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Abstract

We develop a probability-level, manifestly causal formalism for calculations in quan-

tum field theory (QFT). The approach involves an implicit summation over final states,

which makes causality manifest since retarded propagators emerge naturally. This in-

clusive summation over final states may also offer insights into the cancellation of in-

frared (IR) divergences in physical observables within gauge theories, in accordance

with the Bloch-Nordsieck (BN) and Kinoshita-Lee-Nauenberg (KLN) theorems. To

study this, we first conduct particle scattering calculations using conventional meth-

ods, determining the quark–antiquark production cross section at first-order in gluon

corrections, with careful tracking and cancellation of both IR and ultraviolet (UV) di-

vergences. We then apply the causal formalism to analogous processes in scalar field

theory, introducing novel diagrams that represent algebraic terms at the probability

level, akin to Feynman diagrams at the amplitude level. We present a list of rules that

generate all probability-level diagrams for particle scattering processes in which one

is fully inclusive over final states that contain no initial-state particles.

We also investigate the Unruh effect through the lens of the causal formalism. We cal-

culate the transition rate of a uniformly accelerating Unruh-DeWitt (UdW) monopole

detector coupled to a massive scalar field, from both the perspective of an inertial

(Minkowski) observer and an accelerating (Rindler) observer. We confirm that the

two perspectives give the same transition rate, despite the Rindler observer describing

the Minkowski vacuum state as a thermal bath of particles. Numerical results for the

transition rate are presented and explained, highlighting the transient effects caused

by forcing the field to initially be in the Minkowski vacuum state. Finally, we review

the literature regarding the response of an UdW detector on various trajectories in the

spacetime of a (3 + 1)-dimensional Schwarzschild black hole, with a view to extend-

ing the analysis in the future using our causal formalism.

12



Lay abstract

Our modern understanding of reality is that it is constructed from various fields, which

pervade throughout the entire universe. Small excitations (bumps of energy) in these

fields can only occur in discrete (quantised) amounts. These quantum excitations are

what we call particles. This picture of reality is mathematically described by quantum

field theory (QFT).

Despite their incredible accuracy and predictivity, our current formulations of QFT

are not perfect. Firstly, the law of cause and effect is at the heart of modern physics:

nothing can travel faster than light, so any events which would require superluminal

travel to affect one another must be causally disconnected. However, this is not al-

ways apparent in QFT calculations. Secondly, the mathematics we use in QFT often

involves infinite terms, which does not make sense until we construct a sensible ob-

servable quantity for which these infinities cancel. The existence of these infinities in

intermediate steps can make calculations difficult, both by hand and by computer.

In this thesis, we introduce a new approach to QFT in which the law of cause and

effect is always obviously obeyed. We also investigate whether this new formalism

may help avoid infinities in intermediate steps of calculations. We apply our approach

to particle scattering and the Unruh effect. The Unruh effect is an effect baked into

QFT that says that an accelerating observer perceives the emptiness of space not as

a vacuum, but as a thermal bath of particles. There is no inconsistency between the

perspectives of a stationary observer, who sees the space as empty, and the acceler-

ating observer; both perspectives are true. The key is that they are defining particles

differently. This leads to the conclusion that the concept of a ‘particle’ is observer-

dependent. This is also true in gravitational fields, leading us to investigate how a de-

tector responds near a black hole—an object which exhibits strong gravitational and

quantum effects. Understanding how gravity and QFT work together is the biggest

unknown question in theoretical physics.
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Chapter 1

Introduction

Quantum field theory (QFT) is the framework that unites quantum mechanics with

the principles of special relativity, offering an elegant yet intricate language to de-

scribe Nature at a fundamental level. In traditional quantum mechanics, particles are

treated as point-like entities whose dynamics are governed by the Schrödinger equa-

tion. QFT, by contrast, treats fields as the primary objects, with particles emerging as

quantised excitations of the fields. Extending the quantum mechanical model to fields

with an infinite number of degrees of freedom is essential for accommodating the rel-

ativistic processes that defy a simple single-particle interpretation, such as particle-

antiparticle pair production and the interactions of virtual particles.

At its core, QFT provides a unified description of fundamental interactions. The com-

putational methods of QFT yield theoretical predictions that agree with experiments

to unprecedented precision [3–5], offering profound insights into the structure of our

universe. The Standard Model [6–8], formulated within the framework of QFT, suc-

cessfully describes the electromagnetic, weak, and strong forces. Moreover, in con-

densed matter systems [9, 10], statistical mechanics [11, 12], and even quantum grav-

ity [13, 14], QFT has proven to be an important tool, offering deep insights into emer-

gent phenomena.

Historically, some of the most significant advancements in QFT have emerged from

studies of gravitational systems. For instance, the analysis of quantum fields in the

curved spacetime near black holes led to the discovery of Hawking radiation [15–

17], which revealed deep connections between QFT, thermodynamics, and general

relativity. Likewise, the Unruh effect [18–22], which predicts that an accelerated ob-

server perceives the vacuum as a thermal bath, reinforces the subtle interplay between

acceleration, quantum fluctuations, and field theory. These breakthroughs not only

underscore QFT’s broad applicability but also motivate further investigation into the
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response of quantum fields in both flat and curved spacetimes.

A key technical aspect of QFT is the appearance of divergences when performing cal-

culations. Ultraviolet (UV) divergences arise from contributions at arbitrarily high

energies and are handled through renormalisation techniques that redefine parame-

ters and lead to effective field theories valid at low energy scales [23–26]. In contrast,

infrared (IR) divergences occur due to contributions at very low energies, requiring

the careful definition of observables to yield finite predictions [27–29]. These IR di-

vergences pose significant technical challenges, especially in more complex, higher-

order calculations in perturbation theory.

A central pillar of QFT is the principle of causality. In a relativistic context, causality

ensures that effects do not precede their causes. This is mathematically embedded in

QFT through conditions such as micro-causality, where field operators are required

to commute or anticommute at spacelike separations. Despite being built into the ax-

ioms of QFT, causality is often not manifest in perturbative calculations, leading to

conceptual subtleties that continue to challenge our intuitive understanding. This hid-

den nature of causality exemplifies the dual character of QFT; it is both extraordinar-

ily predictive and, in many respects, conceptually incomplete [25, 30, 31].

This thesis is motivated by a desire to elucidate the role of causality and the cancel-

lation of divergences in QFT. To this end, we present a new formalism of QFT, orig-

inally established in Refs. [32–34], in which causality is made manifest through the

appearance of field commutators and anticommutators. The investigation of causality

in QFT forms an active area of research, with the causal formalism developed in this

thesis seeing use in the field of causal set theory [35], and other studies also attempt-

ing to devise new formalisms of QFT in which causality is manifest [36–39].

Chapter 2 begins with an overview of the relevant background theory required to un-

derstand the content of this thesis. We specifically focus on the details of divergences

in QFT, which sets the stage for the rigorous calculation of a particle-scattering cross

section in Chapter 3. This calculation requires the cancellation of divergences, and

comprehending how these cancellations yield finite, physically measurable observ-

ables is essential for accurate predictions in QFT. The ubiquity of the Feynman prop-

agator, which is not manifestly causal, and the requirement of an inclusive observable

then motivates the development of a new, manifestly causal formalism. This formal-

ism is introduced in Chapter 4, where the Fermi two-atom problem is used to high-
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light the advantage of manifest causality.

Motivated by our scattering calculation, Chapter 5 employs the causal formalism to

compute inclusive transition probabilities in scalar field theory. We present a new set

of rules that generate diagrams at the probability level, akin to Feynman diagrams at

the amplitude level. These diagrams explicitly include the retarded propagator, mean-

ing that causality is evident. Chapter 6 then uses the causal formalism to explore the

Unruh effect, rederiving known results and presenting new numerical results. Chap-

ter 7 serves as a literature review and pedagogical introduction to the recent progress

regarding the response of an Unruh-DeWitt (UdW) detector in the Schwarzschild

spacetime of a black hole. Finally, Chapter 8 presents our conclusions.

The contents of Chapters 5 and 6 are published in Refs. [1] and [2]. Throughout this

thesis, we adopt natural units c = h̄ = kB = G = 1 and the ‘mostly-minus’ metric sig-

nature (+−−−). Hamiltonians and Lagrangians are denoted by H and L, and Hamil-

tonian and Lagrangian densities are denoted by H and L, such that H =
∫︁

d3xH and

L =
∫︁

d3xL.
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Chapter 2

Background

2.1 Scalar Field Theory

Quantum field theory (QFT) arises as a natural framework for unifying quantum me-

chanics with special relativity, providing a consistent description of relativistic quan-

tum particles. Scalar field theory serves as the simplest quantum field theory, describ-

ing spin-0 particles and forming the basis for more complex theories. The goal of

scalar field theory is to construct a quantum description of a classical field and anal-

yse its dynamics.

2.1.1 Quantising the Classical Theory

Consider a real-valued, classical scalar field φ ≡ φ(x) ≡ φ(x, t) described by the

Lagrangian density [23, 40]

L0 =
1

2

(︁
∂µφ∂µφ−m2φ2

)︁
=

1

2

(︂
φ̇2 − (∇φ)2 −m2φ2

)︂
, (2.1.1)

where ∂µ = ∂/∂xµ is the spacetime derivative, φ̇(x) = ∂φ/∂t, and m is a parame-

ter of the classical field theory (which will become the mass of the field quanta after

quantisation). In natural units, the Lagrangian density has dimension = 4, and thus

the scalar field, φ, has dimension = 1.

The Euler-Lagrange equation [41–44],

∂L0

∂φ
= ∂µ

(︃
∂L0

∂(∂µφ)

)︃
, (2.1.2)
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associated with Eq. (2.1.1) immediately yields the Klein-Gordon equation [45, 46],

(∂µ∂µ +m2)φ = 0. (2.1.3)

This equation governs the free evolution of the field. Using Hamiltonian field the-

ory [23, 47], the Hamiltonian density for this system is given by

H0 = π(x)φ̇(x)− L0 =
1

2

(︁
π2 + (∇φ)2 +m2φ2

)︁
, (2.1.4)

where π ≡ π(x) is the momentum density conjugate to φ(x), given by

π(x) =
∂L0

∂φ̇
= φ̇ . (2.1.5)

If we Fourier expand the classical scalar field,

φ(x, t) =
∫︂

d3p
(2π)3

eip·xφ(p, t) , (2.1.6)

the Klein-Gordon equation (Eq. (2.1.3)) becomes

∂2φ(p, t)
∂t2

= −
(︁
p2 +m2

)︁
φ(p, t) . (2.1.7)

This is exactly the equation of motion for a simple harmonic oscillator with frequency

ω2 = p2 +m2. (2.1.8)

Eq. (2.1.7) then tells us that that the scalar field in position space is an infinite set of

simple harmonic oscillators, one for each wavenumber, p. The quantisation of the

simple harmonic oscillator is well-known [48–51], and thus we can similarly quantise

the scalar field and its conjugate momentum as [52]

φ(x) =
∫︂

d3p
(2π)3

1√
2ω

(︁
ape

−ip·x + a†pe
ip·x)︁ , (2.1.9)

π(x) =
∫︂

d3p
(2π)3

(−i)
√︃
ω

2

(︁
ape

−ip·x + a†pe
ip·x)︁ , (2.1.10)

where ap and a†p are the annihilation and creation operators, respectively, for quanta

(particles) of the scalar field, analogous to those of a quantum harmonic oscillator.

The scalar field, φ(x), has now been promoted to a quantum operator. The canonical
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quantisation relation relevant to the simple harmonic oscillator,
[︁
a, a†

]︁
= 1, has an

analogous commutation relation for the scalar-field ladder operators,

[ap, a
†
p′ ] = (2π)3δ3(p − p′), [ap, ap′ ] = [a†p, a

†
p′ ] = 0 . (2.1.11)

The Hamiltonian density of the system, Eq. (2.1.4), is written in terms of φ(x) and

π(x), and is hence also an operator. Using Eqs. (2.1.9) and (2.1.10), the Hamiltonian

is given by

H0 =

∫︂
d3xH0 =

∫︂
d3p
(2π)3

ωp

(︃
a†pap +

1

2

[︁
ap, a

†
p
]︁)︃

. (2.1.12)

The second term is proportional to the infinite constant term δ(0). This contribution

comes from the sum over all modes of zero-point energies, ωp. Since only energy dif-

ferences are experimentally measurable, this term does not contribute to most observ-

ables, and is usually ignored [23, 24, 53].

Before considering interactions in scalar field theory, it is useful to write an expres-

sion for the scalar field as a function of x = (t, x), i.e., in the Heisenberg picture in-

stead of the Schrödinger picture. It can be shown that [23]

φ(x) =

∫︂
d3p
(2π)3

1√︁
2ωp

(︁
ape

−ip·x + a†pe
ip·x)︁ ⃓⃓

p0=ωp
. (2.1.13)

From Eq. (2.1.11), it follows that

[φ(x, t), π(y, t)] = iδ3(x − y), (2.1.14)

[φ(x, t), φ(y, t)] = [π(x, t), π(y, t)] = 0. (2.1.15)

These are the equal-time commutation relations.

2.1.2 Interactions

So far, free-particle states have been eigenstates of the Hamiltonian, which we call

the free Hamiltonian, H0 (or free Lagrangian, L0). We now consider a Lagrangian

density that includes interactions between particles, Lint, which is treated as a pertur-
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bation on the free Lagrangian density, with the free theory serving as a basis,

L = L0 + Lint or H = H0 +Hint . (2.1.16)

For scalar fields, the theory we consider in this thesis is ‘phi-cubed’ theory [54, 55],

Lint = − λ

3!
φ3 ⇒ Hint =

λ

3!
φ3 , (2.1.17)

where λ is the coupling constant (of dimension = 1), which must be small for pertur-

bation theory to be valid. The factor of 1/3! is a symmetry factor which corrects for

overcounting, since there are three identical field operators, φ.

The relationship between the Schrödinger picture field operator, φ(x, t0), at fixed time,

t0, and the Heisenberg picture field operator, φ(x, t), is

φ(x, t) = eiH(t−t0)φ(x, t0)e−iH(t−t0) . (2.1.18)

We define the interaction picture field operator as

φI(x, t) = eiH0(t−t0)φ(x, t0)e−iH0(t−t0) . (2.1.19)

Similarly, we define the interaction picture Hamiltonian as

HI(t) = eiH0(t−t0)Hint e
−iH0(t−t0) =

∫︂
d3x

λ

3!
φ3
I . (2.1.20)

The relationship between the full Heisenberg field, φ, and the interaction picture field,

φI , is thus

φ(x, t) = eiHint(t−t0)φI(x, t)e−iHint(t−t0) ≡ U †(t, t0)φI(x, t)U(t, t0) , (2.1.21)

where we have defined the unitary time-evolution operator as

U(t, t0) ≡ e−iHint(t−t0) . (2.1.22)

The time-evolution operator can be written in terms of HI (and hence φI) as

U(t, t0) = 1 + (−i)
∫︂ t

t0

dt1HI(t1) + (−i)2
∫︂ t

t0

dt1
∫︂ t1

t0

dt2HI(t1)HI(t2) + · · ·
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≡ T
{︃

exp
{︃
−i
∫︂ t

t0

dt′HI(t
′)

}︃}︃
, (2.1.23)

where T indicates time-ordering, such that operators are written from left to right

ordered by the time they are evaluated at, latest to earliest. For the remainder of this

thesis, we work in the interaction picture unless otherwise stated.

2.1.3 Wick’s Theorem

Eq. (2.1.23) involves the time-ordered product of an arbitrary number of field opera-

tors, φ(xi) = φi. This is calculated using Wick’s theorem [56], which expresses the

time-ordered product of field operators in terms of normal-ordered products, N(· · · ),

and Feynman propagators,

F φ
xy =

⟨︁
0φ
⃓⃓
T{φxφy}

⃓⃓
0φ
⟩︁
. (2.1.24)

The Feynman propagator is an important object in QFT, and it will be investigated

further in Section 2.3. The normal-ordering operator moves all creation operators to

the left of annihilation operators [23], e.g.,

N(apa
†
kaq) = a†kapaq . (2.1.25)

The order of ap and aq is irrelevant, since they commute (Eq. (2.1.11)). Wick’s theo-

rem is stated as follows1:

T {φ1φ2 · · ·φn} = N

⎛⎜⎝ n∏︂
i=1

φi +
n∑︂
x=1

n∑︂
y=x+1

⎛⎜⎝F φ
xy

n∏︂
i=1
i ̸=x,y

φi

⎞⎟⎠+ · · ·

⎞⎟⎠ . (2.1.26)

In words, this means write all possible combinations of the product of Feynman prop-

agators and remaining field operators, where all remaining field operators are normal

ordered. For example, for four fields,

T {φ1φ2φ3φ4} = N
(︁
φ1φ2φ3φ4 + F φ

12φ3φ4 + F φ
13φ2φ4 + F φ

14φ2φ3

+F φ
23φ1φ4 + F φ

24φ1φ3 + F φ
34φ1φ2

+F φ
12F

φ
34 + F φ

13F
φ
24 + F φ

14F
φ
23

)︁
. (2.1.27)

1Wick’s theorem is often stated in terms of contractions of two field operators, but Ref. [23] states
that a contraction ‘is exactly the Feynman propagator’.
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Here, the normal ordering N(· · · ) ensures that uncontracted field operators vanish in

vacuum expectation values, since ap |0⟩ = 0, leading to

⟨0|T {φ1φ2φ3φ4} |0⟩ = F φ
12F

φ
34 + F φ

13F
φ
24 + F φ

14F
φ
23. (2.1.28)

This result generalises to any number of fields, allowing systematic computation of

correlation functions in perturbation theory.

Wick’s Theorem also holds for higher-spin theories, which are considered in the next

section, so long as the time-ordering and normal-ordering operators are generalised

to included minus signs for interchanges of fermion operators, ψ, since fermions obey

Fermi-Dirac statistics [23].

2.2 Higher-Spin Theories

2.2.1 The Dirac Equation for Fermions

The Klein-Gordon equation in the previous section only describes spin-0 particles

(i.e., scalar bosons), which means it does not describe the vast majority of particles in

the Standard Model. Spin-1
2

fermions (particles of half-integer spin), such as leptons

and quarks, are described by the Dirac Lagrangian density [57],

LDirac = ψ̄(iγµ∂µ −m)ψ , (2.2.1)

where ψ is the fermion field and m is a free parameter (representing the mass of the

quanta of the fermion field, after quantisation). The Dirac gamma matrices [23], γµ,

satisfy the Clifford algebra [58, 59],

{γµ, γν} = 2gµνI , (2.2.2)

where gµν is the metric tensor of Minkowski spacetime and I is the identity operator.

The Dirac adjoint spinor is defined as ψ̄ = ψ†γ0, since ψ†ψ is not a Lorentz scalar

(but ψ̄ψ is) and ψ†γµψ is not a Lorentz vector (but ψ̄γµψ is). This Lagrangian den-

sity describes the dynamics of free fermions and serves as the foundation for intro-

ducing their interactions with gauge fields, such as photons and gluons.
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The equation of motion which follows from the Euler-Lagrange equations is then

(iγµ∂µ −m)ψ = 0 . (2.2.3)

This is the free Dirac equation. The solutions to the Dirac equation describe spin-1
2

particles with positive and negative energy states, corresponding to particles and an-

tiparticles.

The quantisation of the Dirac field follows from imposing equal-time anticommuta-

tion relations,
{ψa(x, t), ψ†

b(y, t)} = δ3(p − q) δab ,

{ψa(x, t), ψb(y, t)} = {ψ†
a(x, t), ψ

†
b(y, t)} = 0 ,

(2.2.4)

where a and b denote the spinor components of ψ, and δab is the Kronecker delta func-

tion. Similarly to the scalar field, the mode expansion of the Dirac field operator (and

its Dirac adjoint) is given by

ψ(x) =

∫︂
d3p
(2π)3

1√︁
2ωp

∑︂
s

(︁
bsp u

s
p e

−ip·x + ds†p vsp e
ip·x)︁ , (2.2.5)

ψ̄(x) =

∫︂
d3p
(2π)3

1√︁
2ωp

∑︂
s

(︁
dsp v̄

s
p e

−ip·x + bs†p ūsp e
ip·x)︁ , (2.2.6)

where the operators bsp and bs†p are the annihilation and creation operators for particles

of momentum p and spin s, while dsp and ds†p are the annihilation and creation oper-

ators for antiparticles with the same quantum numbers. The four-component Dirac

spinors usp ≡ us(p) and vsp ≡ vs(p) are solutions to the Dirac equation associated

with momentum p and spin index s, with their adjoints given by ūsp = us†p γ
0 and

v̄sp = vs†p γ
0. The energy ωp =

√︁
p2 +m2 ensures that the field satisfies the rela-

tivistic dispersion relation. It follows that the creation and annihilation operators have

the anticommutation relations

{bsp, b
s′†
p′ } = {dsp, d

s′†
p′ } = (2π)3δ3(p − p′)δss′ ,

{bsp, bs
′

p′} = {dsp, ds
′

p′} = {bs†p , b
s′†
p′ } = {ds†p , d

s′†
p′ } = 0 .

(2.2.7)

These anticommutation relations mean that (bs†p )2 = (ds†p )2 = 0, such that a state

cannot be filled twice. This is the Pauli exclusion principle [51, 60]. More generally,

any multiparticle state is antisymmetric under the interchange of two particles, e.g.,

bs†p bs
′†

p′ |0⟩ = −bs
′†

p′ bs†p |0⟩. Consequently, these particles obey Fermi-Dirac statis-
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tics [61–64], not the Bose-Einstein statistics of integer-spin particles [63–66]. If we

instead use commutation relations to quantise the Dirac field, we obtain solutions

that allow violations of the spin-statistics theorem [67], leading to unphysical con-

sequences such as negative probabilities. Thus, the use of anticommutators is a fun-

damental requirement for the consistency of fermionic QFT.

Furthermore, since the fermion field, ψ, is quantised using anticommutation relations,

causality is encoded in the anticommutator of fields, rather than the commutator of

fields as in scalar field theory. In other words, the Dirac field operator and its Dirac

adjoint anticommute at spacelike separations.

2.2.2 Gauge Fields: Photons and Gluons

The Dirac Lagrangian is invariant under global gauge transformations, i.e., rotat-

ing the phase of the Dirac field, ψ. However, something interesting happens if we

allow gauge transformations to arbitrarily change at different spacetime points (in

other words, we make the gauge transformation spacetime dependent). These types

of transformations are called local gauge transformations, and physics should not de-

pend on these arbitrary choices.

In order to impose that our theory is locally gauge invariant, we must introduce new

spin-1 fields to the Lagrangian. These fields are called gauge fields, and their corre-

sponding spin-1 particles are called gauge bosons. This structure is a key feature of

the Standard Model, where the electromagnetic, weak, and strong forces are all gov-

erned by gauge symmetry [7]. In this section, we introduce two gauge bosons: the

photon and the gluon. The introduction of the photon field leads to quantum electro-

dynamics (QED), and the introduction of the gluon field leads to quantum chromody-

namics (QCD).

Electromagnetic Interactions and the Photon Field

The Dirac equation is invariant under global U(1) phase transformations of the form

ψ → eiαψ. However, the derivative ∂µψ is not invariant under local phase transforma-

tions α = α(x). Requiring invariance under local gauge transformations leads to the
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definition of the covariant derivative,

Dµψ = (∂µ + ieAµ)ψ, (2.2.8)

where e = −|e| is the fundamental electric charge and Aµ is a gauge field (the photon

field) that transforms as

Aµ(x) → Aµ(x)−
1

e
∂µα(x) . (2.2.9)

This ensures gauge invariance under local U(1) transformations. Substituting Dµ in

place of ∂µ in the Dirac Lagrangian introduces the interaction term eψ̄γµAµψ, de-

scribing the coupling between fermions and the photon.

The kinetic term for the photon field arises from the field strength tensor [23, 25],

Fµν = ∂µAν − ∂νAµ, (2.2.10)

leading to the free Lagrangian density for the photon,

Lphoton = −1

4
FµνF

µν . (2.2.11)

This term describes the dynamics of the electromagnetic field and ensures that Maxwell’s

equations emerge from the Euler-Lagrange equations.

Combining the Dirac Lagrangian density (with the covariant derivative) and the free

Lagrangian density of the photon, we get the Lagrangian density for QED2,

LQED = ψ̄(iγµ∂µ −m)ψ − 1

4
FµνF

µν − eψ̄γµAµψ . (2.2.12)

A fundamental result in QED, which follows from gauge invariance, is the Ward-

Takahashi identity [68, 69]. This identity expresses the constraints imposed on Green’s

functions due to gauge symmetry and plays a crucial role in proving renormalisability

(see Section 2.6). In Chapter 3, we explicitly show how ultraviolet divergences can-

cel in a scattering calculation, which is ultimately a consequence of this identity. At
2Strictly, we still have to gauge fix to remove the photon field’s redundant degrees of freedom [23,

54]. For example, a gauge-fixing term of the form −(∂µAµ)
2/2ξ can be added to the Lagrangian, with

ξ = 1 defining the Feynman gauge. When calculating cross sections in Chapter 3, we will adopt the
Feynman gauge.
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its core, the Ward-Takahashi identity arises from the Noether current associated with

gauge symmetry.

The Ward-Takahashi identity is a generalisation of the Ward identity, which is a spe-

cial case that applies specifically to on-shell amplitudes. The Ward identity is written

as

kµMµ(k) = 0, (2.2.13)

where Mµ is the matrix element for a given QED process involving an external pho-

ton with momentum k. This equation encapsulates gauge invariance at the level of

scattering amplitudes, ensuring that unphysical longitudinal photon polarisations do

not contribute to observable quantities.

Strong Interactions and the Gluon Field

In QCD, quarks interact through the exchange of gluons, which correspond to an SU(3)

gauge symmetry. The local SU(3) transformation of a quark field, ψi, is given by

ψi → Uij(x)ψj, Uij(x) ∈ SU(3) , (2.2.14)

where i, j are the quark colour indices which run from 1 to Nc (the number of colours),

and Uij(x) is a spacetime-dependent transformation in the fundamental representation

of SU(3). To preserve gauge invariance, the derivative must be replaced by the co-

variant derivative

Dµψi = (∂µδij − igGa
µ(T

a)ij)ψj . (2.2.15)

Here, Ga
µ are the eight gluon fields, and (T a)ij are the generators of SU(3) satisfying

the algebra

[T a, T b] = ifabcT c , (2.2.16)

where fabc are the structure constants of the SU(3) algebra, and a, b, c are the gluon

colour indices. The gluon field strength tensor is given by [23, 25]

Ga
µν = ∂µG

a
ν − ∂νG

a
µ + gfabcGb

µG
c
ν , (2.2.17)

where the final term encapsulates the self-interaction of gluons due to the non-Abelian

structure of the SU(3) group, which is a characteristic feature of QCD. This leads to
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the free gluon Lagrangian density,

Lgluon = −1

4
Ga
µνG

µν
a , (2.2.18)

which governs the dynamics of the gluon fields.

Thus, in analogy to QED, we arrive at the Lagrangian density for QCD3,

LQCD = ψ̄i(iγ
µ∂µ δij −mδij)ψj −

1

4
Ga
µνG

µν
a + eψ̄iγ

µGa
µ(T

a)ijψj . (2.2.19)

The gauge invariance of QCD also leads to identities analogous to the Ward-Takahashi

identity in QED, known as the Slavnov-Taylor identities [71–73], which impose con-

straints on Green’s functions and ensure renormalisability.

In Chapter 3, we will use the results in this section to describe particle scattering pro-

cesses. We will combine QED and QCD, since quarks couple to both photons and

gluons.

2.3 Propagators and Functions

In this section, we investigate multiple invariant commutation and propagation func-

tions in QFT. These definitions will be used throughout this thesis, unless otherwise

stated.

2.3.1 Scalar Field Propagators and Functions

For scalar field theory, the invariant commutation functions are solutions to the ho-

mogenous Klein-Gordon equation with special boundary conditions, where ‘homoge-

neous’ means that there is no source term (the right-hand side of Eq. (2.1.3) remains

zero). The invariant propagation functions are Green’s functions of the Klein-Gordon

equation, which means they are solutions to the inhomogeneous Klein-Gordon equa-

tion with a Dirac delta function as a source term.
3Again, strictly we should include a term in the Lagrangian to gauge fix the theory, and also in-

troduce Faddeev-Popov ghost fields [70] to ensure unphysical states do not contribute to observable
quantities. For the calculations in this thesis, we do need to consider ghost fields.
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The notable solutions to the homogeneous Klein-Gordon equation are as follows [74]:

Positive Wightman Function:

∆φ(>)
xy ≡ ∆φ(>)(x− y) =

⟨︁
0φ
⃓⃓
φ(x)φ(y)

⃓⃓
0φ
⟩︁

(2.3.1)

=

∫︂
d3k
(2π)3

1

2ωk
e−ik·(x−y)

⃓⃓⃓
k0=ωk

;

Negative Wightman Function:

∆φ(<)
xy ≡ ∆φ(<)(x− y) =

⟨︁
0φ
⃓⃓
φ(y)φ(x)

⃓⃓
0φ
⟩︁

(2.3.2)

=

∫︂
d3k
(2π)3

1

2ωk
e+ik·(x−y)

⃓⃓⃓
k0=ωk

;

Pauli-Jordan Function:

∆φ
xy ≡ ∆φ(x− y) =

[︁
φ(x), φ(y)

]︁
(2.3.3)

=

∫︂
d3k
(2π)3

1

2ωk

(︁
e−ik·(x−y) − eik·(x−y)

)︁⃓⃓⃓
k0=ωk

;

Hadamard Function:

∆φ(H)
xy ≡ ∆φ(H)(x− y) = ⟨0φ|

{︁
φ(x), φ(y)

}︁
|0φ⟩ (2.3.4)

=

∫︂
d3k
(2π)3

1

2ωk

(︁
e−ik·(x−y) + eik·(x−y)

)︁⃓⃓⃓
k0=ωk

= 2 ⟨0φ|φ(x)φ(y) |0φ⟩ −∆φ
xy ;

where ωk =
√

k2 +m2 and m is the mass of the field quanta. The notable Green’s

functions of the Klein-Gordon equation are as follows [74]:

Feynman Propagator:

F φ
xy ≡ F φ(x− y) =

⟨︁
0φ
⃓⃓
T
{︁
φ(x)φ(y)

}︁⃓⃓
0φ
⟩︁

(2.3.5)

=

∫︂
d3k
(2π)3

1

2ωk

(︁
Θ(x0 − y0)e

−ik·(x−y)

+Θ(y0 − x0)e
ik·(x−y))︁⃓⃓⃓

k0=ωk

= i

∫︂
CF

d4k

(2π)4
e−ik·(x−y)

k2 −m2

= i

∫︂
d4k

(2π)4
e−ik·(x−y)

k2 −m2 + iϵ
;
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Retarded Propagator:

Rφ
xy ≡ Rφ(x− y) ≡ ∆R

xy = Θ(x0 − y0)∆(x− y) (2.3.6)

= Θ(x0 − y0)
[︁
φ(x), φ(y)

]︁
= i

∫︂
CR

d4k

(2π)4
e−ik·(x−y)

k2 −m2

= i

∫︂
d4k

(2π)4
e−ik·(x−y)

k2 −m2 + k0iϵ
;

where the contours CF and CR are shown in Figs. 2.1 and 2.2, respectively, and ϵ is a

small positive parameter.
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Fig. 2.1. The Feynman propagator is equivalently defined by integration along the contour CF or the
+iϵ pole prescription (with integration along the real axis), as in Eq. (2.3.5). With the +iϵ pole

prescription, the poles are at ωk − iϵ and −ωk + iϵ.
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Fig. 2.2. The retarded propagator is equivalently defined by integration along the contour CR or the
+k0iϵ pole prescription (with integration along the real axis), as in Eq. (2.3.6). With the +k0iϵ pole

prescription, the poles are at ωk − iϵ
2 and −ωk − iϵ

2 .

Note that the Feynman and retarded propagators are sometimes defined with an ad-

ditional factor of (i)−1, which is how they are defined in Section 4.4 and Chapter 6.

Also, the retarded propagator is sometimes defined with sgn(k0)iϵ in the denominator

instead of k0iϵ, so that ϵ has the same dimensions in the Feynman and retarded propa-

gators.

The Feynman propagator represents the propagation of a virtual particle between
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two points, and appears in the Feynman rules for constructing scattering matrix ele-

ments (see Section 2.5). However, the Feynman propagator does not vanish for space-

like separations [23], so does this mean that particles can propagate at superluminal

speeds?

The key to preserving causality is to ask the question whether a measurement per-

formed at one point can affect a measurement at a spacelike-separated second point.

This is encoded by the commutator ∆φ
xy ≡ [φx, φy], since if this commutator vanishes

then one measurement cannot affect the other. The equal-time commutation relations

for scalar field theory (Eqs. (2.1.15)) show that the commutator of field operators van-

ishes at equal times, but what about general times? Using Eq. (2.3.1),

[φx, φy] = ⟨0φ| [φx, φy] |0φ⟩ = ⟨0φ|φxφy |0φ⟩ − ⟨0φ|φyφx |0φ⟩

= ∆φ(>)(x− y)−∆φ(>)(y − x) , (2.3.7)

where we have used the fact that the commutator of fields is a c-number (classical

number, as opposed to quantum operator) so we are free to write

[φx, φy] =
⟨︁
0φ
⃓⃓
[φx, φy]

⃓⃓
0φ
⟩︁
. Each of the Wightman functions are separately invari-

ant under continuous Lorentz transformations [23]. For spacelike separations, there

exists a continuous Lorentz transformation (x − y) → (y − x). Consequently,

Eq. (2.3.7)—and hence the retarded propagator, Eq. (2.3.6)—vanishes for spacelike

separations.

2.3.2 Higher-Spin Field Propagators

In addition to scalar fields, propagators play a crucial role in the study of spinor, vec-

tor, and gauge fields. Specifically, the Feynman propagators in this section appear in

the Feynman rules for QED and QCD.

For a Dirac field, the Feynman propagator is given by [23]

Sxy ≡ SF (x− y) =
⟨︁
0ψ
⃓⃓
T
{︁
ψ(x)ψ̄(y)

}︁⃓⃓
0ψ
⟩︁

= i

∫︂
d4k

(2π)4
(γµkµ +m)e−ik·(x−y)

k2 −m2 + iϵ
. (2.3.8)
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The retarded propagator for the Dirac field is defined as [23]

SRxy = Θ(x0 − y0) ⟨0ψ| {ψ(x), ψ̄(y)} |0ψ⟩

= i

∫︂
d4k

(2π)4
(γµkµ +m)e−ik·(x−y)

k2 −m2 + k0iϵ
, (2.3.9)

where we note the appearance of the anticommutator instead of the commutator, due

to the Fermi-Dirac statistics of the Dirac field.

In QED, the photon field satisfies gauge constraints, leading to different choices of

propagator. In the Feynman gauge, the Feynman propagator is [23]

Dxy
µν ≡ DF

µν(x− y) =
⟨︁
0
⃓⃓
T
{︁
Aµ(x)Aν(y)

}︁⃓⃓
0
⟩︁

(2.3.10)

= −i
∫︂

d4k

(2π)4
gµνe

−ik·(x−y)

k2 + iϵ
. (2.3.11)

In quantum chromodynamics (QCD), the gluon propagator also depends on the choice

of gauge. In the Feynman gauge, the Feynman propagator for a gluon field is [23]

Dab
µν(x− y) =

⟨︁
0
⃓⃓
T
{︁
Aaµ(x)A

b
ν(y)

}︁⃓⃓
0
⟩︁

(2.3.12)

= −iδab
∫︂

d4k

(2π)4
gµνe

−ik·(x−y)

k2 + iϵ
. (2.3.13)

2.4 The S-Matrix and the LSZ Reduction Formula

The S-matrix, or scattering matrix, is a fundamental object in QFT that encodes the

transition amplitudes between initial and final asymptotic states in a scattering pro-

cess. It provides the theoretical framework for calculating observable quantities such

as cross-sections and decay rates.

The S-matrix is formally defined as the operator that relates the in-state |in⟩ (before

the interaction) to the out-state |out⟩ (after the interaction) [23, 25, 54, 75, 76],

S |in⟩ = |out⟩ . (2.4.1)

In the interaction picture, the S-matrix is the long-time limit of the unitary time-evolution
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operator4, U(t, t0), but with the assumption that states evolve freely in the distant past

and future (i.e., the interaction Hamiltonian vanishes asymptotically). Thus, it is de-

fined as

S ≡ lim
t→∞

U(t,−t) = T
{︃

exp
(︃
−i
∫︂ ∞

−∞
d4xHint(x)

)︃}︃
, (2.4.2)

where T denotes time-ordering. In this way, the S-matrix does not describe time evo-

lution at intermediate times but rather the overall scattering process.

The transition amplitude between an initial state |i⟩ and a final state |f⟩ is given by

the S-matrix element

Sfi = ⟨f |S|i⟩ . (2.4.3)

Even in an interacting theory, there is a non-zero probability that the particles do not

interact (e.g., they completely miss each other). To isolate the part of the S-matrix

that is due to interactions, it is conventional to define the T -matrix [23, 25, 54, 77],

S = I+ iT, (2.4.4)

where I is the identity operator. The physically relevant quantity for scattering pro-

cesses is therefore the T -matrix element,

Tfi = ⟨f |T |i⟩, (2.4.5)

which is directly related to the invariant matrix element, Mfi, by factoring out momentum-

conserving δ-functions:

Tfi = (2π)4δ4
(︂∑︂

pi −
∑︂

pf

)︂
Mfi. (2.4.6)

The invariant matrix element contains all the dynamical information about the inter-

action and is computed using Feynman rules derived from the Lagrangian (see Sec-

tion 2.5).

In order to calculate S-matrix elements, we compute time-ordered correlation func-

tions of fields. One must then use the Lehmann–Symanzik–Zimmermann (LSZ) reduc-
4or, equivalently, a sequence of time-evolution operators, since U(ta, tc) = U(ta, tb)U(tb, tc).
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tion formula [23, 78, 79]:

⟨q1 . . . qn|S|p1 . . . pN⟩ =

(︄
n∏︂
k=1

∫︂
d4xk e

−iqk·xk (q
2
k −m2

k + iϵ)

i
√
Zk

)︄

×

(︄
N∏︂
j=1

∫︂
d4yj e

ipj ·yj
(p2j −m2

j + iϵ)

i
√︁
Zj

)︄
× ⟨0|T{φ(x1) . . . φ(xn)φ(y1) . . . φ(yN)}|0⟩ , (2.4.7)

for N initial-state particles of momenta {p1, . . . , pN}, n final-state particles of mo-

menta {q1, . . . , qn}, and m is the mass of each particle. The quantity Z is the field-

strength renormalisation constant, defined as the residue of the single-particle pole in

the two-point function of fields [23, 25] (we calculate Z for a specific process in Sec-

tion 3.4.2). In the case where there are different types of external particle (e.g. q and

e−), each external particle contributes a unique factor of
√
Zi (e.g.

√︁
Zq and

√
Ze),

obtained from each of their two-point functions. These renormalisation factors appear

because we are working in bare (as opposed to renormalised) perturbation theory (see

Section 2.6.2).

In words, the LSZ reduction formula says that in order to calculate an S-matrix el-

ement, one must compute the Fourier-transformed time-ordered correlation func-

tion (using the momentum-space Feynman rules in Section 2.5). Then, due to the

factors of p2 − m2, remove all terms in the time-ordered product except those with

poles of the form (p2 −m2)−1. These correspond to propagators of on-shell particles,

and the S-matrix is given by the residue of these poles. Thus, the LSZ reduction for-

mula projects one-particle asymptotic states out from time-ordered products of fields,

defining the S-matrix.

It will prove useful to express the LSZ reduction formula directly in terms of Feyn-

man diagrams. To do this, consider the four-point function, shown in Fig. 2.3. The

Feynman diagram has been separated into all possible amputated diagrams (labelled

‘Amp.’) and isolated self-energy corrections to the external legs (patterned circles).

To ‘amputate’ a diagram, start at the tip of the external leg and follow it into the dia-

gram, then ‘cut’ the line at the final possible point in which such a cut separates the

external leg (and any self-contained loop corrections) from the rest of the diagram.

Since Z is defined as the residue of the single-particle pole in the two-point function,

we know that the contribution of the four exact two-point propagators in Fig. 2.3 con-
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Amp.

