1s′1

ρ
(2)
s2s′2
Ms1s2s3s4M∗s′1s′2s′3s′4D

(3)
s3s′3

D
(4)
s4s′4

, (4.147)

where M is the full spin-dependent hard matrix element. Summation over spin indices is

implicit in this expression. ρ
(1)
s1s′1

and ρ
(2)
s2s′2

are cross-section level spin-density matrices. D
(3)
s3s′3

and D
(4)
s4s′4

are cross-section level decay matrices. D and ρ are calculated from products of

amplitude level matrices, D and S respectively. For instance, after n emissions from parton

1:

ρ
(1)
s1s′1

=
∑
{λ}

[Sλ1Sλ2Sλ3 ...SλnSλn †...Sλ3 †Sλ2 †Sλ1 †]s1s′1 ,

where usual matrix multiplication is implied. The algorithm of Collins and Knowles is able

to determine the spin density and decay matrices such that computational time only grows

linearly with the number of partons [68–70].

Now let us turn to the calculation of splitting functions in our notation. We write

Mn
s1...sn = 〈s1...sn| n〉, which ignores colour since it is not our focus here, i.e. more correctly

we should write Mn
c1...cn,s1...sn = (〈c1...cn| ⊗ 〈s1...sn|) |n〉. We wish to define an operator

Pk→ij that adds a new (collinear) particle (j) to |n〉 that is emitted off leg k, i.e. |n+ 1col〉 =∑
k∈{n}Pk→ij |n〉.
As before, we will focus on the q → qg collinear splitting. Note that Mn+1

s1...si,λj
=

〈s1...si, λj |Pk→ij |n〉. Inserting the identity gives

Mn+1
s1...si,λj

= 〈s1...si, λj |Pk→ij
∑
s′1...s

′
k

∣∣s′1...s′k〉 〈s′1...s′k |n〉
=
∑
s′k

〈s1...si, λj |Pk→ij
∣∣s1...s

′
k

〉
Mn

s1...s′k
. (4.148)
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Comparing to (4.146), it follows that Pk→ij is (for q → qg)

〈s1...si, λj |Pk→ij
∣∣s1...s

′
k

〉
=gTf

√
Pqq

CF(1 + z2)

1

〈pjpi〉
〈s1...si, 1j |S1j

∣∣s1...s
′
k

〉
δsi, 12

δλj ,1

+gTf

√
z2Pqq

CF(1 + z2)

1

〈pjpi〉
〈s1...si, 1j |S1j

∣∣s1...s
′
k

〉
δsi,− 1

2
δλj ,1

+gTf

√
z2Pqq

CF(1 + z2)

1

[pipj ]
〈s1...si,−1j | S−1j

∣∣s1...s
′
k

〉
δsi, 12

δλj ,−1

+gTf

√
Pqq

CF(1 + z2)

1

[pipj ]
〈s1...si,−1j | S−1j

∣∣s1...s
′
k

〉
δsi,− 1

2
δλj ,−1.

(4.149)

Ssj must satisfy 〈s1...si, sj | Ssj |s1...s
′
k〉 = δsi,s′k . More generally, we require

〈s1...si, sj |Ss
′
j
∣∣s′1...s′k〉 = δs1,s′1 ...δsi,s′kδsj ,s

′
j
.

This is the definition for Ss presented in Appendix 4.715.

We will now construct a decay matrix D
(j)
sjs′j

, for a final-state hard parton j using the

spin operators we have just introduced. Let us first consider the situation where there are

no soft interactions and only include emissions from the initial primary leg, j:

dσ ∝∑
n

∑
{i}

〈n; j|V†1,QP†i1jV
†
2,1...V

†
n,n−1P

†
inj

V†0,nV0,nPinjV2,1...V2,1Pi1jV1,Q |n; j〉 , (4.150)

where the partons in the set {i} are transverse momentum ordered. Va,b is a Sudakov

factor:

V†a,b = exp

[
−αs
π

∫ qb⊥

qa⊥

dk⊥
k⊥

∑
υ

Tῡ 2
j

∫
dz dφ

8π
P ◦υυj

]
. (4.151)

We can evaluate (4.150) by inserting identity operators and extracting Sudakov factors,

which are proportional to identity operators, into a single numerical factor. Hence

dσ ∝
∑
n

∑
{i}

∑
sjs′j

#
sjs
′
j

i1...ini′1...i
′
n
〈n; j| sj〉 〈sj |P†i1 ...P

†
in

Pi′n ...Pi′1

∣∣s′j〉 〈s′j |n; j〉 , (4.152)

where each P†i is a ‘pure’ colour-helicity operator with no scalar pre-factor. For instance

Pi = Tgj ⊗ S1i in the case of a q+ 1
2 → q+ 1

2 g+1 splitting or Pi = Tqj ⊗ P1
jP2

jS−1i in the

case of a g−1 → q+ 1
2 q−

1
2 splitting. #

sjs
′
j

i1...ini′1...i
′
n

is a c-number coefficient built from helicity

15Repeating this procedure for the other splitting operators leads us to introduce the operators Wij ,P1
i

and P2
i used in Appendix A.
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dependent splitting functions and expanded Sudakov factors. We can now make the link

with the previous approach, i.e.

D
(j)
sjs′j

=
∑
n

∑
{i}

#
sjs
′
j

i1...ini′1...i
′
n
〈sj |P†i1 ...P

†
in

Pi′n ...Pi′1

∣∣s′j〉 . (4.153)

The expectation value is calculable and equals a product of n Casimir co-coefficients, e.g.

if parton j is a gluon and each operator Pi corresponds to a g → gg splitting then the

expectation value equals CnA (up to a normalisation for the colour evolution).

Following this procedure, spin-density and decay matrices can be derived using the

algorithm presented in this paper. Let’s see this explicitly. Knowles’ algorithm calculates

spin-density and decay matrices using other intermediate matrices ρ′, ρ′′, D′ and D′′ [69].

We will calculate ρ′ using the factorised form of variant B (which we refer to as B-f), with

LL recoil. ρ′ss′ describes the distribution of spin states for a give parton after a single

collinear emission. It is normalised by the trace of itself so that it maintains a probabilistic

interpretation. Knowles begins by defining

ρ′ss′ =

∑
s1,s′1,s2,s

′
2
ρs1s′1Vs1s2sV

∗
s′1s
′
2s
′δs2s′2∑

s,s1,s′1,s2,s
′
2
ρs1s′1Vs1s2sV

∗
s′1s
′
2s
δs2s′2

, (4.154)

where ρ is a spin density matrix for a parton in the hard process that is to be inherited by

a forwardly evolving shower. In the language of this paper ρs1s′1 ∝ 〈s1|H(Q) |s′1〉16. Vs1s2s

is the spin-dependent collinear splitting function for the transition s1 → ss2 with parton

type indices suppressed. Importantly, parton type indices are not summed over in Vs1s2s.

When using Knowles’ algorithm, it is assumed that the structure of a cascade has already

been fully decided; all except the spin that is.

Consider a term from B-f corresponding to one collinear emission from a final-state hard

parton. Labelling this term P ′, we have

P ′ss′ =

∑
s2s′2

〈
s, s2

∣∣∣Vµ,qn+1⊥Dn+1Vqn+1⊥,Q dσ(n, 0)V
†
qn+1⊥,Q

D
†
n+1V

†
µ,qn+1⊥

∣∣∣ s′, s′2〉 δs2s′2
Tr(Vµ,qn+1⊥Dn+1Vqn+1⊥,Q dσ(n, 0)V

†
qn+1⊥,Q

D
†
n+1V

†
µ,qn+1⊥

)
,

=

∑
s2s′2

〈
s, s2

∣∣∣P2 1H(Q)P†2 1

∣∣∣ s′, s′2〉 δs2s′2
Tr(P2 1H(Q)P†2 1)

. (4.155)

We have used the LL recoil with variant B and so integrals over the recoil functions were

trivial. In the second line, we have labelled the collinear parton as parton 2 and the hard

16For simplicity we suppose H(Q) to contain a single propagating particle. If we were to introduce more
particles we would have more indices/states to keep track of. This is because collinear emissions do not
involve interference terms.
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parton as parton 1. We can insert identity operators and evaluate the trace explicitly to

find

P ′ss′ =

∑
s1,s′1,s2,s

′
2
〈s, s2|P2 1 |s1〉 〈s′1|P†2 1 |s′, s′2〉 ρs1s′1δs2s′2∑

s,s1,s′1,s2,s
′
2
〈s, s2|P2 1 |s1〉 〈s′1|P†2 1 |s, s′2〉 ρs1s′1δs2s′2

. (4.156)

Now note that 〈ss2|P2 1 |s1〉 = Vs1s2s, with the possibilities of parton 2 being a gluon or

quark summed over. Hence

P ′ss′ =

∑
2∈{q,g}

∑
s1,s′1,s2,s

′
2
ρs1s′1Vs1s2sV

∗
s′1s
′
2s
′δs2s′2∑

2∈{q,g}
∑

s,s1,s′1,s2,s
′
2
ρs1s′1Vs1s2sV

∗
s′1s
′
2s
δs2s′2

. (4.157)

Thus, we have made the link to Collins and Knowles. If we pick either the quark or gluon

term in the numerator and set it 0, then renormalise P ′ss′ against the trace of itself, we find

P
′(1→23)
ss′ =

∑
s1,s′1,s2,s

′
2
ρs1s′1Vs1s2sV

∗
s′1s
′
2s
′δs2s′2∑

s,s1,s′1,s2,s
′
2
ρs1s′1Vs1s2sV

∗
s′1s
′
2s
δs2s′2

= ρ′ss′ .

When comparing with Collins and Knowles it was necessary for us to pick a species for

parton 2 as their algorithm is defined for pre-determined decay chains. This is why ρ′ss′ is

typically used without a label specifying the species of the partons involved, as their species

is always provided by context.

We will finish off by calculating ρ′ss′ for a q → qg splitting. ρs1s′1 is hermitian and so

can be expressed as ρs1s′1 = 1 + ρiσi where σi are the Pauli matrices. Using (4.156) and

normalising correctly gives

P
′ (q→qg)
++ =

2q.p̃i

√
Pqq

1+z2

2

ρ++ + 2q.p̃i

√
z2Pqq
1+z2

2

ρ++(
2q.p̃i

√
Pqq

1+z2

2

+ 2q.p̃i

√
z2Pqq
1+z2

2
)

(ρ++ + ρ−−)

=
1

2
(1 + ρ3),

P
′ (q→qg)
+− =

2q.p̃i

√
Pqq

1+z2

√
z2Pqq
1+z2 ρ++ + 2q.p̃i

√
Pqq

1+z2

√
z2Pqq
1+z2 ρ++(

2q.p̃i

√
Pqq

1+z2

2

+ 2q.p̃i

√
z2Pqq
1+z2

2
)

(ρ++ + ρ−−)

=
z

1 + z2
(ρ1 − iρ2),

(4.158)

where q is the momentum of the gluon and 1 − z is its momentum fraction. We also used

〈qp̃i〉 〈qp̃i〉∗ = [qp̃i][qp̃i]
∗ = 2q · p̃i . It follows that

P ′ (q→qg) =
1

2

(
1 + ρ3

2z
1+z2 (ρ1 − iρ2)

2z
1+z2 (ρ1 + iρ2) 1− ρ3

)
= ρ′ (q→qg).

Similarly, matrices for the other collinear splittings can be found. The most algebraically

complex is the g → gg splitting (as usual). In that case

P
′ (g→gg)
++ = 1 +

(
z

1−z + 2(1− z)
)
ρ3

1
2Pgg + z(1− z)(cos(2φ)ρ1 + sin(2φ)ρ2)

= ρ
′ (g→gg)
++ , (4.159)
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where φ is the azimuthal angle to the plane of the splitting. The exact angular dependence

depends on the definition of the Weyl spinor products. We have chosen the definition so as

to match with the matrices defined in [69], where a factor ei(s1−s2−s)φ has been pulled out

from the definitions of Vs1s2s.
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Chapter 5

Publication: Comments on a new ‘full
colour’ parton shower

“There’s always a bigger fish.”

— Qui-Gon Jinn, Star Wars: The Phantom Menace

5.1 Preface

The research presented in the previous Chapter combined with that in [1] provides the

backbone to a full-colour parton shower known as CVolver [2]. Full-colour parton shower

Monte-Carlos are difficult to formulate as the number of colours flows the shower must

sample grows factorially with the parton multiplicity. This causes problems with numerical

convergence. Not only do real emissions increase the number of colour flows but loops can

re-arrange them. This re-arranging is a key reason for why the colour evolution cannot

easily be simplified.

Building on recent developments in the Monte-Carlo evaluation of colour algebra in the

colour flow basis [1, 3, 4], a new proposal for a full-colour parton shower was made public

[5]. In the following work, we highlight how errors can easily appear in the construction of

‘full-colour’ parton showers. What follows is a short and self contained analysis, focused on

highlighting the incorrect computation of full colour loops in [5]. After this analysis was

made public, the authors of [5] corrected their paper with an appropriate acknowledgement.
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Comments on a new ‘full colour’ parton
shower

Authors: Jack Holguin, Jeffrey Forshaw, Simon Plätzer

Abstract

A new parton shower algorithm has been presented with the claim of providing soft-gluon

resummation at ‘full colour’ [1]. In this paper we show that the algorithm does not succeed

in this goal. We show that full colour accuracy requires the Sudakov factors to be defined

at amplitude level and that the simple parton-shower unitarity argument employed in [1] is

not sufficient.

5.2 Introduction

Over recent years much attention has been devoted to the development of parton showers

with ‘full colour’ evolution [2–7]. The study of these has multiple motivations: most im-

portantly, reducing theoretical uncertainties in parton showers will be crucial for precision

phenomenology at future colliders. Currently, parton showers provide some of the largest

sources of uncertainty in experimental analyses, e.g. [8]. There has also been a growth in

interest towards developing tools for the formal resummation of observables sensitive to the

complexity of the non-abelian structure of the strong interaction, specifically observables

with non-global or super-leading logarithms [9–14]. These will play an important role in

advancing parton shower algorithms. In this context, a widely available ‘full colour’ parton

shower would be a powerful tool.

In this letter we comment on the formalism for resumming complex colour structures

employed recently in [1]. A similar approach was previously put forward by one of the

present authors and collaborators [3, 5]. The authors of [1] describe their formalism as

being capable of producing “numerical resummation at full color in the strongly ordered

soft gluon limit.” We will examine this claim in what follows.
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Let us be clear on what we mean by leading and sub-leading colour. A general observable

can be written

Σ(L) =
∞∑
n=0

(Ncαs)
n
n+1∑
m=0

Cn,m(L) , (5.1)

where L is some large logarithm. The coefficients Cn,m can be expanded:

Cn,m = C(0)
n,m︸ ︷︷ ︸

LCΣ

+
1

Nc
C(1)
n,m︸ ︷︷ ︸

NLCΣ

+
1

N2
c

C(2)
n,m︸ ︷︷ ︸

NNLCΣ

+... (5.2)

and a ‘full colour’ shower should be able to compute all of the C
(i)
n,m at a stated logarithmic

accuracy.1 We will show that the formalism of [1] generally fails to compute the NNLCΣ

terms, even in the strongly-ordered soft gluon approximation. Note also that, for many

observables, the NLCΣ term vanishes, so that the dominant sub-leading colour corrections

occur at NNLCΣ. It is also important to appreciate that the colour expansion defined in

Eq. (5.2) is very weak in its ambition. Just as in the case of logarithmic resummation, more

ambitious would be to perform a resummation of towers of enhanced corrections. In which

case an expansion of the form of Eq. (5.2) would be exponentiated.

5.3 Summary of the new ‘full colour’ parton shower

We will briefly summarize the algorithm advocated in [1] and we largely follow their no-

tation. The amplitude for an n-parton hard process is |Mn〉 and |mn+k〉 is the amplitude

after dressing with k soft gluons. Real emissions are accounted for recursively according to

〈mn+k|mn+k〉 = 〈mn+k−1|Γn+k−1(1) |mn+k−1〉 = 〈Mn|Γn(...Γn+k−2(Γn+k−1(1))...) |Mn〉 ,
(5.3)

where

Γn(Γ) = −
n∑

i,j=1

i 6=j

Ti Γ Tj ωij , ωij =
sij
siqsqj

(5.4)

and sij = 2pi · pj in terms of the momenta of the partons i and j. The radiation pattern

for a single emission, q, is then determined by

dσn+k+1

σn+k
= dΦ+18παs

〈mn+k|Γn+k(1) |mn+k〉
〈mn+k|mn+k〉

, (5.5)

where dΦ+1 is a phase-space measure and parametrises the momentum map from a state of

n+ k partons to a state of n+ k + 1 partons. Its details are not needed for our discussion.

1Or in a specified kinematic limit, e.g. the strongly-ordered soft gluon limit.
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Virtual corrections are encoded via a no-emission probability, i.e. via a typical parton-

shower cross-section-level Sudakov factor, defined though unitarity as∫ t

t′

dκ2
ij

σn+k

∫
dσn+k+1

dκ2
ij

Π(κ2
ij , t) = 1−Π(t′, t), (5.6)

where κ2
ij = ω−1

ij plays the role of the ordering variable. This equation has the solution

Π(k)(t′, t) =
n+k∏
i,j=1

i 6=j

Πij(t
′, t), (5.7)

where

Πij(t
′, t) = exp

(
−
∫ t

t′

dκ2
ij

κ2
ij

∫
8πdΦ+1

dκ2
ij

αs
〈mn+k|Ti Tj |mn+k〉
〈mn+k|mn+k〉

)
, (5.8)

is the no-emission probability for a single dipole (i, j). The overall no-emission probability

dresses the real emission matrix elements defined in Eq. (5.3) according to

〈mn+k; t|mn+k; t〉 = Π(k)(t, tk)...Π
(1)(t2, t1)Π(0)(t1, Q

2) 〈mn+k|mn+k〉 , (5.9)

where ti is the ordering variable associated with the ith emission and Q2 is the hard scale.

5.4 The problem with Sudakovs

In this section we show that defining Sudakov factors through cross-section-level unitarity

gives rise to two compounding errors in colour. The first error is in the computation of loops,

the second is in the computation of the interplay between loops and real emissions. These

errors make the inclusion of Coulomb terms impossible, since they always appear as a pure

(abelian) phase in the amplitude. Firstly, we address the computation of loops (resummed

into Sudakov factors). The role of Sudakov factors in full-colour evolution of amplitudes

has been extensively studied [4, 6, 7, 13–17]. Ignoring Coulomb terms (including them only

makes matters more complicated), Sudakov factors2 should dress a general amplitude as〈
mn+k; t

′|mn+k; t
′〉

= 〈mn+k; t| e−
∫ t
t′ dκ

2
∫ 4πdΦ+1

dκ2 αsΓn+k(1)e−
∫ t
t′ dκ

2
∫ 4πdΦ+1

dκ2 αsΓ
†
n+k(1) |mn+k; t〉 ,

=
〈mn+k; t| e−

∫ t
t′ dκ

2
∫ 8πdΦ+1

dκ2 αsΓn+k(1) |mn+k; t〉
〈mn+k; t|mn+k; t〉

〈mn+k; t|mn+k; t〉 ,

6= Π(k)(t′, t) 〈mn+k; t|mn+k; t〉 . (5.10)

2The argument of the Sudakov exponent is the real part of the one-loop cusp anomalous dimension [13,
14]. Depending on the choice of ordering variable, path ordering should be implied. See Section 2 of [6] for
more details.
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The not equals to sign represents the first error in [1].

We will now attempt to explicate this error and its consequences by giving it two different

interpretations. Firstly, we will show how this error can be thought of as a straightforward

linear algebra error. Secondly, we will present some fixed-order calculations that show this

error corresponds to miscalculating NNLCΣ diagrams with two or more loops. To begin the

linear algebra interpretation, let us rewrite the pertinent term from Eq. (5.10) as

〈mn+k; t| e−
∫ t
t′ dκ

2
∫ 8πdΦ+1

dκ2 αsΓn+k(1) |mn+k; t〉
〈mn+k; t|mn+k; t〉

=
Tr
(
|mn+k; t〉 〈mn+k; t| eV

)
Tr (|mn+k; t〉 〈mn+k; t|)

≡ Trnorm

(
eV
)
, (5.11)

where Trnorm is a normalised trace, such that Trnorm1 = 1 6= N where N is the dimension

of the matrix. In this notation we can write

Π(k)(t′, t) = eTrnorm(V). (5.12)

This definition is the source of the error. Motivated by cross-section-level arguments of

unitarity, it is implicitly assumed that

Trnorm

(
eV
)

= eTrnorm(V), (5.13)

which is wrong.

As a trivial example of how this sort of error could give problems, consider Tr e1N = Ne

whereas eTr 1N = eN . However, the error from using a normalised trace is more subtle, since

Trnorme
1N = eTrnorm1N = e. To see where the actual problem arises, consider a toy model

where V = αsNc(1 +N−1
c δV) and δV is not diagonal. In this case, the αsNc1 piece plays

the role of the leading colour part of the Sudakov and αsδV the sub-leading colour part.

The result is that

Trnorm

(
eV
)

= eTrnorm(V) +
∑
n≥2

O
(
αnsN

n−2
c (TrnormδV

2 − (TrnormδV)2)
)
. (5.14)

The important difference arises because (TrnormδV)n 6= Trnorm(δVn) for n ≥ 2. From this

argument it is clear that errors will occur, starting with the computation of NNLCΣ.

Now let us now give a physical interpretation of the error by expanding Eq. (5.11) to

O(α2
s ). The O(α2

s ) term corresponds to dressing a general hard process at fixed order with

two strongly ordered soft loops. The correct amplitude is

n∑
i,j=1

i 6=j

∫ t

t′
dκ2

ij

∫
8πdΦ+1

dκ2
ij

αs

n∑
k,l=1

k 6=l

∫ t

κ2
ij

dκ2
kl

∫
8πdΦ+1

dκ2
kl

αs

× Trnorm (Ti ·Tj Tk ·Tl) 〈mn+k; t|mn+k; t〉 . (5.15)
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Now, we can expand Π(k)(t′, t) 〈mn+k; t|mn+k; t〉 to the same order. We find

1

2

n∑
i,j=1

i 6=j

∫ t

t′
dκ2

ij

∫
8πdΦ+1

dκ2
ij

αs Trnorm (Ti ·Tj)
n∑

k,l=1

k 6=l

∫ t

t′
dκ2

kl

∫
8πdΦ+1

dκ2
kl

αs

× Trnorm (Tk ·Tl) 〈mn+k; t|mn+k; t〉 . (5.16)

These two expressions are only equal when n+ k ≤ 3 because the colour matrices are then

proportional to identity matrices. However, for multiplicities of coloured partons greater

than 3 they differ by NNLCΣ pieces. This error occurs because writing a matrix element in

the form of Eq. (5.16) implicitly assumes that [Ti · Tj ,Ti · Tk] ≈ 0, which is only correct

up to NLCΣ terms. For example, consider the case of e+e− → qq̄g1g2 (for which the NLCΣ

term is zero). To illustrate the point consider the limit that both gluons were emitted from

the quark. In this limit a NNLCΣ error emerges due to the non-vanishing of

α2
s Trnorm (Tq ·Tg1 Tg1 ·Tg2)− α2

s Trnorm (Tq ·Tg1) Trnorm (Tg1 ·Tg2)

= α2
s

N6
c + 3N4

c − 14N2
c + 2

4N2
c (N2

c − 1)2
=

(Ncαs)
2

4

(
1

N2
c

+
5

N4
c

+ ...

)
. (5.17)

Similar errors arise from other emission topologies. The non-vanishing commutator is also

the reason why Coulomb terms do not cancel and, as a result, underpins the origin of

super-leading logarithms [9].

The second error compounds the first. Let us now consider the evolution of an amplitude

to a new scale whilst emitting a single gluon:〈
mn+k+1; t′′|mn+k+1; t′′

〉
=

∫ t′

t′′
dκ2

∫
8πdΦ+1

dκ2
αs 〈mn+k; t| e−

∫ t
t′ dκ

2
∫ 4πdΦ+1

dκ2 αsΓn+k(1)Γn+k(1)

× e−
∫ t
t′ dκ

2
∫ 4πdΦ+1

dκ2 αsΓ
†
n+k(1) |mn+k; t〉 . (5.18)

In order to recombine the two exponentials into a single Sudakov that builds Π(k)(t′, t) one

must assume [Γn+k(1), eV] ≈ 0. For the same reasons as those described above, this is again

a NNLCΣ error. Where the previous error was in the higher order colour of loop diagrams

(≥ 2 loops), this error is in the higher order colour from the interplay between (≥ 1) loops

and emissions. Consequently, the algorithm does correctly generate real emissions in the

absence of any loop corrections. It also correctly generates one-loop contributions that dress

the softest real emission but fails thereafter.
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5.5 Conclusions

QCD colour dynamics beyond leading colour is highly non-trivial and its correct inclusion

generally requires an amplitude-level approach that goes beyond the simple treatment of

virtual corrections presented in [1].
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Chapter 6

Publication: Building a consistent parton
shower

“All’s well that ends better.”

— The Gaffer, J.R.R. Tolkien, The Return of the King

6.1 Preface

Following the completion of our parton branching algorithm several questions opened up.

Of primary concern were: what are the immediate phenomenological applications of our

algorithm, and how does our algorithmic framework fit into the broader literature on QCD

radiation? Parton shower Monte Carlos form the basis for most modern phenomenological

studies of QCD radiation [1–15]. Therefore, we were motivated to link our work to current

parton shower models by deriving the current models from our algorithm. We hoped that

by deriving parton shower models, from a single unifying framework, we might identify the

weaknesses of each model and learn how to improve them.

In the publication that follows we derive the two most common parton shower models:

an angular ordered shower and a dipole shower. The derivation links our understanding

of these two showers, enabling us to find improvements to the dipole shower framework

required by consistency with an angular ordered shower.

Additional comment on context and PanScales

The following paper was published in 2020. Whilst this paper was being finalised, a study

of NLL accuracy in parton showers was released by the PanScales collaboration [7]. There

is a fair degree of similarity between the dipole shower we derive and the PanGlobal shower

with β = 0 presented in [7]. Our recoil schemes in particular are similar in how they

handle transverse momentum. The dipole partitioning they employ also obeys the same
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basic properties as ours: a rapid rise to 1 in the region that the emitted parton becomes

collinear (and a rapid drop to 0 in the anti-collinear region), summing the two halves of

the partitioning gives unity at all points in the phase-space of emission, and in the limit

that both partons in the dipole have the similar energy the partitioning divides the dipole

symmetrically in the event ZMF. The solutions to LC NLL accuracy proposed by [7] and

the solution we propose in the following paper have been broadly accepted, this is in large

part due to the extensive phenomenological work presented by [7].
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Building a consistent parton shower

Authors: Jack Holguin, Jeffrey R. Forshaw, Simon Plätzer

Abstract

Modern parton showers are built using one of two models: dipole showers or angular ordered

showers. Both have distinct strengths and weaknesses. Dipole showers correctly account

for wide-angle, soft gluon emissions and track the leading flows in QCD colour charge

but they are known to mishandle partonic recoil. Angular ordered showers keep better

track of partonic recoil and correctly include large amounts of wide-angle, soft physics but

azimuthal averaging means they are known to mishandle some correlations. In this paper,

we derive both approaches from the same starting point; linking our understanding of the

two showers. This insight allows us to construct a new dipole shower that has all the

strengths of a standard dipole shower together with the collinear evolution of an angular-

ordered shower. We show that this new approach corrects the next-to-leading-log errors

previously observed in parton showers and improves their sub-leading-colour accuracy.

6.2 Introduction

Parton showers simulate the particle content of scattering events at collider experiments

and provide the backbone to modern experimental analyses [1–7]. Yet questions over their

accuracy and on how best to improve them remain. In this paper we present a unified

analysis of the two main approaches to formulating parton showers: dipole showers [2–4, 8]

and angular ordered showers [5, 6, 9]. As a result, we are able to construct a new dipole

shower that does not suffer from the next-to-leading logarithm (NLL) problems suffered by

existing parton showers and has increased next-to-leading colour (NLC) accuracy [10].

In our previous papers [11, 12] we introduced an algorithm for amplitude-level parton

branching (the PB algorithm). The PB algorithm was designed to capture both the soft and

collinear logarithms associated with the leading infra-red singularities of scattering ampli-

tudes without making any approximations on the spin and colour. In [12] we showed how the

PB algorithm can be used to derive the resummation of observables at leading-logarithmic
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accuracy (it has the capacity to be extended to include next-to-leading-logarithms) and

we showed that it gives rise to the collinear factorisation of parton density and fragmenta-

tion functions. In [11] we showed that the colour evolution is equivalent to that of other

approaches [13–16]. The PB algorithm is the starting point for the analysis presented here.

In the next section, we present a brief overview of the algorithm (recapping Chp. 4 and

introducing some new notation) before going on to use it to derive both dipole and angular

ordered showers. In these derivations we keep close track of the approximations made, with

the goal of gaining a solid understanding of the sources for errors in these showers. We focus

on deriving showers in e+e−, though much of the machinery necessary to derive showers for

hadron-hadron processes is also present in this paper. The full discussion of our derivations

is technical and largely handled in Appendix 6.6.

More specifically, in Section 6.3.2, we derive an angular ordered shower starting from

the PB algorithm. In doing so we are able to constrain the recoil functions in the original

PB algorithm, since angular ordered showers provide clear constraints on how momentum

longitudinal to a jet must be conserved in order to get NLL physics correct. In Section

6.3.3 we then derive a dipole shower from the PB algorithm, taking particular care over

the constraints observed from our angular ordered derivation. The result is a dipole shower

that reduces the doubly-logarithmic NLC errors noted in [10] (complete removal of NLC

errors at a given logarithmic accuracy generally requires amplitude-level evolution). Having

pinned down longitudinal recoil, in Section 6.4 we present a scheme (inspired by [17]) for

the transverse recoil. This completes the specification of our shower. We then go on to

recreate the fixed order analysis of [10] and show that our shower corrects the NLL errors

from incorrect transverse recoil previously observed in dipole showers. In Appendix 6.9 we

go further and show that our new shower is sufficient for the correct leading-colour NLL

resummations of thrust and the generating functions for jet multiplicity.

6.3 Evolution equations

6.3.1 Amplitude evolution overview

What follows is a review of the algorithm presented in Chp. 4 introducing some new notation

that is of use throughout this paper. The PB algorithm defines a sequence of transitions

in a Markov chain of amplitude density matrices: A0(q0⊥; {p}0) 7→ A1(q1⊥; {p}1) 7→ ... 7→
An(qn⊥; {p}n). The sequence is illustrated in Figure 6.1. We use n to index the number of

partons dressing the hard process. Each amplitude is defined at a given scale (parametrised

by an ordering variable), this is its first argument. The second argument, after a semi-

colon, specifies its full dependence on the relevant parton momenta (which we often choose
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Figure 6.1: A general term in the Markov chain of amplitude density matrices, An, con-
structed by the PB algorithm. H ≡ |M〉 〈M| is the initial hard process; in this case it has
two hard coloured legs, a and b. Dn dresses an amplitude with the nth emission that is
either soft or collinear. Collinear emissions are emitted symmetrically from the amplitude
and conjugate amplitude, such as gluon 1. Soft emissions appear as interference terms, such
as gluon 2. Γn dresses the amplitude after n soft or collinear emissions with a loop.

to omit). The Markov chain uses the initial condition A0(Q; {p}0) = H(Q;P1, ..., PnH),

where H ≡ |M〉 〈M| is the hard process density matrix for a process of hard scale Q and

with nH hard partons. The hard partons’ momenta form the set {P1, ..., PnH} ≡ {p}0.

The Markov chain terminates on the amplitudes An(µ; {p}n); µ is an infra-red cut-off

and {p}n = {P1, ..., PnH , q1, ..., qn} where q1, ..., qn are the momenta of the n partons that

dress the hard process. Steps in the Markov chain are constructed from the action of

two operators, Dn and Γn. The Dn operators are emission operators; they act as maps

from a state An−1(q⊥; {p}n−1) to a state An(q⊥; {p}n), and they describe the emission of

the nth parton. Operators Γn provide a map from a state dAn(q⊥; {p}n)/dq⊥ onto some

other dÃn(q⊥; {p}n)/dq⊥. Physically, they dress the density operator with (iterated) virtual

corrections. The path-ordered exponent of Γn is an amplitude level Sudakov factor/operator

which we call Va,b:

Va,b = Pexp

(
−
∫ b

a

dq⊥
q⊥

Γn(q⊥)

)
. (6.1)

Va,b evolves a state An(b; {p}n) to a state at a lower scale Ãn(a; {p}n); for a complete

discussion of Va,b see [12]. In [12] we presented the PB algorithm in the following form:

An(q⊥; {p}n) =

∫
dRnVq⊥,qn⊥DnAn−1(qn⊥; {p}n−1)D†nV

†
q⊥,qn⊥

Θ(q⊥ ≤ qn⊥). (6.2)
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The algorithm maps the set of partonic momenta prior to the nth emission ({pn−1}) onto

a new set ({pn}), by adding a parton (qn). In order to conserve energy-momentum, the set

of momenta prior to the emission are adjusted after each emission, i.e. {pn−1} → {p̃n−1}
and {pn} = {p̃n−1 ∪ qn}. We achieve this by integrating over delta functions relating the

two sets of momenta. This is all hidden inside
∫

dRn, which we describe in Appendix 6.6.1

and give examples of in Section 6.4. We also provide definitions of each operator involved

in the evolution in Appendix 6.6.1.

In this paper, it better suits our purposes to work with the PB algorithm expressed

as an evolution equation, i.e. working differentially in the ordering variable, q⊥. Broadly

speaking, qn⊥ is the transverse momentum of the nth parton and it is a function of the

n-parton phase-space. The precise definition of qn⊥ is context dependent and is given in

Appendix 6.6.1. The evolution equation is

q⊥
∂An(q⊥; {p}n)

∂q⊥
=Γn(q⊥) An(q⊥; {p}n) + An(q⊥; {p}n) Γ†n(q⊥)

−
∫

dRn Dn(qn⊥) An−1(qn⊥; {p}n−1) D†n(qn⊥) q⊥ δ(q⊥ − qn⊥).

(6.3)

It is from this equation that we will derive generalised dipole and angular ordered showers.

The phase-space measure for the nth parton emitted in the cascade is variously written

as
d3qn
2Eqn

=
q2
n⊥dqn⊥
2qn⊥

dS
(qn)
2 =

π2q2
n⊥

2αs
dΠn. (6.4)

We typically parametrise the evolution so that real emissions use the phase-space measure

dΠn and loops d ln qn⊥dS
(qn)
2 . From each An we can compute the differential nH +n parton

cross section:

dσn(µ) =

(
n∏
i=1

dΠi

)
Tr An(µ), (6.5)

where µ is either an infra-red regulator that should be taken to zero or the shower cut-off

scale. We will focus on e+e− hard matrix elements, in which case observables are computed

using

Σ(µ; {p}0, {v}) =

∫ ∑
n

dσn(µ)u({p}n, {v}), (6.6)

where u({p}n, {v}) is a measurement function for an observable defined by the set of pa-

rameters {v}.1 The formula for processes involving incoming hadrons is given in Appendix

6.6.1.1.

1Σ(µ; {p}0, {v}) is
∑
δ

dσδ
dB fB,δ(v) in [18].
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θn,jn

in

jn
φn

Figure 6.2: The angles used to derive angular ordering by azimuthal averaging. φn is
the azimuth that is averaged over. In some equations two azimuths are present, in these
situations we give φn a second index, e.g. φn,jn . Angular ordering corresponds to θin,jn >
θn,jn .

6.3.2 Angular ordered shower

In this section we give an overview of the derivation of an angular ordered shower, starting

from Eq. (6.3). The unabridged derivation is given in Appendix 6.6.2. Angular ordering is

derived after averaging over the azimuth of each emitted parton, as measured relative to

their parent parton (and neglecting all subsequent azimuthal correlations). After performing

this averaging in Eq. (6.3), the colour structures can be greatly simplified (a manifestation

of QCD coherence). We exploit this to re-write the evolution in terms of squared matrix

elements, |Mn|2. What follows is a little more detail of the key steps.

1. The Dn operators in Eq. (6.3) describe the emission of soft gluons from dipoles (via

eikonal currents) and the emission of hard-collinear partons. The probability for the

emission of a soft gluon is partitioned as

nin · njn
nin · n njn · n

= Pinjn + Pjnin , where 2Pinjn =
nin · njn − nin · n
nin · n njn · n

+
1

nin · n
,

nin = pin/Ein and n = qn/Eqn , and E is an energy in the event zero-momentum

frame. Note that Pinjn only has a pole when the emission is parallel to in. When

integrated, this term gives rise to a theta function that enforces angular ordering.

2. We average over the emitted parton’s azimuth, 〈...〉1,...,n, such that (for some quantity

f)

〈f〉1,...,n =

∫
dφn
2π

...

∫
dφ1

2π
f(φ1, ..., φn).

The relevant angles are defined in Figure 6.2. We use this operation on both sides of

Eq. (6.3) and spin-average, see Appendices 6.6.2 and 6.7 for details. It is at this point

we see that 〈Pinjn〉n ∝ Θ(θjn,in − θn,in).
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3. We perform a change of variables, qn⊥ → ζn,jn = 1−cos θn,jn , so as to make the angu-

lar ordering explicit. We merge the soft and hard-collinear emission kernels; expressing

them in terms of collinear splitting functions. We also must sort out recoil so that the

longitudinal component of the total momentum in a 1→ 2 splitting is conserved. Fi-

nally, using kinematic variables defined in the event zero-momentum frame2 allows us

to saturate the Θ(θjn,in − θn,in) angular ordering constraint for emissions originating

from the primary hard partons (which are anti-parallel to each other). For all other

emissions, it is necessary to approximate Θ(θjn,in − θn,in) ≈ 1. This approximation

(which corresponds to strong ordering in angles) is equivalent to assuming the angle of

the current emission is smaller than the opening angle of every other dipole, not just

the opening angle of its parent dipole. This is the familiar angular ordering used in

both resummations [19, 20] and parton showers when showering from an e+e− → qq̄

hard process [5]. Strong ordering in angles simplifies the colour structures, so that all

colour-charge operators can be reduced to Casimir, i.e. CF for a quark and CA for a

gluon. The simplified colour reduces the evolution equation to an evolution of matrix

elements, |Mn|2.

The final result is

ζ
∂
〈
|Mn(ζ)|2

〉
1,...,n

∂ζ
≈∑

jn+1

∑
υ

αs

π

∫
dz Pυυjn+1

(z) 〈Θon shell〉n+1

〈
|Mn(ζ)|2

〉
1,...,n

−
∑
υ

αs

π
Pυυjn (zn)

× 〈Θon shell〉n
∫

d4pjn δ
4(pjn − z−1

n p̃jn)
〈
|Mn−1(ζn,jn)|2

〉
1,...,n−1

ζn,jn δ(ζ − ζn,jn). (6.7)

The angular ordering variable ζn,jn = 1−cos θn,jn . Pυυjn (zn) are the usual collinear splitting

functions, e.g. Pqq(zn) = CF
1+z2

n
1−zn . Here we have used υjn to label the species of parton jn

and υ to label the species jn transitions to; if υjn = q then υ = q and if υjn = g then

υ = q, g. zn is the momentum fraction of parton n, i.e. if we have a collinear splitting that

induces jn−1 → jn n then pjn ≈ znpjn−1 and qn ≈ (1 − zn)pjn−1 . Θon shell is a product of

theta functions that ensures each parton is integrated over the phase space corresponding

to a real particle (see Section 6.6.2.2). In the first term, Θon shell is a function of ζ, z

and the n-parton phase space. In the second term Θon shell is a function of ζn,jn , zn and

the (n−1)-parton phase space.
〈
|Mn(ζ; {P1, ..., PnH , (z1, ζ1,j1), ..., (zn, ζn,jn)})|2

〉
1,...,n

is the

azimuthally averaged, squared matrix element for a hard process dressed with n strongly-

ordered partons with a unique branching topology; each emitted parton is specified by a

2i.e. for e+e− → qq̄, zn = p̃in · n/pin · n and n is chosen so that n||Pq̄ for all emissions in the quark jet
and vice versa for the anti-quark jet.
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pair (zm, ζm,jm) and parton jm is the corresponding parent. The delta function enforces

longitudinal momentum conservation; |Mn|2 depends on the momentum after the emission,

p̃jn , and |Mn−1|2 depends on the momentum before the emission, pjn .

Observables in e+e− are computed after summing over emission topologies:

Σ(µ; {p}0, {v}) ≈
∫ ∑

n

∑
j1,...,jn

(
n∏

m=1

dζm,jm
ζm,jm

dzidφi
2π

)〈
|Mn(µ)|2

〉
1,...,n

u({p}n, {v}), (6.8)

where µ should be taken to zero (or the shower cutoff) and for hadron-hadron collisions see

Appendix 6.6.1.1.3

There are several noteworthy points involved in this derivation:

� In order to reduce the colour structures to being diagonal, we made the approxima-

tion Θ(θjn,in − θn,in) ≈ 1 for emissions from partons other than the two primary hard

particles. The approximation is generally only good to LL accuracy (though angular

ordered showers are able to go beyond this when combined with the CMW running

of the coupling [20], e.g. to compute thrust at NLL [19]). Moreover, modern angular

ordered showers retain information on the hard-process, leading Nc colour flows by

working in the dipole frames of initially colour-connected partons. This improves the

approximation for hard processes with greater than two hard jets, since it is then only

required to assume Θ(θjn,in − θn,in) ≈ 1 for emissions from partons other than the

primary hard partons. During the subsequent evolution, traditional angular ordered

showers lose the information on QCD colour flows4, while dipole showers retain it

to all orders at leading Nc. We will exploit this in our dipole shower construction.

Appendix 6.6.2 and 6.6.3 give more details on this point.

� The shower does not yet fully conserve energy and momentum. Rather it only con-

serves energy-momentum longitudinal to a jet. Accounting fully for energy-momentum

conservation is formally sub-leading in many observables. However, it is phenomeno-

logically important and necessary for shower unitarity. Furthermore, if total energy-

momentum conservation is handled incorrectly it can spoil the NLL accuracy of a

shower for some observables [10]. We will return to this in Section 6.4.

� We averaged the azimuthal dependence of the matrix elements. However, this ig-

nores possible azimuthal dependence of the observable. Really one should compute〈
|Mn|2 u({p}n, {v})

〉
1,...,n

. It is therefore important to ask whether〈
|Mn|2 u({p}n, {v})

〉
1,...,n

≈
〈
|Mn|2

〉
1,...,n

〈u({p}n, {v})〉1,...,n
3In the appendix, we sum over branching topologies:

∑
j1,...,jn

〈
|Mn|2

〉
1,...,n

=
〈
|Mn|2

〉
1,...,n

.
4Some azimuthal correlations due to colour correlations can be re-instantiated in coherent branching

algorithms [21, 22].
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is a good approximation. In other words, are the azimuthal dependencies of the

matrix element and the observable correlated? This is clearly an observable dependent

statement. Despite this we can make some progress; we can remove the approximation

and find〈
|Mn|2 u({p}n)

〉
1,...,n

=
〈
|Mn|2

〉
1,...,n

〈u({p}n)〉1,...,n

+

n∑
m=1

σm(
〈
|Mn|2

〉
1,...,n

)σm(〈u({p}n)〉1,...,n) Corm(
〈
|Mn|2

〉
1,...,n

, 〈u({p}n)〉1,...,n)

+ higher order correlations, (6.9)

where σn(x) =
√
〈x2〉n − 〈x〉2n and Corn(x, y) =

〈(x−〈x〉n)(y−〈y〉n)〉
n

σn(x)σn(y) . The first order

correlation term (the second line of Eq. (6.9)) acts as a switch. If it is suppressed

relative to the uncorrelated term then all higher correlations will be too. If it is

not suppressed then higher order correlations may not be. In Appendix 6.3.2 we show

that the higher order correlations are subdominant in the computation of NLL thrust.

This is because the observable is two-jet dominated5 and exponentiates, and so at NLL

accuracy σm(〈u({p}n)〉1,...,n) ≈ 0. However, we also find that the correlation term can

provide a formally leading contribution to non-global logarithms. In Appendix 6.6.2

we observe that the correlation terms contribute leading logarithms to observables like

gaps-between-jets, for which αns L
n logs are leading. The miscalculation of non-global

logarithms by angular ordered showers has previously been subject to numerical study

in [24, 25], where it was observed that leading non-global logarithms are incorrectly

computed by angular ordered showers. However, [24, 25] also observed the error to

be a phenomenologically small effect.

6.3.3 Dipole shower

In the PB algorithm, the mechanism for energy-momentum conservation is unspecified.

This is because interference terms make it difficult to see how recoil should be distributed.

There are no such issues in angular ordered showers. In this case, the naive guess for how to

conserve momentum longitudinal to a jet is correct and is sufficient for the computation of

NLL DGLAP evolution and jet physics [26–31]. We can exploit this to constrain the form

of the recoil (
∫

dRn) so that the PB algorithm is consistent with an angular ordered shower.

In this section, we will derive a dipole shower with this constraint in place from the outset.

The resulting dipole shower is very similar to the dipole showers that are commonplace in

5Observables, such as thrust, for which the leading logarithms quantify small deviations from the two-jet
limit or, more generally, the n-jet limit in the case of n-jettiness [23]
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event generators [2, 3]. However, it has a crucial difference: it does not use Catani-Seymour

dipole factorisation [32].

To derive the dipole shower proceed as follows.

1. Expand Eq. (6.3) in powers of the number of colours Nc and keep only the leading

terms, which go as αnsN
n
c , see [11, 33]. This is necessary as only in the leading colour

limit can we write evolution equations for |Mn|2. For the same purpose, spin average

the evolution, see Appendix 6.7 for details.

2. The colour expansion reduces the evolution equation so that it only depends on dipoles

formed by colour connected partons. We use the form of
∫

dRn to partition each dipole

into two parts, introducing longitudinal momentum conservation to each part of the

dipole in such a way that it is exactly consistent with the angular ordered shower.

This is similar to how dipoles are usually partitioned using Catani-Seymour dipole

factorisation. This partitioning allows us to exchange the sum over dipoles with a

sum over emitting parton colour lines.

3. Use the dipole partitioning to restore the (full-colour) hard-collinear physics that is

correctly computed by an angularly ordered shower. This is uniquely determined by

how longitudinal recoil is assigned. The result is a dipole shower that does not suffer

the NLC errors in radiation ordered in angle noted in [10].

In Appendix 6.6.3 the complete proof is presented. The final result, expressed in the colour

flow basis, is

q⊥
∂|M(σ)

n (q⊥)|2
∂q⊥

≈ αs

π

∑
icn+1

∫
dq

(icn+1,i
c
n+1)

⊥ δ(q
(icn+1,i

c
n+1)

⊥ − q⊥)

∫
dzΘon shell Pυin+1

υin+1
(z) |M(σ)

n (q⊥)|2

− αs

π

∫ (∏
jn

d4pjn

)
Rdipole
icn

Pυinυin (zn) q⊥δ(q
(icn,i

c
n)

n⊥ − q⊥)|M(σ/n)
n−1 (q

(icn,i
c
n)

n⊥ )|2, (6.10)

where σ is a colour flow and σ/n is the same colour flow but with the nth colour line

removed. We use icn to index the (anti-)colour line(s) of parton i in a final state dressed

with n soft or collinear partons, i.e. if parton i is a quark it has a single colour line and

so icn = iqn, if parton i is a gluon it will have a colour and an anti-colour line so icn = ign, i
ḡ
n

respectively. icn is the (anti-)colour line connected to icn. Momenta with colour line indices

are the momenta of the partons associated to that colour line, i.e. picn = pin . The shower is

ordered in dipole pT , defined as

(q
(icn,i

c
n)

n⊥ )2 =
2(picn · qn)(p icn · qn)

picn · p icn
. (6.11)
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The dipole splitting functions are

Pqq(zn) = CF
1 + z2

n

1− zn
, Pgg(zn) =

CA

2

1 + z3
n

1− zn
.

These splitting functions are related to those in the previous section according to

Pgg(z) = Pgg(z) + Pgg(1− z), and Pqq(z) = Pqq(z). Note that to simplify Eq. (6.10) we

have omitted the possibility of g → qq transitions, which is sub-leading in colour and only

contributes a leading logarithm to single-logarithm, collinear-sensitive observables or at

NLL for double-logarithmic observables. In Appendix 6.3.3 we present Eq. (6.10) with this

splitting included. Being explicit, we would write the squared matrix element as

|M(σ)
n (q⊥; {P1, ..., PnH , (z1, q

(ic1,i
c
1)

1⊥ , φ1), ..., (zn, q
(icn,i

c
n)

n⊥ , φn)})|2.

As for the angular ordered shower, this is the squared matrix element for a hard process

dressed with n strongly-ordered partons with a unique branching topology, i.e. each emitted

parton is specified by a triplet (zm, q
(icm,i

c
m)

m⊥ , φm) and is emitted from the parton with colour

line icm. The dipole recoil function is given by

Rdipole
icn

=

(
1

2
+ Asymicni

c
n
(qn)

)
Ricn , (6.12)

where

Ricn = δ4(pin − z−1
n p̃in)

∏
in 6=jn

δ4(pjn − p̃jn) +O(q⊥/Q), (6.13)

and where

Asymicni
c
n
(qn) =

[
T · picn
4T · qn

(q
(icni

c
n)

n⊥ )2

picn · qn
−
T · p icn
4T · qn

(q
(icni

c
n)

n⊥ )2

p icn · qn

]
, and T =

∑
in

pin . (6.14)

Note, in the limit that qn is collinear to picn , Asymicni
c
n
(qn) = 1/2. Thus, in this limit

Rdipole
icn

→ Ricn , as required. Our expression for Rdipole
icn

should be compared to the recoil

function one would find using Catani-Seymour dipole factorisation:

RC.S.
icn

(qn) =

 (q
(icni

c
n)

n⊥ )2p icn · picn
2picn · qn (p icn + picn) · qn

Ricn . (6.15)

Rdipole
icn

→ RC.S.
icn

if we were to make the replacement T → picn + pīcn . Observables are

computed after summing over emission topologies:

Σ(µ; {p}0, {v}) ≈
∫ ∑

n

∑
σ

∑
ic1,...,i

c
n

(
n∏

m=1

dq
(icm,i

c
m)

m⊥

q
(icm,i

c
m)

m⊥

dzidφi
2π

)
|M(σ)

n (µ)|2 u({p}n, {v}).

(6.16)

There are several noteworthy points involved in this derivation:
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� This shower was built around preserving the beneficial features of an angular ordered

shower. In fact, azimuthally averaging the dipole shower reinstates an angular order-

ing. Angular ordered showers provide a sufficient framework to resum global two-jet

dominated observables, such as thrust, up to αns L
2n−1 terms with full colour. Radia-

tion consecutively ordered in angle generated by the dipole shower presented here will

also achieve this accuracy (radiation unordered in angle will differ at sub-leading Nc).

This reduces the doubly logarithmic NLC errors noted in [10], where the particular

example of errors in the thrust observable was given.

� Traditional angular ordered showers fail to correctly compute αns L
2n−1 logarithms

for n > 2 jet observables. This is because soft, wide-angle physics is miscalculated

because of the Θ(θjn,in − θn,in) ≈ 1 approximation, as previously discussed.6 It is

never necessary to make this approximation in the dipole shower since we can use

the underlying colour flows to define variables in the relevant dipole frame, for which

Θ(θjn,in − θn,in) = 1 is always true. Thus we expect the dipole shower to have the

capacity to re-sum αns L
2n−1 logarithms at leading colour.7

� In the soft limit the dipole shower generates iterative solutions to the BMS equation

[16, 34] (the proof is as in Section 3 of [11]). This demonstrates that the shower

computes non-global logarithms at leading colour correctly.

� At this point in our theoretical development, the dipole shower does not completely

conserve energy and momentum. Rather it only conserves momentum longitudinal

to the emitting parton. Accounting for total energy-momentum conservation is not

needed to compute some observables to NLL accuracy, e.g. thrust. Regardless, it

is an important effect that if handled incorrectly can spoil the NLL accuracy of the

shower [10]. Addressing this is the focus of the next section.

6.4 Improving recoil in dipole showers

In this section we will address the problem of energy-momentum conservation in a dipole

shower, though our approach is simple to map onto an angular ordered shower. The mech-

anism for energy-momentum conservation (or recoil scheme) we present lacks a formal

derivation. Rather it is inspired by the study of recoil by Bewick et al. [17]. Bewick et

6Modern implementations of angular ordered showers do use colour flow information from the hard pro-
cess, allowing them to compute αns L

2n−1 terms at leading colour for global n > 2 jet dominated observables
by deriving appropriate initial conditions from the respective large-N colour flows of the hard process [5].

7Eq. (6.10) as it stands only provides a sufficient framework for this resummation. It is not yet sufficient
in itself: one would need to enhance the shower with a running coupling and, possibly, higher order splitting
functions.

209



picn picn zpicn + k⊥ +O(k2)

(1− z)picn

O(k⊥) unbalanced momentum
pīcn

PJ P̂J

Boost to ZMF to conserve energy
rescalemomentum

P̃J

Figure 6.3: A summary of the dipole shower global recoil scheme (a scheme for energy-
momentum conservation). In words: A new particle is emitted which leaves some momen-
tum unbalanced (in the direction of the colour connected parton and in the plane transverse
to the dipole); perform a Lorentz boost to the new ZMF, and re-scale the jet momenta in
such a way that the rescaling does not change the k⊥ of the emission. This leaves an
n-parton ensemble with the same total energy and total momentum as the n − 1-parton
ensemble.

al. analysed several approaches to recoil in angular ordered showers, reproducing some of

the fixed-order checks of [10] and performing further numerical checks. They observed that

among the better performing recoil schemes are globally defined schemes; schemes that re-

distribute momentum across an entire jet or event. From our perspective, a global scheme

is also preferable, as it is more simply implemented in a dipole shower. Momentum con-

servation on an emission-by-emission basis is also desirable when it comes to matching to

fixed-order and merging of hard processes of different jet multiplicity. In the two-jet limit,

our scheme becomes that which is analysed in [17] and implemented in HERWIG’s angular

ordered shower [5]. For comparison, in Appendix 6.8 we summarise the implementation

and limitations of a spectator recoil scheme, as implemented in [2, 3, 35].

We start with an observation that is key to all global recoil schemes: when a parton

is emitted from another, the parent parton must have been off-shell. We parametrise the

amount by which it is off shell by giving it a virtual mass. A parton shower approximates

the sum over the multiplicities of QCD radiation dressing a given hard process. Each term
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in the sum should have the same total energy and the same zero-momentum frame (ZMF).

Naively adding a parton to an n − 1 on-shell parton state changes the total energy and

ZMF. We will redistribute parton momenta as simply as possible in order to restore the

ZMF and total energy. We will do this using a single global Lorentz boost and a single

rescaling that preserves the transverse momentum ordering. This procedure is illustrated

in Figure 6.3. Below we will spell out how to implement this recoil scheme. The simplicity

of the scheme can get lost in its mathematical definition and so we encourage the reader to

keep Figure 6.3 in mind.

Let us now make Figure 6.3 quantitative. We require that energy is conserved,

Ebefore = Eafter = Q where

n−1∑
in

√
p2
in

+m2
in
≡

n−1∑
J=1

√
P2
J +m2

J = Ebefore,

n−1∑
in

√
p̃2
in

+m2
in

+
√

q2
n +m2

qn ≡
n−1∑
J=1

√
P̃2
J + P̃ 2

J = Eafter, (6.17)

and that momentum is conserved

n−1∑
J=1

PJ =

n−1∑
J=1

P̃J = 0, (6.18)

where, in the ZMF, PJ is the 3-momentum of Jth jet amongst the n − 1 jets constructed

from an n−1 parton ensemble, i.e. PJ = pin for J = in (recall that in labels parton i in an

n-parton ensemble). We introduce the extra notation because it is the momentum of jets

that we particularly focus on conserving. P̃J is what we wish to find; it is the momentum of

the Jth jet now constructed from an n parton ensemble after the necessary redistribution

of momenta (all jets contain a single parton except for one which contains two partons;

the original parton and the newly added parton). mi is the mass of parton i, and mi = 0

since we consider only massless partons. P̃ 2
J is the virtual mass squared of the Jth jet, it

also is zero for all jets other than the jet built of two partons. We can achieve our desired

redistribution by a Lorentz boost, Λµν , from the ZMF of the n− 1 parton ensemble to the

ZMF of the n parton ensemble. Once in this frame, we re-scale all the jet momenta by a

global factor κicn (the index will prove necessary later on) so as to preserve the centre-of-

mass energy. In all, we wish to find P̃J µ = κicnΛ ν
µ P̂j ν where P̂j is the four-momentum of

the Jth jet constructed from the n parton ensemble before the redistribution of momenta.

We place a hat on all intermediary kinematic variables (i.e. those after the emission but

before redistribution of momenta). We denote the 3-momentum of P̃J as P̃J = κicnΛP̂J .
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Λµν is specified by solving Eq. (6.18) and κicn is specified by solving

Q =
n−1∑
J=1

√
P̃2
J + P̃ 2

J =
n−1∑
J=1

κicn

√
(ΛP̂J)2 + P̂ 2

J , (6.19)

which comes from requiring Ebefore = Eafter = Q.

We will express this recoil scheme in terms of the shower kinematics and solve for P̃J .

We use the following Sudakov decomposition for a 1→ 2 (picn → p̂icn q̂n) parton transition:

q̂n = (1− zn)picn + k⊥ +
(q

(icni
c
n)

n⊥ )2

1− zn
p icn

2picn · p icn
,

p̂icn = znpicn , (q
(icni

c
n)

n⊥ )2 = −k2
⊥, k⊥ · picn = k⊥ · p icn = 0. (6.20)

We label the jet in which the splitting takes place as PJ emit, so that PJ emit = picn . From

Eq. (6.20):

P̂ 2
J emit =

zn(q
(icni

c
n)

n⊥ )2

(1− zn)
, P̂J emit = PJ emit + k⊥ +

(q
(icni

c
n)

n⊥ )2

(1− zn) 2picn · p icn
p icn

.

For all jets other than “J emit” P̂J = PJ and P̂ 2
J = 0. The Lorentz boost, Λµν(icn, i

c
n), can

now be found. The boost is in the direction of p icn
and is given by the boost velocity

βZMF =
P̂J emit −PJ emit∑

J

√
P̂2
J + P̂ 2

J +
√
|P̂J emit −PJ emit|2 + k2

⊥

. (6.21)

Finally we must solve for κicn using Eq. (6.19),

κicn =

∑n−1
J=1

√
P2
J + P 2

J∑n−1
J=1

√
(ΛP̂J)2 + P̂ 2

J

. (6.22)

Note that in both the soft and collinear limits κicn → 1.

So now we have everything we need to compute P̃J = κicnΛP̂J . We can put this in the

dipole shower by introducing a recoil function

Ricn =δ4
J
(
p̃icn − znκicn Λ(icn, i

c
n)picn

) ∏
jn 6=in

δ4
J
(
κin Λ(icn, i

c
n)pjn − p̃jn

)
, (6.23)

where δ4
J (f(picn)) is a delta function normalised against its Jacobi factor:

δ4
J (f(picn)) = δ4(picn −X),

where X is the (unique) solution to f(X) = 0. Note that in an implementation of the

algorithm there is never any need to invert the argument of the delta function to solve for

picn since p̃icn is what is needed going forwards. In Eq. (6.10), the delta functions simply
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kill all of the integrals over pjn. For the sake of being explicit, the emitted parton has

momentum

qn = (1− zn)κicn Λ(icn, i
c
n)picn + k⊥ +

(q
(icni

c
n)

n⊥ )2

κicn (1− zn)

Λ(icn, i
c
n)p icn

2picn · p icn
. (6.24)

Note that both zn and dq
(icni

c
n)

n⊥ /q
(icni

c
n)

n⊥ are Lorentz and jet scaling invariants. This means

that all of the emission kernels remain unchanged and so the implementation of this recoil

scheme only enters so as to ensure that the real emissions continue to be integrated over

the correct phase-space (and through the corresponding Θon shell for the virtuals).

In order to implement the proposed shower computationally we must specify the phase-

space boundary for real emissions. In our previous papers, [11, 12, 35], we gave general

formulae for the computation of phase-space boundaries, derived by ensuring the emit-

ted parton is on-shell and has less energy than its parent. Applying these to the recoil

prescription we present here, we find that

zn ∈
(

0, 1− (q
(icni

c
n)

n⊥ )2

2picn · p icn

)
, φ ∈ [0, 2π), (6.25)

up to terms of the order (1 − κicn); in the following section, we show that these terms are

negligible at NLL accuracy. Here φ is the trivial azimuth in the dipole frame. Thus, the

complete dipole shower is defined by Eq. (6.10)8, Eq. (6.12), Eq. (6.23), and Eq. (6.25).