Fig. 2.3. Feynman diagram representing the four-point function in scalar field theory. The central
circle labelled ‘Amp.’ contains all amputated diagrams. The patterned circles represent the exact scalar

propagator, including corrections to all orders.

tains
iZ

p21 −m2 + iϵ

iZ

p22 −m2 + iϵ

iZ

q21 −m2 + iϵ

iZ

q22 −m2 + iϵ
, (2.4.8)

where {p1, p2, q1, q2} are the momenta of the four external particles and we have as-

sumed Z and m are equivalent for all particles (i.e., they are all the same type of par-

ticle). These propagator factors exactly cancel with those in Eq. (2.4.7), except for

an overall factor of
√
Z for each external particle. In this way, the LSZ reduction for-

mula ‘picks out’ the two-point propagator poles in the time-ordered correlation func-

tion and forces the external particles on-shell. All other contributions from the time-

ordered correlation function are then multiplied by zero (the on-shell propagator fac-

tors in Eq. (2.4.7)).

Thus, by explicitly accounting for the contributions of the two-point propagators, the

LSZ formula can be written in a form which relates the S-matrix elements directly to

amputated Feynman diagrams,

⟨q1 · · · qn|S |p1p2⟩ =
(︂√

Z
)︂n+2

p2

p1

qn

q1

...Amp. , (2.4.9)

where we have specialised to the case of two initial-state particles, which will be the

case in Chapter 3. Note that any spinor or polarisation factors associated with exter-

nal legs are still to be included.
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2.5 Feynman Rules

In this section, we specify the momentum-space Feynman rules for scalar φ3 theory,

QED, and QCD. Feynman rules provide a systematic method for computing scatter-

ing amplitudes in quantum field theory [76, 80] . They translate the graphical ele-

ments of Feynman diagrams into mathematical factors, which can be derived from

terms in the interaction Lagrangian. Further details on Feynman diagrams can be

found in most textbooks on QFT [23–25, 54].

2.5.1 Feynman Rules for Scalar Field Theory

For a real scalar field with interaction term λ
3!
φ3, the Feynman rules are as follows:

• Internal propagator:
p

=
i

p2 −m2 + iϵ
; (2.5.1)

• Vertex:

= −iλ ; (2.5.2)

• External leg:

= 1 ; (2.5.3)

• Impose momentum conservation at each vertex;

• Integrate over each undetermined loop momentum with measure
∫︁

dDk/(2π)D,

in D dimensions;

• Divide by symmetry factors, S, where necessary.

2.5.2 Feynman Rules for QED

QED describes interactions between electrons, positrons, and photons. Electrons and

positrons are denoted by solid lines with an arrow pointing in the direction of fermion

flow (such that the arrow is parallel to momentum flow for electrons and antiparallel
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to momentum flow for positrons). Photons are denoted by a wiggly line. The Feyn-

man rules are as follows:

• Internal fermion propagator:

p
=
i(γµpµ +m)

p2 −m2 + iϵ
; (2.5.4)

• Internal photon propagator:

q
=

−i
(︂
gµν + (ξ − 1) q

µqν

q2

)︂
q2 + iϵ

; (2.5.5)

• Fermion-photon vertex:

= −ieγµ ; (2.5.6)

• External incoming electron:

p
= us(p) ; (2.5.7)

• External outgoing electron:

p
= ūs(p) ; (2.5.8)

• External incoming positron:

p
= v̄s(p) ; (2.5.9)

• External outgoing positron:

p
= vs(p) ; (2.5.10)
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• External incoming photon:

p
= ϵµ(p) ; (2.5.11)

• External outgoing photon:

p
= ϵ∗µ(p) ; (2.5.12)

• Impose momentum conservation at each vertex;

• Integrate over each undetermined loop momentum with measure
∫︁

dDk/(2π)D,

in D dimensions;

where ξ is the gauge parameter used to gauge fix the theory (in this thesis, we use the

Feynman gauge, ξ = 1) and ϵµ(p) is the polarisation vector of the external photon.

For internal photon propagators, the uncontracted Lorentz indices label the Lorentz

indices associated with the vertex factors on either side of the propagator. For internal

antifermion propagators, the direction of momentum is antiparallel to the direction of

the fermion flow, and so pµ → −pµ in the propagator factor. When constructing a

matrix element, it is important to follow the arrows denoting the fermion flow.

2.5.3 Feynman Rules for QCD

QCD describes the interactions between quarks (solid lines) and gluons (curly lines).

The Feynman rules relevant to the calculations in Chapter 3 are as follows:

• Quark propagator:
p

=
iδij(γµpµ +m)

p2 −m2 + iϵ
; (2.5.13)

• Gluon propagator:

q
=

−iδab

q2 + iϵ

(︃
gµν + (ξ − 1)

qµqν

q2 + iϵ

)︃
; (2.5.14)
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• Quark-gluon vertex:

= igγµ(T a)ij ; (2.5.15)

• External leg factors are identical to those in QED, except quarks and gluons

carry colour indices;

• Impose momentum conservation at each vertex;

• Integrate over each undetermined loop momentum with measure
∫︁

dDk/(2π)D,

in D dimensions;

where i, j are the quark colour indices and a, b, c are the gluon colour indices. We

have omitted gluon self-interactions and ghost fields, since they will not be consid-

ered in this thesis. Matrix elements are constructed similarly to those of QED. In

Chapter 3, we consider a process which involves both QED and QCD. In this case,

there is a quark-photon vertex similar to Eq. (2.5.6):

= −ieeqγµδij ; (2.5.16)

where the δij ensures that the two fermions have matching colour and eq is the dimen-

sionless ratio of the quark’s electric charge to e = −|e| (e.g., eq = −2
3

for an up quark

and eq = 1
3

for a down quark).

2.6 Ultraviolet and Infrared Divergences

Calculations in QFT often involve terms which tend to infinity in the high-energy or

low-energy limits. These divergences are classified as infrared (IR) divergences (for

divergences in the low-energy limit) and ultraviolet (UV) divergences (for divergences

in the high-energy limit). Not only do these divergences have different physical ori-

gins, but they are treated (regularised) in different ways. Despite this, many calcula-

tions ignore the distinction between the two types of divergence.

In this section, we explain the difference between these divergences and examine some

of the divergent integrals that are ubiquitous in QFT. We derive a general solution
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for a divergent integral using dimensional regularisation, which is a technique used

to parameterise the divergences in the intermediate steps of a calculation. In doing

so, we are able to keep track of divergent terms. This is crucial for our calculation

in Chapter 3, where we calculate the first-order gluon corrections to quark-antiquark

production, and show that IR and UV divergences cancel independently.

2.6.1 Infrared Divergences

IR divergences appear in loop integrals with massless virtual particles and in phase-

space integrals with massless real emissions. IR divergences manifest in two primary

ways:

• Soft divergences: These occur when the energy of an internal loop particle or

real emission approaches zero.

• Collinear divergences: These arise when particles are emitted collinearly with

an external leg.

In both of these cases, the process is degenerate with a process in which the parti-

cle does not appear at all. In other words, experimental detectors cannot distinguish

between states differing by arbitrarily soft/collinear particle emissions or by virtual

corrections involving negligible energy transfer. The detectors therefore naturally

sum over these degenerate states [23]. To treat them separately in the mathematics

is therefore unphysical.

However, physical observables, such as cross-sections and decay rates, must be IR fi-

nite, even if individual Feynman diagrams contain divergences. This is ensured by the

Bloch-Nordsieck (BN) theorem [27] (for Abelian gauge theories such as QED) and

the Kinoshita-Lee-Nauenberg (KLN) theorem [28, 29] (for non-Abelian gauge theo-

ries such as QCD). These theorems state that when summing over all degenerate final

states, IR divergences cancel. This cancellation ensures that measurable quantities re-

main well-defined.

This cancellation can be formally expressed, at the level of cross sections, as

σphysical = σvirtual + σreal, (2.6.1)
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where the IR divergences present in σvirtual are precisely cancelled by those in σreal.

We will see this explicit cancellation of IR divergences in Chapter 3.

2.6.2 Ultraviolet Divergences and Renormalisation

UV divergences arise from momentum integrals extending to arbitrarily high energy

scales, since we do not know the true, fundamental theory of Nature at these high en-

ergies. If left untreated, these divergences would render predictions meaningless. The

procedure by which such infinities are systematically removed is called renormalisa-

tion, which leads to finite, physically meaningful predictions.

There are enough details of renormalisation to write a textbook (e.g., Ref. [26]), but

all of the subtleties and systematics of renormalisation are not required for this thesis.

Instead, this section serves as a brief introduction to renormalisation (as in Ref. [77])

and an explanation of how it will be used in Chapter 3.

So far, quantities such as the mass and coupling constant have appeared as free pa-

rameters of a Lagrangian, able to take on any value. In interacting field theories, these

initial (bare) parameters receive corrections from increasing orders of particle inter-

actions. In order to align these theories with reality, we take measurements to deter-

mine the physical values of the parameters5. We can then directly use the physical

(renormalised) parameters in our theory instead of the radiatively corrected bare pa-

rameters. This is the basic idea of renormalisation, and it is required even if there are

no UV divergences [24, 77]. If the corrections to the bare parameters involve UV di-

vergences, then changing variables to the renormalised parameters offers a set of fi-

nite parameters, often making calculations more tractable.

But how can we use QFT to make predictions at all if we do not know the fundamen-

tal theory at all energies? By the Heisenberg uncertainty principle, large violations of

energy conservation can only occur for very short time scales, ∆t ∼ 1/∆E, mean-

ing that high-energy effects must appear local (confined to short distances) for ex-

periments at accessible energy levels. Local interactions are described by interac-

tion terms of the Lagrangian, so these high-energy effects will result in shifts to the

parameters of the interaction Lagrangian (e.g., mass and coupling constants). This

justifies the procedure of including these high-energy corrections in the parameters
5These parameters are not observables, and thus cannot be directly measured. Instead, they are in-

ferred from observables.
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of the interaction Lagrangian. We only observe the physical, renormalised parame-

ters, which combine the unphysical, bare parameters with the high-energy corrections

(renormalisation factors).

For example, consider a Lagrangian density containing bare fields and parameters,

denoted by a subscript B,

L =
1

2
∂µφB ∂

µφB − 1

2
m2
Bφ

2
B − λB

3!
φ3
B . (2.6.2)

To express the theory in terms of renormalised quantities, we introduce renormalisa-

tion factors,

L =
1

2
Z2∂µφR ∂

µφR − 1

2
Z0m

2
Rφ

2
R − Z1λR

3!
φ3
R , (2.6.3)

where φR,mR, λR are the renormalised field, mass, and coupling, which are finite and

measurable. The renormalisation factors Zi are chosen to absorb divergences appear-

ing in loop corrections, ensuring that physical observables remain finite.

Rewriting this, we separate the Lagrangian density into the renormalised Lagrangian

density, LR, and a counterterm Lagrangian density, Lct,

L = LR + Lct , (2.6.4)

where

LR =
1

2
∂µφR ∂

µφR − 1

2
m2
Rφ

2
R − λR

3!
φ3
R , (2.6.5)

and

Lct =
1

2
(Z2 − 1)∂µφR ∂

µφR − 1

2
(Z0 − 1)m2

Rφ
2
R − 1

3!
(Z1 − 1)λRφ

3
R . (2.6.6)

The renormalisation constants are always chosen to explicitly cancel the divergences

introduced by loop corrections, ensuring finite results order by order in perturbation

theory.

The factor Z2 is exactly the same field-strength renormalisation, Z, that appears in

the LSZ reduction formula (Eq. (2.4.9)) [23]. It ensures that physical states are prop-

erly normalised, preventing divergences from propagating into S-matrix elements.

Consequently, we can either work with renormalised parameters and explicit coun-

terterms (renormalised perturbation theory) or bare parameters, with renormalisation
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factors appearing in the LSZ reduction formula (bare perturbation theory). The two

approaches are exactly equivalent. In Chapter 3, we work with bare parameters and

explicitly see how the UV divergences from loop corrections cancel when the LSZ

formula is applied.

2.6.3 Feynman Parameterisation

Throughout Section 2.6.4 and Chapter 3, momentum integrals will involve a product

of propagators. Feynman parametrisation is a technique used to combine denomina-

tors of propagators into a single quadratic polynomial in the momentum variable [23,

25, 80]. The remaining momentum integral is then spherically symmetric, allowing

analytic integration without difficulty. The general identity is given by

n∏︂
i=1

1

Di

=

∫︂ 1

0

dx1 · · ·
∫︂ 1

0

dxn δ
(︂
1−

n∑︂
i=1

xi

)︂ (n− 1)!

(
∑︁n

i=1 xiDi)n
, (2.6.7)

where x1, · · · , xn are auxiliary parameters to be integrated over the range 0 to 1. For

example, for two propagator denominators,

1

AB
=

∫︂ 1

0

dx
∫︂ 1

0

dy δ(1− x− y)
1

(xA+ yB)2
=

∫︂ 1

0

dx
1

[xA+ (1− x)B]2
.

(2.6.8)

2.6.4 Divergent Integrals

Before we consider a calculation which involves divergences (Chapter 3), we should

examine the divergent integrals which will arise in such calculations. We will evalu-

ate integrals of the form,

J(D,α, β, a2) ≡
∫︂

dDk
(2π)D

(k2)α

(k2 − a2 + iϵ)β
, (2.6.9)

in D = 4 + 2ε spacetime dimensions, with |ε| ≪ 1. The reason we evaluate these

integrals in D dimensions is to regulate UV (k → ∞) and IR (k → 0) divergences.

These divergences will occur when D = 4, so we can temporarily parameterise the

divergences with ϵ, before taking ϵ→ 0 at the end of the calculation.

UV divergences can be regulated by slightly decreasing the dimensionality of the in-
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tegral (i.e. εUV < 0), and IR divergences can be regulated by slightly increasing the

dimensionality of the integral (i.e. εIR > 0). This is dimensional regularisation. Typi-

cally, the calculation for Rq = σ(e+e− → qq̄)/σ(e+e− → µ+µ−) is done with a sin-

gle dimensional regularisation parameter, ε, which regulates both IR and UV diver-

gences. Whilst this can be made to give the correct result, it is disingenuous to how

dimensional regularisation truly works. In Chapter 3, we treat the two types of diver-

gences separately, and find that the distinct types of divergence cancel independently

of each other.

Evaluating the Integral

It is worth performing the integral in Eq. (2.6.9). First, we transform from the usual,

Lorentzian 4-momentum, kµ, to the Euclidean 4-momentum, kµE , with a Wick rota-

tion [81],

kµ = (k0,k) = (ik0E,kE) (2.6.10)

⇒ k2 = (k0)2 − k2 = −(k0E)
2 − k2

E ≡ −k2E , (2.6.11)

dk0 = i dk0E ⇒ dDk = i dDkE . (2.6.12)

This Wick rotation is shown in Fig. 2.4. To understand why we can Wick rotate, con-

sider the closed contour on the left of Fig. 2.4. The integration along this contour

must vanish due to the residue theorem, since there are no enclosed poles. Since the

integral along the curved parts of the contour must also be zero (the integrand in

Eq. (2.6.9) vanishes for |k20| → ∞), the integral along the real and imaginary axes

must be equal and opposite. This highlights the importance of the pole prescription of

the Feynman propagator (as defined in Eq. (2.3.5) and shown in Fig. 2.1).

We can now write Eq. (2.6.9) as

J(D,α, β, a2) = i

∫︂
dDkE
(2π)D

(−1)α(k2E)
α

(−k2E − a2)β

= i(−1)α−β
∫︂

dDkE
(2π)D

(k2E)
α

(k2E + a2)β
, (2.6.13)

where we have safely taken ϵ → 0 since the denominator is always positive and does

not lead to pole ambiguities (i.e., taking ϵ → 0 no longer moves the poles onto the

contour of integration). In these coordinates, the integral is spherically symmetric
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Fig. 2.4. Left: The integral along this contour vanishes due to the residue theorem, since there are no
enclosed poles. Since the integral along the curved parts of the contour must also be zero, the integral

along the real and imaginary axes must be equal and opposite. Right: The Wick rotation of the
integration contour between Lorentzian 4-momentum coordinates, kµ, to Euclidean 4-momentum

coordinates, kµE . The rotation is 90◦ anticlockwise in the complex plane, which is permitted due to the
position of the poles.

and thus

J(D,α, β, a2) =
i(−1)α−β

(2π)D

∫︂
dΩD

∫︂ ∞

0

d|kE| |kE|D−1 |kE|2α

(|k2E|+ a2)β

=
2i(−1)α−β

(4π)D/2Γ(D/2)

∫︂ ∞

0

d|kE|
|kE|2α+D−1

(|k2E|+ a2)β
, (2.6.14)

where
∫︁

dΩD = 2πD/2/Γ(D/2) is the ‘surface area’ of a D-dimensional unit sphere,

and the Gamma function, Γ(z), is defined as [82–85]

Γ(z) =

∫︂ ∞

0

tz−1e−t dt , Re{z} > 0. (2.6.15)

We can evaluate the remaining integral with a change of variable,

u ≡ a2

(|kE|2 + a2)
, (2.6.16)

such that

lim
|kE |→∞

u = 0 (2.6.17)

lim
|kE |→0

u = 1 (2.6.18)

|kE| =
(︃
a2

u
(1− u)

)︃1/2

(2.6.19)

du =
−2a2|kE|

(|kE|2 + a2)2
d|kE| ⇒ d|kE| = −1

2
du (1− u)−1/2(a−2)

(︃
a2

u

)︃3/2

. (2.6.20)
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Therefore, Eq. (2.6.14) can be written as

J(D,α, β, a2) =
i(−1)α−β(a2)α−β+D/2

(4π)D/2Γ(D/2)

∫︂ 1

0

duuβ−α−D/2−1(1−u)α+D/2−1, (2.6.21)

where the limits of integration have been swapped, picking up a minus sign. Finally,

we apply the Euler Beta function, defined as [82, 84, 85]

B(m,n) =
∫︂ 1

0

duum−1(1− u)n−1 =
Γ(m)Γ(n)

Γ(n+m)
. (2.6.22)

The final expression for Eq. (2.6.9) is

J(D,α, β, a2) =
i

(4π)D/2
(a2)D/2(−a2)α−βΓ(β − α−D/2)Γ(α +D/2)

Γ(β)Γ(D/2)
. (2.6.23)

The Gamma function, Γ(z), has simple poles at z = 0,−1,−2, . . . , which will lead

to divergences. It can be Laurent expanded [86, 87] as

Γ(z) =
1

z
− γE +O(z), (2.6.24)

where γE is the Euler-Mascheroni constant [84, 85, 88], and the expansion is only

valid in the region z > 0 with z ∈ R and |z| ≪ 1. Since εUV < 0 and εIR > 0,

the only valid expansions of the Gamma function in ε are

Γ(−εUV) = − 1

εUV

− γE +O(εUV) and (2.6.25)

Γ(εIR) =
1

εIR

− γE +O(εIR). (2.6.26)

Another source of divergences in Eq. (2.6.23) are indeterminations of the type 00,

which may arise from the (a2)α−β+D/2 term. This will result in both UV and IR di-

vergences. We will treat this type of divergence in Section 3.4.2.

It should be noted that we haven’t considered tensor integrals (Eq. (2.6.9) is a scalar

integral). Tensor integrals can be written in terms of the scalar integral as [89],

∫︂
dDk
(2π)D

(k2)αkµkν

(k2 − a2 + iϵ)β
=
gµν

D
J(D,α + 1, β, a2) . (2.6.27)

Any integral with an odd power of kµ in the numerator will be zero by symmetry.
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Example: UV Divergence

Consider the integral,

IµUV ≡
∫︂

dDk
(2π)D

kµ

(k2 + iϵ)((k + p)2 −m2 + iϵ)
, (2.6.28)

then Feynman parameterise and shift the integration variable,

IµUV =

∫︂ 1

0

dx
∫︂

dDk
(2π)D

kµ

[(k + px)2 − a2 + iϵ]2

=

∫︂ 1

0

dx
∫︂

dDk
(2π)D

kµ − xpµ

[k2 − a2 + iϵ]2
. (2.6.29)

Now we note that any integral of this form with an odd power of kµ in the numerator

is zero by symmetry, i.e.

∫︂
dDk
(2π)D

(k2)nkµ

[k2 − a2 + iϵ]m
= 0, (2.6.30)

and thus,

IµUV =

∫︂ 1

0

dx
∫︂

dDk
(2π)D

−xpµ

[k2 − a2 + iϵ]2
= −pµ

∫︂ 1

0

dxxJ(D, 0, 2, a2)

=
−ipµ

(4π)D/2
Γ(2−D/2)

∫︂ 1

0

dxx
(︃
−p2x(1− x) +m2x

)︃D/2−2

, (2.6.31)

where we have used Eq. (2.6.23) to write the integral in terms of Gamma functions.

Taking D = 4 at this point would cause a divergence due to Γ(0). One may also think

there will be a divergence of the form 00 in the integrand when x = 0, but the extra

factor of x in the integrand makes sure this converges (note that if p2 = m2 = 0 then

this will indeed result in an indetermination and hence further divergences—both UV

and IR—as we will see in Section 3.4.2).

So the only divergence in Eq. (2.6.31) is due to Γ(β − α − D/2) = Γ(0). We can

understand the nature of this divergence by examining Eq. (2.6.21). For D = 4, the

only possible divergence would come from the uβ−α−D/2−1 term when β−α−D/2 =

0 (as in this example) and u = 0. From Eq. (2.6.17) we know that u = 0 corresponds

to |kE| → ∞ ⇒ |k| → ∞. Thus, a divergence due to β − α − D/2 = 0 is an UV

divergence.
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Example: IR Divergence

Consider the integral,

IIR =

∫︂
dDk
(2π)D

1

(k2 + iϵ) ((k + p1)2 + iϵ) ((k + p2)2 + iϵ)
, (2.6.32)

where p21 = p22 = 0. We can guess intuitively that there may be some problems as

k → 0 because the integrand becomes (for ϵ→ 0),

1

k2(2k · p1)(2k · p2)
, (2.6.33)

which exhibits two types of IR divergences:

1. k2 = 0 “soft divergence”

2. k · p1 = 0 or k · p2 = 0 “collinear divergence”

This is not enough to prove that there are IR divergences (k2 → 0 also seems prob-

lematic for Eq. (2.6.28), but we have shown that it is not), so let us evaluate Eq. (2.6.32)

and see what happens. First, we apply Feynman parameterisation,

IIR =

∫︂ 1

0

dx
∫︂ 1

0

dy
∫︂

dDk
(2π)D

2x

[(k + p1xy − p3x(1− y))2 − a2 + iϵ]3
, (2.6.34)

where a2 = −2(p1 ·p2)x2y(1−y). Then we shift variables k → k−p1xy+p2x(1−y)

and recognise that we have an integral in the form of Eq. (2.6.9),

IIR =

∫︂ 1

0

dx
∫︂ 1

0

dy
∫︂

dDk
(2π)D

2x

[k2 − a2 + iϵ]3
= 2

∫︂ 1

0

dx
∫︂ 1

0

dy xJ(D, 0, 3, a2) .

(2.6.35)

Using Eq. (2.6.23) to write this in terms of Gamma functions, we get

IIR =
−i

(4π)D/2
Γ(3−D/2)(−2p1 · p2)D/2−3

∫︂ 1

0

dxxD−5

∫︂ 1

0

dy yD/2−3(1− y)D/2−3 .

(2.6.36)

If one were to take D = 4 at this point, there would be divergences from the x and y

integrals in three regions of the integral space:

1) x = 0 ; 2) y = 0 ; 3) y = 1 .
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Examining Eq. (2.6.34), we can see what each of these regions physically correspond

to. The first region (x = 0) results in the denominator of the integrand becoming

k6. Clearly, the integral will diverge for k = 0. The second region (y = 0) gives a

denominator k4(k2 + 6k · p1), which diverges for k = 0 or k · p1 = 0 ∧ k → 0. The

third region (y = 1) gives a denominator k4(k2 − 6k · p2), which diverges for k = 0 or

k · p2 = 0 ∧ k → 0. These are exactly the soft and collinear divergences we expected.

These are the only divergences present, so IIR is IR divergent and not UV divergent.

Thus, to successfully evaluate IIR, we must work in D = 4 + 2εIR dimensions, with

εIR > 0 in order to regulate these IR divergences. Using the Euler Beta function

(Eq. (2.6.22)), it is then straightforward to arrive at the result,

IIR =
i

(4π)2
1

2p2 · p3

(︃
−2p1 · p2

4π

)︃εIR Γ(1− εIR)

Γ(1 + 2εIR)
Γ2(εIR). (2.6.37)

The structure of the IR poles can then be seen when one expands the Gamma func-

tions using

Γ(εIR) =
1

εIR

− γE +
1

12
(π2 + 6γ2E)εIR +O

(︁
εIR

2
)︁
, (2.6.38)

Γ(1∓ εIR) = 1± γEεIR +
1

12
(π2 + 6γ2e )εIR

2 +O
(︁
εIR

3
)︁
, (2.6.39)

(f)εIR = 1 + εIR ln f +
εIR

2

2!
(ln f)2 + . . . , (2.6.40)

ln(−1) = ln
(︁
eiπ
)︁
= −iπ, (2.6.41)

being careful to include the O(εIR
2) terms when necessary as they will multiply with

the εIR
−2 terms from Γ2(εIR) to give constants. In Eq. (2.6.41), we have taken ln(−1) =

−iπ as a matter of convention in line with the Sokhotski-Plemelj theorem [90, 91],

since ln(−1) = −iπ + 2inπ , ∀n ∈ Z.

Summary of UV and IR Divergences

Integrals in the form of Eq. (2.6.9) can exhibit UV and IR divergences.

• When β − α − D/2 = 0, this corresponds to k → ∞ and hence these are UV

divergences, and must be regulated with a small negative dimension εUV such

that D = 4 + 2εUV.
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• When the divergences arise from the integration of the Feynman parameters, this

corresponds to k → 0 and hence are IR divergences (both soft and collinear),

and must be regulated with a small positive dimension εIR such that D = 4+2εIR.

• In the massless limit, a2 = 0 and there will be an indetermination of the form 00.

This will result in both UV and IR divergences and will be treated in analysis of

the self-energy diagram in Section 3.4.2.

Loop Integrals

We now collect and evaluate the integrals which will arise in Chapter 3, so that we

can simply refer back to them when needed. The full derivation of the integrals can

be found in Ref. [89].

C1 ≡
∫︂

dDk
(2π)D

1

(k2 + iϵ) ((k + q1)2 + iϵ) ((k − q2)2 + iϵ)

=
i

(4π)2
1

2q1 · q2

(︃
−2q1 · q2

4π

)︃εIR Γ(1− εIR)

Γ(1 + 2εIR)
Γ2(εIR)

(2.6.42a)

C2 ≡
∫︂

dDk
(2π)D

kµ

(k2 + iϵ) ((k + q1)2 + iϵ) ((k − q2)2 + iϵ)

= (qµ2 − qµ1 )
i

(4π)2
1

2q1 · q2

(︃
−2q1 · q2

4π

)︃εIR Γ(1 + εIR)Γ(1− εIR)

Γ(2 + 2εIR)
Γ(εIR)

(2.6.42b)

C3 ≡
∫︂

dDk
(2π)D

k2

(k2 + iϵ) ((k + q1)2 + iϵ) ((k − q2)2 + iϵ)

=
−i

(4π)2
(2q1 · q2)εUV

[︃
1

ε̂UV

− 2− iπ

]︃ (2.6.42c)

C4 ≡
∫︂

dDk
(2π)D

kµkν

(k2 + iϵ) ((k + q1)2 + iϵ) ((k − q2)2 + iϵ)

=
gµν

4

−i
(4π)2

(2q1 · q2)εUV

[︃
1

ε̂UV

− 3− iπ

]︃
+

i

(4π)2
1

2q1 · q2

(︃
−2q1 · q2

4π

)︃εIR Γ(1− εIR)

Γ(3 + 2εIR)

×
[︃(︁
qµ1 q

ν
1 + qµ2 q

ν
2

)︁
Γ(2 + εIR)Γ(εIR)−

(︁
qµ1 q

ν
2 + qν1q

µ
2

)︁
Γ2(1 + εIR)

]︃
(2.6.42d)

where
1

ε̂
≡ 1

ε
+ γE − ln(4π) . (2.6.43)

53



and we have used

(2q1 · q2)εUV ≈ 1 + εUV ln(2q1 · q2) . (2.6.44)
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Chapter 3

Traditional Particle Scattering

In this chapter, we will calculate cross sections for electron-positron annihilation,

given by [23, 25, 54],

σ(e+e− → γ∗ → X) =
1

2s

∫︂
dPS

⃓⃓
MLSZ

fi

⃓⃓2
, (3.0.1)

where γ∗ denotes a virtual photon, X indicates any final-state particles, s ≡ (p1+p2)
2

is the Mandelstam variable [92] for the square of the centre-of-mass energy (where p1
and p2 are the 4-momenta of the electron and positron), dPS is the measure for the

final-state phase space, and MLSZ
fi is the sum of invariant matrix elements associated

with all relevant Feynman diagrams, with corrections from the Lehmann–Symanzik–Zim-

mermann (LSZ) reduction formula (see Section 2.4).

The main goal of this chapter is to calculate the cross section for quark-antiquark pro-

duction to first order in gluon corrections, i.e., up to O(e4g2), where e is the electro-

magnetic coupling constant and g is the strong coupling constant. The calculation is

fully inclusive over the final state, except demanding that it contains one quark and

one antiquark. This is denoted e−e+ → γ∗ → qq̄ X , where X either represents noth-

ing or the real emission of a gluon (up to O(e4g2)).

This calculation demonstrates the cancellation of infrared (IR) and ultraviolet (UV)

divergences, but is often performed without full rigour, with IR and UV divergences

either artificially cancelled against each other or treated together in renormalisation.

In this chapter, we keep these divergences separate: UV divergences cancel among

themselves due to the equality of the field-strength and vertex renormalisation con-

stants, while IR divergences cancel due to the degeneracy of the process

e−e+ → γ∗ → qq̄g with the tree-level process e−e+ → γ∗ → qq̄, in the soft (low-

energy) or collinear limits.
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3.1 Lagrangian and Feynman Diagrams

The total Lagrangian density for a system consisting of electrons, muons, quarks,

photons, and gluons is given by (see Section 2.2)

L =
∑︂
l=e,m

(︂
ψ̄l(iγ

µ∂µ −ml)ψl

)︂
+ ψ̄iq(iγ

µ∂µ −mq)ψ
i
q −

1

4
FµνF

µν − 1

4
Ga
µνG

µν
a⏞ ⏟⏟ ⏞

L0

+
∑︂
l=e,m

(︂
−eψ̄lγµAµψl

)︂
− eqeψ̄

i
qγ

µAµψ
i
q + gψ̄iqγ

µGa
µ(T

a)ijψjq⏞ ⏟⏟ ⏞
Lint

(3.1.1)

where L0 is the free Lagrangian density and Lint includes the interaction terms. We

only consider one flavour of quark then sum over quark flavours at the end of our cal-

culations.

The free Lagrangian density, L0, describes the kinetic and mass terms for the elec-

tron, muon, quark, photon, and gluon fields. The terms ψ̄e(iγµ∂µ −me)ψe and

ψ̄m(iγ
µ∂µ − mm)ψm describe the free Dirac fields for the electron and muon, with

their respective masses me and mm. The term ψ̄iq(iγ
µ∂µ − mq)ψ

i
q describes the free

Dirac field for a single quark flavour with mass mq and colour index i. The terms

−1
4
FµνF

µν and −1
4
Ga
µνG

µν
a are the kinetic terms for the photon field, Aµ, and the

gluon field, Ga
µ.

The interaction terms, Lint, describe how the fermions couple to the gauge fields. They

are: The electron-photon interaction term −eψ̄eγµAµψe, where e = −|e| is the funda-

mental electric charge; the muon-photon interaction term −eψ̄mγ
µAµψm, identical in

form to the electron’s interaction; the quark-photon interaction term −eqeψ̄iqγµAµψiq,

where eq is the dimensionless ratio of the quark’s electric charge to e = −|e|; the

quark-gluon interaction term gψ̄iqγ
µGa

µ(T
a)ijψjq , where g is the strong coupling con-

stant, and T a are the SU(3) generators in the fundamental representation.

In Section 3.2, we calculate the cross section for muon-antimuon production,

σ(e−e+ → γ∗ → µ−µ+). This process involves no quarks and hence no corrections

from quantum chromodynamics (QCD). In Section 3.3, we adjust the muon-antimuon

cross section to give the tree-level result for the quark-antiquark production cross sec-

tion. Since the coupling of the quarks to gluons is stronger than that of quarks to pho-
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tons (i.e., |g| ≫ |e|) [93], the largest first-order corrections to the tree-level quark-

antiquark production cross section are gluon corrections. Accordingly, Section 3.4

calculates σ(e−e+ → γ∗ → qq̄ X) to O(e4g2).

Using the LSZ reduction formula from Section 2.4, the S-matrix for the process

e−e+ → γ∗ → qq̄ is given by

⟨q1q2|S |p1p2⟩ = Ze Zq
∑︂

(amputated diagrams) (3.1.2)

where {p1, p2, q1, q2} are the 4-momenta of the electron, positron, quark and anti-

quark respectively, Ze is the electron (or positron) field-strength renormalisation, and

Zq is the quark (or antiquark) field-strength renormalisation constant. Thus, the total,

LSZ-corrected invariant matrix element is given by

MLSZ
fi = Ze Zq

∑︂
amputated

Mfi (3.1.3)

where Mfi are the amputated correlation amplitudes (defined in Section 2.4) con-

necting an electron-positron pair to a quark-antiquark pair, calculated directly from

Feynman diagrams using the Feynman rules in Section 2.5.

e−

e+

q

q̄

p1

p2

k

γ

q1

q2

Fig. 3.1. Tree-level Feynman diagram for quark-antiquark production from an electron-positron pair.

e−

e+

q

q̄

p1

p2

k

γ

k2

k1

k3g

q1

q2

Fig. 3.2. Feynman diagram for the gluon vertex correction to quark-antiquark production.

The relevant amputated Feynman diagrams are the tree-level diagram, Mtree
fi , shown
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in Fig. 3.1, and the vertex correction, Mvertex
fi , shown in Fig. 3.2. The tree-level dia-

gram is O(e2) and the vertex correction is O(e2g2). The electron field-strength renor-

malisation constant, Ze, equals 1 to first order in the electromagnetic coupling, e, and

since we are not considering any higher order corrections in e, we can ignore this

constant. The quark field-strength renormalisation constant, Zq ≡ Z, can be writ-

ten as Z = 1 + δZ, where δZ includes the O(g2) corrections. Higher orders will not

be considered in this chapter. Thus, up to order O(e2g2),

MLSZ
fi = Z

(︁
Mtree

fi +Mvertex
fi

)︁
+ · · ·

= Mtree
fi + δZMtree

fi +Mvertex
fi + · · · , (3.1.4)

where · · · indicates higher order terms. Taking the modulus squared,

|MLSZ
fi |2 = |Mtree

fi |2 + 2 δZ |Mtree
fi |2 +Mvertex

fi Mtree†
fi +Mtree

fi M
vertex†
fi + · · ·

= |Mtree
fi |2 + 2 δZ |Mtree

fi |2 + 2Re
{︂
Mvertex

fi Mtree†
fi

}︂
+ · · · (3.1.5)

Since the only relevant correction from the LSZ formula is the term 2 δZ |Mtree
fi |2,

this term will be referred to as the LSZ correction term, and we drop the superscript

‘LSZ’ for the total invariant matrix element.

We will find that Eq. (3.1.5) is IR divergent. This is because we have not considered

all relevant contributions. To calculate the inclusive cross section

σ(e+e− → γ∗ → qq̄ X) to O(e4g2), we must consider the lowest-order 2-to-3 cross

section involving the real emission of a gluon, σr.e. ≡ σ(e+e− → γ∗ → qq̄g). In the

soft (low-energy) or collinear limit, this process is degenerate with the 2-to-2 process,

since neither the 2-to-2 cross section nor the soft/collinear real emission can be mea-

sured individually by a real detector; only their sum is physically observable. This is

in line with the Kinoshita-Lee-Nauenberg (KLN) theorem [28, 29], which ensures the

cancellation of infrared divergences in physical observables in QCD. The cross sec-

tion we calculate is therefore that which is associated with the probability of either of

these processes occurring.

The lowest-order contributions from the real-emission process, M r.e.
fi , are shown in

Fig. 3.3. Since |M r.e.
fi |2 is already O(e4g2), we do not consider corrections from field-

strength renormalisation constants in the LSZ formula, which contribute at higher or-

ders. Due to the three-particle final state, we sum this contribution as a distinguish-
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able process (i.e. we add at the cross section level, not the amplitude level). Thus, the

total, first-order cross section we wish to calculate is

σ1 = σqq̄ + σr.e. , (3.1.6)

where σqq̄ ≡ σ(e−e+ → γ∗ → qq̄) is calculated using the matrix element in

Eq. (3.1.5). This first-order cross section is both UV-finite and IR-finite.

e−

e+

q

q̄

g

p1

p2

k

γ

q1

q3

q2

e−

e+

q

q̄

g

p1

p2

k

γ

q1

q3

q2

Fig. 3.3. Feynman diagrams for the real emission of a gluon in quark-antiquark production.

3.2 Tree level e+e− → µ+µ− cross section

e−

e+

µ−

µ+

p1

p2

k

γ

q1

q2

Fig. 3.4. Tree-level Feynman diagram for muon-antimuon production from an electron-positron pair.

3.2.1 Calculating the Matrix Element

Before considering the production of a quark-antiquark pair, we first consider a slightly

more simple process: muon-antimuon production. The tree-level cross section for

muon-antimuon production, σ0(e+e− → γ∗ → µ+µ−), is described by the Feynman

diagram in Fig. 3.4. We consider this process since there are no hadrons or quarks, so

we do not have to consider QCD corrections, and there are no t-channel or u-channel
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contributions, unlike electron-positron production. In the full Standard Model, there

is a similar process mediated by a Z boson instead of a photon, but we can make this

contribution small by assuming we are far from the Z boson’s rest energy. This means

that this calculation will give useful results for the tree-level, Standard Model contri-

bution.

We calculate the matrix element in D dimensions so that the results can be used when

we employ dimensional regularisation later in this chapter. In D dimensions, it is

conventional [25] to take

e→ µ
4−D
2 e , (3.2.1)

where µ is an arbitrary parameter of mass dimension 1. This ensures that the cou-

pling, e, remains dimensionless.

Using the Feynman rules for QED (Section 2.5.2), the matrix element, Mfi, associ-

ated with Fig. 3.4 is expressed as

iMfi =

[︄
v̄s

′
(p2)(−iµ

4−D
2 eγµ)us(p1)

]︄[︄
−igµν
k2 + iϵ

]︄[︄
ūr(q1)(−iµ

4−D
2 eγν)vr

′
(q2)

]︄
,

(3.2.2)

where we have chosen the Feynman gauge for the internal photon propagator. Taking

the modulus squared of this expression, we get

⃓⃓
Mfi

⃓⃓2
=
[︂gµνgρσ

k4

]︂ [︄
µ(4−D)e2v̄s

′
(p2)(γ

µ)us(p1)ū
s(p1)(γ

ρ)vs
′
(p2)

]︄
⏞ ⏟⏟ ⏞

Initial-state particles, L̃µρ

×

[︄
µ(4−D)e2ūr(q1)(γ

ν)vr
′
(q2)v̄

r′(q2)(γ
σ)ur(q1)

]︄
⏞ ⏟⏟ ⏞

Final-state particles, H̃νσ

, (3.2.3)

where ϵ → 0 is trivial due to the lack of loops. It is useful to label the initial-state

term as L̃µρ and the final-state term as H̃νσ (L stands for leptons, as the initial-state

particles will always be an electron and a positron, the H stands of hadrons, as the

final-state particles will later be a quark-antiquark pair, and the tilde is to indicate that

the particle spins are yet to be summed over).

If incoming electron and positron beams are unpolarised, we average over the spins

states s and s′. Conversely, muon detectors are usually blind to polarisation, so we
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sum over spin states r and r′. Together, this leads to

1

2

∑︂
s

1

2

∑︂
s′

∑︂
r

∑︂
r′

⃓⃓
Mfi

⃓⃓2
=

1

4

∑︂
spins

⃓⃓
Mfi

⃓⃓2 ≡ ⃓⃓Mfi

⃓⃓2
Σ
. (3.2.4)

Summing over spin states of the particle spinors gives [23],

∑︂
s

us(p)ūs(p) = /p+m ,
∑︂
s

vs(p)v̄s(p) = /p−m, (3.2.5)

where the slashed notation denotes a contraction between the Dirac gamma matrices,

γµ, and the 4-momentum, such that /p = γµpµ.