6.4.1 NLC and NLL accuracy of the global recoil

In this section we will discuss the colour accuracy of our new dipole shower and test its

logarithmic accuracy.

Firstly, the sub-leading colour contained in the shower is inherited from its link to angu-

lar ordered showers. In fact, when next-to-leading order splitting functions and the CMW

running coupling are introduced the collinear radiation generated by the dipole shower is

equivalent (after azimuthal averaging) to that generated by the coherent branching algo-

rithm of [19, 20] up to the handling of transverse recoil. We discuss this in more detail

in Appendix 6.9.1 where we argue that differences due to transverse recoil do not effect

next-to-leading logarithmic accuracy in the angular-ordered limit. This means that the

dipole shower can be used to compute the leading-colour NLL resummation of thrust, again

see Appendix 6.9.1. Correct colour factors will also be assigned to the leading logarithms

associated with a broad class of observables that can be computed fully at LL accuracy

in the angular-ordered approach (for which radiation unordered in angle generate NLLs).

8Or better still, Eq. (6.83), which also includes g → qq transitions.
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Outside of this limit, only leading colour accuracy is guaranteed. This is an improve-

ment on existing dipole showers, which have been noted to incorrectly compute NLC at

LL accuracy [10], even including errors in logarithms originating from radiation ordered in

angle. Further improvements on sub-leading colour, for more general observables, require

amplitude evolution. We doubt that substantial further improvements in the accuracy of

sub-leading-colour effects can be achieved in either the dipole shower or coherent branching

frameworks. There is already a body of literature exploring possible resolutions to the NLC

errors in dipole showers [36–38]. Our approach of using angular ordering to improve dipole

evolution is similar to that of [36, 37], though there it was largely explored only in the

context of hadronisation and the computation of jet multiplicity observables. We also note

that, by partitioning dipoles so as to identify a unique parent, we expect the sub-leading

logarithms associated with unresolved soft and collinear radiation to be captured using the

CMW scheme for the running coupling [18, 20].

We will now proceed to evaluate the logarithmic accuracy of the recoil scheme discussed

in the previous section. We do so in two ways. Firstly by re-creating the analysis of Section

4.2 in [10]. In this analysis, several event shape observables, defined by functions V ({p}),
are considered at fixed order. The analysis tests the sub-leading contributions from the

soft region found in the limit that the transverse momentum of the second emission is of

similar magnitude to that of the first but both are small relative to the hard scale. This

limit is considered because it is the limit where dipole showers have previously been shown

to mishandle recoil. Specifically, we calculate the difference between the α2
s LC, NLL con-

tribution to the observable using the fixed-order amplitude, and the shower contribution:

δΣ(L) = Σ
(α2

s )
shower(L)− Σ

(α2
s )

FO (L). As the observables exponentiate, we are looking for dif-

ferences of the form α2
sN

2
cL

2 at fixed coupling since these terms contribute to the NLL

exponent.

Our second check of logarithmic accuracy is to compare against two known NLL resum-

mations: Thrust and generating functions for jet multiplicity. This is done in Appendix

6.9.

Let us proceed to compute δΣ(L) in the doubly-soft limit in e+e− → qq̄. We label the

quark as parton a and the anti-quark as parton b. In the same way that we label partons

with indices in, each parton label is given a subscript stating the ‘current’ multiplicity

of radiated partons (since a parton’s momentum changes to conserve momentum as more

214



partons are radiated). From Eq. (6.10) we can compute the first two soft emissions and find

δΣ(L) = C2
FσnH

∫
dΠ2 dΠ1

∫
dq

(a2,12)
2⊥ δ(q

(a2,12)
2⊥ − q2⊥)

∫
dq

(a1,b1)
1⊥ δ(q

(a1,b1)
1⊥ − q1⊥)

×Θ(q1⊥ − q2⊥)

[ ∫ 2∏
n=1

∏
kn

d4pkn Rsoft
a212

θa212 Rsoft
a1b1 θa1b1Θ

(
e−L − V ({p}2)

)
− θcorrect

a212
θcorrect
a1b1 Θ

(
e−L − V ({p}correct)

) ]
, (6.26)

where σnH is the hard process cross section. θinjn is the product of theta functions defin-

ing the on-shell requirements for emission from dipole injn (previously given without in-

dices as Θon shell). {p}correct are the momenta used to compute Σ
(α2

s )
FO (L) and θcorrect

injn
=

θinjn({p}correct). Rsoft
injn

is the combined dipole recoil function, Rsoft
injn

= Rdipole
icn

+ Rdipole
jcn

.

Before considering any specific event shape, we can simplify our expressions further by us-

ing the recoil delta functions to perform some of the integrals. These fix the final state

momenta:

{p}2 = { ˜̃pa, ˜̃pb, q̃1, q2}, where ˜̃pa = κa2κa1 Λ(a2, 12)Λ(a1, b1)pa,

˜̃pb = κa2κa1 Λ(a2, 12)Λ(a1, b1)pb,

q̃1 = κa2 Λ(a2, 12)q1, q2 unmodified,

˜̃Q = κa2κa1Q, Q̃ = κa1Q, Q = O(2pa · pb). (6.27)

q1 and q2 are defined with respect to the rescaled momenta ˜̃pa, ˜̃pb and so have appropriately

modified limits on their phase space. We employ the ‘equally soft’ limit (Q � q1⊥, q2⊥;

q1⊥ & q2⊥) which reduces the complexity of the phase space limits and removes dependence

on longitudinal recoil. In total, we find that

δΣ(L) ≈4α2
s C2

F σnH

π2

∫ Q

0

dq
(a2,12)
2⊥

q
(a2,12)
2⊥

∫ Q

0

dq
(a1,b1)
1⊥

q
(a1,b1)
1⊥

∫ ln Q̃/q
(a1,b1)
1⊥

− ln Q̃/q
(a1,b1)
1⊥

dy1

∫ ln ˜̃Q/q̃
(a2,12)
2⊥

− ln ˜̃Q/q̃
(a2,12)
2⊥

dy2

×
∫ 2π

0

dφ2

2π
Θ
(
e−L − V ({p}2)

)
Θ(Q− q(a1,b1)

1⊥ )Θ(κ−1
a2
q

(a1,b1)
1⊥ − q(a2,12)

2⊥ )

− 4α2
s C2

F σnH

π2

∫ Q

0

dq
(a1,b1)
1⊥

q
(a1,b1)
1⊥

∫ q
(a1,b1)
1⊥

0

dq
(a2,12)
2⊥

q
(a2,12)
2⊥

∫ lnQ/q
(a1,b1)
1⊥

− lnQ/q
(a1,b1)
1⊥

dy1

∫ lnQ/q
(a2,12)
2⊥

− lnQ/q
(a2,12)
2⊥

dy2

×
∫ 2π

0

dφ2

2π
Θ
(
e−L − V ({p}correct)

)
. (6.28)

In the ‘equally soft’ limit we are considering

κin ≈ 1−O(q2
⊥/2Q

2). (6.29)
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The κ dependence in the shower integrals (lines 1 and 2 of Eq. (6.28)) causes potentially

incorrect O(q2
⊥/2Q

2) terms in the phase space limits.9 These integrate to give dilogarithms

in q2
⊥/2Q

2 which do not contribute α2
sL

2 terms but rather α2
sL

0 terms that go to zero in

both soft and collinear limits.10 Thus, with NLL accuracy, Eq. (6.28) reduces to

δΣ(L) ≈ 4α2
s C2

F σnH

π2

∫ Q

0

dq
(a1,b1)
1⊥

q
(a1,b1)
1⊥

∫ lnQ/q
(a1,b1)
1⊥

− lnQ/q
(a1,b1)
1⊥

dy1

∫ q
(a1,b1)
1⊥

0

dq
(a2,12)
2⊥

q
(a2,12)
2⊥

∫ lnQ/q
(a2,12)
2⊥

− lnQ/q
(a2,12)
2⊥

dy2

×
∫ 2π

0

dφ2

2π

[
Θ
(
e−L − V ({p}2)

)
−Θ

(
e−L − V ({p}correct)

)]
. (6.30)

Note that δΣ(L) is only non-zero because {p}2 6= {p}correct.

We will now consider several specific observables, still following [10]. Dasgupta et al.

first consider the two-jet rate in the Cambridge algorithm. They argue that for this observ-

able V ({pi}) = maxi{pi⊥}. We notice that q
(an,bn)
n⊥ is a Lorentz invariant. As a consequence

q
(an,bn)
n⊥ is always larger than q

(an+1,bn+1)
n+1⊥ for ourrecoil scheme, up to the neglected diloga-

rithmic piece. Therefore we find V ({p}correct) = V ({p}2) = q
(a1,b1)
1⊥ and that the α2

sN
2
cL

2

terms are correctly computed. Similarly, V ({p}2) is also equal to the correct measurement

function (up to neglected poly-logs) for the ‘fractal moment of energy-energy correlation’

(FC1) which, in the soft-collinear limit, is given by V ({pi}correct) =
∑

i pi⊥. In the limit we

are studying V ({pi}2) = κa2q
(a1,b1)
1⊥ + q

(a2,12)
2⊥ ≈ q(a1,b1)

1⊥ + q
(a2,12)
2⊥ = V ({pi}correct). In fact, it

will be the case that for all observables built from Lorentz invariant and jet rescaling insen-

sitive quantities11 our recoil scheme is sufficient for the computation of α2
sN

2
cL

2 terms. This

being because the scheme is constructed by a Lorentz boost and a formally sub-leading re-

weighting. We expect that for suitably simple observables this accuracy will also extend to

higher orders, see the resummations in Appendix 6.9. This discussion should be contrasted

with that in Appendix 6.8, where we perform the same tests with a spectator recoil scheme

[2–4]. In agreement with [10], we find that with such a recoil scheme these observables

return V ({pi}2) 6≈ V ({pi}correct). This generates NLL errors.

9The algebra to show this is awkward but as κin is simply a ratio of energies, we can argue that it must
be an even polynomial when expanded in small q⊥.

10The recoil terms in these integrals are reducible to a few general forms. One such form is∫ 1

a

dx

x
ln2 x ln

(
x

(
1− x2ε

2

))
=

1

4

(
Li4

(
a2ε

2

)
+ 2 ln2(a)Li2

(
a2ε

2

)
− 2 ln(a)Li3

(
a2ε

2

)
− ln4(a)− Li4

( ε
2

))
where a parametrises the observable, x ∼ q⊥/Q and ε parametrises the coefficients to the O(q2

⊥/2Q
2) effects

from our recoil scheme; ε = 0 gives the leading log result. Note that all terms other than the LL result are
not enhanced in the a→ 0 limit. See Appendix 6.9.1 for more details.

11Observables not sensitive to the absolute magnitude of energy deposited in a part of a detector.

216



6.5 Conclusions

Starting from a general algorithm designed to capture both the soft and collinear logarithms

associated with the leading infra-red singularities of scattering amplitudes, we have derived

an angular ordered shower and a dipole shower. Our dipole shower is novel in the way

that it partitions each dipole in order to account for longitudinal momentum conservation.

This partitioning is constructed so as to ensure that the shower implements longitudinal

momentum conservation in precisely the same way as the angular ordered shower does. This

new dipole partitioning is similar to, but not the same as, Catani-Seymour partitioning. We

complete our dipole shower by specifying the transverse recoil and phase-space. The result

is a new dipole shower that formally represents an increase in accuracy when compared

to the traditional parton shower models employed by many current event generators [2–6,

8, 39, 40]. For example it will compute radiation ordered in angle at full-colour, and the

leading-colour contribution associated with non-global logarithms, i.e. it will reproduce the

correct leading-colour, wide-angle, soft radiation pattern beyond the two, three, and four-jet

limits whilst retaining complete leading-colour, global NLLs in the two-jet limit. To our

knowledge this is not achieved by other parton shower models.

However, our shower still has substantial limitations. In large part that is because it

is based on a cross-section-level, semi-classical picture. Operating at cross-section level ne-

cessitates that the shower generally be defined only at leading-colour. General full-colour

resummation means a more complicated, amplitude-level, approach [12–15, 41–43]. Cer-

tainly it would be of considerable interest to compare a parton shower defined at amplitude

level, such as the CVolver shower that is currently under construction [44, 45] or the De-

ductor shower [46], with the improved dipole shower we present here.

6.6 Appendix: The evolution equations supplementary ma-
terial

6.6.1 Amplitude evolution detailed definitions

Before we proceed with the technical details of the PB evolution, it is necessary that we

properly introduce the notation we will later be relying on. In these appendices we will often

find ourselves manipulating expressions relating states of differing parton multiplicities (for

instance Eq. (6.3) relates an nH + n − 1 state to a an nH + n) state. We must label

partons and the multiplicity of state they come from carefully since the state’s multiplicity

determines both the dimension of the colour-helicity space in which the state resides and the

momenta of the constituent partons. To this end, we label partons with indices in, jn, kn, ...

which run as in, jn, ... ∈ {1H, 2H, ..., nH} ∪ {1, 2, ..., n − 1}, where {1H, 2H, ..., nH} is the set
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of hard partons and {1, 2, ..., n − 1} the set of partons emitted during the evolution. We

use υin ∈ {q, g} to label the species of a parton in. The momentum of the ith parton in

a state of multiplicity nH + n − 1 is pin ∈ {p}n−1 = {P1, P2, · · ·PnH , q1, · · · qn−1}. The

emission operator, Dn, adds a new (nth) parton, of four-momentum qn, to the state. After

considering energy-momentum conservation, the parton momentum, qn, is added to the

set {p}n−1, to produce the set {p}n. dRn acts in conjunction with Dn to map {p}n−1 to

a new set, {p̃}n−1. The difference between these two sets is determined by the way we

implement energy-momentum conservation (i.e. the recoil prescription). Following this,

{p}n = {p̃}n−1 ∪ {qn} is the set of n momenta including the last emission, qn.

Many of the objects used in this paper carry complicated dependencies. To simplify

some lengthy expressions, we will only provide the full list of arguments in an object’s

definition. In definitions, we will write every object as some f(x; {y}), where x is the

evolution variable on which f depends and the set {y} itemises the complete dependences

of f . In all expressions subsequent to the definition we will drop the {y} dependence and

only write f(x). We can do this safely as, following the initial definition of an object, each

object can always be uniquely determined by the subscripts and superscripts we provide.

In Section 6.3.1 we gave an overview of the roles of Dn,
∫

dRn and Γn. Let us now

define these operators more carefully12

Dn(qn⊥; qn ∪ {p̃}n−1) O D†n(qn⊥; qn ∪ {p̃}n−1) =∑
in,jn

∫
δq

(in,jn)
n⊥ (qn⊥) Sinn O Sjn †n +

∑
in

∫
δq

(in,~n)
n⊥ (qn⊥) Cin

n O Cin †
n , (6.31)

where O is some operator in the colour-helicity space and where we have used a shorthand

notation to help save space

δx(y) ≡ dx δ(x− y). (6.32)

Delta functions of this form are used to carry the frame dependence of the ordering variable

in a compact form. Physically, Sinn emits a soft parton from the parton labelled in. These

soft partons take the form of interference terms in the evolution. Note that, due to our

choice of ordering variable, Sinn cannot completely factorise from Sjn †n as both depend on

the momenta (q
(in,jn)
n⊥ )2 (defined below). They have been written in this separated form to

reflect their operator structure in the colour-helicity space. Cin
n emits a collinear parton

from the parton labelled in. The following two definitions for transverse momenta are used

as ordering variables for soft and collinear emissions respectively,

(q
(in,jn)
n⊥ )2 =

2(pin · qn)(p jn · qn)

pin · p jn
, and (q

(in,~n)
n⊥ )2 =

2(pin · qn)(n · qn)

pin · n
, (6.33)

12For pedagogical reviews of the colour-helicity operators relevant in the definition of these operators see
[11, 12, 47].
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where n is a light-like reference vector. The choice of n is determined by how recoil is

handled in the evolution and is often taken to be in the backwards direction relative to

pin . Strictly speaking, recoil cannot be entirely factorised from each Dn however the way

in which it acts in each Dn follows a simple pattern. Thus we have used the recoil measure

dRn as an abridged notation. It is defined to act by the following rules

dRn Sinn O Sjn †n ≡
(∏

in

d4pin

)
Rsoft
injn Sinn O Sjn †n ,

dRn Cin
n O Cin †

n ≡
(∏

in

d4pin

)
Rcoll
in Cin

n O Cin †
n . (6.34)

Rsoft
injn

and Rcoll
in

contain the necessary delta functions and kinematic pre-factors needed to

account for energy-momentum conservation. They are discussed in Section 6.4 and further

examples are given in [12].13 Explicit expressions defining Sinn and Cin
n are lengthy and can

be found in [12]. Finally,

Γn(q⊥; {p}n) =
αs

π

∫
dS

(q)
2

4π
1
2D2

n(q⊥) Θon shell +
αs

2π

∑
in+1,jn+1

Tgin+1
· Tgjn+1

iπ δ̃in+1jn+1 ,

1
2D2

n(q⊥; q ∪ {p}n) =

∫
dRn+1

1
2Final [Dn+1(q⊥) ·Dn+1(q⊥)] . (6.35)

Final[...] indicates that the enclosed operators should act on any incoming partons as if they

were in the final state (see Eq. A.1 in [12], which defines the operators from which Dn+1

is constructed, in this context Final[δinitial
j ] = 0 and Final[δfinal

j ] = 1 for all j). Θon shell is

our short-hand notation for the inclusion of the theta functions necessary for restricting the

range of integration to the phase-space for an on-shell parton. These are also specified fully

in [12] (see functions θij and θi in Section 2). δ̃in+1jn+1 = 1 if both partons i, j are incoming

or both outgoing and δ̃ij = 0 otherwise.

We ought to remark on the fact that qn⊥ is not equivalent to the dipole transverse

momentum derived in [48, 49]. The latter was derived using fixed-order perturbation theory

and is an amplitude-level object that acts to determine the limits on loop integrals. We

have not yet figured out a way to include this physics within our algorithm, though we note

that it is a higher-order effect.

13In [12] Rsoft
injn and Rcoll

in are written as Rsoft ∗
n jn Rsoft

n in and Rcoll ∗
n in Rcoll

n in respectively.
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6.6.1.1 Computing observables

In the main text our focus is on dressing e+e− → qq̄. The formalism is more general and

can be used to compute observables in hadron-hadron collisions using

dσn =

(
n∏
i=1

dΠi

)
Tr An(µ; {p}n),

Σ(µ; {p}0, {v}) =

∫ ∑
n

dσn ?

{ ∏
i∈initial

fυi

(
xi

zi1zi2 ...
, µ

)}
un({p}n, {v}), (6.36)

where fυi(xi, µ) are the parton distribution functions (PDFs) with momentum fractions xi

and un({p}n, {v}) is the (nH + n)-body measurement function for an observable described

by parameters vi ∈ {v}. Note that Σ is differential in hard process momenta, and that

it should be multiplied by the necessary flux factors as necessary. The star operation is

defined in Section 4 of [12] but in essence assigns PDF type to a given partonic leg (gluon

or quark). In this paper, every concrete use of our formalism concerns the showering of an

e+e− hard process and so we will not expand further on the treatment of DGLAP evolution.

6.6.2 Derivation of the angular ordered shower

This section derives an angular ordered shower from Eq. (6.3). It is split in three parts. Part

one forms the main derivation, however it will state some results without proof (when these

results are themselves laborious to prove). The subsection following presents the limitations

of this derivation. Finally the last subsection fills in the gaps. We will focus on e+e− → qq̄

as the hard processes, and at the end we will sketch the extension to other hard processes.

We begin with the amplitude evolution equation, Eq. (6.3), and introduce an azimuthal

averaging operation 〈〉1,...,n which averages the lab frame dipole azimuths of partons 1 to n,

i.e.

〈f〉1,...,n =

∫
dφn
2π

...

∫
dφ1

2π
f(φ1, ..., φn).

Implicit in this operation is also spin averaging when acting on spin-dependent operators,

as discussed in Appendix 6.7. To keep things simple, we will proceed in this section without

discussing any dependence on the observable, which means we are implicitly assuming the

observable is not a function of the parton azimuths. We devote the next sub-section to
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addressing this. After averaging, Eq. (6.3) becomes

q⊥
∂ 〈An(q⊥)〉1,...,n

∂q⊥
= Γn(q⊥) 〈An(q⊥)〉1,...,n + 〈An(q⊥)〉1,...,n Γ†n(q⊥)

−
∫ ∏

in

d4pin
∑
in,jn

∫
δq

(injn)
n⊥ (qn⊥) 〈sin,jn〉n Tin 〈An−1(qn⊥)〉1,...,n−1 T†jn q⊥ δ(q⊥ − qn⊥)

−
∫ ∏

in

d4pin
∑
jn

∫
δq

(jn,~n)
n⊥ (qn⊥) 〈cjn〉n Tjn 〈An−1(qn⊥)〉1,...,n−1 T†jn q⊥ δ(q⊥ − qn⊥),

(6.37)

where sin,jn and cjn are the spin-averaged kinematic factors associated with a soft or

collinear emission respectively (they will be manipulated into the form of collinear splitting

functions shortly). They are defined through the relations

sin,jn Tjn · Tin ≡
1

2

∑
hin

〈hin |Sjnn · Sinn |hin〉 Rsoft
injn ,

cjn Tin · Tin ≡
1

2

∑
hin

〈hin |Cin
n ·Cin

n |hin〉 Rcoll
in . (6.38)

We observe that cjn = 〈cjn〉n provided Rcoll
in

is independent of the emission’s azimuth (spin

correlations provide the only azimuthal dependence for collinear emissions). In Section

6.6.2.2 we show that14∫
δq

(injn)
n⊥ (qn⊥) 〈sin,jn〉n =

−
∫ ∏

in

d4pin

(
〈Pinjn〉φn,in 〈Θon shell〉φn,in + 〈Pjnin〉φn,jn 〈Θon shell〉φn,jn

)
Rsoft
injn +O(1),

(6.39)

where

〈Pinjn〉φn,in =
Θ(θjn,in − θn,in)

1− cos θn,in
. (6.40)

The angles in Eq. (6.40) are defined in Figure 6.2. 〈Θon shell〉φn,in contains the necessary

theta functions to constrain the phase-space of parton qn so that it is real and on-shell,

encoding the phase-space limits for energy conservation. Its lengthy definition can also be

found in Section 6.6.2.2. The presence of the functions 〈Pinjn〉φn,in enforces an angular

ordering, secondary to the k⊥ ordering. To bring this ordering to the fore, we now change

variables:

q2
⊥ = E2

n sin2 θ = E2
n(1− (1− ζ)2), q⊥

∂

∂q⊥
=
ζ(2− ζ)

1− ζ
∂

∂ζ

14Under the assumption that Rsoft
injn is independent of the azimuth up to O(1) terms, which is true for the

two recoil schemes we discuss in this paper.
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and define ζn,in = 1− cos θn,in . In these new variables Eq. (6.37) becomes15

ζ
∂ 〈An(ζ)〉1,...,n

∂ζ
≈ Γn(ζ) 〈An(ζ)〉1,...,n + 〈An(ζ)〉1,...,n Γ†n(ζ)

+

∫ ∏
in

d4pin
∑
in,jn

2 〈Pinjn〉φn,in 〈Θon shell〉φn,in R
soft
injn Tin 〈An−1(qn⊥)〉1,...,n−1 T†jn ζn,in δ(ζ − ζn,in)

−
∫ ∏

in

d4pin
∑
jn

〈Pjn〉n 〈Θon shell〉φn,jn R
col
jn Tjn 〈An−1(qn⊥)〉1,...,n−1 T†jn ζn,jn δ(ζ − ζn,jn).

(6.41)

Here we have used

〈cjn〉n ≈ 〈Pjn〉n 〈Θon shell〉φn,jn R
col
jn ,

where 〈Pjn〉n is a sum over collinear splitting functions with the soft divergences subtracted

away, e.g. when jn is a quark, 〈Pjn〉n (z) = (1 − z)Pqq/2 where Pqq(z) = −(1 + z). The

details can be found in Appendix A of [12]. We will formulate the evolution in terms of the

full splitting functions once equations have been reduced enough that it becomes convenient

to do so.

Using the strongly ordered approximation, ζ1 � ζ2 � ...16,

〈Pij〉φn,in =
Θ(θjn,in − θn,in)EqEi

q · pi
≈ 1

ζq,i
. (6.42)

Also using strong ordering, the leading part of 〈Θon shell〉φn,in does not depend on jn and

Rsoft
injn

can be chosen so that its leading part can be factorised from the sum over jn as

1

ζn,in
〈Θon shell〉φn,in R

soft
injn ≈

1

ζn,in
〈Θon shell〉φn,in R

col
in .

Using these simplifications we can apply colour conservation and, by re-labelling indices,

write

ζ
∂ 〈An(ζ)〉1,...,n

∂ζ
≈Γn(ζ) 〈An(ζ)〉1,...,n + 〈An(ζ)〉1,...,n Γ†n(ζ)−

∫ ∏
in

d4pin

×
∑
jn

(
〈Pjn〉n 〈Θon shell〉φn,jn + 2

1

ζn,jn
〈Θon shell〉φn,jn

)
Rcol
jn

× Tjn 〈An−1(qn⊥)〉1,...,n−1 T†jn ζn,jn δ(ζ − ζn,jn). (6.43)

15Γn(ζ) is defined as Γn(q⊥) after the change of variables has been made rather than naively swapping
out the argument.

16When working in a frame that ensures i and j are back to back, the theta function is saturated without
approximation. In this derivation we are concerned with e+e− → qq̄. Thus we can saturate the theta
function for emissions from the primary hard partons, so that they are handled without approximation.
This means we pick the backwards direction (n) (used to define kinematic variables for emissions in a jet)
to be in the direction of the other jet. This in turn fixes the definition for the momentum fraction used in
later equations: zn =

p̃j ·n
pj ·n

. When working beyond the two-jet limit, tricks can be played to further saturate

the theta function using knowledge of the hard process colour flows.

222



By recognising the evolution will become entirely colour-diagonal once the trace is taken,

we can diagonalise the colour structures. In turn this allows us to group the soft evolution

kernels and the collinear ones into splitting functions. We find

ζ
∂ Tr 〈An(ζ)〉1,...,n

∂ζ
≈2Γn(ζ) Tr 〈An(ζ)〉1,...,n −

∫ ∏
in

d4pin
(1− zn)

2

∑
jn

∑
υ∈{q,g}

Pυυjn (zn)

× 〈Θon shell〉φn,jn R
col
jn Tr 〈An−1(qn⊥)〉1,...,n−1 ζn,jn δ(ζ − ζn,jn).

(6.44)

Pυυjn (zn) are the usual DGLAP splitting functions, e.g. Pqq(zn) = CF
1+z2

n
1−zn . Here we have

used υjn to label the species of parton jn and υ to label the state jn transitions to; if

υjn = q then υ = q and if υjn = g then υ = q, g. zn is the momentum faction of parton

n, i.e. if we have a collinear splitting that induces jn−1 → jn n then pjn ≈ znpjn−1 and

qn ≈ (1 − zn)pjn−1 . We specifically require that zn =
p̃jn ·n
pjn ·n

where n is a light-like vector

pointing along the primary axis of the jet from which parton jn does not stem.

We can make connection to squared matrix elements by letting

〈
|Mn|2

〉
1,...,n

=

(
2αs

π

)n n∏
i=1

(1− zi)−1Tr 〈An(ζ)〉1,...,n , (6.45)

from which we find the evolution equation for a final-state angular ordered shower with

a conventional phase-space for a coherent shower in dz. After which, Eq. (6.44) can be

written as in Eq. (6.7) after
〈
|Mn|2

〉
1,...,n

→∑
j1,...,jn

〈
|Mn|2

〉
1,...,n

.

6.6.2.1 Observable dependence and logarithmic accuracy

In the previous discussion we derived
〈
|Mn|2

〉
1,...,n

from Eq. (6.3). However, as we high-

lighted at the beginning, a full treatment should compute
〈
|Mn|2 u({p}n, {v})

〉
1,...,n

where

u({p}n; {v}) is the measurement function for an observable defined by parameters v ∈ {v}.
We want to know to what accuracy is

〈
|Mn|2 u({p}n)

〉
1,...,n

≈
∫ n∏

i=1

dφi
2π

〈
|Mn|2

〉
1,...,n

u({p}n) =
〈
|Mn|2

〉
1,...,n

〈u({p}n)〉1,...,n .

(6.46)

We can start by considering the effects of only averaging over the nth parton and use the

following identity〈
|Mn|2 u({p}n)

〉
n

=
〈
|Mn|2

〉
n
〈u({p}n)〉n

+ σn(|Mn|2)σn(u({p}n) Corn(|Mn|2, u({p}n)), (6.47)
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where σn(x) =
√
〈x2〉n − 〈x〉2n and Corn(x(φn), y(φn)) is the correlation function of x and

y under the variation of φn. Both |Corn(|Mn|2, u({p}n))| and σn(u({p}n) are smaller than

unity17. Next we can consider averaging over both the nth and (n− 1)th partons:〈
|Mn|2 u({p}n)

〉
n−1,n

=
〈〈
|Mn|2

〉
n
〈u({p}n)〉n

〉
n−1

+
〈
σn(|Mn|2)σn(u({p}n) Corn(|Mn|2, u({p}n))

〉
n−1

, (6.48)

where〈〈
|Mn|2

〉
n
〈u({p}n)〉n

〉
n−1

=
〈
|Mn|2

〉
n−1,n

〈u({p}n)〉n−1,n

+ σn−1(
〈
|Mn|2

〉
n
)σn−1(〈u({p}n)〉n)Corn(

〈
|Mn|2

〉
n
, 〈u({p}n)〉n). (6.49)

This can be iterated to give〈
|Mn|2 u({p}n)

〉
1,...,n

=
〈
|Mn|2

〉
1,...,n

〈u({p}n)〉1,...,n

+

n∑
m=1

σm(
〈
|Mn|2

〉
1,...,n

)σm(〈u({p}n)〉1,...,n) Corm(
〈
|Mn|2

〉
1,...,n

, 〈u({p}n)〉1,...,n)

+ higher order correlations. (6.50)

We have been slightly lazy with notation; it is implicit that

σm(〈x〉1,...,n) ≡ σm(〈x〉1,...,m−1,m+1,...,n).

The important question is whether the correlations can provide a logarithmic enhancement

to the observable. This is obviously an observable dependent statement. To progress we

will place some assumptions on the observable. If the observable is such that the correlation

term’s contribution to the cross section is suppressed relative to
〈
|Mn|2

〉
m
〈u({p}n)〉m, we

can approximate
〈
|Mn|2 u({p}n)

〉
1,...,n

by only keeping the first order correlations, since

second order correlations will necessarily be even further suppressed. The approximation

assumed by coherent branching is to neglect correlation terms altogether. Let us look at

the n = m = 1 term for thrust. At this order u({p}n) is not a function of the azimuth and

so σ1(u({p}1)) = 0. As the observable exponentiates [18, 19], this is sufficient to guarantee

that it can be computed to NLL using the coherent branching formalism (these last two

sentences are an abridged form of the argument in [19]). For contrast, let us look at the

n = m = 2 term in the computation of gaps-between-jets, with the same hard process. The

pertinent measurement functions are

un({p}n) =

n∏
m=1

(Θout(qm) + Θin(qm)Θ(Q0 − qm,⊥)), (6.51)

17This makes the weak assumption that the measurement function, u({p}n) is bounded.
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where Θin/out(qm) is unity when parton m is in/out the rapidity region between the two

highest pT jets and zero otherwise. In the following subsection, we compute all the in-

gredients for σ2(
〈
|M2|2

〉
1
). It is reasonably easy to argue (though less easy to compute)

that, unless suppressed by multiplicative factors in σ2(〈u({p}2)〉1) and correlation functions,

σ2(
〈
|M2|2

〉
1
) terms can contribute fourth-order, infra-red poles and with them leading log-

arithms. By considering the variation of φ2, it is also simple to convince oneself that the

correlation function must be finite and positive. So, if angular ordering is to adequately de-

scribe this observable, it must be the role of σ2(〈u({p}2)〉1) to screen against contaminating

logarithms. This means we only need to test to see if σ2(〈u({p}2)〉1) is non-zero:

σ2(〈u({p}2)〉1) =

√
〈u({p}2)〉1,2

(
1−
〈u({p}2)〉1,2
〈u({p}1)〉1

)
,

= (Θout(q1) + Θin(q1)Θ(Q0 − q1,⊥))

×
√
〈Θout(q2) + Θin(q2)Θ(Q0 − q2,⊥)〉2

(
1− 〈Θout(q2) + Θin(q2)Θ(Q0 − q2,⊥)〉2

)
6= 0.

(6.52)

Furthermore, not only is this non-zero but it contains non-vanishing terms in Θin(q1)Θout(q2).

While these terms do screen against fourth order poles and logarithms, they are crucial for

the computation of the α2
sL

2 non-global logarithms. As such, a coherence branching algo-

rithm (that makes usage of azimuthal averaging) cannot compute the leading logarithms to

gaps-between-jets, as it certainly gets the numerical coefficient to non-global pieces incor-

rect. This is a general feature: coherent branching will fail to capture leading, non-global

logarithms (though in most cases these logarithms are sub-leading in the computation of the

overall cross section). This has been previously observed in [24, 25], where the effect of the

missing correlations was computed numerically to all-orders. They found that, though the

missing correlations are a formally leading effect, phenomenologically their effect is < 10%.

As is widely known, we observe that coherent branching is always capable of calculating

logarithms up to αns L
2n−1 in observables for which αns L

2n is the leading logarithm.

6.6.2.2 Azimuthal averaging

In this appendix we will fill in the details on the azimuthal averaging of the evolution kernels.

The general procedure for azimuthal averaging is well known [20] textbook material [26, 50].

However, the procedure is less widely discussed taking into account phase-space limits and

momentum maps. In this section we provide a more careful treatment than the textbook

one. We begin by looking at the following integral (which corresponds to the integrated
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soft emission spectrum),∫
dS

(qn)
2

4π
1
2Sjnn · Sinn ∝

∫
dS

(qn)
2

4π

∫
δq

(in,jn)
n⊥ (q⊥)

q⊥
2 Θon shell

=

∫
dΩqn

4π

∫
dEqn
Eqn

E2
qn

p̃in · p̃jn
p̃in · qnp̃jn · qn

Θon shell δ(q
(in,jn)
n⊥ − q⊥), (6.53)

where Eqn is the energy of parton q and dΩqn is solid angle in the frame which Eqn is

measured. We can regroup the dipole kinematics as

Eq. (6.53) =

∫
dΩqn

4π

∫
dEqn
Eqn

(Pinjn + Pjnin) Θon shell δ(q
(in,jn)
n⊥ − q⊥),

2Pinjn =
nin · njn − nin · n
nin · n njn · n

+
1

nin · n
, (6.54)

where nin = pin/Ein . The two terms in this integral are symmetric under the exchange of

i and j and so we shall focus only on the first:∫
dEqn
Eqn

∫
dΩqn

4π
Pinjn Θon shell δ(q

(in,jn)
n⊥ − q⊥)

=

∫
dE2

qn

2E2
qn

∫
sin θn,in dθn,indφn,in

4π
Pinjn Θon shell 2q⊥ δ

(
(q

(in,jn)
n⊥ )2 − q2

⊥

)
. (6.55)

To compute this the integral we take nin = (1, 0, 0, 1), njn = (1, sin θjn,in , 0, cos θjn,in),

and n = (1, sin θn,in cosφn,in , sin θn,in sinφn,in , cos θn,in). In this basis

(q
(in,jn)
n⊥ )2 = E2

qn

2(1− cos θn,in)(1− sin θn,in cosφn,in sin θjn,in − cos θjn,in cos θn,in)

1− cos θjn,in

≡ E2
qnκi,j,n, (6.56)

and

Eq. (6.55) =

∫
sin θn,in dθn,indφn,in

4π

∫
d(κi,j,nE

2
qn)

2κi,j,nE2
qn

Pinjn Θon shell 2q⊥ δ
(
E2
qnκi,j,n − q2

⊥
)

=
1

q⊥

∫
sin θn,in dθn,indφn,in

4π
Pinjn Θon shell. (6.57)

The textbook treatment would set Θon shell = 1 here. For us,

Θon shell = Θ(pin · pjn − qn · (pjn + pin))

= Θ

(
EinEjn(1− cos θjn,in)− q⊥Ejn√

κi,j,n
(1− sin θn,in cosφn,in sin θjn,in − cos θjn,in cos θn,in)

− q⊥Ein√
κi,j,n

(1− cos θn,in)

)
, (6.58)
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which bounds the φn,in integration to the range |φn,in | ∈ [φ−q,i, φ
+
q,i). The solutions for the

boundaries, φ±q,i are given by

cosφ±q,i = ±min
(
|α±|, 1

)
for α± > 0 and cosφ±q,i = 0 otherwise,

α± =
±
√
AF 2(AF 2 − 2DGH) +AF 2 −DG(H + CG)

(sin θn,in sin θjn,in)(1− cos θjn,in)q2
⊥E

2
jn

F = EinEjn(1− cos θjn,in) = EinEjnD, D = 1− cos θjn,in ,

H = q⊥Ein(1− cos θn,in) = q⊥EinA, A = 1− cos θn,in ,

B = sin θn,in sin θjn,in ,

C = 1− cos θjn,in cos θn,in ,

G = q⊥Ejn . (6.59)

Note that the expression under the square root is always positive. The usual approach to

azimuthal averaging is to employ the soft limit and set Θon shell = 1, after which the φn,in

integral can be performed by contour integration. However, in our case this is not viable,

due to the boundaries on the φn,in integral. Instead we will write the integral as

Eq. (6.55) =
1

q⊥

∫
sin θn,in dθn,in

2
〈Pinjn Θon shell〉φn,in

=
1

q⊥

∫
sin θn,in dθn,in

2

[
〈Pinjn〉φn,in 〈Θon shell〉φn,in

+ σPinjn

√
〈Θon shell〉φn,in (1− 〈Θon shell〉φn,in )Cor(Pinjn ,Θon shell)

]
,

(6.60)

where Cor(x, y) is the correlation function between two variables x and y, in context the

correlation over variation of the azimuth. Firstly note that

〈Pinjn〉φn,in =
Θ(θjn,in − θn,in)

1− cos θn,in
,

the usual result from azimuthal averaging. We can also note that 〈Θon shell〉φn,in ∈ [0, 1] and

|Cor(Pinjn ,Θon shell)| ∈ [0, 1]. By brute-force evaluation and noting Θon shell is binomially

valued, we find

〈Θon shell〉φn,in =
|φ+
q,i − φ−q,i|
π

θ̄on shell,

where θ̄on shell = Θon shell

∣∣
φn,in=φcrit , and cosφcrit = sign(f)min (|f | , 1) ,

f(θn,in , θjn,in , Ein , Ejn , q⊥) =

1−(1−cos θn,in )Ein/Ejn
sin θn,in sin θjn,in

− 4
1−cos θn,in
1−cos θjn,in

(1− cos θjn,in cos θn,in)

1− 4
sin θn,in sin θjn,in

1−cos θn,in

.

(6.61)

227



The exact angular ordered result is obtained when 〈Θon shell〉φn,in = θ̄ij = 1, which is the

case in the strongly ordered, q⊥/Q → 0, and collinear, θn,in → 0, limits (here Q stands

in for any other harder invariant). The remainder of this section is used to show that the

correlation term can be neglected at least at αns L
2n−1 accuracy (and for NLL thrust). It

can be skipped if the reader does not need convincing.

Now we must compute σ2
Pinjn

=
〈
P 2
injn

〉
φn,in

− 〈Pinjn〉2φn,in

〈
P 2
injn

〉
φn,in

=

∫
dφn,in

2π
P 2
injn =

∫
dφn,in

8π

(
nin · njn − nin · n
nin · n njn · n

+
1

nin · n

)2

,

=
1

(nin · n)2

∫
dφn,in

8π

(
cos θn,in − cos θjn,in

1− sin θn,in cosφn,in sin θjn,in − cos θjn,in cos θn,in
+ 1

)2

,

(6.62)

using the substitution z = exp(iφn,in) this integral equals

〈
P 2
injn

〉
φn,in

=
1

(nin · n)2

∮
S1

z dz

2πi

(
cos θn,in − cos θjn,in

2z − sin θn,in(z2 + 1) sin θjn,in − 2z cos θjn,in cos θn,in
+

1

2z

)2

,

=
1

(nin · n)2

∮
S1

dz

2πi

(
z(cos θn,in − cos θjn,in)

sin2 θn,in sin2 θjn,in(z − z+)2(z − z−)2

+
cos θn,in − cos θjn,in

sin θn,in sin θjn,in(z − z+)(z − z−)
+

1

4z

)
, (6.63)

where

z± =
1− cos θjn,in cos θn,in

sin θn,in sin θjn,in
±
√(

1− cos θjn,in cos θn,in
sin θn,in sin θjn,in

)2

− 1. (6.64)

Only the z = z− and z = 0 poles are in the unit circle:

1

(nin · n)2

∮
S1

dz

2πi

(
cos θn,in − cos θjn,in

sin θn,in sin θjn,in(z − z+)(z − z−)
+

1

4z

)

=


3

4(1−cos θn,in )2 when θn,in < θjn,in ,

− 1
4(1−cos θn,in )2 otherwise,

(6.65)

and

1

(nin · n)2

∮
S1

dz

2πi

(
z(cos θn,in − cos θjn,in)

sin2 θn,in sin2 θjn,in(z − z+)2(z − z−)2

)
=

1

(1− cos θn,in)2(cos θn,in − cos θjn,in)

(
1− 2z−sign(cos θn,in − cos θjn,in)

(cos θn,in − cos θjn,in)2

)
. (6.66)

Thus

〈
P 2
injn

〉
φn,in

=


1− 2z−

(cos θn,in−cos θjn,in )2

(1−cos θn,in )2(cos θn,in−cos θjn,in )
+ 3

4(1−cos θn,in )2 when θn,in < θjn,in ,

1+
2z−

(cos θn,in−cos θjn,in )2

(1−cos θn,in )2(cos θn,in−cos θjn,in )
− 1

4(1−cos θn,in )2 otherwise,

(6.67)
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and so

σ2
Pinjn

=


1− 2z−

(cos θn,in−cos θjn,in )2

(1−cos θn,in )2(cos θn,in−cos θjn,in )
+ 1

4(1−cos θn,in )2 when θn,in < θjn,in ,

1+
2z−

(cos θn,in−cos θjn,in )2

(1−cos θn,in )2(cos θn,in−cos θjn,in )
− 1

4(1−cos θn,in )2 otherwise.

(6.68)

This has a collinear divergence that is suitably screened in Eq. (6.60) by the accompanying

phase space factor, √
〈Θon shell〉φn,in (1− 〈Θon shell〉φn,in ),

as is the soft divergence from the q⊥ pre-factor in Eq. (6.55). Cor(Pinjn ,Θon shell), is bounded

above and below by 1 and −1 so at most further dampens the effect of the σ2
Pinjn

term. As a

result it is a finite non-logarithmic correction at order αs and its contribution is suppressed

at higher orders (to be seen explicitly one could repeat the analysis of Appendix 6.9.1).

Hence, for αns L
2n−1 accuracy, we need only take the first term on the right hand-side of

Eq. (6.60).

6.6.3 Derivation of the dipole shower

In this section we will derive from Eq. (6.3) an evolution equation for a dipole shower for

final-state coloured radiation in e+e−. The extension to an initial state shower does not

add complexity but lengthens equations. To derive the dipole shower we will spin average

the evolution and make the leading colour approximation. To approximate the colour, we

express amplitude density matrices and colour charge operators in the colour-flow basis.

We manipulate the colour-flow basis using the mathematical machinery introduced in [11].

Before we begin the derivation let us look at Eq. (6.3) in more detail and apply some of

the knowledge we have gained from deriving an angular ordered shower. Angular ordering

is most powerful when applied to the two-jet limit in e+e− , the mono-jet limit of DIS and

Drell-Yan. In these cases, angular ordering does not approximate the soft radiation pattern

at all. Instead, the soft radiation is colour diagonal. The diagonalisation of soft radiation

renders the conservation of momentum longitudinal to a jet unambiguous. Matching to

the angular ordered limit is sufficient to completely constrain the leading component of

momentum conservation in Eq. (6.3) (it must respect the partitioning defined by Pinjn as

given in Appendix 6.6.2). It is required that

Rsoft
injn =

(q
(injn)
n⊥ )2

2E2
n

(PinjnRin + PjninRjn)

=
(q

(injn)
n⊥ )2

4

([
pin · pjn

pin · qn pjn · qn
− T · pjn
T · qn

1

pjn · qn
+
T · pin
T · qn

1

pin · qn

]
Rin + (i↔ j)

)
,

(6.69)
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where T =
∑

in
pin is a vector for projecting out the energy of a parton in the event ZMF

and where En is the energy of qn in the ZMF. This can be rearranged to give

Rsoft
injn =

Rin + Rjn

2
+ Asyminjn(qn)Rin + Asymjnin(qn)Rjn , (6.70)

Asyminjn(qn) =

[
T · pin
4T · qn

(q
(injn)
n⊥ )2

pin · qn
− T · pjn

4T · qn
(q

(injn)
n⊥ )2

pjn · qn

]
. (6.71)

As previously stated in our discussions on angular ordering,

Rjn = δ4(pjn − z−1
n p̃jn)

∏
in 6=jn

δ4(pin − p̃in) +O(q⊥/Q).

This recoil function is ready to use in Eq. (6.3).

Now, let us begin computing the leading colour evolution of An(q⊥). We intend to

compute

Leading(0)
τσ [An(q⊥)] ≡ A(0) τσ

n (q⊥) |τ〉 〈σ| , (6.72)

where A
(0) τσ
n is the leading colour amplitude for colour flows τ and σ, see [11, 33] for details

on this procedure. Term by term in Eq. (6.3) we can apply this operation and find

Leading(0)
τσ

[
Γn(q⊥) An(q⊥) + An(q⊥) Γ†n(q⊥)

]
= 2 γ(σ)

n (q⊥) δτσ Leading(0)
τσ [An(q⊥)] ,

(6.73)

where

γ
(σ)
n−1(q⊥; q⊥ ∪ {p}n−1) =

αs

2π

∫
dS

(q)
2

4π

( ∑
in,jn c.c. inσ

λin λ̄jnNc

∫
δq

(in,jn)
n⊥ (q⊥)

×Rsoft
injn +

∑
in,υn

P(final)
υin→υ,υn (1− zn)

∫
δq

(in,~n)
n⊥ (q⊥)Rcol

in

)
Θon shell (6.74)

and where

Rsoft
injn =

∫ ∏
in

d4pin R
soft
injn = 1 +O(q⊥/Q), Rcol

in =

∫ ∏
in

d4pinR
coll
in = 1 +O(q⊥/Q).

(6.75)

The sum over “in, jn c.c. inσ” standards for performing the sum over partons dipoles in, jn

which are colour connected in the colour state σ. Pυin→υ,υn ≡ Pυ,υin are the hard-collinear

splitting functions defined in Appendix A of [12]. They are the usual collinear splitting

functions with soft poles subtracted away, i.e. Pqq = −CF(1 + zn). Note that as we are

working in the strict leading colour limit CF = Nc/2. The constants λin and λ̄jn are defined

in Table 1 of [11], in the situations we will use them (the LC limit) λin λ̄jn → 1/2. We can

230



observe that the first term on the RHS of Eq. (6.74) is of the same form as the standard

dipole type term. Next we can take the leading colour part of the emission operators. We

spin average emission kernels, see Appendix 6.7 for details, and place carats on objects to

remind us that they are spin-averaged. We find

Leading(0)
τσ

[
D̂n(qn⊥) Ân−1(qn⊥) D̂†n(qn⊥)

]
= Ŵ (σ)

n (qn⊥) δτσ Leading
(0)
τ\nσ\n

[
Ân−1(qn⊥)

]
,

(6.76)

where

Ŵ (σ)
n (qn⊥; qn ∪ {p̃}n−1) =

∑
in,jn c.c. inσ

λin λ̄jnNc

∫
δq

(in,jn)
n⊥ (qn⊥)Rsoft

injn

+
∑

in∈final
υn

P(final)
υin→υ,υn (1− zn)

∫
δq

(in,~n)
n⊥ (qn⊥)Rcol

in . (6.77)

Note that γ̂(σ) = γ(σ) as the loops do not depend on spin.

For now we will ignore the single logarithmic, hard-collinear pieces as they are easy to

introduce later on (they are uniquely attributed to delta functions of the form δ4(pjn −
z−1
n p̃jn) in the recoil). This means that for now our final state will simply be the qq̄ pair

plus n gluons. It is also typical in the strict LLA to let Rsoft
injn

= 1; this will prove to be

exact with the recoil scheme given in Section 6.4 though only approximately so with the

spectator scheme in Appendix 6.8. Thus the evolution equation is

q⊥Leading(0)
τσ

[
∂Ân(q⊥)

∂q⊥

]
≈ αs

π

∫
dS

(qn+1)
2

4π

∑
in+1,jn+1 c.c. inσ

× 4λin+1 λ̄jn+1Nc

∫
δq

(in+1,jn+1)
n+1⊥ (q⊥) Θon shell δτσ Leading(0)

τσ

[
Ân(q⊥)

]
−
∫ (∏

in

d4pin

) ∑
in,jn c.c. inσ

λiλ̄jNc

∫
δq

(in,jn)
n⊥ (qn⊥)Rsoft

injn

× δτσ Leading
(0)
τ\nσ\n

[
Ân−1(qn⊥)

]
q⊥ δ(q⊥ − qn⊥). (6.78)

This is a modified version of the equation for dipole evolution found in [11] that was shown to

reproduce BMS evolution [16]. It has been modified to allow for the possibility of kinematic

recoil and to account for the phase-space effects from energy conservation.

By taking the leading colour limit, the colour evolution has been made diagonal. We

can trivially make the connection with squared spin-averaged matrix elements; for a given

colour flow, σ,

|M̂ (σ)
n (q⊥)|2 |σ〉 〈σ| =

(
2αs

π

)n
Leading(0)

σσ

[
Ân(q⊥)

]
, (6.79)
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where M̂ is a dimensionless, spin-averaged and leading-colour matrix element, up to global

factors of 2 and π which have been absorbed into the definition of our phase-space measure18.

Thus

q⊥
∂|M̂ (σ)

n (q⊥)|2
∂q⊥

≈ αs

π

∫
dS

(qn+1)
2

4π

∑
in+1,jn+1 c.c. inσ

4λin+1 λ̄jn+1Nc

∫
δq

(in+1,jn+1)
n+1⊥ (q⊥) Θon shell |M̂ (σ)

n (q⊥)|2

− 2αs

π

∑
in,jn c.c. inσ

λiλ̄jNc

∫ (∏
in

d4pin

)
δq

(in,jn)
n⊥ (qn⊥)Rsoft

injn |M̂
(σ/n)
n−1 (qn⊥)|2 q⊥ δ(q⊥ − qn⊥).

(6.80)

This is a generalised leading-colour dipole shower evolution equation with fixed coupling.

Commonly one would introduce a running coupling with q⊥ as its argument. At this point

this would be a simple extension. We have omitted the running coupling as it does not

effect our discussion. From this point on we drop the carat denoting spin averaging, leaving

it implicit that the equations are spin averaged.

To manipulate our new dipole construction into the more usual form we now define a

recoil function based on colour flows:

Rdipole
icn

=

(
1

2
+ Asymicni

c
nn

(qn)

)
Ricn , (6.81)

where, just as in Section 6.3.3, we use icn to index the (anti-)colour line(s) of parton i in

a final state dressed with n soft or collinear partons. Using this we can now return to

Eq. (6.80) and manipulate the dipoles so that emissions from each half of a dipole are

separated:

q⊥
∂|M (σ)

n |2
∂q⊥

≈ αs

π

∫
dS

(qn+1)
2

4π

∑
icn+1

Cicn+1

∫
δq

(in+1,icn+1)
n+1⊥ (q⊥) 2 Θon shell |M (σ)

n |2

− αs

π

∑
icn

Cicn
∫ (∏

jn

d4pjn

)
δq

(in,icn)
n⊥ (qn⊥)Rdipole

icn
|M (σ/n)

n−1 |2 q⊥ δ(q⊥ − qn⊥). (6.82)

We can now include the sub-leading logarithms from the hard-collinear limit along with full-

colour Casimir invariants. The Casimir invariants and collinear logarithms are each uniquely

associated with longitudinal recoil and so a single Rdipole
icn

. We note that Asymicni
c
nn

(qn) gives

no logarithmic enhancement in the hard-collinear region, rendering the inclusion of hard-

collinear pieces simple (including the re-inclusion of g → qq transitions). Thus we arrive at

18The usual dimensionful matrix element is retrieved by multiplying with a factor
∏
in+1

2π−1q−2
in+1 ⊥.
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Eq. (6.10).19 We can explicitly include the g → qq transitions by extending Eq. (6.10):

q⊥
∂|M (σ)

n |2
∂q⊥

≈ αs

π

∑
icn+1

∫
dq

(icn+1,i
c
n+1)

⊥ δ(q
(icn+1,i

c
n+1)

⊥ − q⊥)

∫
dzΘon shell Pυinυin (z) |M (σ)

n |2

− αs

π

∑
icn

∫ (∏
jn

d4pjn

)
Rdipole
icn

Pυinυin (zn) q⊥δ(q
(icn,i

c
n)

n⊥ − q⊥)|M (σ/n)
n−1 |2

− αs

π

∑
icn

∫ (∏
jn

d4pjn

)
Rdipole
icn

δυing Pqg(zn) q⊥δ(q
(icn,i

c
n)

n⊥ − q⊥)|M (σ)
n−1|2, (6.83)

where Pqg(zn) = nfTRz
2
n. The inclusion of Casimir factors and collinear physics in this

fashion ensures our shower correctly computes everything an angular ordered shower can

compute, in the angular-ordered limit. There will however be NLC errors for radiation not

ordered in angle. At the same time, the usual LC accuracy of a dipole shower is preserved.

Also note that at no point in this derivation did we restrict ourselves to a qq̄ final state

for the hard process. In Section 6.3.3 we made this restriction as it allows Eq. (6.16) to

be written more simply. For more complex hard-process topologies one should sum over

showers originating from each distinct hard-process colour flow (dipole).

So far we have still not constrained the O(q⊥/Q) pieces in the recoil function associated

with recoil in the backwards direction. These pieces are important for the computation of

NLLs. Specifying them is the purpose of Section 6.4 and Appenidx 6.8. In these sections

we study their effect on NLLs. For contrast, in Section 2 of [12] we considered various recoil

functions that specify the O(q⊥/Q) pieces. We ensured each possible recoil prescription

would consistently produce all leading physics, however we did not check sub-leading ef-

fects. One of the prescriptions we considered was based on the spectator recoil commonly

employed in modern dipole showers [2, 35]. This approach involves partitioning the dipole

using Catani-Seymour dipole factorisation [32] and distributing the longitudinal recoil in

accordance with this partitioning. The remaining transverse recoil is then given to a third

parton, not in the dipole but colour connected to the emitting parton. In [12] we give

the functional form of Rsoft
injn

necessary to implement this recoil. Using this recoil function

instead of the one we present here gives us an evolution equation similar to that governing

Pythia8 [2].

In [10] it was shown that the standard spectator recoil prescriptions used in conjunc-

tion with Catani-Seymour dipole type showers are subject to errors computing NLLs and

19When constructing Eq. (6.10) we chose to multiply each matrix element by a phase-space factor so that

|M (σ)
n |2 →

∏
i 1/(1 − zi)|M (σ)

n |2 and separate sums over emission topologies, |M (σ)
n |2 →

∑
ic1,...,i

c
n
|M(σ)

n |2.

This ensures the standard dipole shower phase space can be used [2–4, 10].
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miscalculate next-to-leading colour. The errors in NLC occur because of the misattribution

of longitudinal components of recoil and so colour factors. The errors in NLLs occur as

unphysical artefacts from the shower construction do not cancel when one properly consid-

ers the effects of recoil after multiple emissions. It is for this reason that we have taken so

much care to ensure consistency between our dipole shower and angular ordered showers,

and why we take great care implementing recoil in Section 6.4.

6.7 Appendix: Spin averaging

In the derivation of an angular ordered shower and a dipole shower we had to spin average

the evolution from Eq. (6.3). We can introduce spin averaging safe in the knowledge that

the spin-correlated evolution can be computed from the spin averaged by re-weighting with

the algorithm of Collins, Knowles et al [22, 51]. In our previous paper [12] we showed that,

given collinear factorisation, the evolution of our algorithm is consistent with that of Collins

and Knowles et al. We also showed that complete collinear factorisation can be achieved

in the PB algorithm (neglecting Coulomb exchanges, which cancel in the leading colour

limit). In this appendix we will summarise the spin averaging procedure. We will do so in

the leading colour limit, as this is the limit of interest in the dipole shower case and this

limit reduces the number of indices on objects. Real emissions in the leading colour limit

without spin averaging give rise to∫
dRn Leading(0)

τσ

[
Dn(qn⊥) An−1(qn⊥) D†n(qn⊥)

]
=∫

dRn W
(σ), hL

n,h
R
n

n (qn⊥) δτσ Leading
(0)
τ\nσ\n [An−1(qn⊥)] , (6.84)

where

W (σ), hL
n,h

R
n

n (qn⊥; qn ∪ {p̃}n−1, {hL}, {hR}) =∑
in,jn c.c. inσ

2λin λ̄jnNc

∫
δq

(in,jn)
n⊥ (qn⊥) sjn,h

R
n †

n sin,h
L
n

n Rsoft
injn

+
∑
in

∫
δq

(in,~n)
n⊥ (qn⊥) Cin cin,h

L
n †

n (hL
in) cin,h

R
n

n (hR
in)Rcol

in , (6.85)

and where s
in,hL

n
n and c

in,hL
n

n (hL
in

) are the kinematic factors associated with a soft or collinear

emission respectively, for a fixed spin state. We have unpacked some of the recoil factors

from
∫

dRn and placed them next to the appropriate emission kernels, these are the Rsoft
injn

and Rcol
in

factors. s
in,hL

n
n and c

in,hL
n

n (hL
in

) are defined through the relations

sjn,h
R
n †

n sin,h
L
n

n Tjn · Tin =
〈
hR
jn

∣∣Sjn †n

∣∣hR
jn , h

R
n

〉 〈
hL
in , h

L
n

∣∣Sinn ∣∣hL
in

〉
,

cin,h
R
n †

n (hR
in) cin,h

L
n

n (hL
in) Tin · Tin =

∑
h′Rin ,h

′L
in

〈
hR
in

∣∣Cin †
n

∣∣h′Rin , hR
n

〉 〈
h′Lin , h

L
n

∣∣Cin
n

∣∣hL
in

〉
, (6.86)
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where h
L/R
i is the helicity of the parton with label i on the left/right hand side of the

amplitude. In Eq. (6.85) we again used the abbreviation “in, jn c.c. inσ” to mean that we

sum over pairs in, jn that are colour connected in σ. Note we have been a little sloppy by

omitting sums over trivial spin indices of partons not involved in the splittings induced by

Cin
n and Sinn in Eq. (6.84). Spin averaging is achieved by setting {hL} = {hR} = {h} and

performing all trivial sums over spin states in Eq. (6.84). This is equivalent to replacing

An 7→ Ân, W (σ), hL
n,h

R
n

n (qn⊥) 7→ Ŵ (σ),
n (qn⊥),

sjn,h
R
n †

n sin,h
L
n

n Tjn · Tin 7→ ŝjninn Tjn · Tin =
1

2

∑
hin

〈hin |Sjnn · Sinn |hin〉 ,

cin,h
R
n †

n (hR
in) cin,h

L
n

n (hL
in) Tin · Tin 7→ ĉinn Tin · Tin =

1

2

∑
hin

〈hin |Cin
n ·Cin

n |hin〉 , (6.87)

where we denoted the spin averaged objects with a carat. We have assumed Rsoft
injn

and Rcol
in

are chosen such that they are not spin dependent, otherwise they too should be averaged

in the same fashion.

6.8 Appendix: Dipole shower with spectator recoil

It is commonplace to use local ‘spectator’ recoils in dipole showers rather than the global

approach we have opted for [2, 3]. In this appendix we introduce one such recoil scheme

and show that, despite the other improvements to our dipole shower, it suffers the NLL

errors pointed out in [10].