Let’s focus on L̃µρ for now. If we write the components of L̃µρ using spinor index no-

tation, we can rearrange the v spinor at the end to the beginning,

Lµρ =
1

4

∑︂
s,s′

L̃µρ =
µ(4−D)e2

4

∑︂
s,s′

vs
′

d (p2)v̄
s′

a (p2)γ
µ
abu

s
b(p1)ū

s
c(p1)γ

ρ
cd

=
µ(4−D)e2

4
(/p2 −me)da γ

µ
ab (/p1 +me)bc γ

ρ
cd

=
µ(4−D)e2

4
tr
[︁
(/p2 −me)γ

µ(/p1 +me)γ
ρ
]︁
,

(3.2.6)

where the definition of the trace, tr[· · ·], has been applied in the final line [23, 47, 94].

This trace of D-dimensional gamma matrices can be calculated using gamma matrix

identities [23, 25, 47] or computationally. The result is

Lµρ = µ(4−D)e2
(︁
pµ2 p

ρ
1 + pρ2 p

µ
1 − gµρ(p1 · p2 +m2

e)
)︁
. (3.2.7)

As H̃νσ is of the same form for this diagram, the result is similar, but for a factor of 4

since the spins are summed over, not averaged,

Hνσ =
∑︂
r,r′

H̃νσ = 4µ(4−D)e2
(︁
qν2 q

σ
1 + qσ2 q

ν
1 − gνσ(q1 · q2 +m2

µ)
)︁
. (3.2.8)

Writing Eq. (3.2.3) as ⃓⃓
Mfi

⃓⃓2
Σ
=

1

k4
gµνgρσL

µρHνσ (3.2.9)
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and substituting in Eqs. (3.2.7) and (3.2.8),

⃓⃓
Mfi

⃓⃓2
Σ
=

4µ2(4−D)e4

k4

[︄
2(p1 · q1)(p2 · q2) + 2(p1 · q2)(p2 · q1) + (D − 4)(p1 · p2)(q1 · q2)

+ (D − 2)(q1 · q2)m2
e + (D − 2)(p1 · p2)m2

µ +Dm2
µm

2
e

]︄
,

(3.2.10)

where we have used gµνgµν = D. Taking the high-energy limit such that the masses

of the electron and muon are negligible compared to their energies, we find,

⃓⃓
Mfi

⃓⃓2
Σ
=

4µ2(4−D)e4

k4

[︄
2(p1 · q1)(p2 · q2) + 2(p1 · q2)(p2 · q1) + (D − 4)(p1 · p2)(q1 · q2)

]︄
.

(3.2.11)

We can evaluate this expression in the centre-of-mass frame and then integrate over

final-state momenta. However, this would involve explicit angular dependence, mak-

ing the integration complicated in D dimensions. So, before we continue, we shall

introduce a simplification that will be used throughout this chapter.

3.2.2 Simplifying the Interactions to Decays

The calculation of a general cross section σ(e+e− → γ∗ → X) can be simplified

to the calculation of a decay rate Γ(γ∗ → X) multiplied by a factor common to all

interactions with the same initial state. This will be shown in D dimensions. This is

useful because the expressions will be less algebraically complex, less repetitive, and

not involve angular dependence (making the phase-space integral easier) [23, 25].

A cross section is given by Eq. (3.0.1),

σ(e+e− → γ∗ → X) =
1

2s

∫︂
dPS

⃓⃓
Mfi

⃓⃓2
. (3.2.12)

From Eq. (3.2.9), we see that

⃓⃓
Mfi

⃓⃓2
Σ
=

1

k4
gµνgρσL

µρHνσ =
1

k4
LνσH

νσ . (3.2.13)
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The phase-space integral involves only the final-state trace, giving

∫︂
dPSHνσ. (3.2.14)

This will integrate over all parameters of the final state except for Lorentz invariant

scalars and the (D-dimensional) 4-vector kµ, which hence must characterise the final

state. Since1

kνH
νσ = Hνσkσ = 0 , (3.2.15)

Eq. (3.2.14) must have the form,

∫︂
dPSHνσ =

(︂
gνσ − kνkσ

k2

)︂
·H , (3.2.16)

where H is a scalar. Combining Eq. (3.2.13) and Eq. (3.2.16), we find,∫︂
dPS

⃓⃓
Mfi

⃓⃓2
Σ
=

1

k4
Lνσ

(︂
gνσ − kνkσ

k2

)︂
·H

=
1

k4
Lνσg

νσ ·H ,

(3.2.17)

where we have used Lνσkν = 0. Now consider separately contracting each of the

traces Lµν and Hρσ,

(︁
gµνLµν

)︁
·
∫︂

dPS
(︁
gρσHρσ

)︁
=
(︁
gµνLµν

)︁
· gρσ

(︂
gρσ −

kρkσ
k2

)︂
·H

=
(︁
gµνLµν

)︁
·
(︂
D − 1

)︂
·H

= (D − 1)
(︁
gµνLµν

)︁
·H .

(3.2.18)

Combining Eqs. (3.2.17) and (3.2.18) to eliminate H , we find,

∫︂
dPS

⃓⃓
Mfi

⃓⃓2
Σ
=

1

(D − 1)k4
(︁
gµνLµν

)︁
·
∫︂

dPS
(︁
gρσHρσ

)︁
. (3.2.19)

This result states that rather than needing to calculate the total matrix element squared,

one can calculate and contract the initial-state and final-state traces separately. This

is very useful as the factor of gµνLµν will be the same for all processes we consider
1Ref. [23] claims this is true based on general principles. This is related to fermion current conser-

vation, not the Ward identity (since the photon is not an external particle).
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(since they all involve the same initial-state particles),

gµνLµν = µ(4−D)e2gµν
(︁
p2µ p1ν + p2ν p1µ − gµν(p1 · p2 +m2

e)
)︁

=
(2−D)

2
µ(4−D)e2s ,

(3.2.20)

where s = 2p1 · p2 and the masses have been taken to zero. This means that we can

factor gµνLµν out of all diagrams, and it will cancel when we calculate the ratio of

cross sections with the same initial particles. Thus, we need only compute the trace

of the final state particles. This is equivalent to considering a decay from a virtual

photon, γ∗, to the same final particles (although this interaction is unphysical). This

γ∗

q

q̄

k

q1

q2

Fig. 3.5. The “decay” of a virtual photon to a quark-antiquark pair.

interaction (pictured in Fig. 3.5) has the decay rate [23, 25, 54]

Γ(γ∗ → X) =
1

2
√
s

∫︂
dPS

⃓⃓
Mfi,γ∗

⃓⃓2
, (3.2.21)

with the squared matrix element given by (using the Feynman rules in Section 2.5)

⃓⃓
Mfi,γ∗

⃓⃓2
= ϵρϵ

∗
σ

[︄
µ(4−D)e2ūr(q1)(γ

ρ)vr
′
(q2)v̄

r′(q2)(γ
σ)ur(q1)

]︄
= ϵρϵ

∗
σH̃

ρσ .

(3.2.22)

To relate this to gρσHρσ, we can use the relation for summing over photon polarisa-

tions [23], ∑︂
λ

ϵρ(λ)ϵ
∗
σ(λ) = −

(︃
gρσ + (η − 1)

kρkσ
k2

)︃
, (3.2.23)

where λ = ±1 is the helicity of the photon, kρ is the 4-momentum of the incoming

virtual photon, and η is an arbitrary gauge parameter (η = 1 is the Feynman gauge,

η = 0 is the Landau gauge [95]). We choose the Feynman gauge for consistency with

Eq. (3.2.2), but any choice of gauge will give the following result due to Eq. (3.2.15).

Once we sum over photon helicities (as well as the spins of the final-state particles),
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we get, ⃓⃓
Mfi,γ∗

⃓⃓2
Σ
= −gρσHρσ = −gρσHρσ , (3.2.24)

and hence, from Eq. (3.2.21),

Γ(γ∗ → X) = − 1

2
√
s

∫︂
dPS gρσHρσ . (3.2.25)

Combining Eqs. (3.0.1), (3.2.19), (3.2.20), and (3.2.25),

σ(e+e− → γ∗ → X) =
µ(4−D)e2

4s2
(2−D)

(D − 1)

∫︂
dPS gρσHρσ (3.2.26)

=
µ(4−D)e2

2s3/2
(D − 2)

(D − 1)
Γ(γ∗ → X) . (3.2.27)

These equations allow us to calculate the relevant cross sections in this chapter via

simpler decay rates.

3.2.3 Integrating over the Two-Particle Phase Space

From Eq. (3.2.26) we see that, for muon-antimuon or quark-antiquark production, we

need to calculate ∫︂
dPS2 g

ρσHρσ(tree) , (3.2.28)

where dPS2 indicates the two-particle phase space and Hρσ(tree) now denotes the tree-

level final-state trace. Using Eq. (3.2.8),

gρσHρσ(tree) = 4µ(4−D)e2(2−D) (q1 · q2) = 2(2−D)µ(4−D)e2s. (3.2.29)

Returning to Eq. (3.2.26), we find,

σ0(e
+e− → γ∗ → µ+µ−) =

µ2(4−D)e4

2s

(2−D)2

(D − 1)

∫︂
dPS2 . (3.2.30)

With no angular dependence, the phase space integral is no longer too complicated.

For two massless particles, the integrated two-particle phase space in D dimensions

is commonly expressed in one of two equivalent ways [25, 89],

∫︂
dPS2 =

(︂ s

4π

)︂D−4
2 2−D√

πΓ((D − 1)/2)
=

1

8π

(︂ s

4π

)︂D−4
2 Γ(D/2− 1)

Γ(D − 2)
, (3.2.31)
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where Γ(z) is the Gamma function defined by Eq. (2.6.15). Thus,

σ0(e
+e− → µ+µ−) =

µ2(4−D)e4

16πs

(︂ s

4π

)︂D−4
2 (D − 2)2

(D − 1)

Γ(D/2− 1)

Γ(D − 2)
. (3.2.32)

This is a D-dimensional expression for the tree-level contribution to this interaction.

Although this is finite for D = 4, the D-dimensional corrections will be required

when the tree-level diagram interferes with one-loop diagrams. Taking D = 4,

σ0(e
+e− → µ+µ−) =

e4

12πs
=

4πα2
em

3s
, (3.2.33)

where the fine structure constant, αem, is defined as,

αem =
e2

4π
. (3.2.34)

From here on out, it is understood that the mediating particle in all processes in this

chapter is a virtual photon, so it is not written explicitly.

3.3 Tree level e+e− → qq̄ cross section

The cross section for quark-antiquark production, σ(e+e− → qq̄), has a tree-level

contribution, σ0(e+e− → qq̄), where the corresponding Feynman diagram is shown in

Fig. 3.1. We can calculate σ0(e+e− → qq̄) in a very similar way to

σ0(e
+e− → µ+µ−). One will arrive at exactly the same answer as Eq. (3.2.33), ex-

cept with an additional factor of e2q , the squared ratio between quark charge and muon

(electron) charge. There is also a colour factor, Nc, which arises from summing over

the free colour indices in the vertex factors, i.e., δijδji = Nc (see Eq. (2.5.16)),

σtree-level ≡ σ0 =
(︁
Nce

2
q

)︁4πα2

3E2
cm

(3.3.1)

where Nc is the number of colours. Calculating the ratio of Eq. (3.3.1) and Eq. (3.2.33),

Rq(0) ≡
σ0(e

+e− → qq̄)

σ0(e+e− → µ+µ−)
= Nce

2
q. (3.3.2)

Summing over all quarks with mass satisfying 4m2
q < s and assuming all quarks
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hadronise with unit probability, one arrives at the well-known tree-level result,

R0 ≡
σ0(e

+e− → hadrons)
σ0(e+e− → µ+µ−)

= Nc

∑︂
q

e2q. (3.3.3)

3.4 First Order QCD Corrections to e+e− → qq̄ X

In this section, we calculate the ratio of the cross sections of e+e− → qq̄ X and

e+e− → µ+µ− to first order in QCD corrections, which is denoted,

Rq ≡
σ(e+e− → qq̄ X)

σ(e+e− → µ+µ−)
. (3.4.1)

These first-order QCD corrections involve gluons coupling to the quark and anti-

quark. The interactions involve no weak bosons, and we take the incoming and out-

going particles to be massless. We initially ignore colour factors and indices, but con-

sider their effects at the end of the calculation.

3.4.1 Vertex Correction

γ∗

q

q̄

q

q̄

γ∗

k

k2

k1

k3g

q1

q2

Fig. 3.6. Feynman diagrams representing the product of the virtual vertex correction decay term with
the conjugate of the tree-level diagram. This contribution is O

(︁
e2g2

)︁
. The trace follows the fermion

lines around the loop formed by combining the amplitude with the complex amplitude.

As in Eq. (3.1.5), the O(e4g2) contribution involving the vertex correction comes

from the cross term of the vertex correction amplitude interfering with the tree-level

amplitude, shown diagrammatically in Fig. 3.6. Taking the trace around the fermion

loop and using Eq. (3.2.19), we find

∫︂
dPS

(︂
Mvertex

fi Mtree †
fi

)︂
Σ
=

1

(D − 1)k4
(︁
gµνLµν

)︁ ∫︂
dPS

(︁
gρσH (vertex)

ρσ

)︁
. (3.4.2)
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where Hρσ
(vertex), which is the only thing we need to calculate, is given by,

Hρσ
(vertex) =− 2ie2qe

2g2µ2(4−D)

∫︂
dDk3
(2π)D

[︃
1

k23 + iϵ

(︃
gαβ + (ξ − 1)

k3αk3β
k23 + iϵ

)︃]︃
×

[︄
1(︁

k22 −m2
q + iϵ

)︁ (︁
k21 −m2

q + iϵ
)︁]︄

× tr
[︁
( /q1 +mq)γ

α( /k2 +mq)γ
σ( /k1 +mq)γ

β( /q2 −mq)γ
ρ
]︁

(3.4.3)

where g is the strong coupling constant, eqe is the coupling for the photon to the quark/an-

tiquark, ξ is the gluon gauge parameter, and a factor of 2 is included due to an identi-

cal contribution from the conjugate diagram (as in Eq. (3.1.5)). Since we are evalu-

ating the integral in D dimensions, the strong coupling constants have been rescaled

by explicitly writing an extra factor of µ 4−D
2 per coupling, in order to maintain their

usual dimensions. We can use conservation of momentum to make the following sub-

stitutions,

kµ2 = qµ1 + kµ3 , kµ1 = qµ2 − kµ3 , kµ = qµ1 + qµ2 . (3.4.4)

For simplicity, we will work in the massless limit (me = mq = 0), hence,

p21 = p22 = q21 = q22 = 0 , (3.4.5)

k2 = 2q1 · q2 ≡ s . (3.4.6)

Calculating the trace computationally, contracting with gρσ, and adopting the Feyn-

man gauge (ξ = 1), we get

gρσH
ρσ
(vertex) =− 2ie2qe

2g2µ2(4−D)

∫︂
dDk3
(2π)D

(D − 2)

×
[︃

1

(k23 + iϵ) ((q1 + k3)2 + iϵ) ((q2 − k3)2 + iϵ)

]︃
×
[︂
16(q1 · q2)(q1 · k3)− 16(q1 · q2)(q2 · k3)− 16(q1 · q2)2

+ 16(q1 · k3)(q2 · k3) + 4(D − 4)(q1 · q2)k23
]︂

=− 2ie2qe
2g2µ2(4−D)

∫︂
dDk3
(2π)D

(D − 2)×[︃
8s(q1 · k3)− 8s(q2 · k3)− 4s2 + 16(q1 · k3)(q2 · k3) + 2(D − 4)sk23

(k23 + iϵ) ((q1 + k3)2 + iϵ) ((q2 − k3)2 + iϵ)

]︃
.

(3.4.7)
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We can write this using Eqs. (2.6.42),

gρσH
ρσ
(vertex) =− 2ie2qe

2g2µ2(4−D)(D − 2)×[︁
8s(q1µ − q2µ)C

µ
2,IR − 4s2C1,IR + 16q1µq2µC

µν
4,IR + 2s(D − 4)C3,IR

]︁
.

(3.4.8)

Now we substitute in the final expressions for the C integrals,

gρσH
ρσ
(vertex) =− 2ie2qe

2g2µ2(4−D)(D − 2)×[︄
8s(2q1 · q2)

i

(4π)2
1

2q1 · q2

(︃
−2q1 · q2

4π

)︃εIR Γ(1− εIR)Γ(1 + εIR)

Γ(2 + 2εIR)
Γ(εIR)

− 4s2
i

(4π)2
1

2q1 · q2

(︃
−2q1 · q2

4π

)︃εIR Γ(1− εIR)

Γ(1 + 2εIR)
Γ2(εIR)

+ 4(q1 · q2)
−i

(4π)2
(2q1 · q2)εUV

[︃
1

ε̂UV

− 3− iπ

]︃
− 16

i

(4π)2
1

2q1 · q2

(︃
−2q1 · q2

4π

)︃εIR Γ(1− εIR)

Γ(3 + 2εIR)
(q1 · q2)2Γ2(1 + εIR)

+ 4sεUV
−i

(4π)2
(2q1 · q2)εUV

[︃
1

ε̂UV

− 2− iπ

]︃]︄

=− 2ie2qe
2g2µ2(4−D)(D − 2)

[︄
8s

i

(4π)2

(︃
−s
4π

)︃εIR Γ(1− εIR)Γ(1 + εIR)

Γ(2 + 2εIR)
Γ(εIR)

− 4s
i

(4π)2

(︃
−s
4π

)︃εIR Γ(1− εIR)

Γ(1 + 2εIR)
Γ2(εIR)

+ 2s
−i

(4π)2
sεUV

[︃
1

ε̂UV

− 3− iπ

]︃
− 4s

i

(4π)2

(︃
−s
4π

)︃εIR Γ(1− εIR)

Γ(3 + 2εIR)
Γ2(1 + εIR)

+ 4sεUV
−i

(4π)2
sεUV

[︃
1

ε̂UV

− 2− iπ

]︃]︄

=− 8ise2qe
2g2

[︄
2

i

(4π)2
(−1)εIR

(︃
s

µ4

)︃εIR (︃ 1

4π

)︃εIR

(1 + εIR)Γ(1− εIR)(︃
2
Γ(1 + εIR)Γ(εIR)

Γ(2 + 2εIR)
− Γ2(εIR)

Γ(1 + 2εIR)
− Γ2(1 + εIR)

Γ(3 + 2εIR)

)︃
+

−i
(4π)2

(︃
s

µ4

)︃εUV (︃ 1

4π

)︃εUV[︃ 1

εUV

+ γE − iπ

]︃
+O(εUV)

]︄
,

(3.4.9)

where, in the final equation, D has been taken to 4 + 2εIR or 4 + 2εUV for the IR-

divergent or UV-divergent terms, respectively. Since Eq. (3.1.5) involves the real part
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of the vertex-tree cross term, we keep only the real parts of (−1)εIR and exclude the

iπ term (in other words, the iπ will cancel between Mvertex
fi Mtree†

fi and Mtree
fi M

vertex†
fi ).

Thus,

gρσH
ρσ
(vertex) =−

16se2qe
2g2

(4π)2

(︃
1− π2εIR

2

2
+O

(︁
εIR

4
)︁)︃(︃ s

µ4

)︃εIR (︃ 1

4π

)︃εIR

(1 + εIR)Γ(1− εIR)(︃
2
Γ(1 + εIR)Γ(εIR)

Γ(2 + 2εIR)
− Γ2(εIR)

Γ(1 + 2εIR)
− Γ2(1 + εIR)

Γ(3 + 2εIR)

)︃
+

8se2qe
2g2

(4π)2

(︃
s

µ4

)︃εUV (︃ 1

4π

)︃εUV[︃ 1

εUV

+ γE

]︃
.

(3.4.10)

Before integrating over the two-particle phase space, we must account for the renor-

malisation factors arising from the residue of the fermion two-point function, as the

LSZ reduction formula demands.

3.4.2 LSZ Correction

q

q1 q1 + k3 q1

k3

g

Fig. 3.7. Feynman diagram representing the self-energy correction of a fermion. This is the O
(︁
g2
)︁

contribution to the two-point correlation function, which we denote as Σg .

We now consider the ‘correction term’ arising from the LSZ reduction formula, which

is the second term in Eq. (3.1.5). This is just 2 δZ multiplied by the tree-level con-

tribution. The field strength renormalisation constant, Z = 1 + δZ, is defined as

the O(g2) part of the residue of the single-particle pole in the two-point function of

fields [23, 25, 89] (see Section 2.4). Therefore, to calculate Z, we must calculate the

first-order (in g2) contribution to the two-point correlation function, Σg. This contri-

bution is shown in Fig. 3.7 and, using Feynman rules, is given by

iΣg( /q1) = −g2µ4−D
∫︂

dDk3
(2π)D

γα
/q1 + /k3 +mq

(q1 + k3)2 −m2
q + iϵ

γβ

×
[︃

1

k23 + iϵ

(︃
gαβ + (ξ − 1)

k3αk3β
k23 + iϵ

)︃]︃
. (3.4.11)

Taking the massless limit and adopting the Feynman gauge (ξ = 1), this expression
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simplifies to

iΣg( /q1) = −g2µ4−D
∫︂

dDk3
(2π)D

γα
/q1 + /k3

(q1 + k3)2 + iϵ
γα

[︃
1

k23 + iϵ

]︃
. (3.4.12)

There is no trace to evaluate, since we are not multiplying by a conjugate amplitude.

Instead, we use the D dimensional gamma matrix identity [25, 89], γµγνγµ = (2 −

D)γν , such that

iΣg( /q1) = −g2µ4−D
∫︂

dDk3
(2π)D

(2−D)( /q1 + /k3)(︁
(q1 + k3)2 + iϵ

)︁(︁
k23 + iϵ

)︁ . (3.4.13)

With Feynman parameterisation (Section 2.6.3), we can write this as

iΣg( /q1) = −g2µ4−D
∫︂

dDk3
(2π)D

∫︂ 1

0

dx
(2−D)( /q1 + /k3)

[(k3 + xq1)2 − a2 + iϵ]2
, (3.4.14)

where a2 ≡ −q21x(1 − x). Shifting the integration variable k3 → k3 − xq1, and

remembering that the term with an odd power of k3 in the numerator will vanish [89],

we find

iΣg( /q1) = −g2µ4−D(2−D) /q1

∫︂ 1

0

dx (1− x)J(D, 0, 2, a2)

= −g2µ4−D(2−D) /q1
i

(4π)D/2
Γ(2−D/2)(−q21)D/2−2Γ(D/2)Γ(D/2− 1)

Γ(D − 1)
,

(3.4.15)

where we have used Eq. (2.6.23) then evaluated the x integral using the Euler Beta

function (Eq. (2.6.22)). If one were to take q21 = 0 and D = 4 at this point, there

would be an indetermination of the form 00. In order to regularise this, we use

∫︂ ∞

−q21

dx
x
xn = (−q21)n

(︃
− 1

n

)︃
for Re{n} < 0 ,∫︂ ∞

−q21

dx
x
x−n = (−q21)−n

(︃
1

n

)︃
for Re{n} > 0 ,

(3.4.16)

and therefore

(−q21)D/2−2(2−D/2)−1 =

∫︂ ∞

−q21

dx
x
xD/2−2

=

[︃∫︂ s

−q21

dx
x
xD/2−2 +

∫︂ ∞

s

dx
x
xD/2−2

]︃
,

(3.4.17)
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where we have cut the total integration region at s, the characteristic energy scale of

the process, in order to to separately integrate in the IR and UV regions of momen-

tum. When q21 → 0, the first integral is only convergent if D/2− 2 > 0, so we take

D = 4 + 2εIR since εIR > 0. Similarly, the second integral is only convergent when

D/2− 2 < 0, so we take D = 4 + 2εUV since εUV < 0. The result is then

(−q21)D/2−2(2−D/2)−1 =
sεIR

εIR

− sεUV

εUV

. (3.4.18)

Returning to Eq. (3.4.15) and taking D = 4 + 2εIR or D = 4 + 2εUV as required, we

get,

iΣg( /q1) = −g2µ4−D(2−D) /q1
i

(4π)D/2
Γ(3−D/2)

Γ(D/2)Γ(D/2− 1)

Γ(D − 1)

×

[︄
2s(D−4)/2

D − 4

⃓⃓⃓⃓
D=4+2εIR

− 2s(D−4)/2

D − 4

⃓⃓⃓⃓
D=4+2εUV

]︄

=
2ig2 /q1

(4π)2

×
(︃
(1 + εIR)

(︃
s

µ2

)︃εIR (︁
4π
)︁−εIRΓ(1− εIR)

Γ(2 + εIR)Γ(1 + εIR)

Γ(3 + 2εIR)

[︃
1

εIR

]︃
− (1 + εUV)

(︃
s

µ2

)︃εUV (︁
4π
)︁−εUVΓ(1− εUV)

Γ(2 + εUV)Γ(1 + εUV)

Γ(3 + 2εUV)

[︃
1

εUV

]︃)︃
=
ig2 /q1

(4π)2

(︃(︃
s

µ2

)︃εIR (︂ 1

4π

)︂εIR
(1 + (γE − 1)εIR + . . .)

[︃
1

εIR

]︃
−
(︃
s

µ2

)︃εUV (︂ 1

4π

)︂εUV
(1 + (γE − 1)εUV + . . .)

[︃
1

εUV

]︃)︃
=
ig2 /q1

(4π)2

(︃(︂ s

4πµ2

)︂εIR
[︃
1

εIR

+ γE − 1 + . . .

]︃
−
(︂ s

4πµ2

)︂εUV
[︃
1

εUV

+ γE − 1 + . . .

]︃)︃
,

(3.4.19)

where the iterative property of the Gamma function has been used to write

(2 − D/2)Γ(2 − D/2) = Γ(3 − D/2). This expression exhibits both UV and IR

divergences.

It can be shown that the residue of this self-energy term is given by [23, 25]

Z =

(︄
1 +

dΣg

d/k1

⃓⃓⃓⃓
/k1=0

)︄−1

≈ 1− dΣg

d/k1

⃓⃓⃓⃓
/k1=0

. (3.4.20)
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Thus,

δZ ≡ Z − 1 = −dΣg

d /q1

= − g2

(4π)2

(︃(︂ s

4πµ2

)︂εIR
[︃
1

εIR

+ γE − 1 + . . .

]︃
−
(︂ s

4πµ2

)︂εUV
[︃
1

εUV

+ γE − 1 + . . .

]︃)︃
.

(3.4.21)

We can now calculate the full LSZ correction term using the tree-level hadronic trace

(Eq. (3.2.29) multiplied by e2q),

2 δZ gρσH (tree)
ρσ = −

4(2−D)e2qe
2g2µ4−Ds

(4π)2

(︃(︂ s

4πµ2

)︂εIR
[︃
1

εIR

+ γE − 1 + . . .

]︃
−
(︂ s

4πµ2

)︂εUV
[︃
1

εUV

+ γE − 1 + . . .

]︃)︃
=

8e2g2s

(4π)2

(︃(︂ s

4πµ4

)︂εIR
(1 + εIR)

[︃
1

εIR

+ γE − 1 + . . .

]︃
−
(︂ s

4πµ4

)︂εUV
(1 + εUV)

[︃
1

εUV

+ γE − 1 + . . .

]︃)︃
=

8e2g2s

(4π)2

(︃(︂ s

4πµ4

)︂εIR
[︃
1

εIR

+ γE + . . .

]︃
−
(︂ s

4πµ4

)︂εUV
[︃
1

εUV

+ γE + . . .

]︃)︃
.

(3.4.22)

We can define the hadronic trace first-order in virtual corrections as the sum of this

LSZ term and the vertex correction in Eq. (3.4.10),

gρσH(virtual)
ρσ ≡ gρσH(vertex)

ρσ + 2 δR gρσH (tree)
ρσ

= −
16se2qe

2g2

(4π)2

(︃
1− π2εIR

2

2
+O

(︁
εIR

4
)︁)︃(︃ s

4πµ4

)︃εIR

(1 + εIR)Γ(1− εIR)(︃
2
Γ(1 + εIR)Γ(εIR)

Γ(2 + 2εIR)
− Γ2(εIR)

Γ(1 + 2εIR)
− Γ2(1 + εIR)

Γ(3 + 2εIR)

)︃
+

8se2qe
2g2

(4π)2

(︂ s

4πµ4

)︂εIR
[︃
1

εIR

+ γE + . . .

]︃
,

(3.4.23)

where all UV divergent terms have cancelled.

This cancellation of UV-divergent terms might initially seem like a fortunate coinci-

dence. However, it can be shown that, to all orders of perturbation theory, the field-

strength renormalisation factor, Z (often denoted Z2), exactly cancels the vertex cor-

rection, which is captured by another renormalisation constant, Z1. More succinctly,

Z1 = Z2 [23, 25, 54]. This is a consequence of the Slavnov-Taylor identities [72, 73,
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96], which are the non-Abelian generalisations of the Ward-Takahashi identity [68,

69].

3.4.3 Integrating over the Two-Particle Phase Space

The next step is to integrate over the two-particle phase-space, which (for an inte-

grand which is not dependent on the centre-of-mass scattering angle and the particles

are massless) is given by Eq. (3.2.31), which can be written in terms of εIR as

∫︂
dPS2 =

1

8π

(︂ s

4π

)︂εIR Γ(1 + εIR)

Γ(2 + 2εIR)
. (3.4.24)

Since Eq. (3.4.10) does not depend on the centre-of-mass scattering angle, we can

combine it with Eq. (3.4.24) to give

∫︂
dPS2 gρσH

ρσ
virtual =−

2se2qe
2g2

π(4π)2

(︃
s2

(4π)2µ4

)︃εIR

(1 + εIR)

(︃
1− π2εIR

2

2

)︃
Γ(1 + εIR)

Γ(2 + 2εIR)
Γ(1− εIR)(︃

2
Γ(1 + εIR)Γ(εIR)

Γ(2 + 2εIR)
− Γ2(εIR)

Γ(1 + 2εIR)
− Γ2(1 + εIR)

Γ(3 + 2εIR)

)︃
+
se2qe

2g2

π(4π)2

(︃
s2

(4π)2µ4

)︃εIR Γ(1 + εIR)

Γ(2 + 2εIR)

[︃
1

εIR

+ γE

]︃
=−

se2qe
2g2

π(4π)2

(︃
s2

(4π)2µ4

)︃εIR (1 + εIR)

Γ(2 + 2εIR)

(︃
− 2

εIR
2
+

3

εIR

− 8 + π2 +O(εIR)

)︃
.

(3.4.25)

From Eq. (3.2.26), the cross section contribution from the virtual correction terms is

thus

σvirtual(e
+e− → qq̄) =

e2qe
4g2

2π(4π)2s

(︃
s2

(4π)2µ6

)︃εIR (1 + εIR)
2

(3 + 2εIR)Γ(2 + 2εIR)(︃
− 2

εIR
2
+

3

εIR

− 8 + π2 +O(εIR)

)︃
.

(3.4.26)

This cross section has IR divergences. In order to arrive at a result which is IR finite,

we must consider the effect of the real emission of gluons.

3.4.4 Real Emission

As previously explained, in order to calculate the inclusive cross section for quark-

antiquark production to O(e4g2), we must also consider the process that involves the
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γ∗

q

q̄

g

k

q1

q3

q2

γ∗

q

q̄

gk

q1

q3

q2

Fig. 3.8. Feynman diagrams representing the real-emission decay process, with the gluon emitted from
either final-state particle. These contributions are summed and then squared, such that they are

O
(︁
e2g2

)︁
. The trace follows the fermion lines around the loop formed by combining the amplitude with

the complex amplitude.

real emission of a gluon. The term involving the real emission of a gluon will need to

be treated differently when integrating over the phase space, as there are three final-

state particles. It is the IR divergences that arise during this process which cancel

with the IR divergences in Eq. (3.4.26).

First, let us calculate the hadronic trace associated with the Feynman diagrams in

Fig. 3.8. After summing then squaring these diagrams, one can write the result as the

sum of four traces (the squares of each diagram plus the two cross terms).

Hρσ
r.e. =− e2qe

2g2µ2(4−D)

(︃
gαβ + (ξ − 1)

q3αq3β
q23 + iϵ

)︃
[︄

tr
[︁
( /q1 + /q3 +mq)γ

α( /q1 +mq)γ
β( /q1 + /q3 +mq)γ

σ( /q2 −mq)γ
ρ
]︁(︁

(q1 + q3)2 −m2
q + iϵ

)︁ (︁
(q1 + q3)2 −m2

q − iϵ
)︁ +

tr
[︁
( /q1 +mq)γ

σ( /q2 + /q3 +mq)γ
α( /q2 −mq)γ

β( /q2 + /q3 +mq)γ
ρ
]︁(︁

(q2 + q3)2 −m2
q + iϵ

)︁ (︁
(q2 + q3)2 −m2

q − iϵ
)︁ −

tr
[︁
( /q1 +mq)γ

α( /q1 + /q3 +mq)γ
σ( /q2 −mq)γ

β( /q2 + /q3 +mq)γ
ρ
]︁(︁

(q1 + q3)2 −m2
q + iϵ

)︁ (︁
(q2 + q3)2 −m2

q − iϵ
)︁ −

tr
[︁
( /q1 + /q3 +mq)γ

α( /q1 +mq)γ
σ( /q2 + /q3 +mq)γ

β( /q2 −mq)γ
ρ
]︁(︁

(q1 + q3)2 −m2
q − iϵ

)︁ (︁
(q2 + q3)2 −m2

q + iϵ
)︁ ]︄

(3.4.27)

where we have used the same polarisation summation for the gluon helicities as we

did with the photon helicities in Eq. (3.2.23). Notice the minus sign in front of the fi-

nal two terms (the cross terms). This is due to one internal fermion propagator having

momentum in the opposite direction to the fermion flow, so this internal propagator

factor has a negative sign. We can evaluate these traces computationally in D dimen-

sions, contract with gσρ, take the massless limit, and adopt the Feynman gauge, result-
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ing in

gσρH
ρσ
r.e. = −e2qe2g2µ2(4−D)

×

[︄
8(D − 2)2(q1 · q3)(q2 · q3)

((q1 + q3)2 + iϵ) ((q1 + q3)2 − iϵ)
+

8(D − 2)2(q1 · q3)(q2 · q3)
((q2 + q3)2 + iϵ) ((q2 + q3)2 − iϵ)

+
8(D − 2)(2(q1 · q2)2 + 2(q1 · q2)(q1 · q3 + q2 · q3) + (D − 4)(q1 · q3)(q2 · q3)

((q1 + q3)2 + iϵ) ((q2 + q3)2 − iϵ)

+
8(D − 2)(2(q1 · q2)2 + 2(q1 · q2)(q1 · q3 + q2 · q3) + (D − 4)(q1 · q3)(q2 · q3)

((q1 + q3)2 − iϵ) ((q2 + q3)2 + iϵ)

]︄
,

(3.4.28)

where we have taken q23 = 0. We will now rewrite this expression in terms of dimen-

sionless energy fractions,

xi =
2qi · k
s

, i = 1, 2, 3 . (3.4.29)

Conservation of momentum, q1 + q2 + q3 = k, then implies that

x1 + x2 + x3 = 2. (3.4.30)

Thus, we can write Lorentz invariants of the form

(q1 + q3)
2 = 2q1 · q3 = (k − q2)

2 = s(1− x2),

(q2 + q3)
2 = 2q2 · q3 = (k − q1)

2 = s(1− x1),

(q1 + q2)
2 = 2q1 · q2 = (k − q3)

2 = s(1− x3).

(3.4.31)

This change of basis will not only simplify our expression in Eq. (3.4.28), but prove

very useful when we come to examine the phase-space integral of these real-emission

processes. Substituting Eqs. (3.4.31) into Eq. (3.4.28), we find,

gσρH
ρσ
r.e. =

− e2qe
2g2µ2(4−D)

[︄
2(D − 2)2(1− x1)

(1− x2)
+

2(D − 2)2(1− x2)

(1− x1)

+
4(D − 2)

(︂
2(1− x3)

2 + 2(1− x3)
(︁
(1− x2) + (1− x1)

)︁
+ (D − 4)(1− x2)(1− x1)

)︂
(1− x2) (1− x1)

]︄
,

(3.4.32)
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where we have taken ϵ → 0, which is permitted since the energy of the real emission

is fixed and we will only integrate over its 3-momentum (i.e. there is no loop integral,

and hence no q0 integral). We use the conservation of momentum, Eq. (3.4.30), to

eliminate x3 from Eq. (3.4.32),

gσρH
ρσ
r.e. =− e2qe

2g2µ2(4−D)

[︄
2(D − 2)2(1− x1)

(1− x2)
+

2(D − 2)2(1− x2)

(1− x1)

+
4(D − 2)

(︁
2(x1 + x2 − 1) + (D − 4)(1− x1)(1− x2)

)︁
(1− x2) (1− x1)

]︄

=−
2e2qe

2g2µ2(4−D)(D − 2)

(1− x1)(1− x2)

(︃
(D − 2)(1− 2x1 + x21) + (D − 2)(1− 2x2 + x22)

+ 4x1 + 4x2 − 4 + 2(D − 4)(1− x1 − x2 + x1x2)

)︃
=−

2e2qe
2g2µ2(4−D)(D − 2)

(1− x1)(1− x2)

(︃
D(x21 + x22 + 2x1x2 − 4x1 − 4x2 + 4)

− 2(x21 + x22 + 4x1x2 − 8x1 − 8x2 + 8)

)︃
=− 8e2qe

2g2µ2(4−D)(1 + εIR)
x21 + x22 + εIR(x1 + x2 − 2)2

(1− x1)(1− x2)
,

(3.4.33)

where we have set D = 4 + 2εIR with εIR > 0. We choose to use the positive, IR

dimension, εIR, because we can see that the above expression diverges at x1 = 1 or

x2 = 1 (and therefore so will the cross section after integrating over the phase space).

Using Eqs. (3.4.31), these two limits correspond to q1 · q3 = 0 and q2 · q3 = 0,

respectively. In the massless limit,

qi · q3 = ωiωg(1− cos θi3) , i = 1, 2 (3.4.34)

where ωi is the energy of the quark (i = 1) or antiquark (i = 2), ωg is the energy of

the gluon, and cos θi3 is the relative angle between the quark/antiquark and the gluon.

Thus, equating this quantity to zero in the massless limit requires the gluon to have no

energy or for it to be collinear with the quark/antiquark. These two cases are exactly

the soft IR divergence and collinear IR divergence described in Section 2.6, hence we

must regulate the phase-space integral with a small positive dimension, εIR.

Now that we have calculated the hadronic trace, we need to integrate over the three-

particle phase space. Here, the expression required to integrate the three-particle phase
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space in D = 4 + 2εIR dimensions for the real emission is [95]∫︂
dPS r.e. =

s

16(2π)3

(︂4π
s

)︂−2εIR 1

Γ(2 + 2εIR)

×
∫︂ 1

0

dx1
∫︂ 1

1−x1
dx2

[︂
(1− x1)(1− x2)(x1 + x2 − 1)

]︂εIR
.

(3.4.35)

Combining Eqs. (3.4.33) and (3.4.35),

∫︂
dPS r.e. gσρH

ρσ
r.e. =−

e2qe
2g2sµ2(4−D)

2(2π)3

(︂4π
s

)︂−2εIR (1 + εIR)

Γ(2 + 2εIR)

×
∫︂ 1

0

dx1
∫︂ 1

1−x1
dx2

[︂
(1− x1)(1− x2)(x1 + x2 − 1)

]︂εIR

× x21 + x22 + εIR(x1 + x2 − 2)2

(1− x1)(1− x2)
.

(3.4.36)

To evaluate this integral, we perform a change of variables x1 = x and x2 = 1− vx,

∫︂
dPS r.e. gσρH

ρσ
r.e. =−

e2qe
2g2sµ2(4−D)

2(2π)3

(︃
s2

(4π)2

)︃εIR (1 + εIR)

Γ(2 + 2εIR)

×
∫︂ 1

0

dx
∫︂ 1

0

dv x
[︂
(1− x)vx2(1− v)

]︂εIR

× x2 + 1− 2vx+ v2x2 + εIR(x(1− v)− 1)2

vx(1− x)

=−
e2qe

2g2sµ2(4−D)

2(2π)3

(︃
s2

(4π)2

)︃εIR (1 + εIR)

Γ(2 + 2εIR)

×
∫︂ 1

0

dx
∫︂ 1

0

dv (1− x)εIRvεIRx2εIR+1(1− v)εIR

×
[︃
(1 + εIR)

(︂
x−1(1− x)v−1 + vx(1− x)−1

)︂
+ 2v−1(1− v)(1− x)−1 + 2εIR

]︃
.