Following the approach of [35], we can treat each transition from an n−1 to an n parton

matrix element as being generated by a 2 → 3 parton splitting which locally conserves

momentum. The splitting is defined such that the parton with colour line in under goes a

primary decay into two partons, the amplitude for which is given by a collinear splitting

function. The parton with colour line in acts as a spectator and under goes a secondary

1 → 1 transition where it absorbs the residual recoil from the primary decay. To this end

we introduce the following Sudakov decomposition

p̃in = znpin − k⊥ +
(q

(inin)
n⊥ )2

zn

pin
2pin · pin

, (q
(inin)
n⊥ )2 = −k2

⊥,

qn = (1− zn)pin + k⊥ +
(q

(inin)
n⊥ )2

1− zn
pin

2pin · pin
,

p̃in =

(
1− (q

(inin)
n⊥ )2

zn(1− zn)

1

2pin · pin

)
pin , k⊥ · pin = k⊥ · pin = 0, (6.88)
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which conserves momentum as pin + pin = p̃in + p̃in + qn. This decomposition defines the

kinematics of the 2→ 3 splitting. Enforcing this local recoil scheme implies that

Rin =

(
1− (q

(inin)
n⊥ )2

zn(1− zn) 2pin · pin

)
δ4
J

(
p̃in − pin +

(q
(inin)
n⊥ )2

zn(1− zn)

pin
2pin · pin

)

× δ4
J

(
p̃in − znpin + k⊥ −

(q
(inin)
n⊥ )2

zn

pin
2pin · pin

) ∏
jn 6=in,in

δ4(pjn − p̃jn), (6.89)

where

δJ (f(x)) = f ′(xi)δ(f(x)) = δ(x− xi),

and xi is the single root of f(x) inside the range of x over which the delta function has

support.

6.8.1 NLC and NLL accuracy of the spectator recoil

Let us begin by filling in some of the derivation of Eq. (6.26) with the local dipole recoil

specified in previous section. Starting from Eq. (6.80),

δΣ(L) =σnH

2∏
n=1

(∫
dΠn

∑
in,jn c.c. inσ

∫ ∏
kn

d4pkn δq
(in,jn)
n⊥ (qn⊥)λiλ̄jNc R

soft
injn θinjn

)
×Θ(q1⊥ − q2⊥)Θ

(
e−L − V ({p}2)

)
− σnH

2∏
n=1

(∫
dΠn

∑
in,jn c.c. inσ

∫
δq

(in,jn)
n⊥ (qn⊥)λiλ̄jNc θ

correct
injn

)
×Θ(q1⊥ − q2⊥)Θ

(
e−L − V ({p}correct)

)
,

=CFσnH

∫
dΠ2 dΠ1

∫
δq

(a2,12)
2⊥ (q2⊥)

∫
δq

(a1,b1)
1⊥ (q1⊥) Θ(q1⊥ − q2⊥)

×
[ ∫ 2∏

n=1

∏
kn

d4pkn Rsoft
a212

θa212 Rsoft
a1b1 θa1b1Θ

(
e−L − V ({p}2)

)
− θcorrect

a212
θcorrect
a1b1 Θ

(
e−L − V ({p}correct)

) ]
, (6.90)

where {p}correct is the set of correct momenta for the 4-body system and where θcorrect
injn

=

θinjn({p}correct). From this we find

δΣ(L) ≈ 4α2
s C2

F σnH

π2

∫ Q

0

dq
(a1,b1)
1⊥

q
(a1,b1)
1⊥

∫ lnQ/q
(a1,b1)
1⊥

− lnQ/q
(a1,b1)
1⊥

dy1

∫ q
(a1,b1)
1⊥

0

dq
(a2,12)
2⊥

q
(a2,12)
2⊥

∫ lnQ/q
(a2,12)
2⊥

− lnQ/q
(a2,12)
2⊥

dy2

×
∫ 2π

0

dφ2

2π

[
Θ
(
e−L − V ({p}2)

)
−Θ

(
e−L − V ({p}correct)

)]
. (6.91)
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The kinematics are encapsulated by {p}2, just as in the global scheme given in Section

6.4. They are in fact exactly the same kinematics as those specified in Section 3.3 of [10]

and we have arrived at the same expression as B.5 of [10]. Thus, we can follow their

argument from Appendix A and Section 4 and conclude that our local dipole prescription

does suffer the same NLL errors as other local dipole prescriptions. For example, we can

consider the two-jet rate using the Cambridge algorithm, for which V ({pi}) = maxi{pi⊥}.
In the limit we have considered, this reduces to V ({p}correct) = q

(a1,b1)
1⊥ whereas V ({p}2) =

max(q
(a1,b1)
1⊥ , q

(a2,12)
2⊥ ) since the recoil scheme does not ensure that q

(a1,b1)
1⊥ > q

(a2,12)
2⊥ at all

points in the phase-space for parton 2’s emission. [10] show that this error generates a

incorrect NLL (N2
c α

2
sL

2). This was expected, as in our local dipole scheme we have only

made modifications to fix the NLC of the usual dipole shower procedure. It would be

unexpectedly fortuitous if this also fixed the NLL problems.

6.9 Appendix: Further checks

6.9.1 Thrust with NLL accuracy using global recoil

Thrust has a long history. It was first resummed to leading log accuracy in 1980 [52] and

then later at next-to-leading in 1993 [19]. More recently, it was resummed to N3LL [53]. In

this section we will analyse the consistency of the dipole shower and recoil scheme we present

in Sections 6.3.3 and 6.4 with the NLL computation found in [19]. Crucially, the calculation

of NLL thrust was performed using a coherent branching algorithm [20] (or equivalently by

analytic computation of an angular ordered shower). The coherent branching algorithm

employed in the resummation was not strictly momentum conserving and effectively only

conserved the momentum longitudinal to the two back-to-back jets. In [19] they show that

neglecting the other components is a valid approximation in the computation of NLLs for

thrust (see their ε expansion of the correct phase-space). However, in [10] it was observed

that incorrect handling of transverse momentum in dipole showers can induce NLL errors

in thrust from O(α3
s ) onwards. These two papers are not inconsistent with each other, the

situation is simply that the incorrect inclusion of momentum conserving terms can induce

NLL errors.

Our dipole shower algorithm was built around consistency with an angular ordered

shower. Its collinear radiation pattern reproduces that of an angular ordered shower with the

correct longitudinal momentum conservation after azimuthally averaging. At NLL accuracy,

it is also consistent at leading-colour with the angular ordered shower (restricted to leading-

colour since our dipole shower only has leading-colour accuracy for radiation unordered in

angle). Notwithstanding those NLC terms, there is one other main difference between
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the coherent branching resummed in [19] and our algorithm after azimuthal averaging;

ours conserves momentum completely. Thus the only remaining question is whether our

approach to momentum conservation breaks the full-colour collinear evolution and leading-

colour NLL accuracy of our dipole shower. We can compute the difference between our

algorithm’s computation of thrust and [19]. As thrust is dominated by the two-jet limit, we

initially focus on emissions from the primary hard legs (which is sufficient for NLL accuracy

in the approach of [19] by assuming inclusivity over jets from secondary jets). Afterwards

we will briefly consider the effects of secondary emissions, i.e. possible recoil effects from

the multi-jet limit. Firstly note that thrust can be defined as

T ({p}n) = max
n

∑
∀p∈{p}n |p · n|∑
∀p∈{p}n |p|

NLL' 1− P 2
n + P 2

n̄

Q2
,

where Pn (Pn̄) is the total four-momentum in the hemisphere centred on the forwards

(backwards) thrust axis. From this definition, it is clear that thrust is invariant under

boosts along the thrust axis and is invariant under global jet energy rescaling. Following

the notation of Section 6.4, the difference in the two-jet limit between our dipole algorithm

and the NLL result due to recoil is of the general form

δΣ(L) ∼
∑
n

αnsCn

(∫ Q

0

dqn⊥
qn⊥

...

∫ Q

0

dq1⊥
q1⊥

∫ ln(κnQ/qn⊥)

− ln(κnQ/qn⊥)
dyn...

∫ ln(κ1Q/q1⊥)

− ln(κ1Q/q1⊥)
dy1

×Θ(Q− q1⊥)...Θ(κ−1
n qn−1⊥ − qn⊥)

−
∫ Q

0

dqn⊥
qn⊥

...

∫ Q

0

dq1⊥
q1⊥

∫ ln(Q/qn⊥)

− ln(Q/qn⊥)
dyn...

∫ ln(Q/q1⊥)

− ln(Q/q1⊥)
dy1

×Θ(Q− q1⊥)...Θ(qn−1⊥ − qn⊥)

)
Θ
(
e−L − (1− T ({p}n))

)
, (6.92)

where each transverse momentum is defined relative to the thrust axis and Cn is a constant

coefficient.

It is most beneficial to us if we evaluate the logarithmic order of δΣ(L) by starting

more generally and then applying the result to thrust. As previously stated, each κn =

1 − O(q2
n⊥/2Q

2). We will parametrise this as κn = 1 − εq2
n⊥/2Q

2 where ε is order unity.

Note that when ε = 0, δΣ(L) = 0. Eq. (6.92) is built from repeated sums over elementary

integrals of the following type

In =

∫ 1

a

dxn
xn

...

∫ 1

x2

dx1

x1

[
n∏
i=1

ln

(
xi

(
1− εx2

i

2

))
−

n∏
i=1

ln(xi)

]
Θ(f(a, {xi})), (6.93)

where a parametrises the observable dependence (for thrust a ∼ 1 − T ), xi ∼ qi⊥/Q and

Θ(f(a, {xi})) parametrises any residual more complex observable dependence. Note that

both terms in the square bracket are monotonically decreasing as xi → 0 and that the
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second is always of smaller magnitude than the first. Thus I evaluates to having the largest

possible magnitude when Θ(f(a, {xi})) = 1, as every point in the domain of the integrand

adds constructively to the integral. Therefore we will work assuming Θ(f(a, {xi})) = 1 in

order to place an upper limit on the order of logarithms produced. With this assumption

applied, I is dominated by the term

In ≈
∫ 1

a

dxn
xn

...

∫ 1

x2

dx1

x1

 n∑
j=1

ln

(
xj

(
1−

εx2
j

2

))
n∏
i 6=j

ln(xi)−
n∏
i=1

ln(xi)

 , (6.94)

which is in turn proportional to g2n−2(a, ε)− g2n−2(a, 0) where

gn(a, ε) =

∫ 1

a

dx

x
ln

(
x

(
1− εx2

2

))
ln(x)n. (6.95)

For large n, gn is difficult to evaluate. However we can navigate this by constructing a

generating function for gn,

GF (a, ε, ν) =

∫ 1

a
dx xν−1 ln

(
x

(
1− εx2

2

))
, (6.96)

so that gn = (∂ν)nGF |ν=0 and

GF (a, ε, ν) =
aν − 1

ν2
+
ε
(

2F1

(
1, ν2 + 1; ν2 + 2; ε2

)
− aν+2

2F1

(
1, ν2 + 1; ν2 + 2; a

2ε
2

))
ν(ν + 2)

+
ln(2)aν − ln(2) + ln(2− ε)− aν ln

(
2a− a3ε

)
ν

. (6.97)

The Taylor series in ν of GF (a, ε, ν) can be computed. The series is expressible in the form

GF (a, ε, ν)−GF (a, 0, ν) =

∞∑
n=0

(
n∑
i=0

Ai,n ln(a)n−iLi2+i

(aε
2

)
+BnLi2+n

( ε
2

)) νn

n!
, (6.98)

where Ai,n and Bn are order unity constants that we do not need. Thus

δΣ(L) .
∞∑
n=2

αns
(2n− 2)!

(
2n−2∑
i=0

Ãi,n ln(1− T )2n−2−iLi2+i

(
(1− T )ε

2

)
+ B̃nLi2n

( ε
2

))
,

(6.99)

where L = ln(1 − T ), and Ãi,n and B̃n are order unity constants. Hence for T ≈ 1, the

limit in which we resum, δΣ(L) � ∑
n
αns Cn
n! ln(1 − T )2n−2 where Cn are also order unity

coefficients. Also note that the first logarithmic enhancement from our recoil scheme occurs

as ∼ α4
sL

2. Finally, we note that this argument applies to recoil distributed along any

chain of strongly ordered emissions. Therefore recoil from emissions off secondary legs also

contributes terms to δΣ(L) that are much less than
∑

n
αns Cn
n! ln(1− T )2n−2.20

20In fact, following the epsilon expansion arguments of [19], recoil from secondary legs will contribute

terms less dominant than
∑
n

αn
s Cn

n!
ln(1− T )2n−4.
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We have shown that the recoil scheme for the dipole shower presented in Section 6.4

does not introduce incorrect next-to-leading logarithms into the resummation of thrust in

e+e−. We did this using a very general approach, leading us to believe that for other

exponentiating two-jet dominated observables the same result will also be found. Thus,

one would only need to add a running coupling and the shower could be used to compute

the NLL resummation of thrust. In summary, we expect our formalism to be capable of

leading-colour NLL accuracy in observables that can be resummed at NLL accuracy using

the coherent branching approach and will capture much of the full-colour LL contributions.

6.9.2 Generating functions for jet multiplicity using global recoil

We will now use our algorithm with our new recoil scheme (as presented in Section 6.4)

to compute the integral equation defining the spin-uncorrelated generating function for the

multiplicity of subjets in the final state of e+e− → hadrons. The generating function was

first computed at NLL accuracy (i.e. including all αnsL
2n−1 terms) in [54]. The methodology

has since seen a variety of applications [28, 31] (and references therein) and can be found

in graduate texts [26, 50]. We will compute the generating function at LL accuracy, though

taking care to include all αnsL
2n−1 logs from recoil.

The generating function is defined by

φΣ(u,Q) =
∞∑
n=0

unPΣ(n,Q) = F
∞∑
n=0

un+N

∫
dΠBorn

∫
dσn(Q). (6.100)

It can be used for the computation of the moments of the subjet multiplicity distribution

for a process Σ:

〈nΣ(nΣ − 1)....(nΣ − n+ 1)〉 =
dnφΣ(u,Q)

dun

∣∣∣∣
u=1

. (6.101)

Here F is some flux factor for the hard process and PΣ(n,Q) is the probability of finding

n partons/subjets in the final state of a process with centre-of-mass energy (or hard-scale)

Q. N is the number of partons in the hard process and 〈nΣ〉 is the mean number of subjets

in Σ.

For e+e− → qq̄, i.e. computing φqq̄(u,Q), it is a textbook result that at our accuracy

generating functions factorise as φqq̄(u,Q) = φq(u, τ)φq̄(u, τ) where φa(u, τ) is the generat-

ing function for subjet multiplicity within the jet from a single parton a. τ = 2E sin(θ/2) is

the scale of an individual jet and can be thought of as its maximum transverse momentum, E

is the energy of each jet and θ the opening angle of the jet, e.g. φqq̄(u,Q) = φq(u,Q)φq̄(u,Q)

as θ = π and E = Q/2 [28, 50].

We will now construct an integral equation for φa(u, τ). To do so consider also com-

puting φe+e−→qq̄[g](u, q⊥ 1), where the next hardest jet (if one occurs) is a gluon jet of scale
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q⊥ 1. For the computation of φe+e−→qq̄[g](u, q⊥ 1), the hard process can be approximated as

H(e+e−→qq̄[g])(q1⊥) = A0(q1⊥) + uA1(q1⊥). Hence

φe+e−→qq̄[g](u, q⊥ 1) = F
∞∑
n=0

un
∫

dΠBorn

(
u2

∫
dσ(A0)

n (q1⊥) + u3

∫
dΠ1

∫
dσ(A1)

n (q1⊥)

)
,

(6.102)

where dΠBorn ≡ dΠ
(q)
BorndΠ

(q̄)
Born is the Born phase-space for the qq̄ pair21. We can rewrite

this as

φe+e−→qq̄[g](u, q⊥ 1) =φq(u, q⊥ 1)φq̄(u, q⊥ 1)Tr(Vq⊥ 1,Q ·Vq⊥ 1,Q) +

∫
dΠBorn

∫
dΠ1

×
∫

dR1

∫
d4Pg

dφq(u, q⊥ 1)

d4Pq

dφq̄(u, q⊥ 1)

d4Pq̄

dφg(u, q⊥ 1)

d4Pg

× Tr
(
Vq⊥ 1,Q ·Vq⊥ 1,Q

〈
D†1 ·D1

〉
1

)
δ4(Pg − q1), (6.103)

where we have employed azimuthally averaged result of Appendix 6.6.2 since the equation is

independent of the azimuth of the gluon. We have also spin averaged at this step. We also

note that Eq. (6.103) is equal to φqq̄(u,Q) by necessity, i.e. φqq̄(u,Q) = φe+e−→qq̄[g](u, q⊥ 1)

as within the strong ordering approximation the next hardest jet of an e+e− → qq̄ process

must be a gluon jet. After a little work,

φqq̄(u,Q) = 1
2φq(u, q⊥ 1)∆q(q⊥ 1, Q)φq̄(u, q⊥ 1)∆q̄(q⊥ 1, Q)

+ φq̄(u, q⊥ 1)∆q̄(q⊥ 1, Q)
αs

2π

∫ Q

q⊥ 1

dq⊥
q⊥

∆q(q⊥, Q)

∫ 1− q⊥
2Q

q⊥
2Q

dz Pqq(z) φ̃q(u, q⊥)φ̃g(u, q⊥)

+ (q ↔ q̄), (6.104)

where

φ̃q(u, q⊥) =

∫
dΠ

(q)
Born d4Pq

dφq(u, q⊥)

d4Pq
Rprimary
q1 ≈ φq(u, zq⊥),

φ̃q̄(u, q⊥) =

∫
dΠ

(q̄)
Born d4Pq̄

dφq(u, q⊥)

d4Pq̄
Rsecondary
q1 ≈ φq̄(u, q⊥),

φ̃g(u, q⊥) =

∫
dφ1

2π
d4Pg

dφg(u, q⊥ 1)

d4Pg
δ4(Pg − q1) ≈ φq(u, (1− z)q⊥), (6.105)

and where the recoil functions, using the same definitions as Section 6.4, are given by

Rprimary
q1 = δ4

J

(
P̃q1 − zκq Λ(q, q̄)pq

)
,

Rsecondary
q1 = δ4

J

(
κq1 Λ(q, q̄)Pjn − P̃jn

)
,

21The Born phase-space on the momenta of partons after momentum conservation has been taken into
account and includes the momentum conserving delta function δ4(Pq̄ +Pq) as well as a delta function fixing
the energy.
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i.e. each φ̃ is simply related to each φ by momentum conservation. At our accuracy,

momentum conservation simply maps Eq → z1Eq and Eg = (1 − z1)Eq since κq1 and the

Lorentz boost are unity at our desired accuracy (noting the argument for neglecting the

changes in phase-space due to our recoil scheme given in the previous subsection also holds

for this resummation as the measurement function is unity and we are resumming logs up to

αns L
2n−1 accuracy). The limits on the z integrals partition the phase-space in the lab frame

(replacing the dipole partition at NLL accuracy) whilst still using a k⊥ ordering variable.

∆c(a, b) is a Sudakov factor

∆c(a, b) = exp

−αs

2π

∫ b

a

dk
(c~n)
⊥

k
(c~n)
⊥

∫ 1−
k
(c~n)
⊥
2Q

k
(c~n)
⊥
2Q

dz Pcc(z)

 . (6.106)

We can factorise Eq. (6.104) as

φqq̄(u,Q) =

(
φq(u, q⊥ 1)∆q(q⊥ 1, Q)

+
αs

2π

∫ Q

q⊥ 1

dq⊥
q⊥

∆q(q⊥, Q)

∫ 1− q⊥
2Q

q⊥
2Q

dz Pqq(z) φ̃q(u, q⊥)φ̃g(u, q⊥)

)
× (q ↔ q̄) +O(α2

s). (6.107)

keeping only terms first order in αs
22. From this, we can identify

φq(u,Q) =φq(u, q⊥ 1)∆q(q⊥ 1, Q)

+
αs

2π

∫ Q

q⊥ 1

dq⊥
q⊥

∆q(q⊥, Q)

∫ 1− q⊥
2Q

q⊥
2Q

dz Pqq(z) φ̃q(u, q⊥)φ̃g(u, q⊥). (6.108)

This expression is correct at LL accuracy with complete colour and only requires the cou-

pling to run as αs(z(1− z)q⊥) in order to capture the full NLL (αnsL
2n−1) result. We also

can note that the correct NLL resummation might not have been achieved using the local

dipole prescription presented in Appendix 6.8. This is because the recoil could introduce

a correction in the n > 3 jet limit of the form φq̄(u, q⊥ 1)  φq̄(u, |q⊥ 1 − q⊥ 2|) (the wavy

arrow implying that it will approximately go to). This correction prevents both the usage

of naive azimuthal averaging and the factorisation φqq̄ ≡ φqφq̄ (which naturally emerged

between Eq. (6.104) and Eq. (6.107)), though it is possible that these features could re-

emerge once the phase space of each jet has been inclusively integrated over. Due to the

other known NLL limitations of this recoil scheme, we did not think it worthwhile further

proceeding to evaluate the order of these errors but rather conjecture that NLL errors will

also be likely here.

22The O(α2
s) terms can be computed by instead starting with H(e+e−→qq̄[g][g])(q2⊥) = A0(q2⊥) +

uA1(q2⊥) + u2A2(q2⊥) and proceeding as above.
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Chapter 7

Publication: Improvements on dipole
shower colour

“The greatest teacher, failure is”

— Yoda, Star Wars: The Last Jedi

7.1 Preface

In the previous chapter we presented improvements to the dipole shower framework. In

particular we addressed NLL errors due to mistreatment of momentum conservation and

corrected colour factors for emissions that are concurrently order in kt and angle. In the

work that follows we address the assignment of colour factors for emissions not concurrently

ordered in kt and angle.

Before presenting the solution, let us first sketch a review of why our work in the previous

section did not correct these disordered colour factors. We derived angular ordered and

dipole showers from our amplitude level evolution equation:

q⊥
∂An(q⊥)

∂q⊥
=E({Ai(q⊥)|i ≤ n}; q⊥). (7.1)

Here we’ve introduced a very abridged notation E(...; q⊥) which is an evolution kernel which

is a linear operator on the set of amplitude density matrices {Ai(q⊥)|i ≤ n}, defined at a

scale q⊥. We have dropped the explicit particle momentum dependence of An(q⊥) which

can be restored as An(q⊥)→ An({p}n; q⊥). E is defined so that it returns the variation of

An(q⊥) in a logarithmic slice of the scale q⊥:

dAn(q⊥) =E({Ai(q⊥)|i ≤ n}; q⊥)d ln q⊥. (7.2)
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E can be read off at a given perturbative order from Eq.(4.7). There were two main steps

to deriving an angular ordered shower, described by an evolution equation

θ
∂ Tr 〈An(θ)〉

∂θ
=K({Tr 〈Ai(θ)〉 |i ≤ n}; θ), (7.3)

where we’ve used the same abridged notation for the evolution kernel. The angled brackets

〈〉 imply azimuthal averaging and θ is an angular resolution scale. It is important to note

that An(θ) 6= An(q⊥) as the former is An viewed at a given angular resolution (i.e. all

partons are separated on the momentum-space celestial sphere at least by the characteristic

scale θ) whilst the later is An viewed at a given kt resolution (all transverse momenta are

large than q⊥).1

When deriving the angular ordered shower, we showed that after azimuthal averaging

and in the ‘mostly collinear’ limit2,

q⊥
∂ Tr 〈An(q⊥)〉

∂q⊥
= Tr 〈E({Ai(q⊥)|i ≤ n}; q⊥)〉

≈ K({Tr 〈Ai(q⊥)〉 |i ≤ n}; q⊥). (7.4)

In words, the trace of the evolution kernel E in the ‘mostly collinear’ limit after azimuthal

averaging is equal to the evolution kernel for an angular ordered shower, K, viewed at a

fixed kt resolution scale. Next we changed ordering variables. Note that inclusivity over

radiation at all scales requires that∫ Q

q′⊥

K({Tr 〈Ai(q⊥)〉 |i ≤ n}; q⊥)d ln q⊥

=

∫ π

θ′
K({Tr 〈Ai(θ)〉 |i ≤ n}; θ)d ln θ +O

(
θ′

π

)
+O

(
q′⊥
Q

)
. (7.5)

Thus, we change change ordering variables by applying

lim
q′⊥→0

∂

∂ ln θ

∫ Q

q′⊥

d ln q⊥,

where θ is the smallest angular separation between partons in An(q⊥), to both sides of

Eq. (7.4):

lim
q′⊥→0

θ
∂ Tr 〈An(q′⊥)〉

∂θ
= K({Tr 〈Ai(θ)〉 |i ≤ n}; θ) +O

(
θ

π

)
= θ

∂ Tr 〈An(θ)〉
∂θ

+O
(
θ

π

)
. (7.6)

1Of course it is necessarily true that, when computed at equivalent accuracies, limθ→0 An(θ) =
limq⊥→0 An(q⊥).

2Up to one parton is allowed to be emitted at arbitrary angle whilst every other particle is assumed to
be collinear, picking up a collinear log.

247



In this way we derived angular ordering.

The ‘moral’ of this discussion is that we only had to show

Tr 〈E({Ai(q⊥)|i ≤ n}; q⊥)〉 ≈ K({Tr 〈Ai(q⊥)〉 |i ≤ n}; q⊥), (7.7)

to know that the two formulations were equivalent at the accuracy we were considering.

Let us now look at the dipole shower, here we found an evolution equation of the form

q⊥
∂ Leading(An(q⊥))

∂q⊥
= Leading(E({Ai(q⊥)|i ≤ n}; q⊥))

≡ L({Leading(Ai(q⊥))|i ≤ n}; q⊥), (7.8)

where Leading is an operation for taking the leading colour piece. L is a dipole shower

evolution kernel derived from the soft limit. Importantly, we found that L had to be

greatly constrained so that

〈L({Leading(Ai(q⊥))|i ≤ n}; q⊥)〉 ≈ Leading(K({Tr 〈Ai(q⊥)〉 |i ≤ n}; q⊥)), (7.9)

else the dipole shower is inconsistent with the angular ordered shower in the ‘mostly

collinear’ limit. This informed us how recoil and hard-collinear physics should be imple-

mented into L. The problem is that both sides of the expression are still in the leading

colour approximation. To extend L past leading colour we made the following observa-

tion, assigning Casimir colour factors in-accordance with the presence of collinear poles and

letting CF = 4/3 in L guarantees that〈
LCF=4/3({Leading(Ai({p}i; q⊥))|i ≤ n}; θ)

〉
≈ K({Tr 〈Ai({p}i; θ〉 |i ≤ n}; θ), (7.10)

where θ is the smallest angular separation between partons in An({p}n; q⊥). We therefore

set CF = 4/3 throughout the dipole shower. However, this only correctly introduces full

colour accuracy to L(...; q⊥) for particles separated by the angular scale θ (where 〈L〉 coin-

cides with K). Therefore, setting CF = 4/3 throughout the dipole shower we achieved the

following 〈
LCF=4/3({(Leading(Ai(q⊥))|i ≤ n}; q⊥)

〉
≈ K({Tr 〈Ai(q⊥)〉 |i ≤ n}; q⊥) for q⊥/E ∼ θ,

(7.11)

where E is the energy of the softest parton in An, and

Leading
(〈
LCF=4/3(Leading(Ai(q⊥))|i ≤ n}; q⊥)

〉)
≈ Leading(K({Tr 〈Ai(q⊥)〉 |i ≤ n}; q⊥)) for q⊥/E � θ. (7.12)
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However 〈
LCF=4/3({Leading(Ai(q⊥))|i ≤ n}; q⊥)

〉
6≈ K({Tr 〈Ai(q⊥)〉 |i ≤ n}; q⊥) for q⊥/E � θ. (7.13)

Thus sub-leading colour errors may appear in wide angle radiation for which their angular

scale is ordered differently to their kt scale.

In the work that follows we introduce new dynamic colour factors, defined so that

〈Ldynamic({Leading(Ai(q⊥))|i ≤ n}; q⊥)〉
≈ K({Tr 〈Ai(q⊥)〉 |i ≤ n}; q⊥) for q⊥/E � θ. (7.14)

We initially motivate the dynamic colour factors by fixed order calculations with two soft

gluons dressing a hard process. Two are required since for one soft gluon q⊥/E ≈ θ, thus

Eq. (7.11) holds and there isn’t a sub-leading colour error. We then generalise the dynamic

colour factors to all orders.

Additional note on context

The following paper was released at the begin of 2021. As the paper was being concluded,

reference [1] was also released. One solution that [1] provides to improve dipole shower

colour, by dividing the emission phase-space and subsequently assigning colour factors CF

or CA/2 in accordance with QCD coherence, appears to be similar to the solution presented

here. The authors of [1] state that their method for correctly assigning colour factors “...

can be applied to almost any dipole or antenna shower.” As of August 2021, the following

chapter and [1] remain state of the art.
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Improvements on dipole shower colour

Authors: Jack Holguin, Jeffrey R. Forshaw, Simon Plätzer

Abstract

The dipole formalism provides a powerful framework from which parton showers can be

constructed. In a recent paper [1], we proposed a dipole shower with improved colour

accuracy and in this paper we show how it can be further improved. After an explicit check

at O(α2
s ) we confirm that our original shower performs as it was designed to, i.e. inheriting

its handling of angular-ordered radiation from a coherent branching algorithm. We also

show how other dipole shower algorithms fail to achieve this. Nevertheless, there is an

O(α2
s ) topology where it differs at sub-leading Nc from a coherent branching algorithm. This

erroneous topology can contribute a leading logarithm to some observables and corresponds

to emissions that are ordered in kt but not angle. We propose a simple, computationally

efficient way to correct this and assign colour factors in accordance with the coherence

properties of QCD to all orders in αs.

7.2 Introduction

Parton showers typically are constructed using one of two basic approaches: angular-ordered

showers (based on the coherent branching formalism) and dipole showers. Angular ordering

is a very powerful approach, providing next-to-leading logarithmic (NLL) accuracy in some

observables,3 but it fails to capture physics salient to the description of multi-jet final

states in hadron colliders and non-global observables. By comparison, dipole showers are

typically restricted to leading-colour accuracy but they can be applied across the board. In

recent literature, much attention has been focused on improving the framework upon which

dipole showers are constructed [4–14]. Substantial progress has been made demonstrating

3Many e+e− observables share the property that their distributions exponentiate:

Σ(αs, L) = (1 + C(αs)) exp(Lg1(αsL) + g2(αsL) + ...),

where Σ is the fraction of events for which the observable is less than some value, v = e−L. NLL accuracy
corresponds to correctly computing the functions g1 and g2 [2, 3].
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their capacity for NLL resummation [1, 15] and methods for partially addressing sub-leading

colour have also been proposed, by extending dipole showers beyond leading-Nc colour flows

[16–19]. In a recent paper [1], we constructed a dipole shower that has the virtue of inheriting

some of the colour dynamics of an angular-ordered shower, which improved sub-leading

colour accuracy. In this paper we perform a fixed-order cross-check of that approach. We

do so by comparing the improved shower’s assignment of colour factors to the corresponding

exact e+e− matrix elements, computed with second-order QCD corrections. Motivated by

these calculations, we are able to further improve our dipole shower’s description of colour,

in a way that is applicable to evolution with an arbitrary number of emissions.

In [1] we derived an improved dipole shower in the context of e+e− → qq̄ collisions4,

starting from an algorithm for the evolution of QCD amplitudes first presented in [20].

The shower can be understood by considering a few key features of angular-ordered and

dipole showers. When a shower emits a parton, three new degrees of freedom (DoF) are

introduced, describing the new parton’s energy and direction. Angular-ordered showers

average over one of the DoF (a contextually defined azimuth) which allows the effects of

QCD coherence to become manifest. In turn, this reduces the shower to a Markovian

sequence of parton decays (1 → 2 transitions). Thus the final-state partons produced by

the shower have a unique branching history with colour factors assigned in accordance

with QCD coherence. The angular-ordered approach is very powerful; by harnessing QCD

coherence, NLL resummation can be achieved for a broad class of global observables [2].

However, averaging a DoF limits the approach.

In contrast to angular ordering, the dipole approach retains full dependence on the DoF

of each emitted parton. Instead it approximates the colour structures in the shower by

emitting partons from colour-connected dipoles. This restricts a basic dipole shower to

leading-colour accuracy. Thus a dipole shower is built from a Markovian sequence of 2→ 3

transitions and, as a result, dipole showers lack a unique branching history of parent partons

and their decay products. However, a branching history can be constructed by introducing

a dipole partitioning, which probabilistically assigns the emitted parton to one of the two

parent partons in the dipole. Modern dipole showers use this partitioning to assign colour

factors and momentum conservation, and to facilitate hard-process matching. In effect, our

approach in [1] was to define a partitioning so that, after averaging over azimuths, each

branching history and its relative weight matches with a corresponding branching history

generated by an angular-ordered shower. Through this link, we could assign colour factors

beyond leading colour in the dipole shower. As we show in this paper, when applied naively

(as was done in [1]) this procedure does not completely eliminate sub-leading colour errors

4Though the framework to extend the shower beyond e+e− was presented in the appendices of [1].
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in the dipole shower for some observables, even at LL accuracy. The problem arises since

the kt-ordered dipole shower necessarily involves branching histories disordered in angle:

soft, large-angle emissions can appear anywhere in the branching history. These particular

branching histories complicate any attempt to assign colour factors in a dipole shower

(a point previously noted in [21]) and were not completely accounted for in our original

approach. In this paper, we solve this problem by introducing dynamical colour factors,

i.e. we fix the LL, sub-leading colour errors in event shape observables and increase the

shower’s sensitivity to full-colour NLLs (falling short of full-colour NLL resummation).

The rest of the paper is structured as follows. After a review of the double emission

matrix element in Section 7.3, we repeat the calculation for our original dipole shower

in Section 7.4 and compare the two. We find that the shower works as intended, i.e.

the colour factors assigned to partons whose emissions are ordered in angle agree with

those of the fixed-order result. However, for emissions unordered in angle, the shower has

only leading-colour accuracy. The understanding brought about by the fixed-order analysis

allows us to construct a new method for the correct assignment of dynamical colour factors

for emissions unordered in angle. The specific partitioning we introduced in [1] plays a

crucial role in the construction of the new colour factors. The approach we take involves

altering shower kernels by introducing a dynamic colour factor that is a function of the

branching history. This method involves a computational complexity that asymptotically

grows logarithmically with the parton multiplicity. Finally, to illustrate the importance

of the dipole partitioning, we compute the O(α2
s ) difference between exact squared matrix

elements and those calculated using a dipole shower employing a different (Catani-Seymour

[22]) partitioning. We find that, in the limit the emissions are strongly ordered in energy

and angle, the O(α2
s ) difference does not vanish, with the possibility of a LL, sub-leading

colour error, as was noted in [21]. For specific observables (e.g. thrust) this error may

be removed at order O(α2
s ) from a dipole shower employing a Catani-Seymour-type dipole

partitioning by using our dynamic colour factors. However, the error will likely re-emerge

at higher-orders.

7.3 A recap of the O(α2
s ) QCD squared matrix element

First we recap the calculation of the O(α2
s ) e+e− → qq̄gg squared matrix element when the

gluons are either soft or collinear. Figure 7.1 illustrates our labelling of the partons and the

angles between them. This calculation is essentially a recap of Section 5.5 in Ellis, Stirling

and Webber [23] and Chapter 4 in Dokshitzer, Khoze, Mueller and Troyan [24]. To start,

we will only take the limit that lab-frame energies satisfy Eq � Ej , Ei, Ek (i.e. the pure
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θjq

i

k

jθik

θij

Figure 7.1: One of the Feynman diagrams contributing to the O(α2
s ) e+e− → qq̄gg matrix

element used to compute Eq. (7.15). In the present work we calculate these in the soft
approximation for which the second gluon is assumed to have energy much less than the
first emission.

soft limit for q). Thus our starting point is5

|M2|2
d3~pq
2Eq

≈− 2αs

π
Tr (Ti ·Tjwij + Tj ·Tkwjk + Tk ·Tiwki)

dEq
Eq

dΩq

4π
|M1(~pi, ~pj , ~pk)|2,

(7.15)

where

wab =
E2
q pa · pb

pa · pq pb · pq
. (7.16)

and where |M1(~pi, ~pj , ~pk)|2 is the O(αs) squared matrix element. At leading colour (LC)

we have

|M2|2
d3~pq
2Eq

≈ αsNc

π
(wij + wjk)

dEq
Eq

dΩq

4π
|M1(~pi, ~pj , ~pk)|2. (7.17)

This can be interpreted as a sum of emissions from two independent dipoles, (ij) and (jk),

and is the basic result on which dipole showers and the Banfi-Marchesini-Smye (BMS)

equation [3] are built, see also the discussion in [25] for a more detailed analysis in the case

of more general processes.

Without approximating colour, we can simplify the matrix element by only keeping

terms which are logarithmically enhanced in the two-jet limit (i.e. terms that diverge as

θij/θik → 0). To do this, we write each wab as

wab = Pab + Pba, (7.18)

where

2Pab = wab +
EaEq
pa · pq

− EbEq
pb · pq

(7.19)

5In this case, as the three-parton matrix element is diagonal in colour, we have 〈M1(...)|Ti ·Tj |M1(...)〉 =
Tr [Ti ·Tj ] |M1(...)|2.
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Figure 7.2: Diagrams illustrating the angular-ordered interpretation of the four terms in
Eq. (7.23). The relative lengths of lines depict the relative energies. Likewise, the relative
angles between lines are indicative.

and ∫ 2π

0

dφ
(a)
q

2π
Pab =

1

1− cos θaq
Θ(θaq < θab). (7.20)

Here φ
(a)
q is the azimuth as measured around the direction of pa. We define the following

shorthand for averaging the azimuths:

P
[a]
ab =

(d cos θaq) dφ
(a)
q

4π

∫ 2π

0

dφ
(a)
q

2π
Pab. (7.21)

Importantly, P
[a]
ab only depends on parton b via the theta function constraining the angle of

emission. We now consider the limit θij � θik = π, whence we can assume

P
[k]
ki ≈ P

[k]
kj ≈ P

[k]
k(ij), (7.22)

where (ij) refers to the momentum p(ij) = pi + pj , which is approximately on-shell in the

collinear limit we consider. By employing this and similar relations we can simplify the

matrix element:

|M2|2
d3~pq
2Eq

≈ 2αs

π
Tr
(
T2
iP

[i]
ij + T2

jP
[j]
ji + T2

kP
[k]
k(ij) + T2

(ij)P̃
[(ij)]
(ij)k

) dEq
Eq
|M1(~pi, ~pj , ~pk)|2,

(7.23)

where P̃
[(ij)]
(ij)k = P

[(ij)]
(ij)k Θ(θ(ij)q > θij). The four contributions are illustrated in Figure 7.2

and Table 7.1 tabulates each term in Eq. (7.23) across the entire emission phase-space for

q.

It is important to note that when deriving Eq. (7.23), terms such as

∆ =
1

2

(
P

[i]
ik − P

[i]
ij − P

[j]
jk + P

[j]
ji

)
, (7.24)

were set to zero by approximating the direction of i and j with a combined direction (ij). For

finite θij , these terms are only subject to energy divergences and therefore are negligible so
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θiq
θij

θjq
θij

Tr T2
i P

[i]
ij Tr T2

j P
[j]
ji Tr T2

k P
[k]
k(ij) Tr T2

(ij) P̃
[(ij)]
(ij)k

< 1 < 1 CF P
[i]
ij CA P

[j]
ji CF P

[k]
k(ij) 0

< 1 > 1 CF P
[i]
ij 0 CF P

[k]
k(ij) 0

> 1 < 1 0 CA P
[j]
ji CF P

[k]
k(ij) 0

> 1 > 1 0 0 CF P
[k]
k(ij) CF P̃

[(ij)]
(ij)k

Table 7.1: The contributions to Eq. (7.23), the azimuthally-averaged squared matrix element
in the limit θij � θik. Terms where wide-angle, soft physics has been lost as a result of the
collinear approximation are underlined.

long as we insist that a collinear logarithm is picked up. However, because we azimuthally

averaged and neglected these pieces, some wide-angle physics is lost which is otherwise

captured at LC in Eq. (7.17) (and consequently in dipole showers and BMS evolution).

These soft poles are crucial to a complete description of non-global logarithms. Regions of

phase-space for which some wide-angle physics has been set to zero are underlined in Table

7.1. Crucially, all wide-angle soft physics is included in the limit θij → 0.

Eq. (7.23) can be generalised to include the situation where the parton energies are no

longer strongly ordered by introducing hard-collinear physics:

dEq
Eq
7→ dEq

Eq
(1 + hard-collinear). (7.25)

For instance, in the limits defining the rows 1 through 3 of Table 7.1, Eq. (7.23) with

hard-collinear physics is

|M2|2
d3~pq
2Eq

≈ 2αs

π

(
P

[i]
ij dzi Pqq + P

[j]
ji dzj Pgg + P

[k]
k(ij)dzk Pqq

)
|M1(~pi, ~pj , ~pk)|2, (7.26)

where Pab is an unregularised splitting function and 1− zm ≈ Eq/Em with Em the energy

of parton m before the emission6. Likewise, Eq. (7.23) in the limit defined in the last row

of Table 7.1 becomes

|M2|2
d3~pq
2Eq

≈ 2αs

π

(
P

[(ij)]
(ij)k dz(ij) Pqq + P

[k]
k(ij)dzk Pqq

)
|M1(~pi, ~pj , ~pk)|2. (7.27)

7.4 Computing the squared matrix element with the dipole
shower

Now we want to compute the same squared matrix element using our kt-ordered dipole

shower. We wish to test that it correctly reproduces the terms in Table 7.1 and the hard-

6We have ignored the recoil. See Section 7.5.1 for a discussion on its inclusion.
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Figure 7.3: The relevant colour topologies in a dipole shower corresponding to Eq. (7.23).

collinear physics in Eqs. (7.26) and (7.27). The relevant contributions are pictured in

Figure 7.3.

Consider a generic kt-ordered dipole shower, for which emission from a dipole (a, b) at

a given slice in kt is generated by an emission probability of

dProb

ln kab⊥
=

∫
dφ

2π

αs

π

(
CagabPd

a→aq(z
ab)dzab + CbgbaPd

b→bq(z
ba)dzba

)
, (7.28)

where Pd
q→qg(z) = Pd

qq(z) and Pd
g→gg(z) = Pd

gg(z). We neglect g → qq̄ transitions, which

are sub-leading in colour and only contribute a NLL for doubly-logarithmic observables7.

Pd
qq(z) and Pd

gg(z) are the usual dipole splitting functions, stripped of their colour factors:

CFPd
qq(z) = Pqq(z),

CA

2
Pd
gg(z) +

CA

2
Pd
gg(1− z) = Pgg(z), (7.29)

and where Ca = CF or CA/2 if parton a is a quark or gluon. The gab are dipole partitioning

functions, they define how colour factors and momentum conservation should be distributed

across the two members of a dipole and are functions of the momenta of all partons emitted

so far. Functions gab can be smooth or discontinuous functions of the parton momenta.

Since we are neglecting momentum conservation in this section, gab + gba = 1. The relevant

kinematic variables are

(kab⊥ )2 =
2 pa · pq pb · pq

pa · pb
, 1− zab =

pq · pb
pa · pb

,

(k⊥)2 =
2 pi · pj pk · pj

pi · pk
, (7.30)

and φ is an azimuth so that ~kab⊥ = kab⊥ (sinφ~n1 + cosφ~n2) where ~n1,2 are two mutually

orthogonal and normalised transverse vectors in the (a, b) dipole zero-momentum frame.

7For single-logarithm, collinear-sensitive observables they contribute a leading logarithm at sub-leading
colour.
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After two emissions, the shower gives

|M2|2
d3~pq
2Eq

≈ αs

π

[(
CFgijPd

qq(z
ij)dzij +

CA

2
gjiPd

gg(z
ji)dzji

)
dkij⊥
kij⊥

dφ

2π
Θ(kij⊥ < k⊥)

+

(
CA

2
gjkPd

gg(z
jk)dzjk + CFgkjPd

qq(z
kj)dzkj

)
dkjk⊥

kjk⊥

dφ

2π
Θ(kjk⊥ < k⊥)

]
|M1(~pi, ~pj , ~pk)|2.

(7.31)

7.4.1 O(α2
s ) with emissions ordered in angle

We will first consider whether our dipole shower can recreate the physics in rows 1 through

3 of Table 7.1. The diagrams contributing to this limit will be produced in our shower

when the parton transverse momenta and angles are concurrently ordered. For now we will

neglect recoil and hard-collinear pieces. Keeping only the soft parts, we have

|M2|2
d3~pq
2Eq

≈2αs

π

[(
CFgijwij +

CA

2
gjiwij

)
dEq
Eq

d2Ωq

4π
Θ(kij⊥ < k⊥)

+

(
CA

2
gjkwjk + CFgkjwjk

)
dEq
Eq

d2Ωq

4π
Θ(kjk⊥ < k⊥)

]
|M1(~pi, ~pj , ~pk)|2. (7.32)

Our dipole shower is built using the partitioning

gab =
1

2
+ Asyma,b, (7.33)

where [1]

Asyma,b =

[
T · pa
4T · pq

(k
(ab)
⊥ )2

pa · pq
− T · pb

4T · pq
(k

(ab)
⊥ )2

pb · pq

]
, and T =

∑
i

pi, (7.34)

where the sum over i is a sum over all partons in the event. T plays the role of projecting

the lab frame energy when it is contracted with a momentum vector. Roughly speaking,

this way of partitioning a dipole corresponds to splitting the dipole in half in the laboratory

frame; it is defined specifically to ensure

gabwab = Pab, (7.35)

and therefore

|M2|2
d3~pq
2Eq

≈2αs

π

[(
CFPij +

CA

2
Pji

)
dEq
Eq

d2Ωq

4π
Θ(kij⊥ < k⊥)

+

(
CA

2
Pjk + CFPkj

)
dEq
Eq

d2Ωq

4π
Θ(kjk⊥ < k⊥)

]
|M1(~pi, ~pj , ~pk)|2. (7.36)
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After azimuthal averaging:

|M2|2
d3~pq
2Eq

≈2αs

π

[(
CFP

[i]
ij +

CA

2
P

[j]
ji

)
dEq
Eq

Θ(kij⊥ < k⊥)

+

(
CA

2
P

[j]
jk + CFP

[k]
kj

)
dEq
Eq

Θ(kjk⊥ < k⊥)

]
|M1(~pi, ~pj , ~pk)|2. (7.37)

As we are working in the limits defined in rows 1 through 3 of Table 7.1, and in the soft

limit for q, the kt ordering theta functions all saturate and can be removed. Thus, we find

|M2|2
d3~pq
2Eq

≈2αs

π

(
CFP

[i]
ij + CAP

[j]
ji + CFP

[k]
k(ij)

) dEq
Eq
|M1(~pi, ~pj , ~pk)|2. (7.38)

This is the same as the fixed-order result given in the previous section.

We will now relax the soft approximation and check whether our dipole shower correctly

includes the hard-collinear physics too, i.e. that it reconstructs Eq. (7.26). We can once

again start from Eq. (8.6):

CagabPd
a→aq(z

ab)
dkab⊥
kab⊥

dzab
dφ

2π
= Cagabwab

dEq
Eq

d2Ωq

2π
(1 + hard pieces)

= CaPab
dEq
Eq

d2Ωq

2π
(1 + hard pieces), (7.39)

where the ‘hard pieces’ part depends on the splitting function:

Pd
a→aq = Pd

qq : hard pieces = (zab)2,

Pd
a→aq = Pd

gg : hard pieces = (zab)3. (7.40)

Since the collinear limit requires θiq or θjq � θij � θik, we can let zab ≈ za where 1− za ≈
Eq/Ea and where Ea is the energy of parton a before the emission is generated. Thus ‘hard

pieces’ does not have any azimuthal dependence8 and so azimuthal averaging proceeds as

before. We find that

|M2|2
d3~pq
2Eq

≈2αs

π

([
P

[i]
ij dzi Pqq + P

[j]
ji dzj

CA

2
Pdgg(zj)

]
Θ(kij⊥ < k⊥)

+

[
P

[j]
jk dzj

CA

2
Pdgg(1− zj) + P

[k]
k(ij)dzk Pqq

]
Θ(kjk⊥ < k⊥)

)
|M1(~pi, ~pj , ~pk)|2.

(7.41)

Once again, the collinear limit results in P
[j]
ji = P

[j]
jk . The small-angle approximation for q

saturates the ordering theta functions and so

|M2|2
d3~pq
2Eq

≈ 2αs

π

(
P

[i]
ij dzi Pqq + P

[j]
ji dzj Pgg(zj) + P

[k]
k(ij)dzk Pqq

)
|M1(~pi, ~pj , ~pk)|2. (7.42)

8‘hard pieces’ do contain azimuthal dependence if we include spin correlations. In [20], we discussed using
the Collins and Knowles algorithm [26, 27] to re-introduce spin correlations by re-weighting after the shower
has terminated.
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This is equivalent to the fixed-order result of Eq. (7.26).

An important part of this section was to assume we can neglect recoil and that further

emissions do not modify momenta in such a way that these correctly computed matrix

elements are destroyed. As we showed explicitly in Section 3.1 of [1], our global recoil does

not mess the computation of NLLs at this order. This is further discussed in Section 7.5.1.

7.4.2 O(α2
s ) with emissions unordered in angle

In the previous section we validated our dipole shower’s ability to reproduce rows 1 through

3 of Table 7.1. In this section we wish to test the shower’s ability to reproduce the last

row of Table 7.1 and the LC limit in Eq. (7.17), which is applicable across all the limits

considered in the table and also when θij 6� θik. To start we will test our dipole shower in

the limit that q is soft whilst θij � θik but θiq ≈ θjq > θij (i.e. we will compare against row

4 in Table 7.1). We describe these emissions as unordered in angle since they are produced

in the shower with angles out of order; the kt and angle of these are emissions are not

concurrently ordered. However, these emissions can still have a strong angular hierarchy

allowing them to produce a LL, i.e. θij � θiq ≈ θjq � θik. The region of phase-space which

has this hierarchy is highly restricted, due to the opposing kt ordering, but is nevertheless

present and its mistreatment can induce a (small) LL error in some observables, for instance

thrust [21]. At the end of this section we will check the crucial soft, wide-angle limit, where

parton q is soft but all angles are unconstrained.

We will begin from Eq. (7.37), which was derived from our shower by only assuming

parton q is soft. Employing θij � θik allows us to replace P
[k]
ki ≈ P

[k]
kj ≈ P

[k]
k(ij), i.e.

|M2|2
d3~pq
2Eq

≈2αs

π

[(
CFP

[i]
ij +

CA

2
P

[j]
ji

)
dEq
Eq

Θ(kij⊥ < k⊥)

+

(
CA

2
P

[j]
jk + CFP

[k]
k(ij)

)
dEq
Eq

Θ(kjk⊥ < k⊥)

]
|M1(~pi, ~pj , ~pk)|2. (7.43)

Now we take the limit that θiq, θjq � θij , thus P
[i]
ij = P

[j]
ji = 0 and P

[j]
jk ≈ P

[(ij)]
(ij)k which gives

rise to

|M2|2
d3~pq
2Eq

≈ 2αs

π

(
CA

2
P

[(ij)]
(ij)k + CFP

[k]
k(ij)

)
dEq
Eq

Θ(k
(ij)k
⊥ < k⊥)|M1(~pi, ~pj , ~pk)|2. (7.44)

We should add to this the contribution where parton q is emitted first. Doing so gives

|M2|2
d3~pq
2Eq

≈ 2αs

π

[(
CA

2
Θ(k

(ij)k
⊥ < k⊥) + CFΘ(k

(ij)k
⊥ > k⊥)

)
P

[(ij)]
(ij)k + CFP

[k]
k(ij)

]
dEq
Eq
|M1(~pi, ~pj , ~pk)|2.

(7.45)

260



Comparing with row 4 of Table 7.1 we see an N−2
c suppressed error in the colour factor of

the P
[(ij)]
(ij)k term. This error is due to the parton angles being disordered and is not present

in an angular-ordered shower. However, in our dipole shower the disordered configuration

is present and important, since it is required to get the correct wide-angle, soft physics

beyond the two-jet limit.

Following the same logic as before, it is simple to show that our dipole shower includes

the hard-collinear physics in Eq. (7.27) with the same N−2
c suppressed error as in Eq. (7.45).

Finally, a good dipole shower should encode Eq. (7.17) and therein BMS evolution in

the limit that the emission is soft. Starting from Eq. (7.36) and taking the leading colour

limit:

|M2|2
d3~pq
2Eq

≈αsNc

π

[
(Pij + Pji)

dEq
Eq

d2Ωq

4π
Θ(kij⊥ < k⊥)

+ (Pjk + Pkj)
dEq
Eq

d2Ωq

4π
Θ(kjk⊥ < k⊥)

]
|M1(~pi, ~pj , ~pk)|2. (7.46)

This is equal to

|M2|2
d3~pq
2Eq

≈αsNc

π

[
wijΘ(kij⊥ < k⊥) + wjkΘ(kjk⊥ < k⊥)

]
dEq
Eq

d2Ωq

4π
|M1(~pi, ~pj , ~pk)|2, (7.47)

which is equal to Eq. (7.17), modulo the use of kt instead of energy as the ordering vari-

able, which does not hinder the logarithmic accuracy [28, 29]. Hence the dipole shower

correctly handles wide-angle soft radiation in the LC approximation. To go beyond the LC

approximation generally requires amplitude-level evolution [20, 25, 30–33].

7.4.3 Summary

In this section we have evaluated the accuracy at which our original dipole shower recreates

the squared matrix elements summarised in Section 7.3. In summary, when parton q is

emitted from parton i or k the matrix element is reproduced without error. When parton q

is emitted from parton j there is an N−2
c suppressed error. We can look at different limits

of the phase-space for partons j and q and evaluate the colour accuracy of our shower in

each limit as follows:

1. θij � 1:

(a) θjq � θij : in this region an angular-ordered shower has full colour accuracy and

our shower agrees with an angular-ordered shower (see rows 1 and 3 of Table

7.1).
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j

q
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θij

for θij ≪ 1

(a)

i

j

q

θjq

θij

×Θ(θij > θjq)+

i

j
q

θiq θij

×Θ(θiq > θij)Θ(θjq > θij)
CA/2
CF

(b)

Figure 7.4: Diagram (a) is generated using our dipole shower, after partitioning. This
topology is where the N−2

c error emerges. Diagram (b) represents the re-arrangements
of (a) that can be made in the limit θij � 1. These diagrams correspond to those of
an angular-ordered shower. The red factor is the N−2

c suppressed error produced by our
original dipole shower.

(b) θjq ∼ θij : in this region an angular-ordered shower cannot recreate the complete

matrix element and our shower only guarantees LC accuracy in the soft limit.

This region does not contain a strong angular hierarchy so at most can contribute

a NLL and is suppressed further in event shape observables only sensitive to

perturbations from the two-jet limit, for instance thrust.

(c) θjq ≈ θiq � θij : in this region an angular-ordered shower has full colour accu-

racy and our shower currently lacks complete agreement with an angular-ordered

shower beyond LC (row 4 of Table 7.1). This is the region we will address in

Section 7.5.

2. θij ∼ 1: angular ordering cannot describe this region and our shower only guarantees

LC accuracy.9

In Figure 7.4 we illustrate the origin of the N−2
c suppressed error: the erroneous factor is

shown in red. The diagram in this figure is sufficient to enable us to read off the correct

colour factor, and we make heavy use of this perspective in what follows.

9In this limit (which is potentially subject to all manner of soft and non-global logarithms), it is difficult
to make statements on the logarithmic accuracy of the shower beyond the leading accuracy of soft logarithms
achievable through the BMS equation [34], which is embedded in the dipole shower approach. Though, with
this in mind, Dasgupta et al. [15] have demonstrated LC NLL accuracy in non-global observables for dipole
showers with carefully constructed global recoils and lab-frame based dipole partitionings. Our shower has
both these properties and our fixed-order tests of the shower [1] are consistent with their results. Note that
Dasgupta et al.’s definition of NLL accuracy encompasses NLL in the exponent but is also applicable to logs
that do not resum into an exponential form such as non-global logs.
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7.5 Colour factors for emissions unordered in angle

In the previous section we computed the double-emission matrix elements squared corre-

sponding to e+e− → qq̄gg, comparing the result from our dipole shower formalism with the

relevant limits of the exact matrix element. We showed that, when the two emissions are

strongly ordered in angle (with one emission collinear in the direction of one of the hemi-

spheres), the matrix elements calculated from our dipole shower were correct except when

a gluon is emitted with an angle larger than the opening angle of its parent dipole. In such

a configuration, the coherent branching calculation would correctly assign a colour factor

CF , whilst the dipole shower gives CA/2 (see Eq. (7.45)). At this order, we can correct the

colour factor by replacing Ci in Eq. (7.28) with a dynamic colour factor of

Cij(θiq, θij) =

(
CF δ

(q)
i +

CA
2
δ

(g)
i

)
θ(θiq < θij)

+

(
CA
2

(δ
(q)
i δ

(q)
j + δ

(g)
i δ

(g)
j ) + CF (δ

(q)
i δ

(g)
j + δ

(g)
i δ

(q)
j )

)
θ(θiq > θij), (7.48)

where δ
(q)
i (δ

(g)
i ) is one when the parton i is a quark (gluon), and zero otherwise. We stress

that this correction leads to the correct result only because our way of partitioning is able

to encode angular ordering via

(d cos θaq) dφ
(a)
q

4π

∫ 2π

0

dφ
(a)
q

2π
gabwab = P

[a]
ab , (7.49)

which ensures that the error is localized in the colour factor of Eq. (7.45). Our partitioning

satisfies this requirement exactly.10

It is not too difficult to generalize to higher orders, and the solution is particularly

straightforward in the absence of g → qq̄ branchings, which will be discussed at the end

of this section (see also [35]). Figures 7.5 and 7.6 illustrate errors that occur in the case

of three emissions. They highlight a key feature: the colour factor of the last emission is

incompatible with coherence only when it is emitted at an angle larger than the angular

extent of the colour charge distribution of the chain of partons leading to the emission.

Figure 7.7 shows the generalisation to an arbitrary fixed order11. As a consequence of

using a partitioning which defines a unique branching history of 1 → 2 transitions, the

collection of partons in an event can be divided into m branches for an m parton hard

process. Each branch contains one of the hard-process partons and the radiation emitted

from it. Each parton in the branch can also be assigned a unique sub-branch consisting

of the parton and its “parental chain”, see Figure 7.8. We only need to modify colour

10In 7.9 we discuss tests for checking whether other partitionings are consistent with the requirement at
NLL accuracy.

11In 7.8 we show that the planar diagrams arising after azimuthal averaging do generalise to higher orders
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Figure 7.5: Diagram (a) is generated by our dipole shower and is chosen because it contains
an incorrect colour factor. Diagram (b) represents the re-arrangements of (a) corresponding
to an angular-ordered shower. The red colour factor is the N−2

c suppressed error produced
by our original dipole shower.

factors for gluons which cannot probe the largest angle in their sub-branch. We do this by

extending the definition of Cij to

CiJ(θiq, θLJ) =

(
CF δ

(q)
i +

CA
2
δ

(g)
i

)
θ(θiq < θLJ) +

(
CA
2
δ

(g)
J + CF δ

(q)
J

)
θ(θiq > θLJ),

(7.50)

where J is the hard parton in the sub-branch and L is the parton in the sub-branch emitted

at the largest angle. θLJ is the angle between L and J .12 One should use these newly

defined dynamic colour factors in both emissions and in the Sudakov form factors, i.e. so

that the two are related by unitarity.13 The computation of the dynamic colour factor grows

at most linearly as the shower progresses and on average logarithmically.14

In summary we have constructed a dipole shower which encodes the physics of QCD

coherence just as in an angular-ordered shower. The resulting dipole shower, at LC, re-

produces BMS evolution and, after using the CMW running coupling [37], will match the

12θLJ = π for an emission with a sub-branch of length 2.
13All current dipole shower implementations [4, 6, 36] could directly employ our algorithm using existing

methods such as the Sudakov veto algorithm.
14The average sub-branch length for a multiplicity, n, of partons in the branch is

∑n
i=1

1
i
≤ lnn+ 1.
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Figure 7.6: A second possible ordering of angles that also leads to an incorrect colour factor.

NLL-accurate dipole showers with global recoils discussed in [15]. In all, we expect our

dipole shower to achieve full colour LL accuracy in any observable for which an angular-

ordered shower can also be used to resum LLs. In the case of e+e− → qq̄, the NLLs of

some observables (i.e. thrust) do not directly depend on g → qq̄ transitions15 in which case

our shower is accurate to NLL at full colour. Our methodology of assigning colour factors

by mapping branching histories onto those of an angular-ordered shower could be gener-

alised to assign the correct colour factors after including g → qq̄ transitions.16 However,

because these transitions introduce more quark lines into the parton cascade, there would

be the need to correct incorrect factors of 2CF . This would worsen the computational effi-

ciency. Whether the decreased efficiency is mitigated by the relative infrequency of g → qq̄

transitions in a typical shower is beyond the scope of this paper.

7.5.1 The effects of momentum conservation

In the paper so far we only briefly mentioned momentum conservation, which is vital for

any implementation in an event generator, and needs to be treated very carefully. Bad

implementations of momentum conservation have the potential to modify the phase-space

boundaries of partons in the cascade or the matrix elements, leading to NLL errors [21].