(3.4.37)

Writing the integral as factors of xn, vn, (1 − x)n, and (1 − v)n, we can use the Euler

Beta function (Eq. (2.6.22)) to find,

∫︂
dPS r.e. gσρH

ρσ
r.e. =−

e2qe
2g2sµ2(4−D)

2(2π)3

(︃
s2

(4π)2

)︃εIR (1 + εIR)

Γ(2 + 2εIR)

×
[︃
2(1 + εIR)Γ(εIR)Γ(εIR + 1)Γ(εIR + 2)

Γ(3εIR + 3)

+
2Γ2(εIR)Γ(εIR + 2)

Γ(3εIR + 2)
+

2εIRΓ
3(1 + εIR)

Γ(3εIR + 3)

]︃
.

(3.4.38)
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Carefully expanding the Gamma functions leads to the result,

∫︂
dPS r.e. gσρH

ρσ
r.e. =−

e2qe
2g2sµ2(4−D)

2(2π)3

(︃
s2

(4π)2

)︃εIR (1 + εIR)

Γ(2 + 2εIR)

[︃
2

εIR
2
− 3

εIR

+
19

2
− π2

]︃
.

(3.4.39)

From Eq. (3.2.26), we arrive at the cross section for quark-antiquark production with

the real emission of a gluon,

σr.e.(e
+e− → qq̄γ) =

e2qe
4g2µ3(4−D)

4(2π)3s

(︃
s2

(4π)2

)︃εIR (1 + εIR)
2

(3 + 2εIR)Γ(2 + 2εIR)[︃
2

εIR
2
− 3

εIR

+
19

2
− π2 +O(εIR)

]︃
.

(3.4.40)

3.4.5 Total Cross Section

Finally, we can combine Eqs. (3.4.26) and (3.4.40) to get,

σ1(e
+e− → qq̄ X) = σvirtual(e

+e− → qq̄) + σr.e.(e
+e− → qq̄g)

= lim
εIR→0

e2qe
4g2

2π(4π)2s

(︃
s2

(4π)2µ6

)︃εIR (1 + εIR)
2

(3 + 2εIR)Γ(2 + 2εIR)[︃(︃
− 2

εIR
2
+

3

εIR

− 8 + π2

)︃
+

(︃
2

εIR
2
− 3

εIR

+
19

2
− π2

)︃
+O(εIR)

]︃
= lim

εIR→0

e2qe
4g2

2π(4π)2s

(︃
s2

(4π)2µ6

)︃εIR (1 + εIR)
2

(3 + 2εIR)Γ(2 + 2εIR)

[︃
3

2
+O(εIR)

]︃
= lim

εIR→0

e2qe
4g2

2π(4π)2s

(︃
s2

(4π)2µ6

)︃εIR[︃1
2
+O(εIR)

]︃
=
e2qe

4g2

(4π)3s

=
e2qα

2
emαs

s
,

(3.4.41)

where

αs =
g2

4π
. (3.4.42)

Thus, the first order contribution to the cross section is

σ1 =
e2qα

2
emαs

s
=

3σ0αs
4πNc

, (3.4.43)
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where σ0 is the tree-level cross section, given in Eq. (3.3.1). The final step is to ac-

count for the colour factor for this process, which up until now has been entirely ig-

nored. The colour factor is the number of colours, Nc, multiplied by SU(3) invariant,

CF = 4/3 [23]. Thus, σ1 becomes

σ1 =
σ0αs
π

, (3.4.44)

such that, up to first order,

σ(e+e− → qq̄X) = σ0

(︂
1 +

αs
π

)︂
. (3.4.45)

Taking the ratio of this cross section and the tree-level muon-antimuon production

cross section (Eq. (3.2.33)), we arrive at the result:

Rq =
σ(e+e− → qq̄X)

σ(e+e− → µ+µ−)
= Nce

2
q

(︂
1 +

αs
π

)︂
. (3.4.46)

Summing over quark flavours, we get

R ≡ σ(e+e− → hadrons)
σ(e+e− → µ+µ−)

= Nc

∑︂
q

e2q

(︂
1 +

αs
π

)︂
. (3.4.47)

3.5 Summary

In this chapter, we calculated the ratio of the cross sections for quark-antiquark pro-

duction and muon-antimuon production, up to first order in gluon corrections

(Eq. (3.4.46)). This calculation exhibits both UV and IR divergences, making it a

good example to showcase how both types of divergences are typically dealt with in

traditional quantum field theory (QFT).

We defined a cross section first-order in virtual corrections as the vertex correction

cross section, corrected using the LSZ reduction formula. This cross section was no

longer UV divergent, since the UV divergences in the vertex and LSZ terms exactly

cancelled—a consequence of the Slavnov-Taylor identities.

The virtual corrections cross section was still IR divergent, since the process

e−e+ → qq̄g was not accounted for. This process is degenerate with the 2-to-2 cross

section in the limit of the gluon becoming soft or collinear. To this end, we summed
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the cross section for this process and the first-order 2-to-2 cross section and the IR

divergences cancelled, as expected from the KLN theorem.

Similar calculations become more complicated for higher-order corrections or differ-

ent scattering processes. For example, even the first-order photon corrections to the

muon-antimuon production cross section from Section 3.2 involve further technical

considerations, since one must also account for vacuum polarisation (the quark-loop

correction to the virtual photon, γ∗).

With this in mind, it would be useful to develop a formulation of QFT which intrin-

sically sums over final states of certain Hilbert spaces (i.e., certain particles). This

inclusive summation may inherently account for degenerate final states, such as the

soft/collinear real emission of a gluon, helping to cancel IR divergences. In Chap-

ters 4–6, we present and utilise a new, manifestly causal formalism for calculations

in QFT, which allows for the immediate summation over final states. Chapter 5 ap-

plies this formalism to particle scattering in scalar field theory, and we see that the

real-emission terms are not separable from the vertex and self-energy (analogous to

LSZ corrections) diagrams. Optimistically, this may imply the cancellation of IR di-

vergences when applied to gauge theories.
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Chapter 4

Manifestly Causal QFT

In relativistic quantum field theories (QFTs), causality is encoded in the vanishing of

the commutator (or anticommutator) of field operators. However, as we saw in Chap-

ter 3, calculations are usually performed in a manner in which causality is not mani-

fest, due to the ubiquity of the Feynman propagator as opposed to the retarded propa-

gator (which is manifestly causal). Furthermore, Bogoliubov’s Condition of Causal-

ity [97] shows that causality is manifest and meaningful only at the probability level.

For example, in scattering calculations, the S-matrix does not directly demonstrate

causality because it represents only the transition amplitude, not the full probabilis-

tic outcome of a process. This distinction underscores the importance of observable

probabilities over amplitudes when discussing physical principles like causality.

With this in mind, a manifestly causal, probability-level formalism for calculations in

QFT was developed [32–34] by applying a generalisation [98] of the Baker-Campbell-

Hausdorff (BCH) lemma [74, 99–104] to the transition probability, naturally expressed

in terms of commutators of fields. This formalism has proven interesting in the stud-

ies of particle scattering [1] (Chapter 5), the Unruh effect [2] (Chapter 6), semi-inclusive

observables [105], and causal set theory [35].

In this chapter, we introduce and develop this manifestly causal formalism, building

a general toolbox for use on more specific problems later (Chapters 5 and 6). Sec-

tion 4.4 describes the Fermi two-atom problem, highlighting the incorrect, acausal

conclusion one might reach if naïvely applying traditional QFT techniques, and sub-

sequently applies the manifestly causal formalism, following Refs. [33, 106].
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4.1 Defining the Probability

Suppose that a system is initially (t = tin) described by a density operator ρ0 and that

a measurement outcome is described by an effect operator E. In general, E is an el-

ement of a Positive Operator-Valued Measure, which is a generalisation of projection

operators [107, 108]. The probability of the measurement outcome, P, is then given

by

P = tr(Eρt) , (4.1.1)

where

ρt ≡ Ut,tin ρ0 U
†
t,tin (4.1.2)

is the density operator at time t and

Ut,tin = T
{︃

exp
(︃
1

i

∫︂ t

tin

dt′ Hint(t
′)

)︃}︃
(4.1.3)

is the unitary evolution operator (T indicates time ordering) for a given interaction

Hamiltonian, Hint(t
′). From Eq. (4.1.1), the probability of the measurement outcome

for a pure initial state, ρ0 = |i⟩ ⟨i|, can be written as

P =
⟨︂
i
⃓⃓⃓
U †
t,tin E Ut,tin

⃓⃓⃓
i
⟩︂
. (4.1.4)

In the case of an exclusive final state, |f⟩, the effect operator, E, becomes a projection

operator,

E = |f⟩ ⟨f | , (4.1.5)

meaning the probability is given by

P = ⟨i|U †
t,tin |f⟩ ⟨f |Ut,tin |i⟩ =

⃓⃓
⟨f |Ut,tin |i⟩

⃓⃓2
. (4.1.6)

This is the usual expression for the probability of an initial state, |i⟩, evolving into a

final state, |f⟩.

Rather than calculating the amplitude and squaring, we can instead work directly with
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the expression in Eq. (4.1.4). We do so using the BCH lemma [74, 99–104],

eAOe−A = O + [A,O] +
1

2!

[︁
A, [A,O]

]︁
+

1

3!

[︂
A,
[︁
A, [A,O]

]︁]︂
+ · · · (4.1.7)

where O and A are two operators, which leads to [98]

U †
t,tin OUt,tin =O

+

(︃
1

i

)︃∫︂ t

tin

dt1 [O,Hint(t1)]

+

(︃
1

i

)︃2 ∫︂ t

tin

dt1
∫︂ t1

tin

dt2
[︁
[O,Hint(t1)], Hint(t2)

]︁
+

...

+

(︃
1

i

)︃j ∫︂ t

tin

dt1
∫︂ t1

tin

dt2 · · ·
∫︂ tj−1

tin

dtj[︂
· · ·
[︁
[O,Hint(t1)], Hint(t2)

]︁
· · · , Hint(tj)

]︂
... (4.1.8)

where we are working in the interaction picture. Thus, the probability can be written

as

P =
∞∑︂
j=0

∫︂ t

tin

dt′1dt′2 . . . dt′jΘ12...j ⟨i | Fj | i⟩ , (4.1.9)

where Θijk... ≡

⎧⎪⎨⎪⎩1, if t′i > t′j > t′k . . .

0, otherwise
, (4.1.10)

F0 = E, (4.1.11)

and Fj =
1

i

[︁
Fj−1, Hint(t

′
j)
]︁
. (4.1.12)

In general, E may be written as the sum of the effect operators of each final state,

which themselves are products of Hermitian operators in different Hilbert spaces, i.e.,

E =
∑︂
κ

∏︂
i

EHi

(κ), (4.1.13)

where the superscripts indicate the Hilbert spaces of each operator, and {κ} is the set

of final states. If all final states of a particular Hilbert space are summed over, then

the effect operator in that Hilbert space is the identity operator, EHi = IHi . If this is
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done for all Hilbert spaces, then the calculation is completely inclusive and calculates

the probability of ‘anything at all’ happening. It is trivial to see from Eq. (4.1.4) that

this probability is 1, as expected.

In this thesis, we apply this formalism exclusively to Hamiltonians involving up to

three distinct Hilbert spaces, and therefore the effect operator will include only a sin-

gle product of, at most, three Hermitian operators,

E = EXEYEZ , (4.1.14)

where X , Y , and Z denote the three Hilbert spaces.

It should be noted that Eq. (4.1.1) applies for a mixed initial state as well, and so this

formalism does not rely on a pure initial state. This generalisation may prove useful

for studies in which mixed initial states are common, such as in the field of relativistic

quantum information (RQI) [109, 110]. In this thesis, we only consider pure initial

states.

4.2 Calculating the Fj Operators

The operator Fj corresponds to an interaction of order j, that is to say there are j ver-

tices in the interaction at probability level. One can see from Eq. (4.1.12) that Fj will

contain a series of nested commutators of products of Hermitian operators in differ-

ent Hilbert spaces (originating from the Hamiltonian). The first task is to separate the

Hilbert spaces, writing Fj in terms of nested commutators/anticommutators that each

contain Hermitian operators from the same Hilbert space.

We shall consider an interaction Hamiltonian that is the sum of two products of two

operators, selected from three Hilbert spaces, such that one of the Hilbert spaces in

shared between the terms,

Hint(t
′
j) =

∫︂
d3xj

(︁
gYA

X
j B

Y
j + gZAX

j C
Z
j

)︁
, (4.2.1)

where AX , AX are operators in Hilbert space X , BY is an operator in Hilbert space

Y , CZ is an operator in Hilbert space Z, and gY and gZ are two different constants.

We choose this Hamiltonian since it is a generalisation of all of the Hamiltonians
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considered later in this thesis. For the Fermi two-atom problem considered in Sec-

tion 4.4, AX and AX are the same operator but evaluated at different points in space,

and the constants are the same (gY = gZ = 1). Chapter 5 considers particle scattering

interactions, where the constants are different (as they represent couplings between

different fields) but AX = AX . Chapter 6 considers the Unruh effect using a Hamilto-

nian of this form with only one term, i.e., gZ = 0.

We can now calculate F1 using Eq. (4.1.12) and substituting in F0 (Eq. (4.1.11)) and

the interaction Hamiltonian (4.2.1), giving

F1 =

∫︂
d3x1

1

i

[︂
E, gYA

X
1 B

Y
1 + gZAX

1 C
Z
1

]︂
=

∫︂
d3x1

1

i

[︂
EXEYEZ , gYA

X
1 B

Y
1 + gZAX

1 C
Z
1

]︂
,

(4.2.2)

where we have used Eq. (4.1.14) for our effect operator, E. We can use the following

commutation relation to expand this commutator:

[︁
AXBY , αXβY

]︁
=

1

2

[︁
AX , αX

]︁{︁
BY , βY

}︁
+

1

2

{︁
AX , αX

}︁[︁
BY , βY

]︁
, (4.2.3)

where AX and αX (BY and βY ) are different operators in the same Hilbert space, X

(Y ). Eq. (4.2.2) now becomes

F1 =

∫︂
d3x1

(︂ 1

2i

[︁
EX , gYA

X
1

]︁{︁
EY , BY

1

}︁
EZ +

1

2i

{︁
EX , gYA

X
1

}︁[︁
EY , BY

1

]︁
EZ

+
1

2i

[︁
EX , gZAX

1

]︁
EY
{︁
EZ , CZ

1

}︁
+

1

2i

{︁
EX , gZAX

1

}︁
EY
[︁
EZ , CZ

1

]︁)︂
.

(4.2.4)

We now define the useful notation:

Hilbert space X: E ...Y...k :=
1

i

[︁
E ...... , gYAXk

]︁
, E ...Y...

¯
k :=

{︁
E ...... , gYAXk

}︁
,

E ...Z...k :=
1

i

[︁
E ...... , gZAX

k

]︁
, E ...Z...

¯
k :=

{︁
E ...... , gZAX

k

}︁
, (4.2.5)

Hilbert space Y : EY
...k :=

1

i

[︁
EY
..., B

Y
k

]︁
, EY

...
¯
k :=

{︁
EY
..., B

Y
k

}︁
,

Hilbert space Z: EZ
...k :=

1

i

[︁
EZ
..., C

Z
k

]︁
, EZ

...
¯
k :=

{︁
EZ
..., C

Z
k

}︁
, (4.2.6)

where E ≡ EX . The use of E instead of E for Hilbert space X is to highlight the

difference in its structure. The presence of two different operators, AX and AX , from
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Hilbert space X in each term of the interaction Hamiltonian (Eq. (4.2.1)) means that

the E ...... operators will be nested (anti)commutators of both operators, and we should

keep track of this using the superscript indices. Furthermore, should the constants

gY and gZ be different, the superscript indices of E ...... also tell us the number of each

constant the overall term is multiplied by.

Using the above notation, we can write Eq. (4.2.4) as

F1 =

∫︂
d3x1

1

2

(︂
EY1 EY

¯
1 E

Z + EY
¯
1 E

Y
1 E

Z + EZ1 EYEZ

¯
1 + EZ

¯
1 E

YEZ
1

)︂
. (4.2.7)

One can condense this expression by introducing underdot notation [33], where, e.g.,

EY

◦
k EY

•
k := EY

k EY
¯
k + EY

¯
k EYk ,

EY

◦
k
◦
lEY Y

•
k
•
l := EY

klEY Y
¯
k
¯
l + EY

k
¯
lEY Y

¯
kl + EY

¯
klEY Yk

¯
l + EY

¯
k
¯
lEY Ykl ,

EY

◦
k E

Z

◦
l EY Z

•
k
•
l := EY

k E
Z
l EY Z

¯
k
¯
l + EY

¯
k E

Z
l EY Zk

¯
l + EY

k E
Z

¯
l EY Z

¯
kl + EY

¯
k E

Z

¯
l EY Zkl ,

(4.2.8)

which encodes a sum over all possible permutations of commutation/anticommuta-

tion pairs. An index with underdots must be underlined once, and only once, across

the operators from different Hilbert spaces. This reflects how Eq. (4.2.3) involves one

term with a commutator and anticommutator, and then another term with the types of

commutators flipped. We then sum over the possibilities.

Through repeated use of Eq. (4.1.12), one can find expressions for higher order Fj

operators. In summary,

F0 = EYEZE , (4.2.9)

F1 =

∫︂
d3x1

1

2

(︁
EY

◦
1 E

ZEY
•
1 + EYEZ

◦
1 EZ

•
1

)︁
, (4.2.10)

F2 =

∫︂
d3x1 d3x2

1

4

(︁
EY

◦
1
◦
2E

ZEY Y
•
1
•
2 + EY

◦
1 E

Z

◦
2 EYZ

•
1
•
2 + EY

◦
2 E

Z

◦
1 EZY

•
1
•
2 + EYEZ

◦
1
◦
2EZZ

•
1
•
2

)︁
,

(4.2.11)

F3 =

∫︂ 3∏︂
κ=1

(︁
d3xκ

)︁ 1
8

(︁
EY

◦
1
◦
2
◦
3E

ZEYYY
•
1
•
2
•
3 + EY

(
◦
1
◦
2E

Z

◦
3)E

(YYZ)
(
•
1
•
2
•
3) + EY

(
◦
1E

Z

◦
2
◦
3)E

(YZZ)
(
•
1
•
2
•
3) + EYEZ

◦
1
◦
2
◦
3EZZZ

•
1
•
2
•
3

)︁
.

(4.2.12)

etc.

We have, once again, reduced the expressions, this time by using parentheses around
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some of the indices. The parentheses indicate a summation over all permutations of

those indices which result in unique terms (remembering that the time indices are

time-ordered within each operator). For example, we need not consider EY

◦
3
◦
1E

Z

◦
2 EYZY

•
1
•
2
•
3 ,

as this is not unique to EY

◦
1
◦
3E

Z

◦
2 EYZY

•
1
•
2
•
3 . The superscript letter indices on the E operators

will shuffle such that they will always remain aligned with the subscript number index

corresponding to the E operator which also carries that number index. An example of

expanding the parentheses is given below, using the second term in Eq. (4.2.12):

EY
(
◦
1
◦
2E

Z

◦
3)E

(YYZ)
(
•
1
•
2
•
3) = EY

◦
1
◦
2E

Z

◦
3 EYYZ

•
1
•
2
•
3 + EY

◦
1
◦
3E

Z

◦
2 EYZY

•
1
•
2
•
3 + EY

◦
2
◦
3E

Z

◦
1 EZYY

•
1
•
2
•
3 . (4.2.13)

We are now suitably equipped to write the general formula for Fn,

Fn = 2−n
∫︂ n∏︂

κ=1

(︁
d3xκ

)︁ n∑︂
a=0

EY
(
◦
1...
··· ◦
aE

Z
a+

◦
1...
··· ◦
n) E

(Y ...Y Z...Z)
(
•
1 ...
··· •
a a+

•
1...
··· •
n) . (4.2.14)

Despite its appearance, the above equation is fairly straightforward. In words, it is

simply the sum of all distinct products of operators of the form 2−nES
...E

D
...E ...... , with

every index {1, . . . , n} appearing once on an E operator and once on an E operator.

For the subscript indices i . . . j, if i > j then this set is the empty set, resulting in a

factor of E with no indices (the original effect operator for that Hilbert space). Like-

wise, if n = 0, then there is no integral over space.

4.3 Calculating Expectation Values

Returning to Eq. (4.1.9), the next step after calculating Fj is to calculate the expec-

tation value of this operator, given the initial state of the system, |i⟩. Of course, one

could expand the nested commutators in Fj , but this would result in similar expres-

sions as if one were to use the traditional QFT methods. For example, if one were to

consider the probability of an electron-positron pair annihilating to a muon-antimuon

or quark-antiquark pair, the expressions would return to exactly the same expressions

as in Chapter 3.

The method for evaluating expectation values depends on the specific process un-

der consideration, including the choice of initial state and the Hermitian operators in

the effect operator and Hamiltonian. However, in any case, one should endeavour to
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utilise this new commutator form of the probability, in an attempt to gain further in-

sight. As we shall see, working directly with commutators can result in a manifestly

causal result, something which the traditional QFT method cannot claim.

4.4 Fermi Two-Atom Problem

Armed with the arsenal of general equations from the previous sections, we can turn

our attention to a specific quantum system. To start, we will consider two atoms (a

‘source’ atom, S, and a ‘detector’ atom, D) in a scalar field, φ. The full analysis of

this system using the causal formalism of this chapter is performed in Ref. [33], with

different types of measurements. Rather than repeating this, we shall describe the

system and highlight the main results for a local measurement. This will allow us to

quickly jump to the main conclusion; we shall see that this new method obtains mani-

festly causal results.

There are three Hilbert spaces for this closed system: H = H S × H D × H φ.

We shall only consider interactions between the atoms and the fields, not field self-

interactions. The full Hamiltonian is then

H = H0 +Hint = HS
0 +HD

0 +Hφ
0 +HSφ +HDφ (4.4.1)

where the superscripts indicate the Hilbert spaces (or product of Hilbert spaces) where

the operators act. The atoms S and D are static and interact with the field at the fixed,

spatial points xS and xD, so the distance between the atoms is R ≡ |xD − xS|. Under

the free Hamiltonian, H0, each atom X ∈ {S,D} has a complete set of bound states,

{|nX⟩}, with eigenvalues given by HX
0 |nX⟩ = ΩX

n |nX⟩. The atoms interact with the

field via transition moments, µXmn, which are taken to be monopole moments in this

toy model. Thus, the full interaction-picture Hamiltonian is

H =
∑︂
n

ΩS
n |nS⟩ ⟨nS|+

∑︂
n

ΩD
n |nD⟩ ⟨nD|+

∫︂
d3x

(︂
1
2
(∂tφ)

2 + 1
2
(∇φ)2 + 1

2
m2φ2

)︂
⏞ ⏟⏟ ⏞

H0

+
∑︂
m,n

µSmn e
iΩS

mnt
′
j |mS⟩ ⟨nS| φ(xS, t′j) +

∑︂
m,n

µDmn e
iΩD

mnt
′
j |mD⟩ ⟨nD| φ(xD, t′j)⏞ ⏟⏟ ⏞

Hint(t
′
j)

,

(4.4.2)

89



where ΩX
mn = ΩX

m − ΩX
n .

Suppose we wanted to calculate the probability that the detector atom, D, transitions

from its ground state to an excited state due to the absorption of a field quantum, given

that the source atom, S, transitions from an excited state to its ground state via the

emission of a field quantum. Using the traditional QFT approach, this probability,

PFermi, is given by

PFermi = | ⟨f |Ut,0 |i⟩ |2 =
⃓⃓
⟨gSqD0φ|Ut,0 |pSgD0φ⟩

⃓⃓2
, (4.4.3)

where |gX⟩ denotes the ground state of each atom, |pS⟩ denotes the source atom be-

ing in an excited state, |qD⟩ denotes the detector atom being in an excited state, |0φ⟩

denotes the vacuum state of the φ field, and the unitary time evolution operator, Ut,0,

is given by Eq. (4.1.3). Perturbatively expanding Ut,0 and using the interaction Hamil-

tonian in Eq. (4.4.2), the lowest order contribution is

PFermi =

⃓⃓⃓⃓∫︂ t

0

dt1
∫︂ t

0

dt2 µSgp µDqg eiΩ
S
gpt1 eiΩ

D
qgt2 ∆

SD(F )
12

⃓⃓⃓⃓2
+ · · · , (4.4.4)

where the Feynman propagator, ∆SD(F )
12 , is defined by

∆
SD(F )
12 ≡ ⟨0φ|T

{︁
φS1φ

D
2

}︁
|0φ⟩ , (4.4.5)

where φXj ≡ φ(xX , t′). For t < R, Eq. (4.4.4) is non-zero, since the Feynman propa-

gator does not vanish for spacelike separations. This is known as the Fermi two-atom

problem1, since it seems to imply that source atom can affect the detector atom de-

spite being causally disconnected.

This is not that case. The key to resolving this issue is to realise that the measurement

on the detector atom should be a local measurement. The measurement only deter-

mines the state of atom D; it does not measure atom S or the state of the field. It is

no surprise that such an impossible simultaneous ‘measurement’ would be acausal.

This means that PFermi is the probability of just one of several processes that should

be considered. What should actually vanish for spacelike separations is the sum of the

probabilities for all processes that depend on the state of S.
1Fermi actually claimed that the result was zero for spacelike separations [111], since he erro-

neously approximated an integral over positive frequencies by one over both positive and negative fre-
quencies [112].
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This underscores the importance of developing a formalism in which causality is ex-

plicit. It also highlights the advantage of our formalism in its ability to inclusively

sum over all final states in certain Hilbert spaces. We now tackle the Fermi problem

using our manifestly causal framework.

If we define

MX(t′j) :=
∑︂
mn

µXmn e
iΩX

mnt
′
j |mX⟩ ⟨nX | , for X ∈ {S,D} , (4.4.6)

then one can write the interaction Hamiltonian in the form

Hint(t
′
j) =MS(t′j)φ

S
j +MD(t′j)φ

D
j . (4.4.7)

As MX(t′j) and φXj are both Hermitian operators, the interaction Hamiltonian is of

the same form as Eq. (4.2.1), with: the constants gY = gZ = 1; H φ operators

AX = φSj and AX = φDj ; H S operators MS(t′j); and H D operators MD(t′j). The

field operators are evaluated at a specific point, so there is no need for an integral over

space. We can use Eq. (4.2.14), once we define the initial and final states.

We would like to determine the sensitivity of the detector atom to changes in the ini-

tial state of the source atom, so it makes sense to consider the initial density matrix,

ρ0 = γ |ip⟩ ⟨ip|+ (1− γ) |ig⟩ ⟨ig| , (4.4.8)

where

|ip⟩ = |pS⟩ ⊗ |gD⟩ ⊗ |0φ⟩ ≡ |pS gD 0φ⟩ , (4.4.9)

|ig⟩ = |gS⟩ ⊗ |gD⟩ ⊗ |0φ⟩ ≡ |gS gD 0φ⟩ . (4.4.10)

Accordingly, the state |ip⟩ corresponds to an excited source atom, whilst |ig⟩ corre-

sponds to a ground state source atom; both |ip⟩ and |ig⟩ specify that the detector atom

is in its ground state and the field has no excitations. Eq. (4.4.8) therefore means that

the system is in a mixed state between atom S being in an excited state or ground

state. The amount of mixing between either possibility is defined by the constant pa-

rameter, γ.

As stated previously, we are considering a local measurement. This means that our
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measurement only determines the state of atom D, and we must leave the states of

atom S and the field unspecified. This information is encoded entirely in an effect op-

erator of the form

E =
∑︂
n,α

|nS qD αφ⟩ ⟨nS qD αφ| = IS |qD⟩ ⟨qD| Iφ , (4.4.11)

where all possible states of atom S and the field have been summed over to give the

identity operator, I, in their respective Hilbert spaces.

We can now use Eqs. (4.1.9) and (4.1.12) to compute the probabilities that we mea-

sure this final state, given that atom S is either excited or in its ground state. We ex-

pect signals between atom S and atom D to travel slower than the speed of light, and

so it is variations to the initial state (Eq. (4.4.8)), controlled by γ, which we expect to

be causal. Consequently, we define the sensitivity of the detector as

σpg :=
dP
dγ

= Pp − Pg , (4.4.12)

where, using Eq. (4.4.8),

P = γ Pp + (1− γ)Pg , (4.4.13)

and, using Eq. (4.1.9),

Pp,g =
∞∑︂
j=0

∫︂ t

0

dt′1dt′2 . . . dt′jΘ12...j ⟨ip,g | Fj | ip,g⟩ , (4.4.14)

for initial time tin = 0. Defining the detector sensitivity in this way means that any

contributions which are independent of changes to the initial state (such as those due

to vacuum fluctuations) will cancel. The first non-zero contribution to σpg arises at

fourth order [33]:

⟨ip| F4 |ip⟩ ⊃ ⟨pSgD0φ| 1
16

(︂
ED

12E
S

¯
3
◦
4EDDSS

¯
1
¯
23

•
4 + ED

13E
S

¯
2
◦
4EDSDS

¯
12

¯
3
•
4 + ED

1
◦
4E

S

¯
23EDSSD

¯
12

¯
3
•
4

)︂
|pSgD0φ⟩

= 1
16
⟨ED

12⟩
(︂
⟨ES

¯
34⟩ ⟨EDDSS

¯
1
¯
23

¯
4 ⟩+ ⟨ES

¯
3
¯
4⟩ ⟨EDDSS

¯
1
¯
234 ⟩

)︂
+ 1

16
⟨ED

13⟩
(︂
⟨ES

¯
24⟩ ⟨EDSDS

¯
12

¯
3
¯
4 ⟩+ ⟨ES

¯
2
¯
4⟩ ⟨EDSDS

¯
12

¯
34 ⟩

)︂
+ 1

16
⟨ED

14⟩ ⟨ES

¯
23⟩ ⟨EDSSD

¯
12

¯
3
¯
4 ⟩+ 1

16
⟨ED

1
¯
4⟩ ⟨ES

¯
23⟩ ⟨EDSSD

¯
12

¯
34 ⟩ (4.4.15)

= 2
∑︂
n

|µSpn|2 |µDqg|2 ×{︂
cosΩD

qgt
′
12

(︂
sinΩS

pnt
′
34∆

DS(H)
24 + cosΩS

pnt
′
34∆

DS(R)
24

)︂
∆
DS(R)
13
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+ cosΩD
qgt

′
12

(︂
sinΩS

pnt
′
34∆

DS(H)
14 + cosΩS

pnt
′
34∆

DS(R)
14

)︂
∆
DS(R)
23

+ cosΩD
qgt

′
13

(︂
sinΩS

pnt
′
24∆

DS(H)
34 + cosΩS

pnt
′
24∆

DS(R)
34

)︂
∆
DS(R)
12

+ sinΩS
pnt

′
23

(︂
cosΩD

qgt
′
14∆

SD(H)
34 + sinΩD

qgt
′
14 ∆

SD(R)
34

)︂
∆
DS(R)
12

}︂
.

(4.4.16)

where t′ij = t′i− t′j and the symbol ⊃ indicates we have only kept the terms which will

be non-zero upon calculating σpg = Pp − Pg. The retarded propagator (∆XY (R)
ij ) and

the Hadamard function (∆XY (H)
ij ) are defined as follows:

∆
XY (R)
ij ≡ Θij ⟨0|

1

i

[︁
φXi , φ

Y
j

]︁
|0⟩ , (4.4.17)

∆
XY (H)
ij ≡ ⟨0|

{︁
φXi , φ

Y
j

}︁
|0⟩ (4.4.18)

Between Eqs. (4.4.15) and (4.4.16), the expectation values have been evaluated; de-

tails on how these have been computed can be found in Appendices A and B of Ref. [33].

The revelation of this method is that every term in Eq. (4.4.16) contains a retarded

propagator, ∆DS(R)
ij , with 0 < t′j < t′i < t. This implies that every term in σpg van-

ishes when t < R. Whilst the above expressions are fixed order, this statement holds

for all orders [33]. This is entirely consistent with the demands of causality: measure-

ments of the state of the detector atom are completely insensitive to changes in the

initial state of the source atom, for times less than the time it would take for light (in-

formation) to travel between the two atoms. Thus, this new method of QFT calcula-

tions gives manifestly causal results for local measurements.
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Chapter 5

Manifestly Causal Particle Scattering

5.1 Introduction

In this chapter, we apply the manifestly causal formalism explained in Chapter 4 to

particle scattering processes. We consider inclusive final states where we demand

only that there are no initial-state particles in the final state. Since all of the expres-

sions are at the probability level, they are algebraically more complicated than in the

usual amplitude-level approach. Therefore, we work with simpler scalar field theo-

ries, which offer an instructive analogy to gauge theories such as quantum electrody-

namics (QED) and quantum chromodynamics (QCD). The result is a new probability-

level, diagrammatic method for calculating scattering probabilities in which the re-

tarded propagator plays a key role, making causality explicit. The work in this chapter

was published in Ref. [1].

The appearance of retarded propagators may offer a novel window on infrared (IR)

divergences, which arise in part due to low-energy (soft) massless particles having ar-

bitrarily large wavelengths that have effects over infinite separations. As explained in

Section 2.3, retarded propagators are zero for spacelike separations and carry a dis-

tinct analytic structure compared to the Feynman propagator, and this approach may

help quell these infinite-distance contributions. The Bloch-Nordsieck (BN) [27] and

the Kinoshita-Lee-Nauenberg (KLN) [28, 29] theorems ensure that, while individual

amplitudes may diverge, physical observables (like cross sections and decay rates) re-

main finite when real and virtual emissions are properly summed, as we saw in Chap-

ter 3. Our formalism allows one to sum implicitly over all relevant final states from

the beginning of the calculation and thereby explore the IR behaviour from a new an-

gle.

An example of a typical gauge theory process of interest is electron-positron (e+e−)
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pair annihilation to a quark-antiquark (qq) pair, mediated by a photon (γ), with gluon

(g) corrections to the final state. The Feynman diagram for this process is pictured

on the right of Fig. 5.1. This process is studied in detail, using the traditional quan-

tum field theory (QFT) approach, in Chapter 3. A scalar analogue of this process is

ψψ → χ → φφ with h corrections to the final state, where ψ, χ, φ, and h are all

real scalar fields, as pictured on the left of Fig. 5.1. In this chapter, we first consider

the decay process χ → X (Sections 5.3 and 5.4), where X represents a general fi-

nal state, before turning to the annihilation process ψψ → X (Section 5.5). For both

processes, we are fully inclusive over final states, except for demanding that the final

state contains no initial-state particles. The work in this chapter allows us to demon-

strate how our new formalism plays out in a simple example, without the technical

complications of spinor and gauge structure.

Section 5.2 defines a new diagrammatic method and outlines the general rules for

generating the set of diagrams relevant to any scalar field scattering process for which

the final state contains anything except initial-state particles. Sections 5.3-5.5 con-

tain algebraic derivations of the complete sets of relevant diagrams without using the

rules. We observe that distinct final states are intrinsically summed over and are not

separable in our results, and the retarded self-energy [113, 114] emerges naturally.

The calculations look complicated in the intermediate steps, but they reduce consid-

erably. This suggests the existence of a more fundamental set of rules. Section 5.6

concludes.

 

4 0 e
g q

x
h 39

4 et q
Fig. 5.1. Examples of traditional, amplitude-level diagrams for the processes of interest. Right: The
gauge theory process e−e+ → γ → qq, with gluon (g) corrections. Left: An analogous toy-model in

which ψ, χ, φ and h are all real scalar fields.

5.2 Diagrams and Rules

Here, we present a set of rules akin to Feynman rules, but applicable at the probabil-

ity level. Let us first explain the notation used in the diagrams. For a diagram which
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contributes to ⟨Fn⟩, where ⟨· · · ⟩ ≡ ⟨ i | · · · | i ⟩:

• Times run from tn (earliest) on the left to t1 (latest) on the right and are denoted

by dots.

• Lines between two dots represent propagators.

• Lines only connected to one dot represent plane waves from the initial state at

t→ −∞ (these are drawn vertically).

• Feynman propagators are denoted by black lines in all Hilbert spaces.

• Retarded propagators are denoted by red lines in all Hilbert spaces.

• Plane waves highlighted in yellow carry momentum p out of the diagram (i.e.,

carry momentum −p into the vertex), and unhighlighted plane waves carry mo-

mentum p into the diagram.

For the scalar field theories considered, we indicate ψ-space contributions with dotted

lines, χ-space contributions with dashed lines, φ-space contributions with solid lines,

and h-space contributions with wiggly lines, as pictured in Fig. 5.1.

We can now describe the rules which can be used to construct a diagram that con-

tributes to ⟨Fn⟩. The following rules apply for a calculation which demands that there

are no initial-state particles in the final state and which is fully inclusive over all other

Hilbert spaces (i.e., EHi = I in all Hilbert spaces, except for the Hilbert space of the

initial-state fields, in which EHi = |0⟩ ⟨0|). The rules are conjectured based on ex-

plicit calculations in Sections 5.3–5.5. The rules are:

1. Draw n time points, which will later become vertices.

2. Connect one initial state (regardless of the number of field quanta) to t1 (the lat-

est time)1.

3. Connect the other initial state to any other time.

4. Ensure each vertex which is not connected to an initial state is connected to a

later vertex by a retarded propagator of any field.
1This assumes that the Hilbert space associated with the initial state only has particles in the initial

state, i.e., the calculation is to O
(︁
g2i
)︁

in the coupling constant associated with the initial state Hilbert
space, gi.
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5. Connect the remaining vertices with retarded or Feynman propagators, using the

interaction vertices from the interaction Hamiltonian.

6. If the two initial states are connected by a chain of retarded propagators (where

each point on the chain connects to a later time), then momentum p must flow

into the t1 initial state and out of the other initial state. Otherwise, choose either

momentum flow.

We highlight that, as a consequence of Rule 4, every vertex is connected to at least

one of the initial states by a chain of retarded propagators.

The pre-factor for a diagram which contributes to P through ⟨Fn⟩ can be calculated

as follows:

• ×1/2ωi for each initial particle of energy ωi in the initial state |i⟩

• ×Sgi for each vertex, where gi is the associated coupling constant and S is the

symmetry factor if particles are indistinguishable

• ×(−1)(−i)n (these factors come from the incoming plane waves and the total

number of commutators in the effect operators)

• ×(−1) for each retarded propagator

• ×1/2 for each loop of retarded propagators between two (and only two) vertices

• ×1/2 for each loop of Feynman propagators between two (and only two) ver-

tices

• ×1/2 for each instance of a Feynman propagator connected to the same vertex at

each end (Feynman propagator tadpole)

• Integration over time-ordered spacetime points,
∫︁

d4x1 . . . d4xnΘ12...n, where

Θ12...n is defined by Eq. (4.1.10)

The total probability, P, is calculated by the summation of all possible diagrams. The

total number of unique diagrams in Sections 5.3-5.5 matches the number determined

using these rules, serving as a cross-check for their validity. To illustrate how to con-

struct a diagram, three examples are given in Fig. 5.2.
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TreeLevel

P z 2 disc.dkQ2 Pi C 2 Tell

if 9 2 feet 4 into 2
ddsExamples

off s
off fi fi

mafia rifred rifred adf.tn

re it 5 fr ii 6 re ii 7 re it

ZulesExamples

2 3
i

4
i

5 pox pox

3 imgur.iq attend airman

ii S ref it 6 ref it

Fig. 5.2. Examples of generating a diagram using the rules. Each step corresponds to each rule
number. Feynman propagators are denoted by black lines and retarded propagators are denoted by red
lines with an arrow pointing from the earlier time to the later time. Top: A diagram for the tree-level

contribution to χ→ φφ. Step 4 is redundant since there are no non-initial-state vertices. The
pre-factor for this diagram is 2g2χ/2ωp. This specific diagram is generated in Section 5.3, and can be

seen in Fig. 5.4 (the final diagram). Middle: A diagram for a first-order h correction to χ→ φφ. The
pre-factor for this diagram is 16g2χg2h/2ωp. This specific diagram is generated in Section 5.4, and can
be seen in Fig. 5.9 (4th line from the top, 2nd diagram from the right). Bottom: A diagram for the
annihilation process to ψψ → X . The pre-factor for this diagram is 16g2χg2h/2ωp1ωp2 . This specific
diagram is generated in Section 5.5, and can be seen in Fig. 5.11 (7th line from the top, 1st diagram

from the left).