In a dipole shower, emissions are on-shell and their momentum is typically expressed using

three components: momentum longitudinal to the emitter, momentum transverse to the

15Such transitions are restricted to secondary branchings, the remnants of which can be resummed into
the CMW coupling and are otherwise rendered trivial by the angular-ordering constraint [2].

16Furthermore, our arguments also generalise to a hard process with more than two coloured, hard legs
provided each of the dipoles found in the colour flow for the hard process is evolved in its back-to-back
frame as is done in an angular ordered shower [38]. See Appendix A of [1] for a more complete discussion
on generalising our shower beyond e+e− → qq̄.
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Figure 7.7: The generalisation of Figures 7.5 and 7.6 to an arbitrary fixed order. Cones
i and J represent a unspecified number of parton branchings, each at angles smaller than
θLJ , which is the largest angle in q’s sub-branch. As before, diagram (a) is generated by
our dipole shower and contains an incorrect colour factor associated with the emission of
q. Diagram (b) represents the re-arrangements of (a) corresponding to an angular-ordered
shower. The red colour factor is the N−2

c suppressed error produced by our original dipole
shower.

emitting dipole and momentum in the ‘backwards’ direction (collinear to the other parton

in the dipole). A momentum map is used after an emission to ensure energy-momentum

conservation in the shower by distributing ‘recoil’ across the partons in an event whilst

keeping the partons are on-shell.

In [1] we presented a momentum map with the idea of being as simple as possible whilst

preserving the matrix elements computed by the shower. In the map, longitudinal recoil is

trivially handled correctly (it is conserved between the emission and the parent parton as

dictated by the dipole partitioning) and does not spoil anything. The other components are

handled by a Lorentz boost and a global re-scaling of every momentum in the event after the

emission. The emission kernels are invariant under both of these (as both zab and dkab⊥ /k
ab
⊥

are invariant under boosts and re-scalings). Thus only the phase-space is modified by the

momentum map, not matrix elements. In Section 3.1 of [20] we showed that the changes

to the phase-space due to recoil will generally not produce a log-enhanced term at O(α2
s )

and that, for global two-jet observables such as thrust, artifacts in the phase-space from the

recoil after iterated emissions produce terms beyond NLL. Alternative global momentum

maps with similar constructions have also been studied in [15] where the NLL accuracy of

the maps was demonstrated for a wide range of observables. The momentum maps in [15]
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J

q i

Figure 7.8: An illustration of a branch containing hard parton J . The sub-branch for parton
q contains the partons with solid lines, these form parton q’s ‘parental chain’. Partons with
dashed lines are in J ’s branch but are not in q’s sub-branch. The sub-branch length is the
number of partons in a sub-branch: parton q’s sub-branch has a length 4 whilst parton i’s
sub-branch has a length 3.

were designed so that their action preserved key features of the Lund plane [39, 40] (for

instance preserving the separation between emissions on the plane). They have the added

benefit of conserving ‘backwards’ components of momentum locally in a dipole, minimising

the affect of the map on the phase-space available to partons in the shower. Any of these

global prescriptions could be implemented into our shower without effecting the results in

this paper.

7.6 Errors in other dipole showers

In this section we want to emphasize the role of the dipole partitioning to our findings. To

eliminate sub-leading colour errors, the partitioning function gab must satisfy

(d cos θaq) dφ
(a)
q

4π

∫ 2π

0

dφ
(a)
q

2π
gabwab = P

[a]
ab + negligible. (7.51)

In 7.9 we discuss the term labelled ‘negligible’; the remainder after azimuthal averaging

when compared to the strict angular ordering result. Our dipole algorithm was carefully

constructed to not produce such a contribution at all. Note that the demand of P
[a]
ab being

proportional to a theta function cannot be satisfied with a zero remainder if gab is positive

definite and only zero at a finite number of points in the phase-space. On top of this, since

P
[a]
ab has no dependence on the energies of the partons in the dipole, any partitioning that

retains such a dependence after azimuthal averaging will result in a non-zero contribution

remainder.

An interesting example to illustrate how wrong results can be obtained is that of Catani-

Seymour (CS) dipole factorisation. The errors due to using a CS factorisation to construct

the dipole partitioning have been previously noted in [21]. Here we give a complementary
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discussion. The CS partitioning contains both the issues described in the previous para-

graph; the partitioning function is positive definite and has strong dependence on parton

energies after azimuthal averaging. The partitioning that generates Catani-Seymour dipole

factorisation is

gab =
(kab⊥ )2 pa · pb

2pa · pq (pa + pb) · pq
≡ e2η

1 + e2η
, (7.52)

where η is the dipole-frame rapidity of parton q (η → ∞ as pq/Eq → pa/Ea and η → −∞
as pq/Eq → pb/Eb). We must compute∫ 2π

0

dφ
(a)
q

2π
gabwab =

∫ 2π

0

dφ
(a)
q

2π

E2
q pa · pb

pa · pq (pa + pb) · pq
. (7.53)

Using the basis

pa = Ea(1, 0, 0, 1),

pb = Eb(1, sin θab, 0, cos θab),

pq = Eq(1, sin θaq cosφ(a)
q , sin θaq sinφ(a)

q , cos θaq)

gives ∫ 2π

0

dφ
(a)
q

2π
gabwab =

∫ 2π

0

dφ
(a)
q

2π

(1− cos θab)

(1− cos θaq) (D − sin θab sin θaq sinφ
(a)
q )

, (7.54)

where

EbD = Ea + Eb − Ea cos θaq − Eb cos θab cos θaq.

Note D > sin θab sin θaq for all momentum configurations. It is therefore easily shown that∫ 2π

0

dφ
(a)
q

2π
gabwab =

(1− cos θab)

(1− cos θaq)
√
D2 − sin2 θab sin2 θaq

. (7.55)

For all momentum configurations other than θab = π and Eb = Ea this results in

W
[a]
ab =

(d cos θaq) dφ
(a)
q

4π

∫ 2π

0

dφ
(a)
q

2π
gabwab 6≈ P [a]

ab . (7.56)

Using this azimuthal averaging of the Catani-Seymour partitioning we can compute the

azimuthally-averaged squared matrix element in the limit that emissions are strongly or-

dered in angle and energy:

|M2|2
d3~pq
2Eq

≈2αs

π

[(
CFW

[i]
ij +

CA

2
W

[j]
ji

)
dEq
Eq

Θ(kij⊥ < k⊥)

+

(
CA

2
W

[j]
jk + CFW

[k]
kj

)
dEq
Eq

Θ(kjk⊥ < k⊥)

]
|M1(~pi, ~pj , ~pk)|2. (7.57)
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As kab⊥ ≈ kca⊥ ≈ Eqθaq in this limit and since energies are strongly ordered, the kt ordering

theta functions are saturated and we find:

|M2|2
d3~pq
2Eq

≈2αs

π

[
CFW

[i]
ij +

CA

2

(
W

[j]
ji +W

[j]
jk

)
+ CFW

[k]
kj

]
dEq
Eq
|M1(~pi, ~pj , ~pk)|2. (7.58)

We can subtract this from the correct result (for rows 1 through 3 of Table 7.1) to find the

error:

δ|M2|2
d3~pq
2Eq

≈

2αsCF

π

[
(P

[i]
ij −W

[i]
ij + P

[k]
kj −W

[k]
kj ) +

CA

2CF

(
2P

[j]
ji −W

[j]
ji −W

[j]
jk

)]dEq
Eq
|M1(~pi, ~pj , ~pk)|2 6≈ 0.

(7.59)

Of course the error vanishes if CF = CA/2. The error becomes large when Ej � Ei ≈ Ek.

In this limit

W
[j]
jb ≈

(d cos θjq) dφ
(j)
q

4π

(1− cos θjb)

(1− cos θjq) | cos θjb − cos θjq|
, (7.60)

when θij 6≈ θjq and θjk 6≈ θjq17, and where b = i, k. Also in this limit

W
[b]
bj ≈

(d cos θiq) dφ
(i)
q

4π

Eb(1− cos θbj)

Ea(1− cos θbq)2
, (7.61)

once again this is only valid when θij 6≈ θjq and θjk 6≈ θjq (equivalently θiq 6≈ 0 and θkq 6≈ 0).

Thus

δ|M2|2
d3~pq
2Eq

≈ 2αsCF

π

[
(d cos θiq) dφ

(i)
q

4π

(
Θ(θiq < θij)

1− cos θiq
− Eb(1− cos θij)

Ea(1− cos θiq)2

)
+ (i↔ k)

+
CA

2CF

(
2

Θ(θjq < θij)

1− cos θjq
− (1− cos θij)

(1− cos θjq) | cos θij − cos θjq|
− (1− cos θjk)

(1− cos θjq) | cos θjk − cos θjq|

)]
× (d cos θjq) dφ

(j)
q

4π

dEq
Eq
|M1(~pi, ~pj , ~pk)|2. (7.62)

Note that the CA/CF piece contains a non-cancelling collinear pole when θjq → 0 and so

is capable of generating logarithms in observables that probe secondary emissions even in

the limit of a strong angular hierarchy, where θjq � θij � θ(ij)k, since the numerator of

W
[j]
ji goes as O(θ2

ij) whilst the numerator of P
[j]
ji goes as O(1). Also note that this error

cannot be fixed by using the dynamic colour factors CiJ(θiq, θLJ) since in the limit we are

considering the dynamic colour factors reduce exactly to the usual colour factors already

present in Eq. (7.62).

17In the region where θij 6≈ θjq terms in Ej/Ei are not negligible as they screen the divergence θij = θjq.
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We can also compare the error made using a CS-partitioned dipole shower with row 4

from Table 7.1. Here we find

δ|M2|2
d3~pq
2Eq

=
2αsCF

π

[
(P

[(ij)]
(ij)k −W

[i]
ij + P

[k]
k(ij) −W

[k]
k(ij))

− CA

2CF

(
W

[j]
ji +W

[j]
jk

)]dEq
Eq
|M1(~pi, ~pj , ~pk)|2 6≈ 0. (7.63)

This error is potentially LL, since with a strong hierarchy in emission energies and angles

the functions W are singular and so capable of generating double logarithms. Of course this

too vanishes if CF = CA/2. If the dipole shower instead used colour factors CiJ(θiq, θLJ)

this limit would be improved since the error would instead become

δ|M2|2
d3~pq
2Eq

=
2αsCF

π

[
(P

[(ij)]
(ij)k −W

[i]
ij + P

[k]
k(ij) −W

[k]
k(ij))

+ Θ(θjq > θLJ)(W
[j]
ji +W

[j]
jk )− CAΘ(θjq < θLJ)

2CF

(
W

[j]
ji +W

[j]
jk

)]dEq
Eq
|M1(~pi, ~pj , ~pk)|2 ≈ 0.

(7.64)

However, this improvement may not extend to higher orders since θLJ as computed with

the CS dipole shower branching history will not necessarily equal θLJ as computed from

a branching history matched to the angular-ordered description. This problem, combined

with Eq. (7.59), is sufficient for us to assert that CS dipole showers employing the dynamic

colour factors CiJ(θiq, θLJ) will still be subject to LL errors in some observables that angular-

ordering can completely describe at LL.

7.7 Conclusions

We have performed a fixed-order cross-check of the dipole shower presented in [1] and shown

that the shower performs as it was designed to: the shower inherits its handling of collinear

radiation from an angular-ordered shower whilst improving over angular ordering in the case

of the leading colour, wide-angle soft radiation. We also highlight a limitation of our original

approach, showing how the dipole shower will not assign correct colour factors to emissions

disordered in angle, though they will be correct at leading colour. We then introduced a new

method for correcting these colour factors. The new method is efficient: the computation

time on average grows logarithmically with parton multiplicity. Using this method, our

shower will match the LL accuracy of an angular-ordered shower in cases where an angular-

ordered shower has LL accuracy. When enhanced with the CMW running coupling [37], our

shower will include all leading logarithms and leading-colour, next-to-leading logarithms in

the two-jet limit for continuously-global observables. As it stands, the shower will not be

capable of the full-colour NLL resummation of global observables, due to the absence of full
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colour g → qq̄ transitions. These transitions could be included as described in [1] but would

generate sub-leading colour NLL errors: however, they could be included at full colour by

extending the methods outlined in Section 7.5.

7.8 Appendix: Drawing planar diagrams at arbitrary order

In this appendix we demonstrate that the planar diagrams representing re-arrangements of

our dipole shower into an angular ordered shower, in Figure 7.4, are not just a feature of our

dipole shower at O(α2
s ) but rather can continue to be used at higher orders if we continue to

assume that the branching history produced by our shower has a strong hierarchy in angles.

We do not assume a hierarchy in angles that is concurrently ordered with their kt. At a

scale k⊥, a given n-parton state produced by our dipole shower has a weight at a point in

the n-parton phase-space dSn(k⊥). We consider dressing this state with one further gluon,

q, produced by the shower. This gives an (n+ 1)-parton state:

dSn+1(k⊥)
d3~pq
2Eq

=

αs

π

∑
a,b c.c.

(
CaJ(θaq, θLJ) gab Pd

a→aq(z
ab)dzab + (a↔ b)

)
d ln kab⊥ dφ

2π
δ(kab⊥ − k⊥) dSn(k⊥),

(7.65)

where c.c. means a and b are colour connected in the n-parton state and J is the hard parton

that initiated a’s branch. All other symbols have the same definitions as in the previous

sections. We can azimuthally average exactly as in Section 7.4, and find

dSn+1(k⊥)
d3~pq
2Eq

=

αs

π

∑
a,b c.c.

(
CaJ(θaq, θLJ)P

[a]
ab Pd

a→aq(z
ab)dzab + (a↔ b)

)
δ(kab⊥ − k⊥) dSn(k⊥). (7.66)

Just as we have already demonstrated at O(α2
s ), the weight assigned to the (n+1)-state after

azimuthal averaging uses the same LC emission kernels as an angular-ordered approach. We

can make this very explicit by exchanging the sum over colour lines with a sum over parton

indices. To illustrate this, at LC we find

dSn+1(k⊥)
d3~pq
2Eq

=

αs

π

∑
a

(
CA

2
P

[a]
ab Pd

a→aq(z
ab)dzabδ(kab⊥ − k⊥) + δ(g)

a

CA

2
P [a]
ac Pd

a→aq(z
ac)dzacδ(kac⊥ − k⊥)

)
dSn(k⊥).

(7.67)

We can exchange the non-singular dependence on b and c in Eqs. (7.66) and (7.67) with that

of J (or the other hard parton J ′ if either b or c are in the opposing hemisphere). Similarly,
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for the non-singular region θaq � θaJ we can exchange the dependence on a with J so that

θaq ≈ θJq. Thus, just as in an angular-ordered framework, emissions are generated with a

weight

C P
[a]
aJ Pd

a→aq(z
aJ)

when they can probe the jet and

C P
[J ]
JJ ′ Pd

J→Jq(z
JJ ′)

when they cannot. At LC, C = CA/2 when a is a quark and, when a is a gluon, C = CA

if q can probe the jet (determined by the angular ordering constraint embedded in P
[a]
aJ

18)

and C = CA/2 when q cannot. It is these properties that our planar diagrams are defined

to encapsulate, validating their usage at arbitrary higher orders. The planar diagrams led

us to define CaJ(θaq, θLJ) so that the sub-leading Nc terms are included in accordance with

Figure 7.7.

7.9 Appendix: Current limitations of our dipole shower

An important part of our dipole shower is its partitioning. However, the form of our

partitioning, gab (defined through Eqs. (7.33) and (7.35)), might cause complications in a

computational implementation of our shower. In this appendix we will discuss the issues

and possible solutions.

A dipole shower is fully differential in the parton phase-space and so emits by sampling

from the distribution gabwab to populate a 3-dimensional phase-space for each parton.19

However, gabwab has two undesirable properties (illustrated in Figure 7.9): firstly gabwab

is negative in some portions of the emission phase-space, introducing negative weights into

the shower; secondly gabwab contains an integrable singularity when θaq = θab < π and

φ
(a)
q = 0 (i.e. q is in the plane of partons a and b). Both of these features can be handled

in a modern dipole shower: the Herwig dipole shower already contains all the necessary

machinery [6], as do others [41]. However, both features will hinder numerical convergence.

Fortunately the two features counter balance each other: gabwab is most negative when

θaq = (1 + ε)θab, for ε� 1 whilst strictly positive, and φ
(a)
q = 0. The negative weights and

integrable singularity are linked such that, when θaq = θab, gabwab azimuthally averages to

18This constraint is saturated by using an angular ordering variable in an angular-ordered shower and so
would typically be omitted if one where to write Eq. (7.66) specifically for such a shower.

19Including hard-collinear physics, the shower samples from gabPd
ab where Pd

ab is a dipole splitting function
but this does not effect our discussion here.
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Figure 7.9: Graphs of gabwab as a function of θab, θaq, φ
(a)
q as measured in the lab frame.

a well behaved quantity, ∫ 2π

0

dφ
(a)
q

2π
gabwab

∣∣∣∣∣
θaq=θab

=
1

2(1− cos θaq)
. (7.68)

A simple solution to the two issues would be, in regions bounded by θaq = θab ± δθ (for

δθ/θab � 1), to sample emissions according to the azimuthally averaged distribution,

Eq. (7.68). This would entail sampling emissions from a discontinuous distribution but

would alleviate the undesirable features whilst only introducing a power correction in δθ to

azimuthal correlations in the shower.

Alternatively, one might use an alternative partitioning, g̃ab, free from negative weights
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and integrable singularities, that satisfies

(d cos θaq) dφ
(a)
q

4π

∫ 2π

0

dφ
(a)
q

2π
g̃abwab ≈ P [a]

ab . (7.69)

This g̃ab would be suitable for use with our proposed dynamic colour factors and retain our

shower’s accuracy concerning LC NLL physics. It is possible that a pre-existing partitioning

employed by another parton shower might already achieve this. We have demonstrated that

the Catani-Seymour partitioning [22] does not satisfy this requirement but there are others

on the market that we have not tested [15, 41–43]. An acceptable partitioning should at

least satisfy

(d cos θaq) dφ
(a)
q

4π

∫ 2π

0

dφ
(a)
q

2π
(gab − g̃ab)wab =

(d cos θaq) dφ
(a)
q

4π(1− cos θaq)
Θ(θaq < θab)f (Eq/Ea, θaq, θab; ...) ,

(7.70)

where the ellipses denote all other kinematic quantities on which f depends but q’s emission

kernel otherwise does not, and where[∫ Q

τQ
lnn

Ea
Q

dEa
Ea

∫ Q

Ea

dEq
Eq

+

∫ Q

τQ

dEq
Eq

∫ Q

Eq

ln2n−2 Ea
Q

dEa
Ea

]

×
∫ 1

τ

dθaq
θaq

f (Eq/Ea, θaq, θab; ...) Θ(νq < νa) = O(lnn+1 τ), (7.71)

[∫ 1

τ
lnn θab

dθab
θab

∫ 1

θab

dθaq
θq

+

∫ 1

τ

dθq
θaq

∫ 1

θaq

ln2n−2 θab
dθab
θab

]

×
∫ Q

τQ

dEq
Eq

f (Eq/Ea, θaq, θab; ...) Θ(νq < νa) = O(lnn+1 τ), (7.72)

where νq,a is the shower ordering variable. These ensure that f at most contributes loga-

rithms of the form αns L
2n−2 to the expansion of an observable. In most two-jet event shape

observables, towers of αns L
2n−2 logarithms which first appear for n = 1 are NNLLs in the

resummed observable. If one were to perform these tests using the Catani-Seymour parti-

tioning, each of Eqs. (7.71) and (7.72) evaluates to O(lnn+3 τ); a LL error (the calculation

of which follows almost exactly the same structure as the thrust calculation in [21]).
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Chapter 8

Publication: Coulomb gluons will
generally destory coherence

“Well, I’m a hair’s breath from investigating bunnies at the moment, so I’m

open to anything.”

— Rupert Giles, Buffy the Vampire Slayer Season 6

8.1 Preface

In our publication “Parton branching at amplitude level” (Chapter 4) we carefully study

the factorisation properties of our parton branching algorithm. The factorisation of QCD

amplitudes is of broad interest [1–7] and underpins the application of DGLAP evolution

to phenomenological studies of protons at the LHC. In the following publication we use

the insight gained from the factorisation properties of our parton branching algorithm to

evaluate corrections to DGLAP evolution due to factorisation violating logarithms.
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[6] J. R. Forshaw, M. H. Seymour, A. Siódmok, “On the Breaking of Collinear Factor-
ization in QCD”, JHEP 2012, 11, 066, arXiv: 1206.6363 [hep-ph].
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Coulomb gluons will generally destroy
coherence
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Abstract

Coherence violation is an interesting and counter-intuitive phenomenon in QCD. We discuss

the circumstances under which violation occurs in observables sensitive to soft radiation and

arrive at the conclusion that almost all such observables at hadron colliders will violate co-

herence to some degree. We illustrate our discussion by considering the gaps-between-jets

observable, where coherence violation is super-leading, then we generalise to other observ-

ables. We end with a general discussion on the logarithmic order of coherence violation.

8.2 Introduction

The collinear evolution of hadronic parton densities is accounted for using the equations of

Dokshitzer, Gribov, Lipatov, Altarelli & Parisi (DGLAP) [1–3]. It is often assumed that, as

a result of QCD coherence, this collinear evolution can be factorized from any wide-angle,

soft-gluon emissions [4]. However, Coulomb/Glauber exchanges can destroy coherence and

invalidate the factorisation [5, 6]. In this letter, we explore the circumstances under which

this happens.

8.2.1 Case study: gaps between jets

Oderda & Sterman (OS) [7–9] presented the first calculations of the rate for the production

of two or more jets subject to the restriction that there should be no additional jets located in

the rapidity interval between the two highest pT jets (the dijets) with transverse momentum

(or energy) bigger than some value, Q0. This observable is sensitive to logarithmically

enhanced, wide-angle, soft-gluon emissions. According to OS, the leading logarithmic (LL)

contribution to the gaps-between-jets cross-section at a hadron collider is

dσOS

dxadxb dB = fA(xa, Q)fB(xb, Q)Tr(VQ0,QHV†Q0,Q
), (8.1)
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where H = |M0〉〈M0| is the QCD hard scattering matrix (|M0〉 is the lowest-order, QCD

hard-process amplitude for dijet production), dB ≡ dy d2p⊥/16π2ŝ is the measure for the

on-shell (Born) kinematics of the final state dijets, fA/B are parton distribution functions

for the incoming hadrons A and B, Q is the jet transverse momentum and

VQ0,Q ≈ exp

(
−αs
π

ln
Q

Q0
(YT2

t − iπT2
s)

)
. (8.2)

The rapidity separation between the dijets is Y , T2
t is the colour-space operator correspond-

ing to the colour exchanged in the t-channel and T2
s corresponds to the colour exchanged

in the s-channel. For example, if the hard process is ab → cd then T2
s = (Ta + Tb)

2 =

(Tc + Td)
2 and T2

t = (Ta + Tc)
2 = (Tb + Td)

2. The Sudakov operator VQ0,Q corresponds

to no soft-gluon emission directly into the region between the dijets with transverse mo-

mentum greater than Q0. Eq. (8.2) is a good approximation for Y � 1 (the terms we have

neglected are proportional to the unit matrix in colour space, which means their neglect

does not affect what follows).

Following the discovery of non-global logarithms by Dasgupta & Salam [10], it became

clear that the OS analysis was incomplete because it did not account for the Sudakov sup-

pression associated with partons originally radiated into the out-of-gap region. Including

this physics makes the problem considerably more complicated/interesting. Notwithstand-

ing the role of this non-global radiation, our focus here is on the collinear evolution of the

incoming partons and for that we will continue to neglect the non-global corrections. We

do so for pedagogical reasons, fully aware that non-global corrections are important. That

said, let us return to Eq. (8.1) and notice that it is still not quite right.

To see what is wrong, let us consider only the order αs correction to the collinear

evolution of the parton densities above the veto scale Q0. For simplicity, we only consider

quark evolution from hadron A. The result is

dσ1

dxadxb dB =
αs
π

∫ Q

Q0

dkT
kT

∫ 1−kT /Q

0

dz

z
Pqq(z) fB(xb, Q)

×
[
Θ(z − xa) fA(xa/z,Q0)

1

T2
a

Tr(VQ0,kTTaVkT ,QHV†kTQT†aV
†
Q0,kT

)

− zfA(xa, Q0)Tr(VQ0,QHV†Q0,Q
)

]
. (8.3)

Here T2
a = CF since we are supposing that parton a is a quark and we are following

convention in writing

Pqq = CF
1 + z2

1− z . (8.4)
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In the case of no jet veto we have the familiar result for the dijet cross-section including the

evolution of the parton distribution functions in terms of the plus prescription [1–3, 11],

dσ1

dxadxb dB =
αs
π

∫ Q

Q0

dkT
kT

∫ 1−kT /Q

0

dz

z
Pqq(z)

[
Θ(z − xa) fA(xa/z,Q0)

− zfA(xa, Q0)
]
Tr(VQ0,QHV†Q0,Q

)fB(xb, Q),

=
αs
π

∫ Q

Q0

dkT
kT

∫ 1

xa

dz

z
CF

(
1 + z2

1− z

)
+

fA(xa/z,Q0)fB(xb, Q)Tr(VQ0,QHV†Q0,Q
) .

(8.5)

In the first line, it is safe to set the upper limit of the z integral to unity, which allows us

to write the second line in terms of the plus prescription.

The problem in Eq. (8.3) is the non-commutativity of the colour emission operator

Ta with the Sudakov operator, which can be traced to the Coulomb/Glauber iπ term in

Eq. (8.2). In the case of the gaps-between-jets observable, expanding Eq. (8.3) order-by-

order in αs reveals an unexpected double logarithmic enhancement starting at

∼ π2N2
c Y α

4
s log5(Q/Q0)

relative to the inclusive dijet cross section. These are the super-leading logarithms first

reported in [12]. Notice that the iπ terms do not cancel because [T2
t ,T

2
s] 6= 0. This is what

spoils our ability to factorize the collinear evolution into the parton distribution functions

since, in the absence of any iπ terms, we would recover Eq. (8.5) due to the fact that

[Ta,T
2
t ] = 0. The problem is also entirely a problem with emissions collinear to one of

the two incoming partons; emissions collinear to the outgoing partons do factorize since

[Tc,d,T
2
s] = 0 and [Tc,d,T

2
t ] = 0.

8.3 General considerations

We now consider more general pure QCD processes in hadron-hadron collisions (we will

consider electroweak processes later). We continue to neglect non-global logs and other

important sources of logarithms, for instance from the running coupling and recoil. We

begin with a generalisation of Eq. (8.3):

dσ1

dxadxb dB =
αs
π

∫ Q

µF

dkT
kT

∫ 1−kT /Q

0

dz

z
Pqq(z) u1(k) fB(xb, Q)

×
[
Θ(z − xa) fA(xa/z, µF)

1

T2
a

Tr(VµF,kTTaVkT ,QHV†kT ,QT†aV
†
µF,kT

)

− zfA(xa, µF)Tr(VµF,QHV†µF,Q
)

]
, (8.6)
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where Q is the hard scale and

Va,b ≈ Pexp

(
αs

π

[∑
i 6=j

Ti ·Tj

∫ b

a

dq
(ij)
⊥

q
(ij)
⊥

∫ lnQ/q
(ij)
⊥

− lnQ/q
(ij)
⊥

dy(ij)

∫ 2π

0

dφ(ij)

4π

(
1− un(q, {q}n−1)

)
+ iπT2

s ln
b

a

])
. (8.7)

The measurement function corresponding to n emissions with respect to the Born process

is u(q, {q}n−1), where q is the most recent emission momentum and {q}n−1 is the set of

all previous emission momenta. In Eq. (8.6) we only need u(q, {}) ≡ u1(q) and u(q, k) ≡
u2(q, k)u1(k). In Eq. (8.7), (

q
(ij)
⊥
)2

=
2pi · q pj · q
pi · pj

is the transverse momentum defined in the zero momentum frame of partons i and j; y(ij)

and φ(ij) are the rapidity and azimuth in the same frame. The sum over i and j in Eq. (8.7)

is over all prior real emissions and as such it is context dependent.

Eq. (8.6) will generate coherence violating terms at some perturbative order if the

Coulomb terms do not entirely cancel. For this cancellation to occur we require

[Re(ln Vµ,k⊥),T2
s] = 0. (8.8)

This is because if Eq. (8.8) is satisfied we can write Vµ,k⊥ = VRe
µ,k⊥

VIm
µ,k⊥

where VIm
µ,k⊥

=

eIm(ln Vµ,k⊥ ) and (VIm
µ,k⊥

)† = (VIm
µ,k⊥

)−1. This permits the cancellation of the outermost

Coulomb terms and then, since

[Re(ln Vµ,k⊥),Ta] = 0, (8.9)

a cascade effect leads to the cancellation of all other Coulomb terms [4, 13, 14].

Eq. (8.8) can be generalized to a statement that there be no coherence violation in σn,

i.e. for any number of collinear emissions, thereby allowing all-orders DGLAP evolution up

to the hard scale Q. For this to be so, it is necessary that

[Re(ln Va,b),T
2
s]
∣∣∣M(n)

0

〉
= 0, (8.10)

where
∣∣∣M(n)

0

〉
is the Born amplitude dressed with n soft or collinear partons. Eq. (8.10)

means that[∑
i 6=j

Ti ·TjΩij ,T
2
s

]
=

[( ∑
i=a,b

+
∑
i 6=a,b

)( ∑
j=a,b

+
∑
j 6=a,b

)
Ti ·TjΩij ,T

2
s

]

= 2

[ ∑
i=a,b

∑
j 6=a,b

Ti ·TjΩij ,T
2
s

]
= 0, (8.11)
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and it is understood that the commutators are to act on
∣∣∣M(n)

0

〉
. In other words, we only

need to check the commutativity of a Coulomb exchange with any soft interference term

between an initial and a final state parton in order to check for coherence violation.

For topologies with fewer than two coloured incoming particles Eq. (8.11) is automati-

cally satisfied since T2
s is a Casimir. For all other processes, the commutator in Eq. (8.11)

only vanishes if Ωaj = Ωbj
1. Quite generally,

Ωaj =

∫ β

α

dq
(ab)
⊥

q
(ab)
⊥

∫
dy(ab)dφ(ab)

8π

(
q

(ab)
⊥
)2 pa · pj
pa · q pj · q

(1− un(q, {q}n−1))

×Θ

(
α <

√
pa · pj
pj · q

pb · q
pa · pb

q
(ab)
⊥ < β

)
, (8.12)

where j labels a final-state particle. Written this way, we see that Ωaj = Ωbj only when

pa · pj = pb · pj . This must hold true for all j, which restricts all final-state partons to be at

90 degrees in the (ab) zero-momentum frame. This means that all observables at hadron-

hadron colliders that have any sensitivity to soft gluon emission will violate coherence to

some degree. As pointed out in [15], this includes Drell-Yan and gg → H hard-processes,

since their colour can become sufficiently involved after emitting two or more gluons into

the final state (i.e. coherence violation will first appear in dσ2
dxadxb

).