5.3 Inclusive Decay: Lowest Order

To calculate the decay probability of a particle of a scalar field, χ, consider the inter-

action Hamiltonian,

Hint(tj) =

∫︂
d3xj

(︁
gχφ

2
jχj + ghφ

2
jhj
)︁
, (5.3.1)

where φj ≡ φ(xj) and hj ≡ h(xj) are scalar fields, and gχ and gh are coupling con-

stants. This interaction Hamiltonian, like all other interaction Hamiltonians in this

chapter, is of the exact form of Eq. (4.2.1), and therefore we can use the causal for-

malism described in Chapter 4. Since χ only couples to φ2, the decay χ → φφ is the

only lowest-order process which can occur. The scalar field, h, will be used in Sec-

tion 5.4 to investigate higher-order corrections. The traditional, amplitude-level Feyn-
 

h

4

4

Fig. 5.3. The traditional tree-level Feynman diagram for the process χ→ φφ.
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man diagram for the lowest-order process is shown in Fig. 5.3.

The initial state is encoded in an initial density operator

ρ0 = |0h pχ 0φ⟩ ⟨0h pχ 0φ| . (5.3.2)

This means that the system initially has one χ particle, of momentum p, and no other

field excitations. For the final state, we consider any number of excitations in the φ

and h fields and no excitations in the χ field. This is encoded in an effect operator

E =
∑︂
n,α

|nh 0χ αφ⟩ ⟨nh 0χ αφ| = Ih |0χ⟩ ⟨0χ| Iφ ,

i.e., Eh = Ih , Eχ = |0χ⟩ ⟨0χ| , Eφ = Iφ ,
(5.3.3)

where we have used the completeness of states to sum over all states in the φ and h

Hilbert spaces, resulting in identity operators. It is in this way that inclusive observ-

ables take a straightforward form at the probability level.

This set-up allows us to use the rules in Section 5.2, but we first calculate the transi-

tion probability directly. The result can then be used to verify the rules.

If we wanted to completely reproduce the expressions of the traditional scattering

calculation, we would set Eh = |0h⟩ ⟨0h| (at O(g0h)), Eχ = |0χ⟩ ⟨0χ|, and Eφ =

|qφ1 , q
φ
2 ⟩ ⟨q

φ
1 , q

φ
2 |. The probability would then factorise into amplitude and conjugate

amplitude, as in Chapter 3.

Returning to the effect operator in Eq. (5.3.3), we now define the notation analogous

to Eq. (4.2.5) and (4.2.6):

Hilbert space φ: E ...h...k :=
1

i

[︁
E ...... , ghφ2

k

]︁
, E ...h...

¯
k :=

{︁
E ...... , ghφ2

k

}︁
,

E ...χ...k :=
1

i

[︁
E ...... , gχφ2

k

]︁
, E ...χ...

¯
k :=

{︁
E ...... , gχφ2

k

}︁
, (5.3.4)

Hilbert space h: Eh
...k :=

1

i

[︁
Eh
..., hk

]︁
, Eh

...
¯
k :=

{︁
Eh
..., hk

}︁
,

Hilbert space χ: Eχ
...k :=

1

i
[Eχ

..., χk], Eχ
...
¯
k := {Eχ

..., χk}, (5.3.5)

where E ≡ Eφ. The general formula for Fn is given by Eq. (4.2.14),

Fn = 2−n
∫︂ n∏︂

κ=1

(︁
d3xκ

)︁ n∑︂
a=0

Eh
(
◦
1...
··· ◦
aE

χ
a+

◦
1...
··· ◦
n) E

(h...h χ...χ)
(
•
1 ...
··· •
a a+

•
1...
··· •
n) . (5.3.6)
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This expression has been written in a condensed form using the underdot notation de-

fined in Eq. (4.2.8) and the parentheses notation defined in Eq. (4.2.13).

The lowest order non-zero contribution to P is from F2. Using Eq. (5.3.6),

F2 =
1

4

∫︂
d3x1d3x2

(︂
Eh

◦
1
◦
2E

χ Ehh
•
1
•
2 + Eh

◦
1 E

χ

◦
2 E

hχ

•
1
•
2 + Eh

◦
2 E

χ

◦
1 E

χh

•
1
•
2 + EhEχ

◦
1
◦
2 E

χχ

•
1
•
2

)︂
.

(5.3.7)

Due to our choices of the initial density operator, ρ0, and the effect operator, E, only

the final term contributes once we take the expectation value of F2, as in Eq. (4.1.9).

The first subscript index of E ...... must be underlined, since a commutator with E = Iφ

would vanish. Thus, the only contribution from Eq. (5.3.7) is

F2 =
1

4

∫︂
d3x1d3x2E

χ
1
◦
2 E

χχ

¯
1
•
2

=
1

4

∫︂
d3x1d3x2

(︂
Eχ

12 E
χχ

¯
1
¯
2 + Eχ

1
¯
2 E

χχ

¯
12

)︂
. (5.3.8)

Therefore,

⟨i| F2 |i⟩ =
1

4

∫︂
d3x1d3x2

(︂
⟨pχ|Eχ

12 |pχ⟩ ⟨0φ| E
χχ

¯
1
¯
2 |0φ⟩+ ⟨pχ|Eχ

1
¯
2 |pχ⟩ ⟨0φ| E

χχ

¯
12 |0φ⟩

)︂
.

(5.3.9)

Evaluating the χ-space expectation value first gives

⟨pχ|Eχ
1
◦
2 |pχ⟩ = ⟨0| a(p)Eχ

1
◦
2 a

†(p) |0⟩

=
1

i

(︃
1

i

)︃(1−η2)/2

⟨0| a(p)
[︂[︂
|0χ⟩ ⟨0χ| , χ1

]︂
, χ2

]︂
η2
a†(p) |0⟩

= −
(︃
1

i

)︃(3−η2)/2

⟨0| a(p)χ1 |0χ⟩ ⟨0χ|χ2 a
†(p) |0⟩

+ η2 ⟨0| a(p)χ2 |0χ⟩ ⟨0χ|χ1 a
†(p) |0⟩ , (5.3.10)

where we have introduced the following compact notation for commutators and anti-

commutators:

[︁
A,B

]︁
η
= AB + ηBA = (1 + η)AB − η

[︁
A,B

]︁
=

⎧⎪⎨⎪⎩
[︁
A,B

]︁
if η = −1 ,{︁

A,B
}︁

if η = +1 ,
(5.3.11)
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such that η2 = 1 for Eχ
1
¯
2 and η2 = −1 for Eχ

12. Using the mode expansion of the χ

field,

⟨pχ|Eχ
1
◦
2 |pχ⟩ = −

(︃
1

i

)︃(3−η2)/2 ∫︂ d3k1 e
ik1·x1

(2π)3
√
2ω1

∫︂
d3k2 e

−ik2·x2

(2π)3
√
2ω2

× ⟨0| a(p) a†(k1) |0χ⟩ ⟨0χ| a(k2) a†(p) |0⟩

+ η2 [same as above but with 1 ↔ 2]

= −
(︃
1

i

)︃(3−η2)/2 ∫︂ d3k1√
2ω1

eik1·x1
∫︂

d3k2√
2ω2

e−ik2·x2 δ3(p − k1) δ
3(k2 − p)

+ η2 [same as above but with 1 ↔ 2]

=

(︃
1

i

)︃(3−η2)/2 1

2ωp

(︁
−eip·x1 e−ip·x2 + η2 e

ip·x2 e−ip·x1
)︁
, (5.3.12)

where ω1 ≡ p01, ω2 ≡ p02, and ω1 = ω2 = ωp ≡
√︁

p2 +m2
χ is the energy of the

incoming particle.

Now consider the φ-space expectation value,

⟨0φ| Eχχ
¯
1
•
2 |0φ⟩ =

(︃
1

i

)︃(1−ϵ2)/2

g2χ ⟨0φ|
[︂{︂

Iφ, φ2
1

}︂
, φ2

2

]︂
ϵ2
|0φ⟩

= 2

(︃
1

i

)︃(1−ϵ2)/2

g2χ ⟨0φ|
[︁
φ2
1, φ

2
2

]︁
ϵ2
|0φ⟩ ,

(5.3.13)

where ϵ2 = −η2. The effect operator being the identity operator has resulted in the

commutator of products of fields. On this occasion, the commutator is simple, but

Eq. (4.1.12) shows that this will result in nested commutators when we consider higher

orders. To evaluate these, we use Eq. (23) from Ref. [115],

[f(φ1, . . . φn−1), g(φn)] = −
∑︂
k1

· · ·
∑︂
kn−1⏞ ⏟⏟ ⏞

(︄
n−1∏︂
i=1

(− [φi, φn])
ki

ki!

)︄(︂
∂k1φ1 . . . ∂

kn−1

φn−1
f∂kφng

)︂
,

(5.3.14)

where

k =
n−1∑︂
i=1

ki (5.3.15)

and the indices within the underbrace (⏞⏟⏟⏞) are not all simultaneously zero.

Using Eqs. (5.3.11) and (5.3.14),

⟨0φ| Eχχ
¯
1
•
2 |0φ⟩ =

(︃
1

i

)︃(1−ϵ2)/2[︃
2 g2χ ⟨0φ| (1 + ϵ2)φ

2
1φ

2
2 |0φ⟩
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− 2 g2χ ϵ2 ⟨0φ|
(︂
∆φ

12∂1
[︁
φ2
1

]︁
∂2
[︁
φ2
2

]︁
− 1

2
(∆φ

12)
2∂21
[︁
φ2
1

]︁
∂22
[︁
φ2
2

]︁)︂
|0φ⟩

]︃
=

(︃
1

i

)︃(1−ϵ2)/2[︃
2 g2χ (1 + ϵ2) ⟨0φ|φ2

1φ
2
2 |0φ⟩

− 8 g2χ ϵ2∆
φ
12 ⟨0φ|φ1φ2 |0φ⟩+ 4 g2χ ϵ2 (∆

φ
12)

2

]︃
, (5.3.16)

where we have introduced the Pauli-Jordan function, ∆φ
xy (Eq. (2.3.3)). Substituting

Eqs. (5.3.12) and (5.3.16) into Eq. (5.3.9), we have

⟨i| F2 |i⟩ =
g2χ
4i2

∫︂
d3x1d3x2

(︃
1

2ωp

(︁
−eip·x1 e−ip·x2 − eip·x2 e−ip·x1

)︁
(︂
4 ⟨0φ|φ2

1φ
2
2 |0φ⟩ − 8∆12 ⟨0φ|φ1φ2 |0φ⟩+ 4 ∆2

12

)︂
+

1

2ωp

(︁
−eip·x1 e−ip·x2 + eip·x2 e−ip·x1

)︁
(︂
8∆12 ⟨0φ|φ1φ2 |0φ⟩ − 4∆2

12

)︂)︃
=

g2χ
2ωp

∫︂
d3x1d3x2

(︃
eip·x1 e−ip·x2 ⟨0φ|φ2

1φ
2
2 |0φ⟩

+ eip·x2 e−ip·x1
(︂
⟨0φ|φ2

1φ
2
2 |0φ⟩ − 4∆φ

12 ⟨0φ|φ1φ2 |0φ⟩+ 2 (∆φ
12)

2
)︂)︃

.

(5.3.17)

Since Eq. (4.1.9) includes Θ12, we can write

Θ12 ⟨0φ|φn1φm2 |0φ⟩ = Θ12 ⟨0φ|T{φn1φm2 } |0φ⟩ , (5.3.18)

where n and m are positive integers, and use Wick’s Theorem (see Section 2.1.3) to

obtain

Pj=2 =
g2χ
2ωp

∫︂
d4x1d4x2Θ12

(︃
eip·x1 e−ip·x2

(︂
F φ
11F

φ
22 + 2F φ

12F
φ
12

)︂
+ eip·x2 e−ip·x1

(︂
F φ
11F

φ
22 + 2F φ

12F
φ
12 − 4Rφ

12F
φ
12 + 2 (Rφ

12)
2
)︂)︃

, (5.3.19)

where we have introduced the Feynman propagator (Eq. (2.3.5)), F φ
xy, and the re-

tarded propagator (Eq. (2.3.6)), Rφ
xy. Eq. (5.3.19) is expressed diagrammatically in

Fig. 5.4. These are exactly the diagrams which would be generated using the rules in

Section 5.2.
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Fig. 5.4. A diagrammatic representation of the tree-level decay probability (Eq. (5.3.19)).

Since

Θ12 F
φ
12 = Θ12∆

φ(>)
12 , (5.3.20)

Θ12R
φ
12 = Θ12∆

φ
12 = Θφ

12

(︂
∆
φ(>)
12 −∆

φ(<)
12

)︂
, (5.3.21)

where the Wightman functions, ∆φ(>)
xy and ∆

φ(<)
xy , are defined in Eqs. (2.3.1) and (2.3.2),

we can rewrite Eq. (5.3.19) as

Pj=2 =
2g2χ
2ωp

∫︂
d4x1d4x2Θ12

(︃
eip·x1 e−ip·x2

(︂
∆
φ(>)
12

)︂2
+ eip·x2 e−ip·x1

(︂
∆
φ(<)
12

)︂2)︃
.

(5.3.22)

We have ignored the F φ
11F

φ
22 terms since these contributions are not allowed kinemat-

ically (alternatively, we could have chosen Eφ = Iφ − |0φ⟩ ⟨0φ| such that these con-

tributions would cancel). The part of the integrand after the Θ-function is symmetric

under the exchange of t1 ↔ t2, so we can replace the Θ-function with (1/2!). By sub-

stituting in the momentum-integral representations of the Wightman functions, the

decay probability can then be expressed as

Pj=2 =
2g2χ
2ωp

∫︂
d3q1

(2π)3
1

2ωq1

∫︂
d3q2

(2π)3
1

2ωq2

[︁
δ4(p− q1 − q2)

]︁2
(2π)8 . (5.3.23)

This is the usual tree-level probability for scalar particle decay, integrated over all fi-

nal state momenta [54].

5.4 Inclusive Decay: First Order

In this section, we will generate diagrams which represent the first-order h correc-

tions to the decay probability in Section 5.3. As such, the Hamiltonian, initial state,
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Fig. 5.5. The Feynman diagrams for the process χ→ φφ with first-order h corrections.

and effect operator remain the same as Section 5.3. Some examples of the traditional,

amplitude-level Feynman diagrams for this process are shown in Fig. 5.5.

To calculate these corrections, we require

F4 =
1

16

∫︂
d3x1 d3x2 d3x3 d3x4

4∑︂
a=0

Eh
(
◦
1...
··· ◦
aE

χ
a+

◦
1...
··· ◦

4) E
(h...h χ...χ)
(
•
1 ...
··· •
a a+

•
1...
··· •

4) . (5.4.1)

The relevant term is of order O
(︁
g2hg

2
χ

)︁
, which is the a = 2 term,

F (a=2)
4 =

1

16

∫︂
d3x1 d3x2 d3x3 d3x4E

h
(
◦
1
◦
2E

χ

◦
3
◦
4) E

(hhχχ)
(
•
1
•
2
•
3
•
4) . (5.4.2)

For clarity and simplicity, we will write a term with a general permutation of indices

as

Eh

◦
i
◦
j E

χ

◦
k
◦
l E

(hhχχ)

•
1
•
2
•
3
•
4 . (5.4.3)

Since Eh = Ih and Eφ = Iφ, the first index of the φ-space and h-space operators must

be underlined (a commutator with the identity operator is zero):

Eh

¯
i
◦
j E

χ

◦
k
◦
l E

(hhχχ)

¯
1
•
2
•
3
•
4 . (5.4.4)

Now that the index ‘1’ is underlined on the φ-space operator, it cannot be underlined

on either of the other operators. This means that i ̸= 1. However, the index 1 must be

the first index of an operator, so k = 1:

Eh

¯
i
◦
j E

χ
1
◦
l E

(hhχχ)

¯
1
•
2
•
3
•
4 . (5.4.5)

In total, there will always be four non-underlined indices. From Eqs. (5.3.4) and (5.3.5),

we know that each non-underlined index results in a factor of 1/i. Since (1/i)4 = 1,
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we will simply ignore these factors of i in this section. Expanding Eq. (5.4.5) gives

Eh

¯
i
◦
j E

χ
1
◦
l E

(hhχχ)

¯
1
•
2
•
3
•
4 = Eh

¯
23E

χ
14 E

χhhχ

¯
12

¯
3
¯
4 + Eh

¯
23E

χ
1
¯
4 E

χhhχ

¯
12

¯
34 + Eh

¯
2
¯
3E

χ
14 E

χhhχ

¯
123

¯
4 + Eh

¯
2
¯
3E

χ
1
¯
4 E

χhhχ

¯
1234

+ Eh

¯
24E

χ
13 E

χhχh

¯
12

¯
3
¯
4 + Eh

¯
24E

χ
1
¯
3 E

χhχh

¯
123

¯
4 + Eh

¯
2
¯
4E

χ
13 E

χhχh

¯
12

¯
34 + Eh

¯
2
¯
4E

χ
1
¯
3 E

χhhχ

¯
1234

+ Eh

¯
34E

χ
12 E

χχhh

¯
1
¯
23

¯
4 + Eh

¯
34E

χ
1
¯
2 E

χχhh

¯
123

¯
4 + Eh

¯
3
¯
4E

χ
12 E

χχhh

¯
1
¯
234 + Eh

¯
3
¯
4E

χ
1
¯
2 E

χχhh

¯
1234 .

(5.4.6)

Taking the expectation value of this expression, we can evaluate term-by-term and

one Hilbert space at a time. The expectation value of the h-space operator is straight-

forward:

⟨0h|Eh

¯
i
◦
j |0h⟩ = ⟨0h|

[︂{︂
Ih, hi

}︂
, hj

]︂
λj
|0h⟩ = 2 ⟨0h|

[︁
hi, hj

]︁
λj
|0h⟩ . (5.4.7)

This is either proportional to a Pauli-Jordan function (λj = −1) or a Hadamard func-

tion (λj = +1) (Eq. (2.3.4)). We can evaluate the expectation value of the χ-space

operator as we did in Section 5.3, giving

⟨pχ|Eχ
1
◦
l |p

χ⟩ = 1

2ωp

(︁
−eip·x1 e−ip·xl + ηl e

ip·xl e−ip·x1
)︁
. (5.4.8)

The φ-space operator in Eq. (5.4.5) is more complicated. It can be written as

E
¯
1
•
2
•
3
•
4 =

[︂
E
¯
1
•
2
•
3, φ

2
4

]︂
ϵ4
, (5.4.9)

where the Hilbert spaces are no longer denoted, and we understand that there will be

an overall factor of g2hg2χ. We shall therefore first consider

E
¯
1
•
2
•
3 =

[︂
E
¯
1
•
2, φ

2
3

]︂
ϵ3
= (1 + ϵ3) E

¯
1
•
2 φ

2
3 − ϵ3

[︂
E
¯
1
•
2, φ

2
3

]︂
, (5.4.10)

where we have temporarily ignored coupling constants, and use Eqs. (5.3.14) and

(5.3.16) to get

E
¯
1
•
2
•
3 = 2 (1 + ϵ3)

(︂
(1 + ϵ2)φ

2
1 φ

2
2 φ

2
3 − 4ϵ2∆12φ1φ2φ

2
3 + 2ϵ2 (∆12)

2φ2
3

)︂
+ 4ϵ3

(︃
−2∆13

(︂
(1 + ϵ2)φ1 φ

2
2 φ3 − 2 ϵ2∆12φ2 φ3

)︂
− 2∆23

(︂
(1 + ϵ2)φ

2
1 φ2 φ3 − 2 ϵ2∆12φ1 φ3

)︂
+ 4∆13∆23

(︂
(1 + ϵ2)∆

2
13φ

2
2 − ϵ2∆12

)︂
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+ (1 + ϵ2)(∆13)
2 φ2

2 − (1 + ϵ2)(∆23)
2 φ2

1

)︃
, (5.4.11)

where ∆xy ≡ ∆φ
xy. Substituting this into Eq. (5.4.9) and using Eq. (5.3.14),

E
¯
1
•
2
•
3
•
4 = g2hg

2
χ

{︄
2 (1 + ϵ4)

(︄
(1 + ϵ3)

[︃
(1 + ϵ2)φ

2
1 φ

2
2 φ

2
3 φ

2
4 − 4 ϵ2∆12 φ1 φ2 φ

2
3 φ

2
4

+ 2ϵ2 (∆12)
2 φ2

3 φ
2
4

]︃
+ 2ϵ3

[︃
−2∆13

(︂
(1 + ϵ2)φ1 φ

2
2 φ3 φ

2
4 − 2 ϵ2∆12 φ2 φ3 φ

2
4

)︂
− 2∆23

(︂
(1 + ϵ2)φ

2
1 φ2 φ3 φ

2
4 − 2 ϵ2∆12 φ1 φ3 φ

2
4

)︂
+ 4∆13∆23

(︂
(1 + ϵ2)φ1 φ2 φ

2
4 − ϵ2∆12 φ

2
4

)︂
+ (1 + ϵ2)(∆13)

2 φ2
2 φ

2
4 + (1 + ϵ2) (∆23)

2φ2
1 φ

2
4

]︃)︄

+ 4 ϵ4

(︄
−2∆14

[︃
(1 + ϵ3)

(︂
(1 + ϵ2)φ1 φ

2
2 φ

2
3 φ4 − 2 ϵ2∆12 φ2 φ

2
3 φ4

)︂
+ 2 ϵ3

(︂
−(1 + ϵ2)∆13 φ

2
2 φ3 φ4

− 2∆23

(︁
(1 + ϵ2)φ1 φ2 φ3 φ4 − ϵ2∆12 φ3 φ4

)︁
+ 2 (1 + ϵ2)∆13∆23 φ2 φ4 + (1 + ϵ2) (∆23)

2 φ1 φ4

)︂]︃
− 2∆24

[︃
(1 + ϵ3)

(︂
(1 + ϵ2)φ

2
1 φ2 φ

2
3 φ4 − 2 ϵ2∆12 φ1 φ

2
3 φ4

)︂
+ 2 ϵ3

(︂
−(1 + ϵ2)∆23 φ

2
1 φ3 φ4

− 2∆13

(︁
(1 + ϵ2)φ1 φ2 φ3 φ4 − ϵ2∆12 φ3 φ4

)︁
+ 2 (1 + ϵ2)∆13∆23 φ1 φ4 + (1 + ϵ2) (∆13)

2 φ2 φ4

)︂]︃
− 2∆34

[︃
(1 + ϵ3)

(︂
(1 + ϵ2)φ

2
1 φ

2
2 φ3 φ4 − 4 ϵ2∆12 φ1 φ2 φ3 φ4

+ 2 ϵ2 (∆12)
2 φ3 φ4

)︂
+ 2 ϵ3

(︂
−∆13

(︁
(1 + ϵ2)φ1 φ

2
2 φ4 − 2 ϵ2∆12 φ2 φ4

)︁
−∆23

(︁
(1 + ϵ2)φ

2
1 φ2 φ4 − 2 ϵ2∆12 φ1 φ4

)︁)︂]︃
+ 4∆14∆24

[︃
(1 + ϵ3)

(︂
(1 + ϵ2)φ1 φ2 φ

2
3 − ϵ2∆12 φ

2
3

)︂
+ 2 ϵ3 (1 + ϵ2)

(︂
−∆13 φ2 φ3 −∆23 φ1 φ3 + ∆13∆23

)︂]︃
+ 4∆14∆34

[︃
(1 + ϵ3)

(︂
(1 + ϵ2)φ1 φ

2
2 φ3 − 2 ϵ2∆12 φ2 φ3

)︂
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+ ϵ3

(︂
−(1 + ϵ2)∆13 φ

2
2 − 2∆23

(︁
(1 + ϵ2)φ1 φ2 − ϵ2∆12

)︁)︂]︃
+ 4∆24∆34

[︃
(1 + ϵ3)

(︂
(1 + ϵ2)φ

2
1 φ2 φ3 − 2 ϵ2∆12 φ1 φ3

)︂
+ ϵ3

(︂
−(1 + ϵ2)∆23 φ

2
1 − 2∆13

(︁
(1 + ϵ2)φ1 φ2 − ϵ2∆12

)︁)︂]︃
+ (∆14)

2 (1 + ϵ2)

[︃
(1 + ϵ3)φ

2
2 φ

2
3 + 2 ϵ3

(︂
−2∆23 φ2 φ3 + (∆23)

2
)︂]︃

+ (∆24)
2 (1 + ϵ2)

[︃
(1 + ϵ3)φ

2
1 φ

2
3 + 2 ϵ3

(︂
−2∆13 φ1 φ3 + (∆13)

2
)︂]︃

+ (∆34)
2 (1 + ϵ3)

[︃
(1 + ϵ2)φ

2
1 φ

2
2 + 2 ϵ2

(︂
−2∆12 φ1 φ2 + (∆12)

2
)︂]︃)︄}︄

.

(5.4.12)

Using Eqs. (5.4.7), (5.4.8), and (5.4.12), we can evaluate the expectation value of

each of the terms in Eq. (5.4.6) (see Appendix A). Note that for any given expecta-

tion value, terms with an odd number of ∆s have a relative minus sign to those with

an even number, owing to the minus sign before the commutator in Eq. (5.3.14). This

is reflected in the pre-factor rules in Section 5.2.

Since

Θij...n ⟨0φ|φiφj . . . φn |0φ⟩ = Θij...n ⟨0φ|T{φiφj . . . φn} |0φ⟩ , (5.4.13)

we can use Wick’s theorem to express products of fields as Feynman propagators.

Each expectation value in Eq. (5.4.5) is shown algebraically in Appendix A (unsim-

plified). To convert these expectation values to probabilities, we simply use Eq. (4.1.9).

The diagrams can be grouped into different categories based on the topology of the

diagram. The diagrams within each category are the same up to the exchange of times.

The categories are:

• Disconnected — One of the initial state χs produces a φ loop. The rest of the

diagram is entirely disconnected to this initial state.

• Tadpoles — The h propagator produces a φ loop.

• Oscillations — The initial state χs convert into the h propagator via a loop of

two φ propagators.
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• Vertex — The h propagator connects across the hφ2 vertex, connecting two dif-

ferent φ ‘legs’ of the diagram.

• Self-Energies — The h propagator connects the same φ ‘leg’ of the diagram

with itself.

Disconnected and tadpole diagrams will vanish upon considering correct momen-

tum conservation. Oscillations can be made to have arbitrarily small contributions by

varying the mass of the h-field compared to the mass of the χ-field. In the analogous

gauge theory process, γ → qq → g → qq̄, oscillation diagrams equal zero due to

colour conservation.

Figs. 5.6–5.10 show the results diagrammatically. The h-field Hadamard function has

been rewritten in terms of Feynman and retarded propagators using Eq. (2.3.4) and

the time-ordering Θ-function. Duplicate diagrams either sum or cancel, reducing the

total number of terms. These are exactly the diagrams which would be generated had

we used the rules in Section 5.2.

AddingarrowstoR
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ThreeR
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Fig. 5.6. Probability-level diagrammatic representation of disconnected diagrams.
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TADPOLES

fauxdiscdiscsdec0234 959x ̅
OneR

4RET4Beefy 4Raff 4beef
44Gt 4there 4Raff 4kept
TwoR
4In.IT
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ThreeR

4AE1 4Raptaq 4Rmep
Fig. 5.7. Probability-level diagrammatic representation of tadpole diagrams.
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OSCILLATIONS
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TwoR
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hegemony t.ammin 4 4 4 at 4

FourR

2furhgtzeym.pt z

2fnnetpizyf.pe 2fan.tt

1fur.my lymph 2

afloat right 2
Fig. 5.8. Probability-level diagrammatic representation of oscillation diagrams.
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VERTEX

afauxdiscdiscsdbc01234 959x ̅
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TwoR
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8 affair 8 qorgf.fm
q8oFfy.srffffdfq.fmfyffft 8wfn ao s.eemyomftm

FourR
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Fig. 5.9. Probability-level diagrammatic representation of vertex diagrams.
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SELF ENERGIES

afauxdiscdiscsdec0234 959x ̅

OneR

8 8mep8nyfyd8ffg
8tway8jfq 8wfyt 8ff
TwoR

8 whts.fwysftgasf.fis.ee e8mfegesatgg
gf.tty 8ffyesffttsffg.sefe8mfea8aDga8ftp18mggafttmy8ftp.as.agng
8 net 8yfy ogfg fft staffsafetysouth
8EE 8yEy offgsffg.snqg8aaaea.swftn

ThreeR

877 staff 8sept
8 77 8meT 8gwtt8afifgsavoystaff s.fm 8fEy 8aeptEjsoffitstaff 8frat
8ae gft8macftts.geft

Saffrandefa safetyftp.o.tw tegaffatsfifa august8catgo.rffgt8otcfg
FourR

g.mn yt8tmtfft s.ftt.sef
8wwifg 8chfp 8fwtft 8nettg

Fig. 5.10. Probability-level diagrammatic representation of self-energy diagrams.

Note that there are no distinct ‘real emission’ diagrams, pictured in the centre of Fig. 5.5,

due to the inclusivity of the effect operator. Instead, these contributions are contained

within the ‘vertex’ and ‘self-energy’ diagrams. Since IR divergences appear in the

traditional approach as an artifact of separating vertex, self-energy, and real emission

terms, one might be optimistic that the inclusivity of this approach may lead to inher-

ent cancellation of IR divergences.

The total decay probability can be calculated as in Section 5.3. However, scalar φ3

theory is severely IR divergent in four dimensions [55], and attempting to evaluate

the integrals will not serve a useful purpose. Instead, this section provides a proof-

of-concept for future calculations in gauge theories (QED and QCD), in which we

expect to find similar rules and diagrams, and the theory has a better-defined IR limit.
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5.5 Inclusive Annihilation: First Order

We now consider an annihilation process between two particles described by the in-

teraction Hamiltonian

Hint(tj) =

∫︂
d3xj

(︁
gψψ

2
jχj + gφφ

2
jχj
)︁
, (5.5.1)

where ψj ≡ ψ(xj) is another real scalar field. The relevant initial density matrix is

ρ0 = |0χ pψ1 p
ψ
2 0

φ⟩ ⟨0χ pψ1 p
ψ
2 0

φ| , (5.5.2)

i.e., the system initially has two ψ particles, of momentum p1 and p2, and no other

field excitations. We choose the effect operator

E =
∑︂
n,α

|nχ 0ψ αφ⟩ ⟨nχ 0ψ αφ| = Iχ |0ψ⟩ ⟨0ψ| Iφ ,

i.e., Eχ = Iχ , Eψ = |0ψ⟩ ⟨0ψ| , Eφ = Iφ ,
(5.5.3)

such that we consider all possible final states with zero quanta of the ψ-field.

Since the structure of the Hamiltonian differs slightly to the decay studied in Sec-

tions 5.3 and 5.4, our notation is now

Hilbert space χ: E ...ψ...k :=
1

i
[E ...... , gψχk], E ...ψ...

¯
k := {E ...... , gψχk},

E ...φ...k :=
1

i
[E ...... , gφχk], E ...φ...

¯
k := {E ...... , gφχk}, (5.5.4)

Hilbert space ψ: Eψ
...k :=

1

i

[︁
Eψ
..., ψ

2
k

]︁
, Eψ

...
¯
k :=

{︁
Eψ
..., ψ

2
k

}︁
,

Hilbert space φ: Eφ
...k :=

1

i

[︁
Eχ
..., φ

2
k

]︁
, Eφ

...
¯
k :=

{︁
Eφ
..., φ

2
k

}︁
, (5.5.5)

and E = Eχ.

The lowest-order contributions come from the process ψψ → χ, contained within

F2, which are trivial and uninteresting. Instead, we consider the next order of con-

tributions, which come from F4. Specifically, we isolate and examine the O
(︁
g2ψg

2
φ

)︁
contributions, which correspond to the a = 2 term in F4,

F (a=2)
4 =

1

16

∫︂
d3x1 d3x2 d3x3 d3x4E

ψ
(
◦
1
◦
2E

φ

◦
3
◦
4) E

(ψψφφ)
(
•
1
•
2
•
3
•
4) . (5.5.6)
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Similar to the first-order h corrections to the inclusive decay in Section 5.4, the in-

clusive effect operators E = Iχ and Eφ = Iφ result in the only non-zero terms in

Eq. (5.5.6) having the general form

Eψ
1
◦
j E

φ

¯
k
◦
l E

ψ(ψφφ)

¯
1
•
2
•
3
•
4 . (5.5.7)

As in Section 5.4, there will always be four non-underlined indices. Due to Eqs. (5.5.4)

and (5.5.5), this will always result in a factor of (1/i)4 = 1, so these factors of i will

be ignored for the rest of this section.

The expectation value of the ψ-space operator is

⟨p1p2|Eψ
1
◦
j |p1p2⟩ = ⟨p1p2|

[︃[︂
|0ψ⟩ ⟨0ψ| , ψ2

1

]︂
, ψ2

j

]︃
ηj

|p1p2⟩

=
4

(2ωp1)(2ωp2)

(︁
−eip1·x1eip2·x1e−ip1·xje−ip2·xj

+ ηje
ip1·xjeip2·xje−ip1·x1e−ip2·x1

)︁
. (5.5.8)

The expectation value of the φ-space operator is

⟨0|Eφ

¯
k
◦
l |0⟩ = ⟨0|

[︃{︂
Iφ, φ2

k

}︂
, φ2

l

]︃
λl

|0⟩ = 2 ⟨0|
[︁
φ2
k, φ

2
l

]︁
λl
|0⟩

= 2 (1 + λj) ⟨0|φ2
kφ

2
l |0⟩ − 8λl∆

φ
kl ⟨0|φkφl |0⟩+ 4λl (∆

φ
kl)

2 . (5.5.9)

To find the χ-space effect operator, we start with a lower order and build up using

Eq. (5.3.14) (temporarily ignoring the coupling constants gψ and gφ in E
¯
1
•
2 and E

¯
1
•
2
•
3,

and reinstating them in E
¯
1
•
2
•
3
•
4),

E
¯
1
•
2 = [{Iχ, χ1} , χ2]ϵ2 = 2

[︁
χ1, χ2

]︁
ϵ2
= 2 (1 + ϵ2)χ1 χ2 − 2 ϵ2∆

χ
12 (5.5.10)

E
¯
1
•
2
•
3 =

[︂
E
¯
1
•
2, χ3

]︂
ϵ3
= (1 + ϵ3)E

¯
1
•
2 χ3 − ϵ3

[︂
E
¯
1
•
2, χ3

]︂
= (1 + ϵ3)

(︁
2 (1 + ϵ2)χ1χ2χ3 − 2 ϵ2∆

χ
12χ3

)︁
− 2 ϵ3 (1 + ϵ2)

(︁
∆χ

13χ2 +∆χ
23χ1

)︁
(5.5.11)

E
¯
1
•
2
•
3
•
4 = g2ψg

2
φ

[︁
E
¯
1
•
2
•
3, χ4

]︁
ϵ4
= g2ψg

2
φ (1 + ϵ4)E

¯
1
•
2
•
3 χ4 − g2ψg

2
φ ϵ4

[︂
E
¯
1
•
2
•
3, χ4

]︂
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= g2ψg
2
φ (1 + ϵ4)

(︃
2 (1 + ϵ3)

(︂
(1 + ϵ2)χ1χ2χ3χ4 − ϵ2∆

χ
12χ3χ4

)︂
− 2 (1 + ϵ2) ϵ3

(︂
∆χ

13χ2χ4 +∆χ
23χ1χ4

)︂)︃
− 2 g2ψg

2
φ ϵ4

(︃
(1 + ϵ2)∆

χ
14

(︂
(1 + ϵ3)χ2χ3 − ϵ3∆

χ
23

)︂
+ (1 + ϵ2)∆

χ
24

(︂
(1 + ϵ3)χ1χ3 − ϵ3∆

χ
13

)︂
+ (1 + ϵ3)∆

χ
34

(︂
(1 + ϵ2)χ1χ2 − ϵ2∆

χ
12

)︂)︃
. (5.5.12)

The sum of operators over all non-zero permutations of time indices is

Eψ
1(

◦
2E

φ

¯
3
◦
4) E

ψ(ψφφ)

¯
1
•
2
•
3
•
4 = Eψ

12E
φ

¯
34 E

ψψφφ

¯
1
¯
23

¯
4 + Eψ

1
¯
2E

φ

¯
34 E

ψψφφ

¯
123

¯
4 + Eψ

12E
φ

¯
3
¯
4 E

ψψφφ

¯
1
¯
234 + Eψ

1
¯
2E

φ

¯
3
¯
4 E

ψψφφ

¯
1234

+ Eψ
13E

φ

¯
24 E

ψφψφ

¯
12

¯
3
¯
4 + Eψ

1
¯
3E

φ

¯
24 E

ψφψφ

¯
123

¯
4 + Eψ

13E
φ

¯
2
¯
4 E

ψφψφ

¯
12

¯
34 + Eψ

1
¯
3E

φ

¯
2
¯
4 E

ψφψφ

¯
1234

+ Eψ
14E

φ

¯
23 E

ψφφψ

¯
12

¯
3
¯
4 + Eψ

1
¯
4E

φ

¯
23 E

ψφφψ

¯
12

¯
34 + Eψ

14E
φ

¯
2
¯
3 E

ψφφψ

¯
123

¯
4 + Eψ

1
¯
4E

φ

¯
2
¯
3 E

ψφφψ

¯
1234 .

(5.5.13)

From Eq. (5.5.12), we have

E (ψψφφ)

¯
123

¯
4 = E (ψψφφ)

¯
1234 = 0 , (5.5.14)

so Eq. (5.5.13) becomes

Eψ
1(

◦
2E

φ

¯
3
◦
4) E

ψ(ψφφ)

¯
1
•
2
•
3
•
4 = Eψ

12E
φ

¯
34 E

ψψφφ

¯
1
¯
23

¯
4 + Eψ

12E
φ

¯
3
¯
4 E

ψψφφ

¯
1
¯
234 + Eψ

13E
φ

¯
24 E

ψφψφ

¯
12

¯
3
¯
4 + Eψ

13E
φ

¯
2
¯
4 E

ψφψφ

¯
12

¯
34

+ Eψ
14E

φ

¯
23 E

ψφφψ

¯
12

¯
3
¯
4 + Eψ

1
¯
4E

φ

¯
23 E

ψφφψ

¯
12

¯
34 . (5.5.15)

Using our equations for each Hilbert space and substituting into Eq. (4.1.9), we find

P =−
4 g2ψg

2
φ

(2ωp1)(2ωp2)

∫︂
d4x1 d4x2 d4x3 d4x4Θ1234(︄(︂

eip1·x1eip2·x1e−ip1·x2e−ip2·x2 + eip1·x2eip2·x2e−ip1·x1e−ip2·x1
)︂

(︂
2∆φ

34 ⟨φ3φ4⟩ − (∆φ
34)

2
)︂

(︂
2∆χ

13 ⟨χ2 χ4⟩+ 2∆χ
23 ⟨χ1 χ4⟩ −∆χ

14∆
χ
23 −∆χ

13∆
χ
24

)︂
+
(︂
eip1·x1eip2·x1e−ip1·x2e−ip2·x2 + eip1·x2eip2·x2e−ip1·x1e−ip2·x1

)︂
(︂⟨︁
φ2
3φ

2
4

⟩︁
− 2∆φ

34 ⟨φ3φ4⟩+ (∆φ
34)

2
)︂(︂

∆χ
14∆

χ
23 +∆χ

13∆
χ
24

)︂
+
(︂
eip1·x1eip2·x1e−ip1·x3e−ip2·x3 + eip1·x3eip2·x3e−ip1·x1e−ip2·x1

)︂
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(︂
2∆φ

24 ⟨φ2φ4⟩ − (∆φ
24)

2
)︂(︂

2∆χ
12 ⟨χ3 χ4⟩ −∆χ

12∆
χ
34

)︂
+
(︂
eip1·x1eip2·x1e−ip1·x3e−ip2·x3 + eip1·x3eip2·x3e−ip1·x1e−ip2·x1

)︂
(︂⟨︁
φ2
2φ

2
4

⟩︁
− 2∆φ

24 ⟨φ2φ4⟩+ (∆φ
24)

2
)︂(︂

∆χ
12∆

χ
34

)︂
+
(︂
eip1·x1eip2·x1e−ip1·x4e−ip2·x4 + eip1·x4eip2·x4e−ip1·x1e−ip2·x1

)︂
(︂
2∆φ

23 ⟨φ2φ3⟩ − (∆φ
23)

2
)︂(︂

2∆χ
12 ⟨χ3 χ4⟩ −∆χ

12∆
χ
34

)︂
+
(︂
eip1·x1eip2·x1e−ip1·x4e−ip2·x4 − eip1·x4eip2·x4e−ip1·x1e−ip2·x1

)︂
(︂
2∆φ

23 ⟨φ2φ3⟩ − (∆φ
23)

2
)︂(︂

∆χ
12∆

χ
34

)︂)︄
, (5.5.16)

where ⟨. . .⟩ is shorthand for ⟨0φ| . . . |0φ⟩ or ⟨0χ| . . . |0χ⟩. Due to the appearance of

Θ1234 (from Eq. (4.1.9)), we can interpret the product of fields as the time-ordered

product, and thus use Wick’s theorem (as in Eq. (5.4.13)). This results in Feynman

propagators. Eq. (5.5.16) is shown diagrammatically in Fig. 5.11, after simplification.

Again, the diagrams are exactly those which would be generated using the rules in

Section 5.2.

The disconnected diagrams can be ignored since they are not kinematically allowed

for positive, non-zero initial momenta. All of the remaining diagrams have the topol-

ogy shown in Fig. 5.12, differing by their time-orderings and combinations of Feyn-

man and retarded propagators. Since our approach is inclusive over final states, these

diagrams include two annihilation processes: the 2-to-2 process ψψ → χ → φφ

and the 2-to-1 process ψψ → χ with a φ self-energy loop. The Feynman diagrams

for these processes are shown in Fig. 5.13. Note that the diagrams in Fig. 5.11 do not

neatly separate into 2-to-2 and 2-to-1 diagrams, highlighting the intrinsic inclusivity

of the result.

The diagrams in Fig. 5.11 can be simplified by introducing the retarded self-energy [113,

114],

ΠR
xy =

g2φ
2

[︂
2F φ

xy R
φ
xy −

(︁
Rφ
xy

)︁2]︂
, (5.5.17)

reflecting the manifest causality of this approach. This simplification suggests the ex-

istence of more fundamental rules than those given in Section 5.2, i.e., rules involving

manifestly causal objects such as the retarded self-energy.

The diagrams can be simplified further by realising that all possible time orderings

are present, since the retarded propagators vanish when the arguments are not time-
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Fig. 5.11. Probability-level diagrammatic representation of the annihilation process expressed in
Eq. (5.5.16). Terms are sorted by the number of retarded propagators for each field.
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Fig. 5.12. The topology of all of the diagrams in Fig. 5.11.
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Fig. 5.13. Feynman diagrams (and conjugate diagrams) for the two annihilation processes. The curved
line separates an amplitude from a conjugate amplitude. These are the annihilation processes which

are encoded in the diagrams in Fig. 5.11. Left: ψψ → χ→ φφ. Right: ψψ → χ with a φ self-energy
loop. The conjugate of this diagram also contributes.

ordered (see Eq. (2.3.6)). Consequently, the time-ordered integral can be replaced by

an integral over all times, and we need only keep one of each unique diagram. This

process is shown in Fig. 5.14, and is proven analytically in Appendix B for the dia-

grams with a loop of Feynman propagators (a similar procedure has been used for all

diagrams).

x
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Fig. 5.14. Simplification of the annihilation diagrams. Note the absence of time-ordering on the
right-hand side. The retarded self-energy, given by Eq. (5.5.17), is denoted by a red line with a solid

red circle in the middle.

The diagrams resulting from these simplifications are shown in Fig. 5.15. Further

simplification using propagator identities is possible, but we choose to keep the result

solely in terms of Feynman and retarded propagators to highlight the causal structure.
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Fig. 5.15. The simplified result for the fully inclusive annihilation probability. The retarded
self-energy, given by Eq. (5.5.17), is denoted by a red line with a solid red circle in the middle.

5.6 Summary

We have applied a novel, probability-level QFT formalism to scalar field scattering

processes in which causality is manifest. In scalar field theory, causality is encoded

in the commutator of fields, which appear as a result of applying the Baker-Campbell-

Hausdorff lemma to the transition probability. This formalism results in new probability-

level diagrams, and we have presented the rules to generate the complete set of all di-

agrams for a scattering process which is fully inclusive over final states that do not

contain initial-state particles. We have used the algebraic formalism to calculate the

total probabilities for particle decay and the annihilation of two particles, both at fixed

order. These results align with those expected from a traditional calculation and cor-

roborate the general diagrammatic rules.

Since the diagrams correspond to the probability directly and involve retarded prop-

agators, causality is manifest. The appearance of other causal structures, such as the

retarded self-energy, suggests the existence of a more fundamental set of rules in terms

of these causal objects. In particular, there may be a link between these rules and the

Kobes-Semenoff unitary cutting rules [116, 117] in a similar fashion to the discussion

in Ref. [32].

The diagrammatic method developed in this chapter will generalise to gauge theories

such as QED and QCD. In these theories, individual contributions are IR-divergent

but finite once regularised and combined, as shown in Chapter 3. Our probability-

level method results in retarded propagators appearing in loops, and ‘real emission’

contributions are accounted for in the ‘self-energy’ and ‘vertex’ terms. We hope that

these features may help avoid the IR divergences in gauge theories by satisfying the

BN and KLN theorems implicitly.

Future work should include understanding how the rules are adapted for semi-inclusive
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effect operators, such as those discussed in Ref. [105]. Moreover, it remains to estab-

lish how manifestly causal probabilities can be extracted from causal n-point func-

tions by means of an LSZ-like reduction procedure.
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Chapter 6

The Unruh Effect

The trajectories of uniformly accelerating observers (Rindler observers) are restricted

to a region of Minkowski spacetime (the Rindler wedge), and they are causally dis-

connected from another region of Minkowski spacetime (the opposite Rindler wedge).

The mode expansion of a quantum field employed by a Rindler observer is differ-

ent from that employed by a Minkowski observer. Thus, accelerated and inertial ob-

servers may disagree on the particle content of a field. Remarkably, a Rindler ob-

server would associate a thermal bath of Rindler particles to the no-particle (vacuum)

Minkowski state. This is the Unruh effect [18–21].

The Unruh effect is a direct mathematical consequence of quantum field theory. To

probe the physics of the Unruh effect, localised particle detector models were devel-

oped and applied for a uniformly accelerating path [18, 21, 118]. The conclusion is

that the detector’s non-zero response rate per unit proper time along the detector’s tra-

jectory as measured by a Minkowski observer (who, using inertial measuring appa-

ratus, otherwise experiences a vacuum) is identical to that measured by a Rindler ob-

server (who experiences a thermal heat bath). The effect can be understood as a con-

sequence of the presence of a horizon, which appears between the Rindler wedge and

the rest of the universe. Therefore, similar methods to those used to study the Unruh

effect can be used to study horizons in curved spacetimes [119, 120], reproducing the

thermal properties of black holes [15, 16, 121, 122] and de Sitter space [123]. The

mathematical relationship between Minkowski and Rindler coordinates (explained in

Section 6.1) is very similar to that between Schwarzschild and Kruskal coordinates

for black holes (defined in Chapter 7). A significant difference is that Hawking ra-

diation from a black hole is detectable at infinity, since Schwarzschild coordinates

become inertial at large distances. Close to the horizon, an observer at a fixed radial

position would detect thermal effects that a free-falling observer would not [18, 124,

125], and this can be attributed to the acceleration required to maintain constant ra-
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dial position. There are also key similarities between the rotational Unruh effect and

rotating black holes [126, 127]. Consequently, the Unruh effect offers an excellent av-

enue into understanding important features of quantum field theory (QFT) that are

also relevant to Hawking radiation and black holes.

These key features of quantum field theory are explored further in the field of rela-

tivistic quantum information (RQI), which focuses on the relationship between rela-

tivistic quantum field theories and quantum information [109, 110]. This has resulted

in important applications of the Unruh effect and the Unruh-DeWitt (UdW) detector,

such as entanglement harvesting [128–135], entanglement degradation [136–140],

corrections to quantum teleportation fidelity [141–143], quantum energy telepor-

tation [144], curvature measurement [145, 146], and avoiding difficulties with field

measurements [147–150].

This chapter starts with a review of the foundational theory of the Unruh effect in

Section 6.1. In Section 6.2, the transition rate of a uniformly accelerated UdW monopole

detector is calculated using the general, probabilistic method described in Chapter 4.

This verifies that this causal method gives the correct results whilst also laying the

foundations for its use in more complicated scenarios involving the Unruh effect. The

transition rate is calculated for a measurement a finite time after preparing the initial

state. Specifying the field to initially be in the Minkowski vacuum state causes tran-

sients, which decay as the measurement time increases, and these transients are in-

vestigated. In Section 6.3, the same transition rate is calculated from the perspective

of an accelerating Rindler observer. The result is the same, including the finite-time

transient effects. The corresponding transition rate for an inertial detector in a bath

of Minkowski particles is calculated in Section 6.4, and it is shown that this is dif-

ferent, except for the massless case. Section 6.5 presents new numerical results, and

Section 6.7 concludes. This chapter is adapted from Ref. [2].

6.1 Background

We review the concepts which are key to understanding the Unruh effect, including

Rindler spacetime, the Minkowski vacuum state as viewed from a Rindler observer’s

perspective, the model of the UdW detector, and an accelerated UdW detector’s tran-

sition rate. A thorough review of the Unruh effect is given in Ref. [22].
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6.1.1 Rindler Spacetime

Consider four-dimensional Minkowski spacetime which has the line element [151–

153],

ds2 = dt2 − dx2 − dy2 − dz2 = du dv − dy2 − dz2 , (6.1.1)

where the null coordinates, u, v, are defined by

u = t− x ,

v = t+ x .
(6.1.2)

To describe the physics as seen by a uniformly accelerating observer, we introduce

Rindler coordinates (η, ξ) [154] which are adapted to observers undergoing constant

proper acceleration in Minkowski spacetime. The transformation between Minkowski

coordinates (t, x) and Rindler coordinates is given by:

t = α−1 eαξ sinhαη , x = α−1 eαξ coshαη , y = y , z = z . (6.1.3)

where α is a positive constant and −∞ < (η, ξ) < ∞. In terms of the null coordi-

nates, the equivalent coordinate transformation is

u = −α−1 e−αu ,

v = α eαv .
(6.1.4)

This coordinate transformation is very similar to the coordinate transform between

Schwarzschild and Kruskal coordinates (Eq. (7.3.4)) commonly used when studying

black holes. This highlights the intrinsic link between the Unruh effect and black hole

physics, which is studied in Chapter 7.

In terms of these new coordinates, the line element is

ds2 = e2αξ
(︁
dη2 − dξ2

)︁
− dy2 − dz2 = e2αξdu dv − dy2 − dz2 . (6.1.5)

These coordinates only cover the x > |t| quadrant of Minkowski space. This quad-

rant is called the right Rindler wedge, pictured in Fig. 6.1. On this spacetime dia-

gram, lines of constant η are straight and lines of constant ξ are hyperbolae (since

x2 − t2 = α−2e2αξ = constant). These hyperbolae thus represent the world lines
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Fig. 6.1. The spacetime diagram of Rindler space. The future (H+) and past (H−) horizons separate
Minkowski spacetime into four quadrants: the right Rindler wedge (R), the left Rindler wedge (L), the

future wedge (F), and the past wedge (P).

for uniformly accelerated observers.

The proper acceleration of an observer at fixed ξ is given by

proper acceleration = αe−αξ (6.1.6)

and the observer’s proper time is given by

proper time ≡ τ = eαξη . (6.1.7)

In this chapter, we consider a detector with Rindler coordinate ξ = 0 such that the

proper acceleration is α and the proper time τ = η, without loss of generality.

A second Rindler wedge can be constructed with similar coordinate transformations

but with additional minus signs. These different Rindler coordinates cover a different

quadrant of Minkowski spacetime known as the left Rindler wedge. The surfaces

x = |t| (or equivalently ξ = −∞, or u = v = 0 in null coordinates) form a boundary

that separates the right (R) and left (L) Rindler wedges from the rest of Minkowski

space. These null surfaces, H+ and H−, constitute event horizons from the perspec-

tive of an observer in either wedge. This means that an observer in R cannot com-

municate with an observer in L, and vice versa. This causal structure is pictured in

Fig. 6.1 and can be understood in terms of the light cones in Minkowski space. Any

signal sent from within R travels at 45◦ on a spacetime diagram, and thus can never

reach L. This implies that an accelerating observer in R is permanently causally dis-
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connected from L. This causal disconnection plays a crucial role in the emergence of

the Unruh effect, as will be shown in the next section.

6.1.2 The Minkowski Vacuum as a Thermal State

To understand how the Minkowski vacuum appears to an accelerating observer, we

decompose a scalar field φ(x) in terms of Rindler modes. The usual decomposition in

Minkowski space is (see Section 2.1):

φ(x) =

∫︂
d3k

(︂
akuk + a†ku

∗
k

)︂
, (6.1.8)

where uk are the plane wave solutions to the Klein-Gordon equation and ak and a†k
are annihilation and creation operators, respectively, which defined the Minkowski

Fock basis and the Minkowski vacuum state, ak |0M⟩ = 0.

In Rindler coordinates, the field φ(x) can instead be decomposed as [22, 155]

φ(x) =

∫︂
d3k

(︂
bRk v

R
k + bR †

k vR∗
k + bLk v

L
k + bL †

k vL∗k

)︂
, (6.1.9)

where vRk and vLk are solutions to the Klein-Gordon equation that are well-defined

in the right and left Rindler wedges, respectively. These modes can be analytically

continued into regions P and F such that Eq. (6.1.9) defines the scalar field across

all of Minkowski spacetime [156, 157]. Further details of these modes can be found

in Ref. [151]. The annihilation and creation operators, bR/L
k and bR/L †

k , define a new

Fock basis and a different vacuum state, bRk |0R⟩ = bLk |0R⟩ = 0. This vacuum state

is known as the Rindler vacuum. The definition of a different Fock basis means that

the concept of particles is dependent on the basis modes which are used to decom-

pose the field. Any given state will have a different number of Minkowski particles

and Rindler particles. This even applies to the Minkowski vacuum state, in which an

inertial (Minkowski) observer detects no particles. For a Rindler observer at constant

acceleration, α, in the right (left) Rindler wedge, the expectation value of the Rindler

number operator in the Minkowski vacuum state is given by [22, 151]

⟨0M|bR(L) †
k b

R(L)
k |0M⟩ =

1

e2πω/α − 1
, (6.1.10)

where ω =
√︁

k2 +m2. This is the number of ‘particles’ a Rindler observer would
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detect in mode k, if particles are defined using the Rindler basis modes. This result is

exactly the Planck spectrum for a thermal bath of particles (bosons) at temperature

TU =
α

2π
, (6.1.11)

which is known as the Unruh temperature. Thus, the Minkowski vacuum state ap-

pears as a thermal bath of particles to an observer at constant acceleration.

This can also be understood by realising that the Minkowski vacuum state, |0M⟩, can

be expressed in terms of Rindler Fock states as [22]:

|0M⟩ =
∏︂
i

(︄√︁
1− e−2πωi/α

∞∑︂
ni=0

e−πωni/α|ni,R⟩ ⊗ |ni,L⟩

)︄
. (6.1.12)

A Rindler observer in the right Rindler wedge, for example, is causally disconnected

from the left Rindler wedge due to the horizons, and thus can only probe the right

Rindler wedge. The Minkowski vacuum state is therefore described by the density

matrix which is obtained by tracing out the left Rindler states,

ρR =
∏︂
i

(︄(︁
1− e−2πωi/α

)︁ ∞∑︂
ni=0

e−2πωni/α |ni,R⟩⟨ni,R|

)︄
. (6.1.13)

This is the density matrix for a thermal bath of particles at T = TU.

6.1.3 Unruh-DeWitt Detectors

In order to place the mathematics of the Unruh effect on physical grounding, Unruh

introduced two different detector models [18]. The first is a small box containing

a non-relativistic particle which satisfies the Schrödinger equation with two energy

states. The second is a fully relativistic detector model, involving a second scalar field

for the field of interest to couple to, via a third scalar field. DeWitt then introduced

the detector model [118] that is most commonly used today in literature regarding the

Unruh effect, which consists of a two-level point-like monopole and is known as an

UdW detector. Its two energy levels are denoted by |1D⟩ for the ground state and |2D⟩

for the excited state. This is a simple model which still captures the essential features

of a detector’s interaction with a field. The point-like nature of this detector leads to

divergences, but these divergences can either be made to cancel by defining certain
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observables or explicitly regulated with integral cut-offs or spatial smearing func-

tions [158–160].

The interaction Hamiltonian of an UdW detector coupled to a scalar field φ(x) is

given by

Hint = λχ(τ)MD(τ)φ(xD(τ), τ), (6.1.14)

where λ is the coupling constant (which is set to 1 hereafter), χ(τ) is a switching

function controlling the interaction duration, MD(τ) is the detector’s monopole mo-

ment, and xD is the detector trajectory. The detector’s excitation rate from its ground

state to its excited state is explicitly calculated in the next section (for an uniformly

accelerated detector) using the manifestly causal formalism described in Chapter 4.

6.2 Excitation rate of an accelerated detector

6.2.1 Calculating the Transition Rate

We consider a point-like ‘atom’, D, which plays the role of a two-state, UdW detec-

tor. The atom interacts with a neutral scalar field φ(x, t), of mass m, where x and t

are coordinates in an inertial frame, and it is accelerated with a constant proper accel-

eration, α, such that its position is given by

xD =

(︃
1

α
coshατ , 0 , 0

)︃
=

(︃
1

α

√
1 + α2t2 , 0 , 0

)︃
, (6.2.1)

and the proper time of the atom is

τ =

∫︂ t

0

dt′

γ(t′)
=

∫︂ t

0

dt′√
1 + α2t′2

=
1

α
arcsinhαt . (6.2.2)

The system is described by states living in a product of the Hilbert spaces of the atom

and the field: H = H D×H φ. For the Hamiltonian, we take H(t) = H0(t)+Hint(t),

where H0(t) = HD
0 (t) +Hφ

0 (t). Under the free part of the Hamiltonian, H0, the atom

has a complete set of states {|1D⟩ , |2D⟩} (one ground state |1D⟩ and one excited state

|2D⟩), with HD
0 |nD⟩ = Ωn |nD⟩, n = 1, 2. In the inertial frame, we assume that the
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interaction-picture Hamiltonian is given by

H0 =
2∑︂

n=1

γ−1(t) Ωn |nD⟩ ⟨nD| +
∫︂

d3x
(︂

1
2
(∂tφ)

2 + 1
2
(∇φ)2 + 1

2
m2φ2

)︂
,

(6.2.3a)

Hint = MD(t)φ(xD, t) , (6.2.3b)

where

MD(t) ≡ γ−1(t)
2∑︂

m,n=1

µmn e
i(Ωm−Ωn)τ |mD⟩ ⟨nD| (6.2.4)

represents a monopole interaction. Comparing to Eq. (4.4.6), we see that this detector

is a two-level variant of the detector considered in Section 4.4. For future reference,

we define µ ≡ µ12 = µ∗
21 and Ω ≡ Ω2 −Ω1. We will also assume that µnn = 0 ∀n, so

that the interaction always involves transitions between the states.

Suppose that the system is initially (t = 0) described by a density matrix ρ0 and that

the measurement outcome is described by an effect operator E. In general, E is an

element of a Positive Operator-Valued Measure, and it may be written as a sum over

products of Hermitian operators:

E =
∑︂
κ

ED
(κ) ⊗ Eφ

(κ) . (6.2.5)

The superscripts D and φ denote the Hilbert space in which the operators act and κ

denotes different configurations of final states. The probability of the measurement

outcome, P, is then given by

P = Tr(Eρt) , (6.2.6)

where

ρt ≡ Ut,0 ρ0 U
†
t,0 (6.2.7)

is the density operator at time t and

Ut,0 = T exp
(︃

1

i

∫︂ t

0

dt′ Hint(t
′)

)︃
(6.2.8)

is the unitary evolution operator (T indicates time ordering). Note that evolving the

initial state from t′ = 0 to t′ = t is mathematically equivalent to evolving it from
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t = −∞ to t′ = ∞ but with a top-hat switching function (defined in Eq. (6.1.14)),

χ(t′) =

⎧⎪⎨⎪⎩1 for 0 ≤ t′ ≤ t ,

0 otherwise .
(6.2.9)

We consider the case where the initial density operator is ρ0 = |1D, 0φM⟩ ⟨1D, 0φM |,

in which |0φM⟩ denotes the Minkowski vacuum state, and the effect operator is E =

|2D⟩ ⟨2D| ⊗ Iφ. This effect operator describes a set of final states in which the atom is

excited and the final state of the field is anything at all. Fixing the field in the Minkowski

vacuum state, |0Mφ ⟩ at an instant in time (t = 0) is somewhat arbitrary and will result

in transient effects.

We are interested in the excitation rate of the atom, Γ (1 → 2). The master equation

for the probability of finding the detector in the excited state is given by

dP(2; t)
dt

= Γ (1 → 2)P(1; t) − Γ (2 → 1)P(2; t) , (6.2.10)

where

Γ (1 → 2) =
dP(2; t)

dt

(︂
1 + O(|µ|2)

)︂
, (6.2.11)

and

P(2; t) ≡ ⟨1D, 0φM |U †
t,0E Ut,0 |1D, 0

φ
M⟩ . (6.2.12)

Following the formalism described in Chapter 4, we use a generalisation of the Baker-

Campbell-Hausdorff lemma to commute the operator E through the time-evolution

operator, which gives

P(2; t) =
∞∑︂
j=0

∫︂ t

0

dt1dt2 . . . dtj Θ12...j ⟨1D, 0φM | Fj |1D, 0φM⟩ , (6.2.13)

where

F0 = E ,

Fj = 1
i

[︂
Fj−1, Hint(tj)

]︂
, (6.2.14)

and Θijk... ≡ 1 if ti > tj > tk . . . and zero otherwise. Using the notation
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φDj ≡ φ(xDj , tj), MD
j ≡MD(tj) and xDj ≡ xD(tj), we may write

Fj = 1
i

[︂
Fj−1 , M

D
j φ

D
j

]︂
. (6.2.15)

Eq. (6.2.13) includes contributions from all perturbative orders.

Thus far, we have introduced a general method for calculating observable probabil-

ities that is based on effect operators and the evolution of the initial density matrix.

This approach has the advantage that it can be used to treat both pure and mixed states,

as well as exclusive, inclusive and semi-inclusive observables [105], all on equal foot-

ing. Moreover, it is an approach that has been shown to make physical principles,

such as causality [32], manifest, as seen in Chapters 4 and 5. In what follows, we

show how this probability-level approach can be used to treat the initial time-dependent

response of the UdW detector and recover known results in the late-time limit. This is

with a view to future applications to problems that may be less tractable at the ampli-

tude level.

Proceeding to expand in µ, the two lowest-order contributions are

F1 = iγ−1(t1)φ
D
1 ⟨2|2⟩

(︂
µ e−iΩτ1 |1⟩⟨2| − µ∗eiΩτ1 |2⟩⟨1|

)︂
, (6.2.16)

F2 = γ−1(t1)γ
−1(t2) ⟨2|2⟩ |µ|2

[︂
Iφ∆12 sin(Ωτ12)

(︂
⟨2|2⟩ |1⟩⟨1| + ⟨1|1⟩ |2⟩⟨2|

)︂
+ {φD1 , φD2 } cos(Ωτ12)

(︂
⟨2|2⟩ |1⟩⟨1| − ⟨1|1⟩ |2⟩⟨2|

)︂]︂
, (6.2.17)

where

∆12 ≡ 1

i
⟨0φM |[φD1 , φD2 ]|0

φ
M⟩ (6.2.18)

is the Pauli-Jordan function of the φ field (evaluated at points on the detector’s path)

and

τ12 ≡ τ1 − τ2 > 0 . (6.2.19)

The lowest-order, non-vanishing contribution to P arises from F2 in Eq. (6.2.17), and

is

P(2; t) = |µ|2
∫︂ t

0

dt1
γ(t1)

∫︂ t1

0

dt2
γ(t2)

[︂
∆R

12 sin(Ωτ12) + ∆H
12 cos(Ωτ12)

]︂
= |µ|2

∫︂ τ

0

dτ1
∫︂ τ1

0

dτ2
[︂
∆R

12 sin(Ωτ12) + ∆H
12 cos(Ωτ12)

]︂
, (6.2.20)
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where, due to the time-ordering, ∆12 has become the retarded propagator

∆R
12 ≡ Θ12∆12 , (6.2.21)

and

∆H
12 ≡ ⟨0φM |{φD1 , φD2 }|0

φ
M⟩ (6.2.22)

is the Hadamard propagator of the φ field (evaluated at points on the detector’s path).

Eq. (6.2.20) is equal to

P(2; t) = |µ|2
∫︂ τ

0

dτ1
∫︂ τ

0

dτ2 e−iΩ(τ1−τ2) ⟨0φM |φD1 φD2 |0
φ
M⟩ ≡ |µ|2 F (Ω) , (6.2.23)

as calculated by DeWitt [161] and seen in many studies thereafter (albeit usually with

integration limits −∞ < τ1, τ2 < ∞). The detector response function, F (Ω), is

defined such that it is the component of the transition probability which does not de-

pend on the detector’s internal properties, only its energy gap and trajectory [155,

159, 160, 162].

Since the commutator of interaction-picture fields is proportional to the identity oper-

ator, the free retarded propagator ∆R does not depend on the initial state1. Therefore,

writing the rate in terms of ∆R and ∆H separates it into a term which does not de-

pend on the initial state and a term which does.

For time-like intervals, ∆R
12 and ∆H

12 are given by [33]2,

∆R
12 =

m2

4π

J1(ms
α
12)

msα12
− δ((sα12)

2)

2π
and ∆H

12 =
m2

4π

Y1(ms
α
12)

msα12
, (6.2.24)

where J1 and Y1 are Bessel functions of the first and second kind, and

sα12 ≡
√︁

(xµ1 − xµ2)
2 =

√︄
(t1 − t2)2 −

1

α2

(︃√︂
1 + α2t21 −

√︂
1 + α2t22

)︃2

=
2

α
sinh

ατ12
2

, (6.2.25)

for the trajectory given in Eq. (6.2.1). The δ-function in Eq. (6.2.24) only has support

at τ12 = 0 and will not contribute further (the coefficient of ∆R
12 will always vanish at

1This is no longer the case when the retarded propagator is dressed with self-energy corrections.
2Note that there is a sign error on the Y1(zij) term in equation (A11) in Ref. [33] (see Ref. [74]).
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τ12 = 0). Eq. (6.2.20) thus becomes

P(2; t) = |µ|2
∫︂ τ

0

dτ1
∫︂ τ1

0

dτ2
m2

4π

[︃
J1(ms

α
12)

msα12
sin(Ωτ12) +

Y1(ms
α
12)

msα12
cos(Ωτ12)

]︃
.

(6.2.26)

This expression is divergent for τ12 = 0, since Y1(x) → −∞ as x → 0. This is be-

cause the two-point correlation function evaluated at a point is infinite, and the diver-

gence is not present if one considers a detector of finite spatial extent [18, 155, 158,

161]. The expression can be regularised by considering a spatial profile [159, 162,

163], but it would remain the case that a measurement at τ = 0 would be divergent.

Changing variables and introducing a lower limit on the integral to cut off the diver-

gent part, the transition probability becomes

P(2; t) = |µ|2
∫︂ τ

1/Λ

dτ1
∫︂ τ1

1/Λ

dτ12
m2

4π

[︃
J1(ms

α
12)

msα12
sin(Ωτ12) +

Y1(ms
α
12)

msα12
cos(Ωτ12)

]︃
.

(6.2.27)

The lowest-order transition rate is then

∂P
∂τ

= |µ|2
∫︂ τ

1/Λ

dτ12
[︂
∆R

12 sin(Ωτ12) + ∆H
12 cos(Ωτ12)

]︂
(6.2.28)

=
m2|µ|2

4π

∫︂ τ

1/Λ

dτ12
[︃
J1(ms

α
12)

msα12
sinΩτ12 +

Y1(ms
α
12)

msα12
cosΩτ12

]︃
. (6.2.29)

Consider this transition rate with the inertial (α = 0) case subtracted,

∂P
∂τ

− ∂P
∂τ

⃓⃓⃓⃓
α=0

=
m2|µ|2

4π

∫︂ τ

1/Λ

dτ12
[︃(︃

J1(ms
α
12)

msα12
− J1(mτ12)

mτ12

)︃
sinΩτ12

+

(︃
Y1(ms

α
12)

msα12
− Y1(mτ12)

mτ12

)︃
cosΩτ12

]︃
. (6.2.30)

The divergence as τ12 → 0 in Eq. (6.2.29) is independent of α and cancels. Thus,

Eq. (6.2.30) is independent of Λ as 1
Λ
→ 0. Subtracting the inertial rate also gives an

intuitive interpretation of the expression: it is the transition rate due to the detector’s

acceleration.

If we are not fully inclusive over the final state of the radiation field and instead re-

quire that we remain in the Minkowski vacuum, then E = |0φ⟩⟨0φ|⊗ |2D⟩⟨2D|. In this

case, we can quickly convince ourselves that the excitation probability—now a single
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matrix element squared—is zero, i.e.

P(2; t) =
⃓⃓
⟨0φ, 2D|Ut,0|0φ, 1D⟩

⃓⃓2
= 0 , (6.2.31)

since for this to be non-zero, Ut,0 would need an even number of field operators, φ(t, xD(t)),

and an odd number of monopole operators, MD(t). Since H int(t) is linear in both

φ(t, xD(t)) and MD(t), this matrix element must therefore equal zero.

6.2.2 Different Limits

Considering Eq. (6.2.29) in different limits can simplify the expression and act as a

cross-check for numerical results, since all results derived in this section conform

with the numerical results in Section 6.5. First, the case of a massless scalar field

(m = 0) is considered. It is also shown that, for small acceleration α, the subtracted

rate scales as α2. At early times, the subtracted rate is independent of mass. At late

times, the subtracted rate exhibits decaying oscillations as it tends to a constant, with

the period and zeroes of the integrand of Eq. (6.2.43) agreeing with the period and

extrema of the numerical results.

Massless limit (m→ 0)

When m→ 0, ∆R
12 → 0 and ∆H

12 → −1/2π2|sα12|2, which leaves

P|m=0 =

∫︂ t

0

dt1dt2
−|µ|2

γ(t1)γ(t2)
Θ12

cos(Ωτ12)
2π2(sα12)

2
; (6.2.32)

∂P
∂τ

⃓⃓⃓⃓
m=0

= −|µ|2α2

8π2

∫︂ τ

1/Λ

dτ12
cos(Ωτ12)

sinh2 1
2
ατ12

; (6.2.33)

∂P
∂τ

⃓⃓⃓⃓
m=0

− ∂P
∂τ

⃓⃓⃓⃓
m,α=0

= −|µ|2

8π2

∫︂ τ

1/Λ

dτ12 cos(Ωτ12)
(︃

α2

sinh2 1
2
ατ12

− 4

τ 212

)︃
.

(6.2.34)

Small acceleration (α ≪ 1/τ)

For α ≪ 1/τ ,

J1(ms
α
12)

msα12
− J1(mτ12)

mτ12
→ −α

2τ 2

24
J2(mτ) +O((ατ)4) , (6.2.35)
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Y1(ms
α
12)

msα12
− Y1(mτ12)

mτ12
→ −α

2τ 2

24
Y2(mτ) +O((ατ)4) , (6.2.36)

and Eq. (6.2.30) becomes

∂P
∂τ

− ∂P
∂τ

⃓⃓⃓⃓
α=0

=
m2α2|µ|2

96π

∫︂ τ

1/Λ

dτ12
[︃
J2(mτ12) sinΩτ12 + Y2(mτ12) cosΩτ12

]︃
.

(6.2.37)

Thus, for small α, the rate scales as α2.

Early times (ατ, mτ → 0)

For ατ, mτ → 0, we use

J1(ms
α
12)

msα12
− J1(mτ12)

mτ12
→ 0 , (6.2.38)

Y1(ms
α
12)

msα12
− Y1(mτ12)

mτ12
→ α2

6m2π
, (6.2.39)

and Eq. (6.2.30) becomes

∂P
∂τ

− ∂P
∂τ

⃓⃓⃓⃓
α=0

=
α2|µ|2

24π2
τ . (6.2.40)

Late times (τ ≫ 1/α)

As τ12 → ∞, the integrand of Eq. (6.2.29) goes to zero. This means that the rate

tends to a constant as τ → ∞. This constant value is calculated in Section 6.2.3

(Eq. (6.2.49)). However, as the rate tends to a constant, it also oscillates about the

constant value. This is because, for large arguments,

J1(x) →
√︃

2

πx
cos
(︃
x− 3π

4

)︃
, (6.2.41)

Y1(x) →
√︃

2

πx
sin
(︃
x− 3π

4

)︃
, (6.2.42)

such that (after taking sα12 ≫ τ12),

∂P
∂τ

− ∂P
∂τ

⃓⃓⃓⃓
α=0

= constant + |µ|2
√︃

m

8π3

∫︂ τ

τ0

dτ12τ−3/2
12 sin

(︃
(m+ Ω)τ12 +

π

4

)︃
,

(6.2.43)
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where τ0 is a time large enough for the late-time limit to apply.

6.2.3 Momentum space

The propagators in Eq. (6.2.20) are Lorentz invariant and can be evaluated in any

frame. Evaluating the momentum-space expressions for the propagators in the frame

in which x012 = sα12 and x12 = 0 gives

∆12 = −
∫︂

d3p
(2π)3

eip·x12

ωp
sin
(︁
ωpx

0
12

)︁
= −

∫︂
d3p
(2π)3

sin(ωps
α
12)

ωp
, (6.2.44)

∆H
12 =

∫︂
d3p
(2π)3

eip·x12

ωp
cos
(︁
ωpx

0
12

)︁
=

∫︂
d3p
(2π)3

cos(ωps
α
12)

ωp
, (6.2.45)

where

ωp =
√︁

p2 +m2 . (6.2.46)

Inserting these expressions into Eq. (6.2.20) gives

P(2; t) =
|µ|2

8π3

∫︂ τ

0

dτ1
∫︂ τ1

0

dτ2
∫︂

d2p⊥

∫︂ ∞

−∞

dpx
ωp[︂

− sin(ωps
α
12) sin(Ωτ12) + cos(ωps

α
12) cos(Ωτ12)

]︂
=

|µ|2

8π3

∫︂ τ

0

dτ1
∫︂ τ1

0

dτ2
∫︂

d2p⊥

∫︂ ∞

−∞

dpx
ωp

cos(ωps
α
12 + Ωτ12) . (6.2.47)

Thus, the rate is

∂P
∂τ

=
|µ|2

8π3

∫︂ τ

0

dτ12
∫︂

d2p⊥

∫︂ ∞

−∞

dpx
ωp

cos
[︃
2ωp

α
sinh(ατ12/2) + Ωτ12

]︃
=

|µ|2

16π3

∫︂ τ

−τ
dτ12

∫︂
d2p⊥

∫︂ ∞

−∞

dpx
ωp

cos
[︃
2ωp

α
sinh(ατ12/2) + Ωτ12

]︃
, (6.2.48)

agreeing with the real part of Eq. (3.12) of [22], which considers an initial state de-

fined in the infinite past and a measurement taken in the infinite future (i.e., τ → ∞).

In this limit, following [22],

∂P(τ → ∞)

∂τ
=

|µ|2

2π2α
e−

πΩ
α

∫︂ ∞

m

dν ν
⃓⃓⃓⃓
KiΩ/α

(︃
ν

α

)︃⃓⃓⃓⃓2
, (6.2.49)

where ν =
√︁

p2
⊥ +m2. In the limit α → 0, the integrand vanishes as

8παν

Ω
e−

πΩ
α sin2(

ν2

4Ωα
+ . . .) ,
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which means an inertial detector does not undergo excitation in a vacuum at τ → ∞.

As a result, at τ → ∞, the subtracted rate given by Eq. (6.2.30) is equal to the unsub-

tracted rate given by Eq. (6.2.29).

Note that for an inertial path, xD = (vt, 0, 0), the parameter sα12 is replaced by

s12 =
√︁

(t1 − t2)2 − v2 (t1 − t2)2 = γ−1 t12 = τ12 , (6.2.50)

such that the transition rate becomes

∂P
∂τ

=
|µ|2

16π3

∫︂ τ

−τ
dτ12

∫︂
d2p⊥

∫︂ ∞

−∞

dpx
ωp

cos [ωpτ12 + Ωτ12] . (6.2.51)

As we will now show, we can start from this expression and rederive Eq. (6.2.48). A

derivation of the Unruh effect along these lines (for m = 0) appears in Ref. [164].

For the uniformly accelerated trajectory, the modes are subject to a characteristic,

time-dependent Doppler shift, such that

ω′
p(τ) = ωp cosh(ατ)− px sinh(ατ) , (6.2.52)

reducing to

ω′
p(τ) = ωpe

∓ατ , px ≷ 0 , (6.2.53)

in the massless limit and in one spatial dimension, as used in Ref. [164]. To account

for this, we can proceed from Eq. (6.2.51) by replacing

ωpτ12 −→
∫︂ τ1

τ2

dτ ′ ω′
p(τ

′) =
ωp

α
[sinh(ατ1)− sinh(ατ2)]−

px
α

[cosh(ατ1)− cosh(ατ2)]

=
2

α
sinh(ατ12/2) [ωp cosh(ατ̄)− px sinh(ατ̄)] , (6.2.54)

where τ̄ = (τ1 + τ2)/2. The transition rate should not depend on τ̄ . To see this, we

boost to the instantaneous rest frame of the modes via the transformations

ω′′
p = ωp cosh(ατ̄)− px sinh(ατ̄) , (6.2.55a)

p′′x = px cosh(ατ̄)− ωp sinh(ατ̄) . (6.2.55b)

The measure transforms as dpx/ωp = dp′′x/ω′′
p , and we recover Eq. (6.2.48) after rela-

belling the integration variables.
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6.2.4 Transients

The integral over τ12 ∈ [−τ, τ ] in Eq. (6.2.48) can be expressed as an integral over the

whole real line by inserting a top-hat distribution of width 2τ , centred on the origin.

Replacing the latter with its Fourier transform, we can write

∂P
∂τ

=
|µ|2

16π3
Re
∫︂ ∞

−∞
dτ12

∫︂ ∞

−∞

dk
π

sin(kτ)
k

∫︂
d2p⊥

×
∫︂ ∞

−∞

dpx
ωp

exp
{︃
i

[︃
2ωp

α
sinh(ατ12/2) + (Ω− k)τ12

]︃}︃
=

|µ|2

16π3

∫︂ ∞

−∞
dτ12

∫︂ ∞

−∞

dk
π

sin(kτ)
k

∫︂
d2p⊥

×
∫︂ ∞

−∞

dpx
ωp

cos
[︃
2ωp

α
sinh(ατ12/2) + (Ω− k)τ12

]︃
. (6.2.56)

Swapping the order of the τ12 and k integrals, we recognise the integral from Ref. [22]

with Ω → Ω− k, such that we have

∂P(τ)
∂τ

=
|µ|2

2π2α

∫︂ ∞

−∞

dk
π

sin(kτ)
k

e−
π(Ω−k)

α

∫︂ ∞

m

dν ν
⃓⃓⃓⃓
Ki(Ω−k)/α

(︃
ν

α

)︃⃓⃓⃓⃓2
. (6.2.57)

In the limit, τ → ∞, we have

lim
τ→∞

1

π

sin(kτ)
k

= δ(k) , (6.2.58)

and we recover Eq. (6.2.49).

Thus, we see that the transients arise from a convolution with the Fourier transform

of the top-hat distribution. It is as if we fixed the field configuration at t = −∞ and

discontinuously turned on the interaction at t = 0. If instead we turned the interaction

on smoothly using some switching function then the transients would arise from a

convolution with the Fourier transform of this switching function.

6.3 Excitation rate in a Rindler thermal bath

Before examining the results of the previous section, we shall compute the corre-

sponding quantities from the perspective of a Rindler observer confined to the right

Rindler wedge. The transformation from Minkowski to Rindler coordinates, (η, ξ, y, z),
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is given by Eq. (6.1.3)

t = α−1 eαξ sinhαη , x = α−1 eαξ coshαη , y = y , z = z . (6.3.1)

In these coordinates, the atom is stationary at ξ = 0 (recovering Eqs. (6.2.1) and

(6.2.2)), and the Minkowski vacuum state is exactly equivalent to a thermal state of

Rindler particles (as explained in Section 6.1.2). Therefore, from a Rindler observer’s

perspective, the detector is stationary in a thermal bath of Rindler particles at tem-

perature T . In other words, the thermal bath is in an effective gravitational field (in

accordance with the equivalence principle), and hence is different to a free-falling (in-

ertial) thermal bath, which is considered in Section 6.4.