8.4 The logarithmic order of coherence violation

For the majority of pure QCD observables, coherence violation will emerge for the first

time at O(α4
s ) in the fixed order expansion (relative to the order of the Born process).

That’s because one needs at least one soft gluon, one collinear emission and two Coulomb

exchanges.

The logarithmic order at which coherence violation will occur is process dependent. We

consider a general measurement function which produces logarithms ln v−1 ≡ L:

u({p}) =
∑
j

Fj({p})Θ(v − Vj({p})). (8.13)

Observables for which Fj = 1 are known as event-shape observables [16–18] and observables

for which Fj 6= 1 are weighted cross-sections [18–22]. We will give specific examples of the

functions Fj and Vj below. To get the leading coherence-violating logarithm we must take

the z → 1 limit of Eq. (8.6). As anticipated, the first potentially non-vanishing term occurs

1Alternatively, the commutator will vanish if Ωij = Ωij′ for all j, j′ 6∈ {a, b} and i ∈ {a, b}. However this
is kinematically impossible when j is hard and j′ is soft.
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at O(α4
s ) relative to the Born result:

dσ1

dxadxbdB

≈
∑
i=a,b
j 6=a,b

Aij

∫ Q

µF

dk4⊥
k4⊥

∫ Q

k4⊥

dk
(ab)
3⊥

k
(ab)
3⊥

(∫ ∞
−∞

dy3

∫ 2π

0

dφ3

2π
wij

)∫ Q

k
(ab)
3⊥

dk2⊥
k2⊥

∫ Q

k2⊥

dk1⊥
k1⊥

∫ 1

0

dθ2

θ2

× (u(k2)− u(k3, k2)) Θ(k2⊥ < Qθ2) + (1↔ 2) + (3↔ 4) + (1↔ 2, 3↔ 4), (8.14)

where the collinear parton is parton 2 . Parton 3 is a real soft wide-angle gluon and partons

1 and 4 are Coulomb exchanges, wij = (k
(ab)
3⊥ /k

(ij)
3⊥ )2 and

Aij =
(αs

π

)4
Cij fA(xa, µF)fB(xb, Q)

dσ0

dxadxbdB
,

where Cij is a non-zero constant built from the colour algebra and numerical factors:

Cij = (iπ)2Tr
([

T2
s,Ti ·Tj

]
(Ta[T

2
s,h]T†a −T2

a[T
2
s,h])

)
,

and where dσ0
dxadxbdBh = H. i ↔ j indicates swapping partons i and j in the kt ordering

and likewise altering the order of colour charges in Cij . As parton 3 is a wide-angle gluon

its angular integrals, which are bracketed in Eq. (8.14), produce observable dependent,

finite not-logarithmically enhanced terms when restricted by the two parton measurement

function, 1−u2(k3, k2). Though these terms may not factorise from Eq. (8.14), they can be

ignored in the subsequent discussion as they do not effect the logarithmic power counting.

In Eq. (8.14) we have used that in the soft-collinear limit k2⊥/Ea ≈ (1− z2)θ2. The theta-

function defines the available phase-space for the collinear parton. µF is the factorisation

scale, below which proton evolution is completely DGLAP. It is optimally chosen to have the

largest value such that for all k3 with k
(ab)
3⊥ < µF or k2 with k2⊥ < µF, u(k2)− u(k3, k2) ≈ 0

whilst u(k2) 6≈ 0.

There are three scenarios that we must study when evaluating Eq. (8.14). Firstly we

can consider when max(k2⊥) � µF, where max(k2⊥) is the smallest value of k2⊥ such

that for all k2 with k2⊥ > max(k2⊥) both u(k2) ≈ 0 and u(k3, k2) ≈ 0. In this situation,

each of the 5 nested integrals generates a logarithm (the infra-red safety of the functions

Fi means they do not alter the logarithmic counting in this limit). As a result, dσ1
dxadxb

∼
α4

sL
5. Secondly we have the case max(k2⊥) ≈ wµF, where w & 1. This means that the

observable restricts the phase-space in the collinear region such that upper limit on k2⊥

in Eq. (8.14) can be exchanged with wµF. Consequently integrals over dk4⊥dk
(ab)
3⊥ dk2⊥

generate a term proportional to (lnw)3 ∼ O(1). However, in this scenario logarithms

requiring resummation are still generated, though the (1 ↔ 2) terms are sub-leading and

thus the logarithms are produced with smaller numerical prefactors since fewer topologies
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contribute. Logarithms are still produced since either the dk
(ab)
1⊥ integral generates a single

logarithm or both the dk
(ab)
1⊥ and the dθ2 integrals generate logarithms. As a result, dσ1

dxadxb
∼

α4
sL or dσ1

dxadxb
∼ α4

sL
2 respectively. Examples of both α4

sL and α4
sL

2 observables are given

in the following paragraph. Finally, there is the case µF = max(k2⊥). This can only occur if

u(k2)−u(k3, k2) = 0 for all k
(ab)
3⊥ ∼ k2⊥, which means the observable is completely insensitive

to wide-angle radiation and so the hadron evolution can be completely described using

DGLAP evolution without soft resummation. In other words, the observable is trivially

without coherence violating logarithms. Observables of this form include the modified

massdrop tagger [23] and N -point energy correlators [22].

To illustrate matters, we will review coherence violation in event shape observables

that are continuously-global. The effects of coherence violation on continuously-global ob-

servables was first evaluated in [24]. For these, the measurement function can be written

u = Θ(v − V ({p})), where V ({p}) is the value of the event shape,2 and [25]

� for a single, soft emission, k, that is collinear to hard parton i,

V ({p}) = di

(
k

(in)
⊥
Q

)h
e−liykgi(φk),

where di, h, li are constants, and gi(φk) can be any function of the azimuth for which

the integral
∫

d lnφk gi(φk) exists. k
(in)
⊥ is the transverse momentum relative to parton

i and any other arbitrary direction given by the unit vector ~n. In the limit that k is

both soft and collinear to i, the choice of ~n is sub-leading. To be global, all of the

di 6= 0.

� for a single, soft emission, k, that is not collinear to any hard parton,

V ({p}) ∼
(
k

(ab)
⊥

)h
,

where h has the same value as in the collinear case above. This ensures the observable’s

scaling in transverse momentum is continuous across all logarithmically enhanced

regions of phase-space.

The continuous scaling in transverse momentum of these observables allows us to set

µF≈Qe−
L
h and u2(k3, k2)→0. If the collinear parton is soft and collinear to parton a and

V (k2) ∼ kh2⊥θla2 , we can replace

u(k2)→ Θ(k2⊥θ
la
h

2 . Qe
−L
h ).

2Here we have let Fi → 1 but the argument is easily generalised provided Fi are infra-red and collinear safe
polynomial functions of the parton momenta, as is typical of observables built from weighted cross-sections
[21, 22].
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Thus Eq. (8.14) gives dσ1
dxadxb

∼ α4
sL for la/h < 0, and dσ1

dxadxb
∼ α4

sL
2 for la/h = 0. When

la/h > 0 both terms contribute and dσ1
dxadxb

∼ α4
sL

5. In [24] it was identified that la/h ≤ 0

is the case for ‘standard’ rIRC observables (such as transverse-thrust, for which la,b = 0),

whereas la/h > 0 typically occurs in ‘exponentially-suppressed’ rIRC observables.

Now we consider all other (i.e. not continuously-global) observables. These observables

cannot be written in the form

u({p}) ≈ F ({p})Θ(v − V ({p})), (8.15)

where lnV ∼ h ln k
(ab)
⊥ and F ∼ A(1+(k

(ab)
⊥ /Q)h

′
), for constant h, A, and h′, over the entire

phase space of a soft parton with momentum k. Therefore the phase-space of an emission can

be divided into, at least, two regions, c and s, between which the scaling of the observable

differs (i.e. gaps-between-jets where in the jet regions h = 0 but in the gap region V can be

approximated by letting h = 1). Each region has an inclusivity scale, µc or µs respectively,

such that the observable is insensitive to radiation emitted into that region with kt . µc,s.

The inclusivity scales are functions of the parameter(s) defining the observable in the given

phase-space region. As the observable is not continuously-global, µc and µs do not scale

proportionally to each other under variation of the observable’s parameter(s) (µc 6∼ µs).

Let c contain the region collinear to parton a, thus u(k2)− u(k3, k2) ≈ 0 for k2⊥ < µc and

for k
(ab)
3⊥ < min(µc, µs). Hence µF = min(µc, µs). By construction max(k2⊥) ≈ µc (this

is a consequence of unitarity in the collinear region around parton a). Therefore either

max(k2⊥) � µF = µs or max(k2⊥) = µF = µc. When max(k2⊥) � µF, dσ1
dxadxb

∼ α4
sL

5

and so the observable suffers coherence violating logarithms. This is typical of a non-

global observable, for instance gaps-between-jets where µF ≈ Q0 and max(k2⊥) ≈ Q. As

previously discussed, when max(k2⊥) = µF the observable is trivially insensitive to soft

radiation and so is not of interest to us in this paper. We note that some observables

only become not continuously-global after a particular multiplicity of partons has been

reached; these are known as dynamically, not-continuously-global observables [26]. We can

extrapolate the argument given in this paragraph to higher multiplicities of radiation. The

value of µF should be fixed independently of the order of perturbation theory at which the

observable is computed; thus either µF = µc for all multiplicities of radiation in the regions

s and c, or µF � µc due to not continuously-global effects (even if they only appear at

higher multiplicities). As we have stressed, if µF � µc then the observable will suffer α4
sL

5

coherence violating logarithms.
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8.5 Conclusions

Our analysis shows that in hadron colliders all observables with sensitivity to wide-angle soft

radiation dressing the initial state hadrons will suffer coherence violation. In the previous

section, we computed the logarithmic order of this violation at fixed order in αs. We see no

arguments for why our analysis cannot be extrapolated to nth order in perturbation theory.

Provided the observable under consideration has leading logarithms of the form αns L
2n, we

expect coherence violating logarithms of the form:

� αns L
2n−6 or αns L

2n−7 in standard continuously-global observables [16, 25].

� αns L
2n−3 in ‘forward suppressed’ continuously-global observables (with la/h > 0 as

defined in the previous section or a1,2/b1,2 > 0 in the notation of [24]). Though,

as these logarithms first emerge at O(α4
s ) they will formally contribute to the LL

exponent if they can be exponentiated.

� αns L
2n−3 for not continuously-global observables. When a not continuously-global

observable has leading logarithms of the form αns L
n, coherence violating logarithms

will become superleading.

A remark on the role of electroweak hard processes. In [5, 6] it was noted that two

Coulomb exchanges are not needed to ensure real coherence-violating terms emerge in re-

summations dressing electroweak hard-processes with non-trivial colour flows (for instance

the hard process is the sum of s and t channel amplitudes for qq′ → qq′ hard processes

mediated by W or Z bosons). This is because the hard process itself can supply a complex

phase, which allows terms with a single Coulomb exchange to contain a real piece that

can contribute to the cross-section. Thus for such hard-processes there is a possibility for

O(α3
s ) coherence-violating logs to emerge as well as the O(α4

s ) and O(α5
s ) we have studied.

By repeating the analysis of the previous section, we see that coherence violation could

contribute logarithms of the form αns L
2n−2 in the case of an electroweak hard process.
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Chapter 9

Conclusions and outlook

“True education is a kind of never ending story — a matter of continual begin-

nings, of habitual fresh starts, of persistent newness.”

— J.R.R. Tolkien

QCD dynamics in the infra-red limit is highly non-trivial. This thesis has concerned

itself with the development of new algorithmic techniques for computing infra-red and

collinear QCD radiation from inelastic hard processes with large momentum transfers. The

parton branching algorithm this thesis introduces in Chapter 4 accurately computes full

colour matrix elements for QCD radiation in the neighbourhood of the leading soft and/or

collinear divergences. We have been careful to try and present the algorithm in such a way

as to make the extension beyond leading-order possible. We have studied the properties

of the algorithm, most notably we deduced how collinear factorisation is manifest in the

algorithm in the presence of Coulomb/Glauber gluons.

The parton branching algorithm provides the theoretical basis for the development of

new computer codes that systematically resum enhanced logarithms due to soft and/or

collinear partons. The algorithm reduces the computation of complicated distributions of

QCD radiation to a Markov chain of amplitude density matrices. The Markovian nature of

the algorithm makes it well suited to numerical evaluation. The parton branching algorithm

provides the backbone to CVolver [1–4], an amplitude level code for the computation of QCD

radiation including interference effects at full colour. Indirectly, the algorithm provides the

theoretical motivation for improvements we have proposed to the dipole parton shower

formalism. We arrived at these improvements by deriving evolution equations, starting

from our parton branching algorithm, for the radiation in both dipole and angular-ordered

showers. We found that consistency between the two approaches, over regions of phase-

space where both shower formalisms should be accurate, constrained the dipole shower.

The newly constrained dipole shower differs from current models [5–7] in a few key ways: in
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how it conserves momentum (the focus of Chapter 6), and in how it assigns colour factors

(the focus of Chapter 7). We found that accurately handling both these features hinges on

using a dipole partition which is symmetrical in the event centre of mass frame, not the

dipole frame of an emission as is most commonly used. We studied the accuracy of our new

dipole shower model and found it did not suffer from the errors plaguing common dipole

showers, highlighted in [8]. Our findings are in agreement with, and are complementary to,

those in [9, 10] where similar conclusions were arrived at by studying the phenomenology

of the Lund plane [11] for QCD radiation.

Our final chapter looks at the phenomenological relevance of coherence violating log-

arithms (CVLs). CVLs originate from the breakdown of the complete collinear factorisa-

tion of QCD amplitudes due Coloumb/Glauber gluons. They appear as corrections to the

DGLAP evolution of a proton due to soft wide-angle radiation. As we have mentioned, in

Chapter 4 we studied the factorisation properties of the parton branching algorithm in the

presence of Coulomb/Glauber gluons. We found a general form for corrections to DGLAP

evolution arising from the lowest order CVL. From this general form, we studied the loga-

rithmic order at which CVL appear in the resummation of various classes of observables. We

found that in many observables studied at the LHC, which are sensitive to soft radiation,

CVLs will contribute to the leading logarithmic exponent if they resum into an exponential

form.

There are many open questions which stem from the completion of the work presented

in this thesis. Two immediate potential research projects are:

1. Extending the parton branching algorithm to next-to-leading accuracy. This would

entail computing the next-to-leading order corrections to Eq. (4.7) and then solving for

the amplitude density matrices An. Next-to-leading corrections take two forms: next-

to-leading power corrections to the leading operators, and next-to-leading (O(α2
s ))

operators. Many of the ingredients for this already exist in the literature: next-

to-eikonal soft gluons [12], next-to-leading differential anomalous dimension matrices

[13], next-to-leading collinear splitting operators [14, 15], and the running coupling

[16]. However, combining every component is undoubtedly a large task (perhaps

aided by a better choice of ordering variable [17, 18] though this too is an open

question). Concurrently, it would be pertinent to understand the formal accuracy in

the resummation that the next-to-leading algorithm would achieve. We can compare

the ingredients needed for the next-to-leading algorithm against those needed for

other approaches to the resummation of selected classes of observable [19] and notice

that, at least superficially, the next-to-leading algorithm might be capable of NNLL
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resummation for some observables. However, broad statements on accuracy across

classes of resummed observables are well known to be difficult to make [9].

2. Optimising the current leading order parton branching algorithm. This is likely more

easy to achieve than extending the algorithm to next-to-leading order but also consti-

tutes a more loosely defined project. What do we want from an optimised version of

the algorithm? By fusing the work presented in Chapters 4 and 6, it could be possible

to improve the algorithm by using the dipole partitioning and global recoil to merge

the operators for soft partons (Sn) with the operators for collinear partons (Cn). Such

aesthetic improvements could also lead to increased computational efficiency. The only

obviously non-trivial element to this task is correctly handling the spin correlations

carried by hard-collinear partons in the presence of Coulomb/Glauber gluons (which

prevent the use of the algorithm by Collins and Knowles [20, 21]). More practically,

there could be great benefit to recasting the algorithm as a functional Fokker-Planck

equation (such an equivalence has already been demonstrated for the soft physics

contained in the algorithm [22]). It is known that such equations can be solved by

the stochastic integration of an associated Langevin equation, and the resummation

of soft gluons via this approach has recently seen a great deal of success [23, 24].

In Chapters 6 and 7 we derived current popular parton shower models from the parton

branching algorithm. This proved a fruitful task, since our derivations highlighted ways in

which the accuracy of these models could be improved. In the same spirit, it would also

be interesting to formalise links between our parton branching algorithm and soft-collinear

effective theory [25]. Whilst we could not state the immediate phenomenological benefit of

this task, a dictionary for translating between the methodology of perturbative QCD and

soft-collinear effective theories would be interesting.
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[22] R. Ángeles Mart́ınez, M. De Angelis, J. R. Forshaw, S. Plätzer, M. H. Seymour, “Soft
gluon evolution and non-global logarithms”, JHEP 2018, 05, 044, arXiv: 1802.08531
[hep-ph].

[23] Y. Hagiwara, Y. Hatta, T. Ueda, “Hemisphere jet mass distribution at finite Nc”,
Phys. Lett. 2016, B756, 254–258, arXiv: 1507.07641 [hep-ph].

295

https://arxiv.org/abs/1410.3012
https://arxiv.org/abs/0709.1027
https://arxiv.org/abs/1805.09327
https://arxiv.org/abs/1805.09327
https://arxiv.org/abs/2002.11114
https://arxiv.org/abs/2011.10054
https://arxiv.org/abs/1010.1860
https://arxiv.org/abs/2012.15215
https://arxiv.org/abs/hep-ph/9810389
https://arxiv.org/abs/1112.4405
https://arxiv.org/abs/1510.07998
https://arxiv.org/abs/1602.00623
https://arxiv.org/abs/1412.2126
https://arxiv.org/abs/1802.08531
https://arxiv.org/abs/1802.08531
https://arxiv.org/abs/1507.07641


[24] Y. Hatta, T. Ueda, “Non-global logarithms in hadron collisions at Nc = 3”, Nucl.
Phys. B 2021, 962, 115273, arXiv: 2011.04154 [hep-ph].

[25] I. Z. Rothstein, I. W. Stewart, “An Effective Field Theory for Forward Scattering and
Factorization Violation”, JHEP 2016, 08, 025, arXiv: 1601.04695 [hep-ph].

296

https://arxiv.org/abs/2011.04154
https://arxiv.org/abs/1601.04695


Appendix A

Definitions and identities

“The true work of improving things is in the little achievements of the day, and

that’s what you need to enjoy.”

— Celine, Before Sunset

A.1 Dirac algebra and polarisation sums

In this section we provide some identities useful in the computation of Feynman diagrams.

The proofs of these identities are widely available [1–3] and so won’t be given here.

Spinor identities:

us(p)ūs(p) = 1
2(1 + 2sγ5)/p, vs(p)v̄s(p) = 1

2(1− 2sγ5)/p,∑
s

us(p)ūs(p) = /p+m,
∑
s

vs(p)v̄s(p) = /p−m. (1.1)

Polarisation identities for massless vector bosons:∑
λ

ελµ(k)ε∗λν (k) = −gµν +
kνnµ + nνkµ

k · n when k2 = 0,

= −gµν +
kνnµ + nνkµ

k · n − k2 nµnν

(k · n)2
when k2 6= 0. (1.2)

The latter equality for when k2 6= 0 is an analytic continuation for unphysical polarisations

of off-shell vector bosons. Clifford algebra identities:

γµ/pγ
µ = −2/p, γµ/p/kγ

µ = 4p · k, γµ/p/k/qγ
µ = −2/q/k/p, /p/p = p2,

tr(/p/k/q/l) = 4 [(p · k)(q · l)− (p · q)(k · l) +(p · l)(q · k)] , tr(/p/k) = 4p · k,

tr

( ∏
odd n

/pn

)
= 0. (1.3)
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A.2 Spinor-helicity identities

Here listed are identities useful for the spin-helicity formalism. We employ the following

short hand notation so that identities can be written in a compact fashion:

|p〉 ≡ |p+〉 , |p] ≡ |p−〉 , 〈p| ≡ 〈p−| , [p| ≡ 〈p+| ,
σµ ≡ σµ+, σ̄µ ≡ σµ−. (1.4)

In this notation:

|p±〉 〈p±| = p · σ∓, (1.5)

〈p±|σµ± |p±〉 = 2pµ, (1.6)

〈p±| q∓〉 = −〈q±| p∓〉 , (1.7)

〈p±|σµ± |q±〉 = 〈q∓|σµ∓ |p∓〉 , (1.8)

〈p±|σµ±σν∓ |q∓〉 = −〈q±|σν±σµ∓ |p∓〉 . (1.9)

Note that to retain covariance with the dotted and undotted indices, a bra/ket state should

always be contracted with a σ± of the same sign and a σ± should always be contracted with

a σ± of the opposite sign. For example, the above identities are allowed contractions whereas

〈p+|σµ−σν− |q+〉 is not allowed as it contains two incorrect contractions. A consequence of

identity (1.7) is 〈pp〉 = [pp] = 0. Identities (1.8) and (1.9) can be generalised for odd and

even numbers of σs respectively

〈p±|σµ1
± σ

µ2
∓ ...σ

µ2n+1
± |q±〉 = 〈q∓|σµ2n+1

∓ ...σµ2
± σ

µ1
∓ |p∓〉 ,

〈p±|σµ1
± σ

µ2
∓ ...σ

µ2n
∓ |q∓〉 = −〈q±|σµ2n

± ...σµ2
± σ

µ1
∓ |p∓〉 . (1.10)

As is indicative of the bra-ket notation 〈p±|A |q〉∗ = 〈q|A |p±〉 where A is any hermitian

operator, such as the σ matrices. As previously stated in Section 3.1.3,

| 〈pq〉 |2 = |[pq]|2 = 2p · q, (1.11)

which is easily shown using the identities above,

| 〈pq〉 |2 = Tr (|p−〉 〈p−| |q+〉 〈q+|) = pµqνTr(σµ−σ
ν
+) = 2p · q. (1.12)

An extension of identity (1.11) is

〈p1p2〉 [p2p3] 〈p3p4〉 [p4p1] = Tr (|p1−〉 〈p1−| |p2+〉 〈p2+| |p3−〉 〈p3−| |p4+〉 〈p4+|) ,
= pµ1p

ν
2p
ρ
3p
τ
4Tr

(
σµ+σ

ν
−σ

ρ
+σ

τ
−
)
,

= 2 (gµνgρτ − gµρgντ + gµτgνρ + iεµρντ ) pµ1p
ν
2p
ρ
3p
τ
4 . (1.13)
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Finally there are the Fierz identities, which are useful when combining multiple matrix

elements:

〈p1p2〉 〈p3p4〉 = 〈p1p3〉 〈p2p4〉+ 〈p1p4〉 〈p3p2〉 , (1.14)

[p1p2] [p3p4] = [p1p3][p2p4] + [p1p4][p3p2], (1.15)

〈p1+|σµ+ |p2+〉 〈p3+|σ+µ |p4+〉 = 2[p1p3] 〈p4p2〉 , (1.16)

〈p1−|σµ− |p2−〉 〈p3−|σ−µ |p4−〉 = 2 〈p1p3〉 [p4p2], (1.17)

〈p1+|σµ+ |p2+〉 〈p3−|σ−µ |p4−〉 = 2[p1p4] 〈p3p2〉 , (1.18)

which when applied to the polarisation vectors gives

σ± · ε(k,±1) =

√
2 |n∓〉 〈k∓|
〈k±| n∓〉 , σ± · ε∗(k,±1) =

√
2 |k∓〉 〈n∓|
〈n∓| k±〉 ,

σ∓ · ε(k,±1) =

√
2 |k±〉 〈n±|
〈k±| n∓〉 , σ∓ · ε∗(k,±1) =

√
2 |n±〉 〈k±|
〈n∓| k±〉 . (1.19)

A.3 Sudakov decompositions, kinematic variables and phase-
space measures

It is often desirable to express a 4-vector into terms of two reference vectors and a vector

transverse to the plane of the reference vectors (for this Appendix these are Pµ, Qµ, and kµ

respectively). In Section 3.1.1 we employed a light-cone decomposition which was of this

form. A general decomposition for n vectors is given by

pµ1 = α1P
µ + β1Q

µ + kµ1 ,

...

pµi = αiP
µ + βiQ

µ + kµi ,

...

pµn = αnP
µ + βnQ

µ + kµn, (1.20)

where kµi Pµ = kµi Qµ = 0 for all i. If P and Q are light-like this is referred to as a light-cone

decomposition (LCD). In an LCD, ki is space-like and so it is typical to define k2
i = −k2

i⊥

where k2
i⊥ is positive.1 Some more useful relations in a LCD are:

αi =
pi ·Q
P ·Q, βi =

pi · P
P ·Q. (1.21)

1It is also common to use kt ≡ k⊥, particularly if P and Q are back-to-back in the lab frame and define
a beam/jet axis in which case ki t is the transverse momentum from the axis.
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If pi is light-like, then its pseudo-rapidity in the frame where P and Q are back to back

(known as the PQ dipole frame) is given by

yi =
1

2
ln
αi
βi
, (1.22)

where P defines the +∞ pseudo-rapidity axis. In this decomposition, the phase-space

measure for a particle with momentum pi is given by

d4pi =
(P +Q)2

2
dαi dβi d2~ki ≡

(P +Q)2

2
dαi dβi dki⊥ dφ, (1.23)

where φ is an azimuth in the plane transverse to P and Q.

When looking at a 1 → 2 particle transition (with momentum pij → pi + pj where pi

and pj are massless and on-shell) it is common to use a LCD of the following form

pµi = zPµ +
k2
⊥

z 2P ·QQ
µ + kµ,

pµj = (1− z)Pµ +
k2
⊥

(1− z) 2P ·QQ
µ − kµ, (1.24)

where

pij = P +
k2
⊥

z(1− z) 2P ·QQ.

This is known as a Sudakov decomposition. In the limit that pj goes collinear to pi, with

the scaling given in Section 3.1.1,

pµi = zPµ +O(λ), pµj = (1− z)Pµ +O(λ), pij = P +O(λ2). (1.25)

Note that complete momentum conservation in the transition is O(λ2) and so is typically

not relevant at leading (and often next-to-leading) order. With this Sudakov decomposition,

the Lorentz invariant phase-space measure is decomposed as

d3pj
2Ej

= k2
⊥π

dk⊥
k⊥

dz

1− z
dφ

2π
= k2

⊥π
dk⊥
k⊥

dy dφ

2π
, (1.26)

where φ is an azimuth in the plane traverse to P and Q, and y is a pseudo-rapidity in the

P,Q dipole frame. Typically the k2
⊥π pre-factor is absorbed into the integral kernel so that

the phase-space is dimensionless and the azimuth is normalised.

A.4 Dimensional regularisation

Integrals can be regularised via a variety of methods. Often, the most intuitive of which

is to introduce a cut-off scale that limits the domain of integration so that divergences

are avoided (for instance limits of the momentum which can be transferred). However,

one of the most useful but less intuitive regularisation procedures is that of dimensional
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regularisation (dim reg). This thesis does not find much need for an extensive discussion

of regulators, as they are mostly only required when presenting introductory material in

Chapters 2 and 3. However, as we do make use of dim reg in those chapters, we will now

collate some basic results found in the application of the procedure (we follow the overview

in [4]).

Dim reg regularises integrals by allowing the space-time dimension to be a variable. For

instance, ∫ ∞
1

dd~x

~x 2
(1.27)

diverges for dimensions d ≥ 2 and otherwise converges. The most popular dimension to use

in modern day particle physics is d = 4−2ε for |ε| � 1, which regularises all integrals which

diverge logarithmically in d = 4 dimensions.2 Using this regulator, UV diverges, such as∫ ∞
1

d4−2ε~x

~x 4
,

are regularised for ε > 0 and IR divergences, such as∫ 1

0

d4−2ε~x

~x 4
,

are regularised for ε < 0. Often the regulator is analytically continued so that it is si-

multaneously positive and negative, regulating both UV and IR diverges. In which case,

scaleless integrals evaluate to zero since UV poles are allowed to cancel the IR poles. We

can demonstrate this by making the substitution ~x = λ~y for a constant λ:∫ ∞
0

d4−2ε~x

~x 4
= λ−2ε

∫ ∞
0

d4−2ε~y

~y 4
, (1.28)

hence the scaleless integral must be equal to zero.

Integrals in dim reg are most commonly evaluated by using an analytic continuation

of spherical polar coordinates: d4−2ε~x 7→ |~x|3−2εd|~x|dΩ4−2ε where Ωd is a solid angle in d

dimensions, defined by the relation

Ωd =
2πd/2

Γ(d/2)
, (1.29)

where Γ(d/2) is the Euler gamma-function. If ~x is Lorentzian it must be Wick rotated

(x0 → −ix0
E ), so as to become Euclidean, for spherical polar coordinates to be used. The

prototypical integral for dimensional regularisation is∫
dd~k

(2π)di

1(
~k 2 − 2~p · ~k − ~r 2 + i0

)α =
(−1)α

(4π)d/2
Γ(α− d/2)

Γ(α)

1

(~p 2 + ~r 2 − i0)α−d/2
, (1.30)

2The factor of 2 is included to cancel factors of 1/2 which commonly appear in calculations.
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where we have replaced the usual iε from the Feynman propagator with i0 to avoid confusion.

The additional factor of i on the left hand side is to account for Wick rotating the vectors.

Integrals with polynomials of ~k in the numerator can be found by taking derivatives with

respect to ~p:∫
dd~k

(2π)di

~k(
~k 2 − 2~p · ~k − ~r 2 + i0

)α =
(−1)α

(4π)d/2
Γ(α− d/2)

Γ(α)

~p

(~p 2 + ~r 2 − i0)α−d/2
. (1.31)

Most divergent integrals over propagators in loops can be reduced to one of these funda-

mental forms by using Feynman parameters and completing the square. For more on this

we point the reader to more comprehensive sources in the literature [1, 2, 4]. Additionally,

for more information on computing generalised integrals over solid angles in d dimensions

we direct the reader to the Appendices in the seminal paper [5].
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