The calculation proceeds in an identical fashion up to Eq. (6.2.28). We may expand

the field using creation and annihilation operators for Rindler particles, i.e., in the

right Rindler wedge, as in Eq. (6.1.9),

φ(x) =

∫︂
dωpd2p⊥[v

R
ωpp⊥

bRωpp⊥
+ H.c.] , (6.3.2)

where ‘H.c.’ stands for Hermitian conjugate and [22, 155]

vRωpp⊥
=

[︄
sinh(πωp/α)

4π4α

]︄1/2
Kiωp/α

[︄√︁
p2
⊥ +m2

αe−αξ

]︄
e−iωpτ+ip⊥·x⊥

=

[︄
sinh(ωp/2T )

8π5T

]︄1/2
Kiωp/2πT

[︄√︁
p2
⊥ +m2

2πT

]︄
e−iωpτ+ip⊥·x⊥ , (6.3.3)

where T = TU ≡ α/2π is the Unruh temperature measured by an observer at the

Rindler coordinate ξ = 0, and x⊥ = (y, z). The Rindler operators bRωpp⊥
and bR †

ωpp⊥
de-

fine the Fock space for Rindler particles, and give the Minkowski vacuum expectation

values [22]

⟨0φM |bR †
ωpp⊥

bRE′
pp′

⊥
|0φM⟩ = (eωp/T − 1)−1 δ(ωp − E ′

p) δ
2(p⊥ − p′

⊥)

= n δ(ωp − E ′
p) δ

2(p⊥ − p′
⊥) , (6.3.4)

⟨0φM |bRωpp⊥
bR †
ωpp⊥

|0φM⟩ = (1− e−ωp/T )−1 δ(ωp − E ′
p) δ

2(p⊥ − p′
⊥)

= (n+ 1) δ(ωp − E ′
p) δ

2(p⊥ − p′
⊥) , (6.3.5)
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where

n ≡ n(ωp) = (eωp/T − 1)−1 (6.3.6)

is the Bose-Einstein distribution for a thermal bath at temperature T . For a stationary

trajectory in Rindler coordinates at ξ = 0, the Pauli-Jordan and Hadamard functions

can be expressed as

∆12 ≡ 1

i
⟨0φM |[φ1, φ2]|0φM⟩

= −
∫︂

dωpd2p⊥
sinh(ωp/2T )

4π5T

⃓⃓⃓⃓
⃓Kiωp/2πT

[︄√︁
p2
⊥ +m2

2πT

]︄⃓⃓⃓⃓
⃓
2

sin(ωpτ12) , (6.3.7)

∆H
12 ≡ ⟨0φM |{φ1, φ2}|0φM⟩

=

∫︂
dωpd2p⊥

sinh(ωp/2T )

4π5T

⃓⃓⃓⃓
⃓Kiωp/2πT

[︄√︁
p2
⊥ +m2

2πT

]︄⃓⃓⃓⃓
⃓
2

cos(ωpτ12)
(︁
2n+ 1

)︁
.

(6.3.8)

The transition rate (Eq. (6.2.28)) then becomes

∂P
∂τ

=
|µ|2

4π5T

∫︂ τ

0

dτ12
∫︂ ∞

0

dωpd2p⊥ sinh
(︃
ωp

2T

)︃⃓⃓⃓⃓
Kiωp/2πT

(︃√︁
p2
⊥ +m2

2πT

)︃⃓⃓⃓⃓2
×(︂

− sin(ωpτ12) sin(Ωτ12) + (2n+ 1) cos(ωpτ12) cos(Ωτ12)
)︂

=
|µ|2

2π4T

∫︂ ∞

0

dωp

∫︂ ∞

m

dν ν sinh
(︃
E

2T

)︃⃓⃓⃓⃓
Kiωp/2πT

(︃
ν

2πT

)︃⃓⃓⃓⃓2
×(︄

(n+ 1)
sin
(︁
(ωp + Ω) τ

)︁
ωp + Ω

+ n
sin
(︁
(ωp − Ω) τ

)︁
ωp − Ω

)︄

=
|µ|2

4π4T

∫︂ ∞

0

dωp

∫︂ ∞

m

dν ν
⃓⃓⃓⃓
Kiωp/2πT

(︃
ν

2πT

)︃⃓⃓⃓⃓2
×(︄

eωp/2T
sin
(︁
(ωp + Ω) τ

)︁
ωp + Ω

+ e−ωp/2T
sin
(︁
(ωp − Ω) τ

)︁
ωp − Ω

)︄
. (6.3.9)

The term proportional to (n + 1) in Eq. (6.3.9) corresponds to the emission rate from

the detector to the Rindler thermal bath, and the term proportional to n corresponds

to the absorption rate of the detector from the Rindler thermal bath. The ν integral

can be performed when m = 0 [165]:

∂P
∂τ

⃓⃓⃓⃓
m=0

=
|µ|2T
π2

∫︂ ∞

0

dωp sinh
(︃
ωp

2T

)︃⃓⃓⃓⃓
Γ

(︃
1 +

iωp

2πT

)︃⃓⃓⃓⃓2
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×

(︄
(n+ 1)

sin
(︁
(ωp + Ω) τ

)︁
ωp + Ω

+ n
sin
(︁
(ωp − Ω) τ

)︁
ωp − Ω

)︄

=
|µ|2

2π2

∫︂ ∞

0

dωp ωp

(︄
(n+ 1)

sin
(︁
(ωp + Ω) τ

)︁
ωp + Ω

+ n
sin
(︁
(ωp − Ω) τ

)︁
ωp − Ω

)︄
,

(6.3.10)

where Γ is the Gamma function defined by Eq.(2.6.15) and we have used [22]

⃓⃓⃓⃓
Γ

(︃
1 +

iωp

2πT

)︃⃓⃓⃓⃓2
=

ωp

2T sinh
(︁
ωp/2T

)︁ . (6.3.11)

In order to match the calculation in Section 6.2, the inertial transition rate must be

subtracted from Eq. (6.3.9). From the Rindler observer’s perspective, this corresponds

to the T = 0 limit of the transition rate. This is simply the transition rate for an iner-

tial observer in the Minkowski vacuum, which is calculated and expressed as an in-

tegral over energy in Appendix C. Note that the inertial rate is not the same as sim-

ply taking the part of the Rindler thermal rate which is not proportional to n; doing

this would give the transition rate for an accelerating detector in the Rindler vacuum.

Subtracting Eq. (C.0.4), the Rindler rate becomes

∂P
∂τ

− ∂P
∂τ

⃓⃓⃓⃓
T=0

=
|µ|2

4π4T

∫︂ ∞

0

dωp

∫︂ ∞

m

dν ν
⃓⃓⃓⃓
Kiωp/2πT

(︃
ν

2πT

)︃⃓⃓⃓⃓2
×(︄

eωp/2T
sin
(︁
(ωp + Ω) τ

)︁
ωp + Ω

+ e−ωp/2T
sin
(︁
(ωp − Ω) τ

)︁
ωp − Ω

)︄

− |µ|2

2π2

∫︂ ∞

m

dωp

√︂
ω2

p −m2
sin[(ωp + Ω)τ ]

ωp + Ω
. (6.3.12)

It can be confirmed numerically that this is the same result as Eq. (6.2.30) for all times.

Eq. (6.3.12) can be shown to vanish when T → 0, since

lim
T→0

∫︂ ∞

m

dν ν
⃓⃓⃓⃓
Kiωp/2πT

(︃
ν

2πT

)︃⃓⃓⃓⃓2
= e−ωp/2T 2π2T Θ(ωp −m)

√︂
ω2

p −m2 , (6.3.13)

where Θ(x) is the Heaviside function [85]. Taking the τ → ∞ limit of Eq. (6.3.12)

gives the transition rate of a detector coupled to a massive scalar field after the tran-

sient effects have subsided. In this limit, Eq. (6.3.12) becomes,

∂P(τ → ∞)

∂τ
− ∂P(τ → ∞)

∂τ

⃓⃓⃓⃓
T=0

=
|µ|2

4π3T
e−

Ω
2T

∫︂ ∞

m

dν ν
⃓⃓⃓⃓
KiΩ/2πT

(︃
ν

2πT

)︃⃓⃓⃓⃓2
,

(6.3.14)
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since

lim
τ→∞

sin[(ωp ± Ω)τ ]

ωp ± Ω
= πδ(ωp ± Ω) , (6.3.15)

and only the delta function δ(ωp − Ω) has support over the domain of the energy in-

tegrals. This corresponds to the emission rate vanishing at late times (once the tran-

sients have decayed), so the detector only absorbs Rindler particles and does not emit

them. This is the same result as Eq. (6.2.49).

For a massless scalar field

∂P
∂τ

⃓⃓⃓⃓
m=0

− ∂P
∂τ

⃓⃓⃓⃓
T,m=0

=
|µ|2

2π2

∫︂ ∞

0

dωp ωp n

(︄
sin
(︁
(ωp + Ω) τ

)︁
ωp + Ω

+
sin
(︁
(ωp − Ω) τ

)︁
ωp − Ω

)︄
,

(6.3.16)

which, in the τ → ∞ limit, reduces to

∂P(τ → ∞)

∂τ

⃓⃓⃓⃓
m=0

− ∂P(τ → ∞)

∂τ

⃓⃓⃓⃓
m,T=0

=
|µ|2

2π

Ω

eβΩ − 1
. (6.3.17)

Coincidentally, this is the the expected transition rate for a detector in an inertial Bose-

Einstein thermal bath of massless Minkowski particles, as will be shown in the next

section.

6.4 Excitation rate in a Minkowski thermal bath

We shall now calculate the response of a detector in a thermal bath of Minkowski

particles and show that this is different to the Rindler case for m ̸= 0. The zero-

temperature, Minkowski Hadamard function is given by

∆H
12

⃓⃓
T=0

= ∆>
12

⃓⃓⃓⃓
T=0

+∆<
12

⃓⃓⃓⃓
T=0

=

∫︂
d4p

(2π)3
e−ipµx

µ
12 δ(p2 −m2) . (6.4.1)

In equilibrium with a thermal bath at temperature, T , the Wightman functions are [155,

166]

∆>
12(T ) =

∫︂
d4p

(2π)3

[︂
Θ(p0) (1 + n) + Θ(−p0)n

]︂
e−ipµx

µ
12 δ(p2 −m2) , (6.4.2)

∆<
12(T ) =

∫︂
d4p

(2π)3

[︂
Θ(−p0) (1 + n) + Θ(p0)n

]︂
e−ipµx

µ
12 δ(p2 −m2) . (6.4.3)
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where n ≡ n(|p0|) = (exp(|p0|/T ) − 1)−1. The thermal Minkowski Hadamard

function is therefore

∆H
12(T ) =

∫︂
d4p

(2π)3

[︂
Θ(p0) + Θ(−p0)

]︂(︁
1 + 2n

)︁
e−ipµx

µ
12 δ(p2 −m2) (6.4.4)

=

∫︂
d4p

(2π)3
(︁
1 + 2n

)︁
e−ipµx

µ
12 δ(p2 −m2) . (6.4.5)

Comparing with Eq. (6.4.1), we see that the thermal piece of the Hadamard function

is simply the zero-temperature piece multiplied by 2n. Since the detector is static,

x12 = 0 (as long as the detector is inertial, we can boost to this frame due to its time-

like trajectory). Therefore, the thermal part of ∆H
12 takes the form,

∆H
12 ⊃

∫︂
d4p

(2π)3
e−ip

0t12 (2n) δ(p2 −m2) =
1

π2

∫︂ ∞

m

dωp

√︂
ω2

p −m2 n cos(ωpt12) .

(6.4.6)

The retarded propagator does not pick up a thermal part (i.e., it does not have any

temperature dependence, since terms proportional to n cancel when taking the dif-

ference of positive and negative Wightman functions). The thermal contribution to

the excitation rate is thus

∂P
∂t

− ∂P
∂t

⃓⃓⃓⃓
T=0

=
|µ|2

π2

∫︂ t

0

dt′
∫︂ ∞

m

dωp

√︂
ω2

p −m2 n cosΩt′ cosωpt
′

=
|µ|2

2π2

∫︂ ∞

m

dωp

√︂
ω2

p −m2 n

{︃
sin[(ωp − Ω)t]

ωp − Ω
+

sin[(ωp + Ω)t]

ωp + Ω

}︃
.

(6.4.7)

This expression is not equal to Eq. (6.3.9). However, with m = 0, it is exactly the

same as Eq. (6.3.16). This means that the response of a monopole detector coupled

to a massless scalar field is insensitive to the difference between inertial and acceler-

ating thermal distributions. This misleading example may lead one to the conclusion

that an accelerated detector responds identically to an inertial detector in an ordinary

(Minkowski) Bose gas at finite temperature. This is not the statement of the Unruh

effect. It is clearly not true for a massive scalar field, nor is it true for vector fields or

other detector models [22, 167, 168].

In the limit t→ ∞, we obtain

∂P
∂t

− ∂P
∂t

⃓⃓⃓⃓
T=0

=
∂P
∂t
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=
|µ|2

2π

∫︂ ∞

m

dωp

√︂
ω2

p −m2
1

eβωp − 1

[︂
δ(ωp − Ω) + δ(ωp + Ω)

]︂
.

(6.4.8)

Only the first delta function has support, and only when Ω ≥ m, so we arrive at the

result

∂P
∂t

=
|µ|2

2π

√
Ω2 −m2

eβΩ − 1
Θ(Ω−m) , (6.4.9)

agreeing with Eq. (3.73) of Ref. [151]. Thus, a detector in a thermal bath of Minkowski

particles requires Ω > m. This is not the case for the Rindler thermal bath, and this

highlights a crucial physical difference. For the Rindler thermal bath, as τ → ∞, it

remains true that the energy, ωp, of the absorbed Rindler particle must equal the de-

tector’s energy gap, Ω, but the transition rate is non-zero even if the energy gap is less

than the mass of the field (Ω < m). This is because ωp ≥ m is a flat spacetime con-

straint, and a general field quantisation does not lead to a simple dispersion relation

relating a particle’s energy to its mass. This difference can be seen when comparing

Figs 6.3 and 6.4. Further discussion of Rindler particles with energy ωp < m is given

in Section III.A.3 of Ref. [22].

6.5 Numerical Results

The transition rate for a uniformly accelerating detector, with the inertial rate sub-

tracted, is given by the identical Eqs. (6.2.30) and (6.3.12). The explicit dependence

of the transition rate on the detector’s proper time is shown in Fig. 6.2. Specifying the

state at τ = 0 causes transients and the frequency of these transients is dependent on

m/Ω and independent of α/Ω. As Ωτ → ∞, the transients decay and the rate tends

to a constant value. We can also observe that the transients subside more rapidly for

larger accelerations.

The constant, late-time value is given by Eq. (6.2.49) (and Eq. (6.3.14)). The depen-

dence of this ‘equilibrium’ rate on temperature (and hence acceleration via T = α/2π)

and mass is shown in Fig. 6.3. The values of α/Ω and m/Ω are chosen so as to scan

a wide range of dimensionless ratios. Fig. 6.3a shows that the larger the detector’s ac-

celeration, the larger the transition rate at τ → ∞. It also shows that for a scalar field

with larger mass, a larger acceleration is required for the detector to ‘switch on’, with
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Fig. 6.2. The transition rate for an accelerated detector against time, with the inertial transition rate
subtracted (given by Eq. (6.2.30)), i.e., 1

Ω|µ|2
(︁ dP

dτ − dP
dτ

⃓⃓
α=0

)︁
. Each plot is for a given acceleration,

with three different values of the mass of the scalar field. The transition rate exhibits transient effects,
but at late times tends to a constant value.

the transition rate becoming non-negligible at T ∼ m/4π (α ∼ m/2). This is super-

seded by another requirement: the detector ‘switches on’ at T/Ω ∼ 1/2π (α ∼ Ω).

This leads to the sensible conclusion that the detector’s transition rate begins to in-

crease when its acceleration is above its energy gap. At large accelerations, the gradi-

ent becomes independent of the mass, meaning that the ‘sensitivity’ of the transition

rate to acceleration (defined as d2P/dτdα) is independent of mass. Fig. 6.3b shows

how the transition rate at τ → ∞ depends on the mass of the scalar field. As the

mass increases, the transition rate tends to zero. However, it remains non-zero above

m/Ω = 1, which reflects the fact that an accelerating detector can absorb quanta of

larger mass than its energy gap.

To highlight the difference between a Rindler thermal bath and a Minkowski thermal

bath, the transition rate at τ → ∞ for a detector in a Minkowski thermal bath is plot-

ted in Fig. 6.4. Fig. 6.4a shows that, like the Rindler bath case, the transition rate for

the Minkowski thermal bath also ‘switches on’ at T/Ω ∼ 1/2π (α ∼ Ω), but there

is no longer any requirement that T ≳ m/4π (α ≳ m/2) and the gradient of the rate

(the sensitivity) is dependent on the mass even at large accelerations. Also, the transi-
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tion rate at τ → ∞ is zero for m ≥ Ω, regardless of the temperature. This is due to

the flat-spacetime constraint E ≥ m, which means the detector cannot absorb a par-

ticle of mass larger than its energy gap. Figs. 6.3b and 6.4b illustrate that, if m = 0,

the τ → ∞ transition rate of a detector in a Rindler thermal bath is identical to that

of a detector in a Minkowski thermal bath. The transition rate then differs as m/Ω is

increased. This is true for all times, not just τ → ∞, as explained in Section 6.4.
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Fig. 6.3. The transition rate for an accelerated detector tends to a constant at late times, given by the
identical Eqs. (6.2.49) and (6.3.14). This constant depends on the acceleration (left) and the mass of

the scalar field (right) as plotted here.
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Fig. 6.4. The transition rate for an inertial detector in a Minkowski thermal bath tends to a constant at
late times, given by Eq. (6.4.9). This constant depends on the acceleration (left) and the mass of the

scalar field (right) as plotted here.

6.6 Dipole detector

The manifestly causal, probabilistic formalism can also be applied to other detector

models. In this section, we derive the response of a uniformly accelerated dipole de-

tector [169]. Adapting the interaction Hamiltonian for a monopole detector (Eq. (6.2.3b))
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to a general dipole detector is

Hint(t) = Dµ(t) ∂µφ(xD, t) , (6.6.1)

where Dµ(t) ≡ γ−1(t)
(︂
ξµe−iΩτ |1⟩ ⟨2| + (ξµ)∗eiΩτ |2⟩ ⟨1|

)︂
and ξµ is the 4-vector

equivalent of the scalar µ in the monopole operator. With initial state ρ0 = |1, 0φ⟩ ⟨1, 0φ|

and measurement operator E = Iφ ⊗ |2D⟩ ⟨2D| as before, we have

F1 =
1

iγ(t1)

(︃
− ξµ1∂µ1φ1e

−iΩτ |1⟩ ⟨2|+ (ξµ1)∗∂µ1φ1e
iΩτ |2⟩ ⟨1|

)︃
, (6.6.2)

F2 =
1

i2γ(t1)γ(t2)

(︃
− ξµ1(ξµ2)∗∂µ1φ1∂µ2φ2e

−iΩτ12 |1⟩ ⟨1|

+ (ξµ1)∗ξµ2∂µ1φ1∂µ2φ2e
iΩτ12 |2⟩ ⟨2|

− ξµ2(ξµ1)∗∂µ2φ2∂µ1φ1e
iΩτ12 |1⟩ ⟨1|

+ (ξµ2)∗ξµ1∂µ2φ2∂µ1φ1e
−iΩτ12 |2⟩ ⟨2|

)︃
=

|1⟩ ⟨1|
γ(t1)γ(t2)

(︂
1
2

Re
(︁
ξµ1ξµ2∗e−iΩτ

)︁
∂µ1∂µ2{φ1, φ2}

+ i
2

Im
(︁
ξµ1ξµ2∗e−iΩτ

)︁
∂µ1∂µ2 [φ1, φ2]

)︂
+

|2⟩ ⟨2|
γ(t1)γ(t2)

(︂
− 1

2
Re
(︁
ξµ1ξµ2∗e−iΩτ

)︁
∂µ1∂µ2{φ1, φ2}

+ i
2

Im
(︁
ξµ1ξµ2∗e−iΩτ

)︁
∂µ1∂µ2 [φ1, φ2]

)︂
. (6.6.3)

Once we take the expectation value of Fj in the initial state as in Eq. (6.2.13), we see

that the lowest order contribution comes from the term in F2 which is proportional to

|1⟩ ⟨1|, giving

P(α, t) =

∫︂ t

0

dt1dt2
Θ12

γ(t1)γ(t2)

[︄(︂
Re
(︁
ξµ1ξµ2∗

)︁
cosΩτ12

+ Im
(︁
ξµ1ξµ2∗

)︁
sinΩτ12

)︂
∂µ1∂µ2∆

H
12

+
(︂
− Im

(︁
ξµ1ξµ2∗

)︁
cosΩτ12

+ Re
(︁
ξµ1ξµ2∗

)︁
sinΩτ12

)︂
∂µ1∂µ2∆

R
12

]︄
. (6.6.4)
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Writing xµ12 ≡ xµ1 − xµ2 , the relevant propagator derivatives are as follows:

∂

∂xµ1
∂

∂xµ2
∆H

12 =
m2

4π

∂

∂xµ1
∂

∂xµ2
Y1(ms12)

ms12

=
m2

4π

∂

∂xµ1

[︃
− Y2(ms12)

ms12

∂

∂xµ2
(ms12)

]︃
=

m4

4π

∂

∂xµ1

[︃
Y2(ms12)

ms12
gµ2ν2

xν212
ms12

]︃
=

m4

4π

[︃
Y2(ms12)

(ms12)2
gµ2µ1 −m2Y3(ms12)

(ms12)2
gµ1ν1

xν112
ms12

gµ2ν2x
ν2
12

]︃
=

m4

4π

[︃
Y2(ms12)

(ms12)2
gµ2µ1 −

Y3(ms12)

(ms12)3
m2xµ112x

µ2
12

]︃
, (6.6.5)

∂

∂xµ1
∂

∂xµ2
∆R

12 =
m2

4π

∂

∂xµ1
∂

∂xµ2
J1(ms12)

ms12

=
m4

4π

[︃
J2(ms12)

(ms12)2
gµ2µ1 −

J3(ms12)

(ms12)3
m2xµ112x

µ2
12

]︃
, (6.6.6)

where Ji(x) and Yi(x) are Bessel functions of the first and second kind of order i, re-

spectively, gµν is the Minkowski spacetime metric, and we have used s12 ≡
√︁
gµνx

µ
12x

ν
12.

Let the dipole moment be ξµ = (χ, ξ sin θ cosφ, ξ sin θ sinφ, ξ cos θ) in the frame of

reference of the detector. The contractions appearing in the probability are then

ξµ1ξµ2∗gµ2µ1 = |χ|2 − |ξ|2 (6.6.7)

ξµ1ξµ2∗xµ112x
µ2
12 = |χ|2τ 212 (6.6.8)

confirming that the transition probability is independent of the orientation of the de-

tector. This is consistent with (but does not imply) an isotropic thermal bath, which is

interesting since the acceleration defines a privileged direction. However, it should be

noted that this calculation is not directly sensitive to the direction of propagation of

the radiation, since the field is traced over and we do not attempt to compare modes

of the scalar field with different directions of momentum, k. This would make for

an interesting future calculation to contribute to the discourse on whether the Unruh

thermal bath is entirely isotropic [22, 170–177]. It may also be illuminating to con-

sider a dipole detector coupled to a vector field instead of a scalar field.

The transition rate in the accelerated frame may now be expressed as

∂P
∂τ

=
m4

4π

∫︂ τ

0

dτ ′
[︄(︃

Y2(ms
′)

(ms′)2
(︁
|χ|2 − |ξ|2

)︁
− Y3(ms

′)

(ms′)3
m2|χ|2τ ′2

)︃
cosΩτ ′
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+

(︃
J2(ms

′)

(ms′)2
(︁
|χ|2 − |ξ|2

)︁
− J3(ms

′)

(ms′)3
m2|χ|2τ ′2

)︃
sinΩτ ′

]︄
, (6.6.9)

where s′ = 2
α

sinh ατ ′

2
.

6.7 Summary

We have employed the manifestly causal, probabilistic method explained in Chapter 4

to calculate the first-order transition rate of a uniformly accelerated UdW monopole

detector from the ground state to the excited state, with the inertial rate subtracted

(Eq. (6.2.30)). The transition rate has been expressed as a sum of two terms; one is

proportional to the retarded propagator and independent of the initial state, and one is

proportional to the Hadamard function and encapsulates all initial state dependence.

Eq. (6.3.9) is the same transition rate, calculated from the perspective of a Rindler

(accelerating) observer, who describes the detector as stationary in Rindler coordi-

nates in a thermal bath of Rindler particles. The two expressions are equal at all times,

including the transient effects which arise due to specifying the field to initially be

in the Minkowski vacuum state. This is due to the Unruh effect: an observer accel-

erating through the Minkowski vacuum experiences a thermal bath of Rindler parti-

cles. Eq. (6.4.7) is the corresponding transition rate for an inertial detector in a ‘real’

(Minkowski) thermal bath. This rate is different and is unrelated to the Unruh effect.

It is only coincidentally equal for a massless scalar field. The Unruh effect has also

been presented as the result of a time-dependent Doppler shift of the field modes.

The numerical results are new and highlight the dependence of the transients on the

mass of the scalar field, the acceleration and the energy gap of the detector. The late-

time behaviour of the transition rate has been explored numerically and compared to

the transition rate for an inertial detector in the Minkowski thermal bath. Finally, we

used our formalism to calculate the transition rate of a uniformly accelerated dipole

detector.

The probability-level framework presented here can be utilised to study the response

of an accelerated detector with a different model of the detector, a smooth switching

function for the interaction (resulting in different transients), or different background

spacetimes. It can also be used to study two accelerating UdW detectors, where the

appearance of retarded propagators will then indicate clear causal connections be-
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tween the two detectors and which contributions are acausal, as in the Fermi two-

atom system (Section 4.4). It also has the advantage of being able to treat mixed states

and (semi-)inclusive observables, potentially simplifying calculations that are more

complex at the amplitude level. This approach may also prove useful in studies of

RQI, where working with mixed states arises naturally.
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Chapter 7

Black Holes

Following our exploration of the Unruh effect in the previous chapter, we now turn

our attention to a closely related topic in quantum field theory (QFT): black holes.

The Unruh effect itself emerged from Unruh’s study [18] of black holes and Hawking

radiation [15, 16]. Unruh recognised that an observer undergoing constant proper ac-

celeration would perceive a thermal bath of particles, akin to the radiation observed

near the event horizon of a black hole. This insight suggested a connection between

acceleration and gravitational effects in the context of QFT, as one may expect through

the strong equivalence principle of general relativity [152, 178, 179].

There are further interesting parallels between the Unruh effect and Hawking radi-

ation which we encounter in this chapter: both can be thought of as the result of a

horizon (a Rindler horizon or a black hole event horizon); the Unruh temperature,

TU = α/2π is of a similar form to the Hawking temperature, TH = κ/2π; and the

coordinate transformation between inertial and accelerated coordinates is mathemat-

ically similar to the transformation between Schwarzschild and Kruskal-Szekeres co-

ordinates. As such, the study of the Unruh effect naturally leads to the investigation of

black holes, with acceleration serving as a simpler analogue to the gravitational field

encountered near a black hole.

The primary goal of this chapter is to serve as a literature review and a pedagogi-

cal introduction to the subject of the response of Unruh-DeWitt (UdW) detectors in

(3 + 1)-dimensional Schwarzschild spacetime, which describes a spherically symmet-

ric black hole. The material covered here is central not only to the study of black hole

thermodynamics and Hawking radiation, but also to our broader understanding of

quantum gravity. By engaging with these ideas and investigating how quantum fields

behave under extreme conditions, we begin to uncover the nature of spacetime itself,

via the thermodynamic properties of gravity [121, 180–184], the idea that spacetime
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is emergent from entanglement [185–188], and the holographic principle [71, 189–

191]. The response of detectors in black hole spacetimes provides valuable insights

into the interplay between quantum field theory and general relativity, and lays the

groundwork for future research in the quest to understand the quantum nature of grav-

ity.

Aside from (3 + 1)-dimensional Schwarzschild black holes, progress has been made

studying other black hole spacetimes such as BTZ black holes [192–196], where the

pullback of the Wightman function to an infalling trajectory can be computed as a

sum over images instead of the unavoidable mode sum in the Schwarzschild case. In-

teresting related research extends to the more tractable (1+1)-dimensional Schwarzschild

spacetime [132, 197–199], de Sitter space [200–203], and analogue gravity mod-

els [204–213]. Some studies define quantities such as an effective temperature [214–

220], which give physical insight without considering the response of an UdW detec-

tor.

In this chapter, we first review the foundational concepts of Penrose diagrams (Sec-

tion 7.1), Killing vectors (Section 7.2), the Schwarzschild metric (Section 7.3), and

the quantisation of a scalar field in the Schwarzschild geometry, examining the var-

ious vacuum states that can arise in this context (Sections 7.4 and 7.5). Section 7.6

then summarises the results in the literature regarding how UdW detectors respond

for different trajectories in these different vacua. Section 7.7 concludes and suggests

interesting future work.

7.1 Penrose Diagrams

The structure of spacetime is encapsulated by the spacetime metric, gµν , which relates

the spacetime coordinates, xµ, to the line element, ds2, by [151–153, 178]

ds2 = gµν(x)dxµdxν , (7.1.1)

where µ, ν = 1, 2, . . . , n− 1 for an n-dimensional spacetime. In order to visualise the

causal structure of spacetime, we introduce Penrose diagrams [221], which provide

a compact representation of infinite spacetimes using conformal transformations.

These transformations rescale the spacetime metric, gµν , by a position-dependent fac-
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tor, effectively shrinking or stretching the geometry. Mathematically, this is expressed

as:

gµν(x) → gµν(x) = Ω2(x)gµν(x) , (7.1.2)

where Ω(x) is a real, finite, continuous, and non-vanishing function. Conformal trans-

formations change the metric tensor and hence the geometry of the spacetime itself,

and so must be distinguished from coordinate transformations, xµ → x′µ, which sim-

ply relabel the coordinates without altering the underlying geometry.

A key feature of Penrose diagrams is that rays of light (null geodesics) always travel

at 45◦, as conformal transformations preserve angles. This property highlights the

causal structure of spacetime by clearly delineating which regions are causally con-

nected to a given event. The boundaries of these regions are defined by the event’s

past and future light cones. Consequently, Penrose diagrams are an important tool for

analysing causal relationships.

To better understand Penrose diagrams, consider the simple example of the infinite,

flat, two-dimensional Minkowski spacetime described by the metric,

ds2 = dt2 − dx2 = du dv , (7.1.3)

where we have introduced the null coordinates, u and v, defined by

u = t− x ,

v = t+ x .
(7.1.4)

The coordinate u is known as the outgoing null coordinate because radial outgoing

null geodesics are lines of constant u. Similarly, the coordinate v is known as the in-

going null coordinate. In the null coordinate system, the Minkowski metric is thus

gµν =
1

2

⎛⎝0 1

1 0

⎞⎠ . (7.1.5)

We now perform a coordinate transformation,

u′ = 2 tan−1 u , −π ≤ u′ ≤ π ,

v′ = 2 tan−1 v , −π ≤ v′ ≤ π ,
(7.1.6)
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such that

ds2 =
1

4
sec2

(︂u′
2

)︂
sec2

(︂v′
2

)︂
du′ dv′ , (7.1.7)

therefore

gµν(u
′, v′) =

1

8
sec2

(︂u′
2

)︂
sec2

(︂v′
2

)︂⎛⎝0 1

1 0

⎞⎠ . (7.1.8)

This is still the usual Minkowski metric, expressed in the u′, v′ coordinate system. We

now perform a conformal transformation with

Ω2(x) =

(︃
1

4
sec2

(︂u′
2

)︂
sec2

(︂v′
2

)︂)︃−1

. (7.1.9)

This rescales the Minkowski metric as

gµν(u
′, v′) → gµν(u

′, v′) =
1

2

⎛⎝0 1

1 0

⎞⎠ , (7.1.10)

which results in a line element,

ds2 = du′dv′ . (7.1.11)

This is identical to Eq. (7.1.3), except this line element spans the finite, compact re-

gion −π ≤ {u′, v′} ≤ π. As a result, we can draw the entirety of this spacetime as

a Penrose diagram, as shown in Fig. 7.1. The conformal transformation has rescaled

the infinities of Minkowski spacetime to the boundary lines of the Penrose diagram.

Null rays will travel (at 45◦) to the diagonal boundaries labelled I + (future null in-

finity) and I − (past null infinity). Timelike lines travel from the point labelled i−

(past timelike infinity) to the point labelled i+ (future timelike infinity). Spacelike

lines extend to the points labelled i0 (spacelike infinity).

In four dimensions, the calculation is similar and the Penrose diagram is identical,

where each point of the diagram represents a 2-sphere except for points along the ver-

tical axis and i0, which are spacetime points. The null infinities are thus 3-surfaces.
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Fig. 7.1. The Penrose diagram for Minkowski space. The compact region −π ≤ {u′, v′} ≤ π is
conformal to the entirety of Minkowski space, −∞ ≤ {u, v} ≤ ∞. The labels show future null

infinity (I +), past null infinity (I −), past timelike infinity (i−), future timelike infinity (i+), and
spacelike infinity (i0).

7.2 Killing Vectors

Spacetimes with special geometrical symmetries can be described by Killing vectors.

A Killing vector, ξµ, is a solution to Killing’s equation [151, 152, 179, 222],

Lξgµν(x) = 0 , (7.2.1)

where Lξ is the Lie derivative along the vector field ξµ. Physically, a Killing vector

field is the vector field that generates an isometry of spacetime, meaning it corre-

sponds to a symmetry under which the metric remains invariant. If a spacetime ad-

mits a timelike Killing vector it provides a natural way to define time translations and,

consequently, a preferred notion of positive frequency modes. Specifically, a mode

function φω is said to have positive frequency if it satisfies

Lξφω = −iωφω, ω > 0 . (7.2.2)

This choice ensures a well-defined vacuum state. However, in spacetimes without a

globally timelike Killing vector, such as the Schwarzschild spacetime considered in

this chapter, the notion of positive frequency modes becomes observer-dependent,
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and thus there is no obvious choice of vacuum state.

7.3 The Schwarzschild Metric

Schwarzschild spacetime [223] is a unique solution to the Einstein field equations of

general relativity which describes the spacetime surrounding a spherically symmetric,

non-rotating, uncharged body. In this chapter, we will use it to describe a black hole

with such features. The line element for four-dimensional Schwarzschild spacetime is

ds2 =
(︃
1− 2M

r

)︃
dt2 −

(︃
1− 2M

r

)︃−1

dr2 − r2(dθ2 + sin2 θ dφ2) , (7.3.1)

where M is the mass of the black hole. There are a number of useful coordinate sys-

tems used when working with the Schwarzschild metric. First, the tortoise coordi-

nate, r∗, is given by,

r∗ = r + 2M ln
⃓⃓⃓⃓
r

2M
− 1

⃓⃓⃓⃓
. (7.3.2)

The outgoing and ingoing null coordinates are then defined by

u = t− r∗ ,

v = t+ r∗ .
(7.3.3)

We now define the Kruskal-Szekeres coordinates [224],

u = −4Me−u/4M ,

v = 4Mev/4M ,
(7.3.4)

which are very similar to the coordinates defined in Eq. (6.1.4), reinforcing the rele-

vance of studying the Unruh effect as a flat-spacetime analogue of black hole physics.

The coordinates in Eq. (7.3.4) are defined such that the Schwarzschild line element,

given by Eq. (7.3.1), can be written in a familiar form,

ds2 =
2M

r
e−r/2M du dv − r2(dθ2 + sin2 θ dφ2) . (7.3.5)

The first term is conformal to the two-dimensional Minkowski line element in Eq. (7.1.3).

Applying the same coordinate and conformal transformations described by Eqs. (7.1.6)

and (7.1.10), the resulting Penrose diagram is almost identical to that for Minkowski

155



spacetime (shown in Fig. 7.1). The key difference is that neither of the two left bound-

aries of the diagram are null infinity, I , since the Kruskal-Szekeres coordinates are

only defined for −∞ < u ≤ 0 and 0 ≤ v < ∞, as follows from Eq. (7.3.4).

The bottom-left boundary (v = 0) and the top-left boundary (u = 0) instead both

correspond to r = 2M (and/or t = ∓∞). By inspecting Eq. (7.3.1), one can see

that r = 2M results in a singularity. However, this is not a physical singularity, but

merely a coordinate singularity which results from our choice of coordinate system.

Upon inspection of Eq. (7.3.5), it is clear that there is no singularity at r = 2M in

the {u, v} coordinate system. As a result, we can analytically extend the spacetime

beyond the boundaries v = 0 and u = 0. The result is known as the maximally ex-

tended Kruskal manifold (or the maximally extended Schwarzschild spacetime), and

its Penrose diagram is shown in Fig. 7.2.

This spacetime is also a solution to the vacuum Einstein equation at all spacetime

points, except for at the physical singularity at r = 0, which is denoted by a horizon-

tal zig-zag line on the Penrose diagram (pictured in the future and the past). Region I

(u < 0, v > 0, or r > 2M, −∞ < t < ∞) is the usual Schwarzschild spacetime. Re-

gion II (u > 0, v < 0) is identical to Region I, except the direction of time is reversed

(i.e., t → −t). Region I and Region II are causally disconnected. Physically, Region

II is sometimes interpreted as a separate, causally disconnected universe.

The null ray u = 0 is the latest null ray to reach future null infinity, I +. All null rays

for which u > 0 terminate on the singularity at r = 0. Therefore, since u = 0 is

a 2-surface in four dimensions, it represents the surface which separates regions in

which null geodesics either travel to the singularity or to future infinity. This is the

event horizon, which separates the exterior Region I from the interior of a black hole.

Similarly, v = 0 represents the boundary of Region I from which anything not from

past null infinity, I −, must have originated. Regions from which all world lines leave

are known as white holes. Therefore, Region III (u > 0, v > 0, u v < (4M)2) is the

black hole interior and Region IV (u < 0, v < 0, u v < (4M)2)) is the white hole

interior. The world lines of all observers in Region I and II start at i− and end at i+,

as long as they do not originate from the white hole and avoid the black hole. Space-

times of astrophysical black holes (formed by the collapse of matter) do not include

Regions II and IV, so in this sense they are not physical regions [151].
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Fig. 7.2. The Penrose diagram for the maximally extended Schwarzschild spacetime. Region I is the
exterior to the black hole, Region II is universe causally disconnected from Region I, Region III is the
black hole interior, and Region IV is the white hole interior. The future and past horizons are labelled

H+ and H− respectively, and the physical singularity at r = 0 is marked by a zigzag line.

7.4 Classical Scalar Field in Schwarzschild Spacetime

In this section, we will review the method and results for solving the Klein-Gordon

equation,

∇µ∇µφ = 0 , (7.4.1)

for a massless scalar field, φ(x), in Schwarzschild spacetime. For more details of this

process, see Refs. [151, 214, 225].

For now, let’s only consider Region I. In Schwarzschild coordinates (t, r, θ, ϕ), the

Klein-Gordon equation is separable and its general solution is a linear combination of

the basis modes [118]

Φωℓ(r)Yℓm(θ, ϕ)e
±iωt , (7.4.2)

where ω > 0 and Yℓm is a spherical harmonic [85], with the usual definitions of

ℓ ∈ {0, 1, ...}, m ∈ {−ℓ, ..., ℓ}. Since we will only consider spherically symmetric

situations, we can set

Yℓm(0, φ) =

⎧⎪⎪⎨⎪⎪⎩
(︃
2ℓ+ 1

4π

)︃1/2

, m = 0 ,

0, |m| = 1, 2, 3, . . . ,

(7.4.3)

thus imposing m = 0 (instead of summing over m) without loss of generality. For
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now, however, we shall keep it general. The radial function Φωℓ(r) is a solution to

d2Φ

dr2
+

2 (r −M)

r (r − 2M)

dΦ
dr

+

[︃
ω2r2

(r − 2M)2
− ℓ(ℓ+ 1)

r (r − 2M)

]︃
Φ = 0. (7.4.4)

This equation is known as the generalised spheroidal wave equation [226]. With re-

spect to the timelike Killing vector, ∂t, the positive frequency basis modes are propor-

tional to e−iωt and the negative frequency basis modes are proportional to e+iωt.

If we define the dimensionless variable ρ(r) ≡ rΦ(r), Eq. (7.4.4) takes the form of

the time-independent Schrödinger equation in terms of the tortoise coordinate r∗,

d2ρ

dr2∗
=
[︁
Vℓ(r)− ω2

]︁
ρ, (7.4.5)

with the effective potential

Vℓ(r) ≡
(︃
1− 2M

r

)︃(︃
ℓ(ℓ+ 1)

r2
+

2M

r3

)︃
. (7.4.6)

In the asymptotic regions r → 2M (close to the event horizon) and r → ∞ (far from

the black hole), Vℓ(r) → 0. From Eq. (7.4.5), we conclude that ρωℓ(r) is a linear com-

bination of e±iωr∗ in these asymptotic regions. We now introduce two independent

solutions, characterised by their asymptotic behaviour,

ρin
ωℓ(r) →

⎧⎪⎨⎪⎩B
in
ωℓ e

−iωr∗ , r → 2M,

e−iωr∗ + Ain
ωℓ e

+iωr∗ , r → ∞,
(7.4.7)

and

ρup
ωℓ(r) →

⎧⎪⎨⎪⎩A
up
ωℓ e

−iωr∗ + e+iωr∗ , r → 2M,

Bup
ωℓ e

+iωr∗ , r → ∞,
(7.4.8)

where the A and B terms are reflection and transmission coefficients, respectively.

The values of these coefficients are calculated via normalisation conditions in Ref. [225].

We now have two independent solutions to Eq. (7.4.4),

Φin/up
ωℓ (r) ≡ ρin/up

ωℓ (r)/r, (7.4.9)
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and can thus use Eq. (7.4.2) to define the normalised positive-frequency modes

uin/up
ωℓm(t, r, θ, ϕ) ≡

Yℓm(θ, ϕ)√
4πω

Φin/up
ωℓ (r)e−iωt. (7.4.10)

The set {uin/up
ωℓm, u

in/up∗
ωℓm } for all ω, ℓ,m is a complete set of solutions to the Klein-Gordon

equation in Region I.

The modes uin
ωℓm are called in modes because near the horizon they have the asymp-

totic behaviour

uin
ωℓm ∝ e−iω(t+r∗), r → 2M, (7.4.11)

which represents waves travelling into the horizon with no outgoing component. At

early times, these waves originate infinitely far from the black hole and travel towards

the horizon, scattering off the gravitational potential of the black hole. This results in

part of each wave travelling into the horizon and part travelling back out to infinity.

Consequently, these modes are a superposition of ingoing and outgoing components

at r → ∞, as seen in Eq. (7.4.7). ‘Out modes’ would be defined as having no in-

coming component near the horizon.

Conversely, the modes uup
ωℓm are called up modes because far from the black hole they

have the asymptotic behaviour

uup
ωℓm ∝ e−iω(t−r∗), r → ∞, (7.4.12)

which represents waves travelling up from the black hole (at r → ∞) with no ingoing

component. These waves originate on the past horizon of the white hole, travelling

away from the horizon and scattering off the potential. This causes part of each wave

to travel back towards the black hole horizon and part to travel out to infinity. Con-

sequently, these modes are a superposition of ingoing and outgoing components at

r → 2M , as seen in Eq. (7.4.8). ‘Down modes’ would be defined as having no outgo-

ing component at r → ∞.

Fig. 7.3 visualises these modes on a Penrose diagram for the exterior region in Schwarzschild

spacetime.

Since Region II is identical to Region I except for time-reversal, the mode solutions

for Region II take the same form as Eq. (7.4.10). However, due to the time-reversal,

the future-directed Killing vector with which we should define the positive frequency
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Fig. 7.3. Illustrations of the ‘in’ (shown left) and ‘up’ (shown right) modes, defined in Eq.(7.4.10).
The modes are shown in Region I of the Schwarzschild spacetime, i.e., the exterior to the black hole.

modes is ∂−t instead of ∂t. The result of this is that the mode solutions in Region II,

which we denote as v(x) instead of u(x), are the complex conjugate of Eq. (7.4.10),

vin/up
ωℓm(t, r, θ, ϕ) ≡

Y ∗
ℓm(θ, ϕ)√
4πω

Φin/up*
ωℓ (r)eiωt. (7.4.13)

For Regions III and IV, the in modes can be analytically continued from Regions I

or II, and thus are defined in the same way (such that they are continuous across the

horizon) [227]. Due to the presence of the singularity, and the absence of spatial in-

finity, there is no analogue of the up modes in Regions III and IV. The in modes and

their complex conjugates suffice as an orthogonal basis set to span these regions. We

now have basis modes which are solutions to the Klein-Gordon equation in each re-

gion of the maximally extended Schwarzschild spacetime.

7.5 Quantising the Scalar Field

Now that we understand the classical solutions for the scalar field modes in Schwarzschild

spacetime, we must quantise the theory. In Minkowski spacetime, the standard way to

do this is to take our complete set of orthonormal basis modes and define creation/an-

nihilation operators to couple them with. Our choice of basis modes and creation/an-

nihilation operators will then define a vacuum state and corresponding Fock states.
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This is relatively straightforward due to the presence of a global timelike Killing vec-

tor, ∂/∂t, which allows a natural definition of positive and negative frequency modes,

(2ω(2π)3)−1/2e∓ik·x. However, in curved spacetime, choosing basis modes and defin-

ing a vacuum state is more subtle due to the lack of a unique global timelike Killing

vector and the presence of event horizons. In Schwarzschild spacetime, we typically

choose different vacuum states associated with different basis modes. If an eternal

black hole were to exist in the universe, we could observe which quantum state is ac-

tually realised. Nevertheless, having a choice of vacua is advantageous in the sense

that we can choose states to represent different processes of interest. The standard

choices of vacuum states in Schwarzschild spacetime are the Boulware, Hartle-Hawking,

and Unruh vacua, each of which is motivated by different physical considerations.

7.5.1 The Boulware Vacuum

The Boulware vacuum [156] is defined by requiring that the mode functions be posi-

tive frequency with respect to the Schwarzschild Killing vector ∂t (where t is Schwarzschild

time) at spatial infinity in Region I, and the Killing vector ∂−t in Region II. In other

words, we choose basis modes for the scalar wave equation proportional to e−iωu, e−iωv,

where {u, v} are the Schwarzschild null coordinates. These basis modes oscillate in-

finitely quickly at the event horizon. The mode decomposition of the scalar field is

thus

φ(x) =
∑︂
lm

∫︂ ∞

0

dω
(︁
bin
ωlmu

in
ωlm + bup

ωlmu
up
ωlm + b′ inωlmv

in
ωlm + b′ up

ωlmv
up
ωlm + H.c.

)︁
, (7.5.1)

where ‘H.c’ stands for the Hermitian conjugate of the preceding terms and the annihi-

lation operators bωlm and b′ωlm define the Boulware vacuum |0B⟩ by

b in/up
ωlm |0B⟩ = b′ in/up

ωlm |0B⟩ = 0.

Physically, the Boulware vacuum resembles the Minkowski vacuum at large distances

from the black hole but leads to divergent stress-energy tensor components near the

event horizon. Specifically, the expectation value of the renormalised stress-energy

tensor ⟨Tµν⟩ diverges at the horizon, signalling that this vacuum is unphysical for de-

scribing a black hole with any thermal radiation [17]. This behaviour is analogous

to the Rindler vacuum, |0R⟩, of an accelerating observer. An observer at R → 2M

in |0B⟩ in Schwarzschild spacetime is similar to an accelerating observer at α → ∞
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in |0R⟩ in Minkowski spacetime. Neither detect particles due to the definition of the

vacuum, but the vacuum itself diverges. Likewise, an observer at R → ∞ in |0B⟩ in

Schwarzschild spacetime is similar to an accelerating observer at α → 0 in |0R⟩ in

Minkowski spacetime (which reduces to the Minkowski vacuum, |0M⟩, for α → 0).

The Boulware vacuum is a suitable choice for Schwarzschild spacetime when there is

no physical event horizon, such as in the case of the spacetime exterior to the Earth’s

surface [228]. Since the Earth’s event horizon would lie deep within its interior, a

different metric is required there. The absence of an event horizon implies that no

Hawking radiation is present in the spacetime surrounding the Earth, even though this

region can still be described by the Schwarzschild metric.

7.5.2 The Hartle-Hawking Vacuum

The Hartle-Hawking vacuum [229] is defined by requiring that the modes be positive

frequency with respect to the Kruskal Killing vector ∂t in all regions (i.e., they are

proportional to e−iωu, e−iωv, where {u, v} are the Kruskal null coordinates). In terms

of in and up modes, the Hartle-Hawking vacuum is defined by the normalised super-

positions of u(x) and v(x),

win/up
ωℓm ≡ uin/up

ωℓm + e−4πMωvin/up∗
ωℓm√

1− e−8πMω
, (7.5.2a)

w̄in/up
ωℓm ≡ e−4πMωuin/up∗

ωℓm + vin/up
ωℓm√

1− e−8πMω
. (7.5.2b)

The set of basis modes {win/up
ωℓm, w̄

in/up
ωℓm, w

in/up*
ωℓm , w̄in/up*

ωℓm } form a complete orthonormal set

of solutions to the Klein-Gordon equation. We can hence quantise the scalar field in

terms of these modes,

φ(x) =
∑︂
lm

∫︂ ∞

0

dω
(︁
d in
ωlmw

in
ωlm + d up

ωlmw
up
ωlm + d̄ in

ωlmw̄
in
ωlm + d̄ up

ωlmw̄
up
ωlm + H.c.

)︁
,

(7.5.3)

where the Hartle-Hawking vacuum |0H⟩ is defined by d in/up
ωlm |0H⟩ = d̄ in/up

ωlm |0H⟩ = 0.

The Hartle-Hawking vacuum state is regular across the entire extended Schwarzschild

spacetime, except for at the physical singularities. Observers at r → ∞ observe a
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thermal bath of radiation with a temperature equal to the Hawking temperature [179],

TH =
κ

2π
=

1

8πM
, (7.5.4)

where κ = 1/4M is the surface gravity of the black hole.

The Hartle-Hawking state describes a black hole in thermal equilibrium with its sur-

roundings and its own Hawking radiation, which models a black hole enclosed in a

reflecting cavity. The appearance of |0H⟩, which is defined on the entire manifold,

as a thermal bath to an observer at infinity, confined to Region I, is a consequence of

the horizons causally disconnecting parts of the spacetime. In doing so, information

about the modes in Region II is lost, which is naturally associated with a non-zero

entropy and thus a thermal state, instead of a pure state. This is similar to the appear-

ance of the Minkowski vacuum as a thermal bath to an accelerating observer, due to

the horizon in Rindler space.

7.5.3 The Unruh Vacuum

The Unruh vacuum [18] uses a mix of the previously defined basis modes, using the

in modes of the Boulware vacuum state and the up modes of the Hartle-Hawking vac-

uum state. The associated mode decomposition of the scalar field is thus,

φ(x) =
∑︂
ℓ,m

∫︂ ∞

0

dω
(︁
bin
ωℓmu

in
ωℓm + dup

ωℓmw
up
ωℓm +b

′in
ωℓmv

in
ωℓm + d̄up

ωℓmw̄
up
ωℓm + h.c.

)︂
,

(7.5.5)

where the Unruh vacuum |0U⟩ is defined by bin
ωℓm |0U⟩ = dup

ωℓm |0U⟩ = b
′in
ωℓm |0U⟩ =

d̄up
ωℓm |0U⟩ = 0.

The Unruh vacuum is defined to model a black hole that forms from gravitational

collapse and emits Hawking radiation. The vacuum condition is imposed such that

ingoing modes are defined as positive frequency with respect to the Schwarzschild

time at past null infinity, ensuring no incoming radiation from I −, while outgoing

modes are positive frequency with respect to Kruskal coordinates. Outgoing modes

appear as thermal flux at future null infinity, at the Hawking temperature, TH, captur-

ing the effect of Hawking radiation. This vacuum state arises in models of the forma-

tion of black holes via gravitational collapse in the late-time, near-horizon limit [230].

The choice of basis modes is a way of recreating the physical effects of such a col-
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lapse [151]. Due to this, |0U⟩ is a physically realistic vacuum state for observers falling

into astrophysical black holes sufficiently long after their formation.

7.6 Unruh-DeWitt Detectors in Schwarzschild Spacetime

Just like in Minkowski space, the interaction Hamiltonian for an UdW detector cou-

pled to a real scalar field, φ(x), in curved spacetime is

Hint = λχ(t)MD(t)φ(xD, t) (7.6.1)

where λ is a coupling constant, χ(t) is the switching function, MD(t) is the monopole

operator representing the detector, and xD is the trajectory of the detector.

The detector response function, F (Ω), as defined in Eq. (6.2.23), is still given by

F (Ω) =

∫︂ ∞

−∞
dτ1
∫︂ ∞

−∞
dτ2e−iΩ(τ1−τ2)χ(τ1)χ(τ2)W (τ1, τ2) , (7.6.2)

where W (τ1, τ2) ≡ W (xD(τ1), xD(τ2)) is the pull-back of the positive Wightman

function,

W (x1, x2) ≡ ⟨Ψ|φ(x1)φ(x2)|Ψ⟩ (7.6.3)

to the trajectory of the detector, for a given state of the scalar field, |Ψ⟩. The integra-

tion is now over −∞ < τ1, τ2 < ∞ and the interaction duration is thus controlled

solely by the switching function. All of the information about the trajectory of the de-

tector and the state of the field in Eq. (7.6.2) is contained in the Wightman function,

so it is this we must alter when investigating different detector trajectories in curved

spacetimes for different vacuum states. Given a vacuum state, |0⟩, defined by the set

of orthonormal basis states {uk(x), u∗k(x)} for frequency mode k, the positive Wight-

man function can be expressed as

W (x1, x2) =
∑︂
k

uk(x1)u
∗
k(x2) . (7.6.4)

Eq. (7.6.2) then becomes

F (Ω) =
∑︂
k

⃓⃓⃓⃓∫︂ ∞

−∞
dτ1e−iΩτ1χ(τ1)uk(x(τ1))

⃓⃓⃓⃓2
. (7.6.5)
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We can now simply substitute in the basis modes for each vacuum of interest.

A stationary trajectory is defined by the time-translational invariance of the Wight-

man function, such that W (τ1, τ2) = W (τ1 − τ2). For these cases, the algebraic ex-

pressions can simplify, and integrals may become analytically solvable. Furthermore,

stationarity allows for the derivative of F (Ω) with respect to τ to be approximated by

F (Ω)/τ as τ → ∞, where τ is the total duration of the measurement in proper time,

since the transition rate is time-independent. This defines the response rate, Ḟ , which

can be interpreted as the average rate of particles detected along the trajectory1. In

these stationary cases, the response rate is given by

Ḟ (Ω) =

∫︂ ∞

−∞
dτ12 e−iΩτ12 W (τ12) , (7.6.6)

where τ12 ≡ τ1 − τ2 and the time-translation invariance means we are free to push

the switch-on and switch-off time of the detector to the asymptotic past and future,

respectively [227], effectively setting the switching function to χ(t) = 1.

Defining Ḟ is more subtle for non-stationary trajectories, since defining an instanta-

neous transition rate requires carefully taking the limit of the switching function be-

coming arbitrarily sharp at the time of measurement, leading to divergences due to

the structure of the Wightman function [160, 162, 163, 214]. Due to its non-trivial

time dependence, the response rate is also typically more computationally demand-

ing.

7.6.1 Fixed Radial Distance

A static detector at fixed radius in Schwarzschild spacetime is studied in Ref. [227],

including numerical plots of the response rate for different vacuum states, detector

energy gaps, and radial distances. Only Region I, the exterior of the black hole, is

studied. Here, we summarise the results.

For a static detector, r = R at all times. The difference in Schwarzschild time,

t12 ≡ t1 − t2, is then t12 = τ12/
√︁

1− 2M/R. The angular coordinates can be set to

θ = φ = 0 without loss of generality. Due to stationarity, we can use Eq. (7.6.6) to
1F (Ω) gives the fraction of detectors in a given ensemble which have undergone a transition, but

a measurement alters the dynamics of the system, meaning this interpretation no longer applies after a
measurement. Thus, to measure Ḟ (Ω), one requires a set of identical ensembles, with each ensemble
used to measure F (Ω) at a single value of τ .
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compute the response rate for different vacuum states (different Wightman functions).

Stationarity also allows us to set the measurement time to τ → ∞ such that transient

effects have subsided and we are measuring the ‘steady-state’ response rate. As such,

the choice of switching function is arbitrary, and it is effectively taken to be a top-hat

function.

Throughout this section, the results are given in terms of the normalised radial solu-

tions

Φ̃in
wℓ = Φin

wℓ , Φ̃up
wℓ =

Φup
wℓ

2M
, (7.6.7)

where Φup/in
wℓ are solutions to Eq. (7.4.4) with specific boundary conditions given by

Eqs. (7.4.7), (7.4.8), and (7.4.9). There are no known exact analytic expressions for

these radial solutions, so they must be solved computationally. These solutions a de-

scribed further in Refs. [225, 227] (but note the opposite tilde notation).

Boulware Vacuum

In the Boulware vacuum state, the Wightman function evaluated on a static trajectory

is given by

WB(x, x
′) =

∞∑︂
ℓ=0

∫︂ ∞

0

dω
(2ℓ+ 1)

16π2ω
e−iωτ12/

√︁
1−2M/R

(︂
|Φ̃up

ωℓ(R)|
2 + |Φ̃in

ωℓ(R)|2
)︂
.

(7.6.8)

Substituting this into Eq. (7.6.6), the response rate is

ḞB(Ω) =
Θ(−Ω)

8π|Ω|

∞∑︂
ℓ=0

(2ℓ+ 1)
(︂
|Φ̃up

ω̃ℓ(R)|
2 + |Φ̃in

ω̃ℓ(R)|2
)︂
, (7.6.9)

where ω̃ ≡ Ω
√︁

1− 2M/R. This response rate is zero for positive detector energy

gaps, Ω > 0. In other words, the excitation rate is zero, since Ω < 0 corresponds to

de-excitations. This is similar to the transition rate of an inertial detector in Minkowski

spacetime, −ΩΘ(−Ω)/2π [227], which is consistent with Eq. (6.4.9) in that it van-

ishes for positive energy gap (excitations) and massless fields. A vanishing excitation

rate makes sense for the Boulware vacuum state, which is defined as detecting no in-

coming or outgoing particles. The flat-spacetime analogy is an accelerating detector’s

excitation rate is zero in the Rindler vacuum state.

The modifications to this rate are due to the curvature of spacetime, and can be thought
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of as the local density of states [231]. For R → ∞, the response rate becomes iden-

tical to that of an inertial detector in Minkowski spacetime in the Minkowski vacuum

state. This is analogous to the Rindler vacuum state becoming equal to the Minkowski

vacuum state when α → 0, for an accelerating detector in Minkowski spacetime, as

studied in Chapter 6.

Hartle-Hawking Vacuum

In the Hartle-Hawking vacuum state, the Wightman function evaluated on a static tra-

jectory is given by

WH(x, x
′) =

∞∑︂
ℓ=0

∫︂ ∞

0

dω
(2ℓ+ 1)

16π2ω sinh (4πMω)

(︂
|Φ̃up

ωℓ(R)|
2 + |Φ̃in

ωℓ(R)|2
)︂

× cosh

[︄
4πMω − iωτ12√︁

1− 2M/R

]︄
,

(7.6.10)

The response rate is then

ḞH(Ω) =
1

8πΩ

1

eΩ/Tloc − 1

∞∑︂
ℓ=0

(2ℓ+ 1)
(︂
|Φ̃up

ω̃ℓ(R)|
2 + |Φ̃in

ω̃ℓ(R)|2
)︂
, (7.6.11)

where ω̃ ≡ Ω
√︁

1− 2M/R and Tloc is the local Hawking temperature, defined by

Tloc ≡
1

8πM
√︁

1− 2M/R
. (7.6.12)

Since the mode functions, Φ̃up/in
ω̃ℓ , only depend on the absolute value of ω̃, this response

rate obeys the principle of detailed balance [232–236],

ḞH(Ω) = e−Ω/TlocḞ (−Ω) , (7.6.13)

which means that excitation rate out of the ground state equals the de-excitation rate

into the ground state, corrected with the Boltzmann factor expressing the relative

population of the excited state with respect to the ground state, provided the detec-

tor is in thermal equilibrium at temperature T . Thus, this condition, which follows

from the Kubo-Martin-Schwinger (KMS) condition [237–239], is often used to define

thermal equilibrium [155]. This confirms the thermality of the Hartle-Hawking state

in the KMS sense.
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The physical interpretation is that the detector, fixed at radial distance R, is in equilib-

rium with a thermal bath at temperature Tloc (which indeed tends to TH = 1/8πM at

r → ∞). This situation is analogous to an accelerating UdW detector being in equi-

librium with a thermal bath of Rindler particles (once the transients have subsided) in

the Minkowski vacuum state in Minkowski spacetime, as studied in Chapter 6.

Unruh Vacuum

In the Unruh vacuum state, the Wightman function evaluated on a static trajectory is

given by

WU(x, x
′) =

∞∑︂
ℓ=0

∫︂ ∞

0

dω
(2ℓ+ 1)

16π2ω
×[︄

|Φ̃up
ωℓ(R)|2

2 sinh (4πMω)

(︂
e4πω−iωτ12/

√︁
1−2M/R + e−4πω+iωτ12/

√︁
1−2M/R

)︂
+ |Φ̃in

ωℓ(R)|2e−iωτ12/
√︁

1−2M/R

]︄
.

(7.6.14)

Substituting this into Eq. (7.6.6), we get

ḞU(Ω) =
∞∑︂
l=0

(2ℓ+ 1)

4π

[︄
|Φ̃up

ω̃ℓ(R)|2

2Ω (eΩ/Tloc − 1)
− |Φ̃in

ω̃ℓ(R)|2

2Ω
Θ(−Ω)

]︄
, (7.6.15)

where ω̃ ≡ Ω
√︁

1− 2M/R and Tloc is given by (7.6.12). The first term (involving up

modes) is identical to the term in involving up modes in the Hartle-Hawking response

rate (Eq. (7.6.11)). The second term (involving in modes) is identical to the term in-

volving in modes in the Boulware response rate (Eq. (7.6.9)). This reflects how the

Unruh vacuum, |0U⟩, is constructed as a combination of the field modes relevant to

|0H⟩ and |0B⟩. The contribution from the in modes vanishes for Ω > 0 (detector ex-

citations). The contribution from the up modes represents a thermal flux of outgo-

ing radiation, which vanishes as R−2 as R → ∞ [227]. Consequently, the Unruh

response rate mimics the Boulware response rate at infinity, in that it tends to zero.

7.6.2 Circular Orbit

In this section, we summarise the results in Ref. [227] for the transition rate of a de-

tector orbiting the Schwarzschild black hole on a circular geodesic. We once again
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consider the Boulware, Hartle-Hawking, and Unruh vacuum states. The detector tra-

jectory is

t = aτ , r = R , θ = π/2 , φ = bτ , (7.6.16)

where R > 3M and
a ≡

√︁
R/(R− 3M) ,

b ≡ 1

a

dφ

dt
=

1

a

√︁
M/R3 .

(7.6.17)

There are no circular orbits for R < 3M , trajectories with 3M < R ≤ 6M are unsta-

ble, and trajectories with R > 6M are stable [152, 240–242]—although the stability

of the orbit has no qualitative effect on the transition rate [227]. The normalised solu-

tions Φ̃up/in
wℓ are the same as those in Section 7.6.1.

Boulware Vacuum

In the Boulware vacuum state, the Wightman function evaluated on a circular-orbit

trajectory is given by

WB(x, x
′) =

∞∑︂
ℓ=0

ℓ∑︂
m=−ℓ

∫︂ ∞

0

dω
(ℓ−m)!(2ℓ+ 1)|Pm

ℓ (0)|2

16π2ω(ℓ+m)!
eimbτ12−iaωτ12

×
(︂
|Φ̃up

ωℓ(R)|
2 + |Φ̃in

ωℓ(R)|2
)︂
,

(7.6.18)

where Pm
ℓ (0) are the associated Legendre polynomials [243]. The response rate is

then

ḞB (Ω) =
1

a

∞∑︂
ℓ=0

ℓ∑︂
m=−ℓ

(ℓ−m)!(2ℓ+ 1)|Pm
ℓ (0)|2

8πω−(ℓ+m)!

×
(︂
|Φ̃up

ω−ℓ
(R)|2 + |Φ̃in

ω−ℓ(R)|
2
)︂
Θ(mb− Ω) ,

(7.6.19)

with

ω− ≡ (mb− Ω)/a . (7.6.20)

Unlike the case of a static detector in the Boulware vacuum (Eq. (7.6.9)), the response

rate in Eq. (7.6.19) has a non-vanishing excitation component that decreases as the ra-

dius increases. This is consistent with the Boulware vacuum state approximating to

the Minkowski vacuum state as R → ∞, as well as the circular-orbit detector behav-

ing like a a static detector in the same limit.
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Hartle-Hawking Vacuum

In the Hartle-Hawking vacuum state, the Wightman function evaluated on a circular-

orbit trajectory is given by

WH(x, x
′) =

∞∑︂
ℓ=0

+ℓ∑︂
m=−ℓ

∫︂ ∞

0

dω
(ℓ−m)!(2ℓ+ 1)|Pm

ℓ (0)|2

32π2ω(l +m)! sinh (4πMω)

×
(︂
|Φ̃up

ωℓ(R)|
2 + |Φ̃in

ωℓ(R)|2
)︂

×
[︁
e4πMω−iaωτ12+imbτ12 + e−4πMω+iaωτ12−imbτ12

]︁
.

(7.6.21)

The response rate is then

ḞH (Ω) =
∞∑︂
ℓ=0

+ℓ∑︂
m=−ℓ

(ℓ−m)!(2ℓ+ 1)|Pm
ℓ (0)|2

16π(l +m)!

×

[︄(︂|Φ̃up
ω−ℓ

(R)|2 + |Φ̃in
ω−ℓ

(R)|2
)︂
e4πMω−

aω− sinh (4πMω−)
Θ(mb− Ω)

+

(︂
|Φ̃up

ω+ℓ
(R)|2 + |Φ̃in

ω+ℓ
(R)|2

)︂
e−4πMω−

aω+ sinh (4πMω+)
Θ(mb+ Ω)

]︄
,

(7.6.22)

with

ω± ≡ (mb± Ω)/a . (7.6.23)

In the limit of a large energy gap, Ω, Eq. (7.6.22) becomes thermal (in the KMS sense,

defined by Eq. (7.6.13)) at a temperature that is higher than the local Hawking tem-

perature. This discrepancy is larger than the Dopper blueshift factor due to the veloc-

ity of the circular geodesic with respect to the static detectors, as found in Ref. [244]

for a model that suppressed the angular dependence of the field. Thus, the physical

explanation seems to be that the transition rate at large excitation energies is dom-

inated by the most energetic field quanta, and these are seen by the detector from a

head-on direction and are hence blueshifted more than by the Doppler shift factor that

accounts for just the time dilation.

Due to the analogy between the static UdW detector in the Hartle-Hawking vacuum

state in Schwarzschild spacetime and the accelerated UdW detector in the Minkowski

vacuum state in Minkowski spacetime, it seems natural to ask what the analogy of cir-

cular motion is in the flat-spacetime case [245]. Ref. [227] suggests that the answer

is a uniformly accelerating UdW detector in Minkowski space with a constant veloc-
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ity drift in the transverse direction. They show the transition rate in such a scenario

aligns with Schwarzschild circular-orbit detector rate for large orbital radius.

Unruh Vacuum

In the Unruh vacuum state, the Wightman function evaluated on a circular-orbit tra-

jectory is given by

WU(x, x
′) =

∞∑︂
ℓ=0

ℓ∑︂
m=−ℓ

∫︂ ∞

0

dω
(ℓ−m)!(2ℓ+ 1)|Pm

ℓ (0)|2

16π2(ℓ+m)!
×

×

[︄
|Φ̃up

ωℓ(R)|2
(︁
e4πMω−iaωτ12+imbτ12 + e−4πMω+iaωτ12−imbτ12

)︁
2ω sinh (4πMω)

+
|Φ̃in

ωℓ(R)|2e−iaωτ12+imbτ12
ω

]︄
. (7.6.24)

The response rate is then

ḞU (Ω) =
1

a

∞∑︂
ℓ=0

ℓ∑︂
m=−ℓ

(ℓ−m)!(2ℓ+ 1)|Pm
ℓ (0)|2

8π(ℓ+m)!

×

[︄(︄
|Φ̃up

ω−ℓ
(R)|2

2ω− sinh (4πMω−)
e4πMω− +

|Φ̃in
ω−ℓ

(R)|2

ω−

)︄
Θ(mb− Ω)

+
|Φ̃up

ω+ℓ
(R)|2

2ω+ sinh (4πMω+)
e−4πMω+Θ(mb+ Ω)

]︄
, (7.6.25)

with

ω± ≡ (mb± Ω)/a . (7.6.26)

Similarly to the static case, Ref. [227] shows that, as the radius increases, the circular-

geodesic rates in the Boulware and Unruh states (Eq. (7.6.19) and (7.6.25)) become

equal, whereas the ratio of the Hartle-Hawking rate (Eq. (7.6.22)) to Unruh rate be-

comes large. As is the case for the circular-orbit detector in the Hartle-Hawking state,

Eq. (7.6.25) becomes thermal in the KMS sense in the limit of large energy gap.

7.6.3 Radial Free Fall

An UdW detector falling radially into a black hole is a non-stationary situation. One

result of this is that defining the instantaneous transition rate is more subtle, since
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we cannot use time-translation invariance to move the switching on and off into the

asymptotic past and future, respectively (which previously allowed us differentiate out

the formally divergent integral over proper time). Furthermore, the sharp-switching

limit (i.e., the switching function becoming a top-hat function) can introduce diver-

gences that must be regularised by parameterising the Wightman function, which is

formally a distribution, and carefully taking the limit of the switching function be-

coming arbitrarily sharp [160, 162, 163, 214]. The non-trivial time dependence must

therefore be accounted for when attempting to define an instantaneous transition rate.

In addition, we are interested in the case of a (3+1)-dimensional Schwarzschild black

hole, in which the expressions relevant for an infalling UdW detector (such as the ra-

dial solutions to Eq. (7.4.4)) are not analytically solvable. Numerically, the equations

for the transition rate are much more computationally demanding and have not yet

been made to converge [214, 225, 246]. Specifically, integrating the Wightman func-

tions over time, τ12, for a non-stationary trajectory no longer results in δ-functions

which collapse the integral over ω (which was performed implicitly in the results of

Sections 7.6.1 and 7.6.2), meaning the numerical evaluation of the transition rate be-

comes significantly more involved. For example, the Wightman function is divergent

at short distances, and while it is known how the divergent parts are subtracted in the

expressions for the transition probability and transition rate [162, 225], the challenge

in numerical calculations is to implement these subtractions term-by-term in a mode

sum. As a result, this section will focus on the simpler case of the transition probabil-

ity instead of the transition rate.

Since the detector is destined to reach the singularity, we must cut off the measure-

ment at a finite time. Furthermore, in order to probe the local structure of the space-

time as we fall into the black hole, we should only switch on the detector for a short,

finite time. Otherwise, we may be able to conclude that the detector was excited, but

we would not be able to tell where on its trajectory this occurred. However, if the de-

tector is switched on for too short a time, the transition probability will be dominated

by transient switching effects.

Ref. [214] is the latest paper to study this situation for a (3+1)-dimensional Schwarzschild

black hole, and the authors conclude that the time spent near the event horizon is shorter

than the time taken for transient effects to subside (for all choices of vacuum state),

meaning that an infalling UdW detector could never be used to unambiguously detect
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physical radiation (such as Hawking radiation) near the event horizon of a black hole.

Nevertheless, they derive the relevant equations to calculate the (albeit transients-

dominated) transition probability of a radially infalling UdW detector in the Boul-

ware, Hartle-Hawking, and Unruh vacuum states. In this section, we will review the

results.

Ref. [246] also studies the transition probability of an UdW detector falling radially

into a (3 + 1)-dimensional Schwarzschild black hole (for the same vacuum states),

and they arrive at slightly different conclusions. The main difference to Ref. [214]

is that Ref. [246] reports a small local extremum in transition probability as the de-

tector crosses the event horizon. This result would contradict the generally-accepted

prediction motivated from the equivalence principle: An observer crossing the event

horizon of a black hole is locally in free fall, and hence experiences nothing special

as they cross the horizon (for a black hole massive enough such that tidal effects are

negligible near the horizon). Ref. [214] disagrees with this result, and the original au-

thors have admitted there is a lack of analytic corroboration [192]. However, more

evidence for its existence would be incredibly interesting.

In Kruskal coordinates, the trajectory of a radially infalling detector is given by

u = −4M(z − 1)ez+z
2/2+z3/3 ,

v = 4M(z + 1)e−z+z
2/2−z3/3 ,

(7.6.27)

where z = (τ/τH)
1/3. τ ∈ (−∞, 0) is the proper time, and τH = −4M/3. In these

coordinates, the detector starts its journey in the asymptotic past, τ → −∞, crosses

the horizon at τ = τH, and ends at the singularity as τ → 0−. Equivalently, the trajec-

tory is described by,

dr
dτ

= η
√︁

2M/r − 2M/R ,

dv
dτ

=

√︁
1− 2M/R + η

√︁
2M/r − 2M/R

1− 2M/r
,

(7.6.28)

where v is the ingoing null coordinate defined in Eq. (7.3.3).
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Boulware Vacuum

Substituting the mode functions in Eq. (7.5.1) into Eq. (7.6.5),

FB = F in
B + F up

B , (7.6.29)

with

F in/up
B =

∞∑︂
ℓ=0

∫︂ ∞

0

dω
2ℓ+ 1

16π2ω

⃓⃓⃓⃓∫︂ ∞

−∞
dτ χ(τ)e−iΩτI in/up

ωℓ (τ)

⃓⃓⃓⃓2
, (7.6.30)

where

I in
ωℓ(τ) = eiωr∗Φin

ωℓ(r)V
−i4Mω, (7.6.31a)

Iup
ωℓ(τ) =

⎧⎪⎪⎨⎪⎪⎩
e−iωr∗Φup

ωℓ(r)(−U)i4Mω, r > 2M,

Aup
ωℓ

Bin
ωℓ

eiωr∗Φin
ωℓ(r)V

−i4Mω + e−4πMω 1

Bin∗
ωℓ

e−iωr∗Φin∗
ωℓ (r)U

i4Mω, r < 2M,

(7.6.31b)

U = u/4M , V = v/4M , r∗ is defined by Eq. (7.3.2), χ(τ) is the switching function

which controls the measurement time and duration, and Φup/in
ωℓ (r) are the radial solu-

tions described in Section 7.4. The spacetime coordinates U , V , and r are evaluated

on the detector trajectory.

The Boulware vacuum diverges at the event horizon, making it a poor candidate of

vacuum choice to study the response of an infalling detector. The Hartle-Hawking

and Unruh vacua give more physically realistic descriptions of near-horizon physics.

Ref. [246] plots the transition probability for an infalling detector in the Boulware

vacuum state up to r ∼ 1.3(2M) and shows that the probability decreases as the de-

tector approaches the horizon. Note that this is not a description of what happens at

the event horizon, since the entire integration region must fall outside of the horizon,

meaning the measurement must be averaged over a region large enough for transients

to subside.

Hartle-Hawking Vacuum

Substituting the mode functions in Eq. (7.5.2) into Eq. (7.6.5),

FH = F in
H + F up

H + F in
H + F up

H , (7.6.32)
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where

F in/up,in/up
H =

∞∑︂
ℓ=0

∫︂ ∞

0

dω
1− e−8πMω

2ℓ+ 1

16π2ω

⃓⃓⃓⃓∫︂ ∞

−∞
dτ χ(τ)e−iΩτI in/up,in/up

ωℓ (τ)

⃓⃓⃓⃓2
(7.6.33)

and

I in
ωℓ(τ) = e−4πMωe−iωr∗Φin∗

ωℓ (r)V
i4Mω, (7.6.34a)

Iup
ωℓ(τ) =

⎧⎪⎪⎨⎪⎪⎩
e−4πMωeiωr∗Φup∗

ωℓ (r)(−U)−i4Mω, r > 2M,

e−4πMωA
up∗
ωℓ

Bin∗
ωℓ

e−iωr∗Φin∗
ωℓ (r)V

i4Mω +
1

Bin
ωℓ

eiωr∗Φin
ωℓ(r)U

−i4Mω, r < 2M.

(7.6.34b)

The functions and variables I in
ωℓ(τ), I

up
ωℓ(τ), U , V , r∗, χ(τ), and Φup/in

ωℓ (r) are defined

as in Eq. (7.6.31).

Ref. [214] shows that the magnitude of the response function, FH, decreases for larger

detector energy gaps, Ω. For all detector energy gaps, FH increases smoothly and

monotonically as the detector approaches the black hole, with no distinctive features

at the event horizon. This aligns with the equivalence principle conclusion that there

is no way to discern whether you are crossing the event horizon or not, for a black

hole of sufficient mass. This conclusion contrasts with the conclusions of Ref. [246],

which reports a local extremum in FH near the horizon.

The Hartle-Hawking vacuum state describes a thermal bath of particles, but Ref. [214]

argues that, near the horizon, the detector does not spend enough time ‘switched on’

to reach thermal equilibrium with this thermal state. As a result, the behaviour of FH

is a reflection of local interactions with the field due to switching, and not a physical

measurement of the thermal state. Allowing enough time for transient effects to sub-

side requires switching the detector on over a large portion of its trajectory, resulting

in a cumulative measurement and preventing local measurements.

Unruh Vacuum

Substituting the mode functions in Eq. (7.5.5) into Eq. (7.6.5) gives

FU = F in
B + F up

H + F up
H , (7.6.35)
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where F in
B is defined by Eq. (7.6.30) and F up/up

H is defined by Eq. (7.6.33).

The detector response in the Unruh vacuum, FU, is similar to the response in the Hartle-

Hawking vacuum, FH, except it is slightly smaller in magnitude. Larger detector en-

ergy gaps, Ω, result in FU being of a smaller magnitude, and FU increases smoothly

and monotonically as the detector approaches the black hole. Again, this encapsulates

the detector’s response due to switching, and not a measurement of Hawking radia-

tion (as one might expect from the definition of the Unruh vacuum state).

7.7 Summary

Four-dimensional Schwarzschild black holes are a complicated environment to study

the response of UdW detectors. The response functions are not analytically solvable,

and solving them numerically is computationally demanding. In the case of a detector

falling radially into the black hole, defining the instantaneous transition rate is chal-

lenging and we are typically restricted to studying the transition probability. More-

over, Ref. [214] claims it is impossible for an infalling observer to unambiguously

measure Hawking radiation near the horizon, since the detector’s response is dom-

inated by transients. Nevertheless, it is possible to calculate expressions for the re-

sponse function, even for radial free fall, and study the results. Results are presented

in Ref. [227] for stationary scenarios and Ref. [214] for free fall.

Finding new techniques to compute the local instantaneous transition rate of an in-

falling detector in (3 + 1)-dimensional Schwarzschild spacetime would be an ex-

citing direction for future work. If it is possible to isolate the contribution of tran-

sient effects, in a similar fashion to Section 6.2.4 and Ref. [247], then we may be able

to study an UdW detector’s response to Hawking radiation. Studying the interac-

tion between multiple UdW detectors in various black hole spacetimes could also

give new insights into the quantum mechanical properties of black holes [128–140,

202, 248–250]. These multiple-detector situations may benefit from the manifestly

causal method outlined in Chapter 4, as they represent a more complex extension of

the Fermi two-atom problem discussed in Section 4.4.
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Chapter 8

Conclusions

In this thesis, we have developed a new, manifestly causal formalism of quantum field

theory (QFT), in which calculations are performed directly at the probability level.

Chapter 4 introduces this formalism and provides a versatile toolbox for its applica-

tion to a variety of quantum systems. By generalising the Baker-Campbell-Hausdorff

(BCH) lemma, commutators and anticommutators naturally arise in the definition of

a probability. Since these structures encode causality in QFT, every intermediate step

and result in our approach is manifestly causal. This is not the case for traditional cal-

culations in QFT, where the Feynman propagator is ubiquitous.

The formalism employs a broad definition of measurement (represented by an ele-

ment of a Positive Operator-Valued Measure) that can be rendered inclusive from the

outset. In line with the Bloch-Nordsieck (BN) [27] and Kinoshita-Lee-Nauenberg

(KLN) [28, 29] theorems, infrared (IR) divergences always cancel in the computation

of physical observables, since the observables must be sufficiently inclusive. Thus,

our causal formalism may offer a novel perspective on the cancellation of IR diver-

gences by incorporating inclusiveness at the probability (observable) level.

Motivated by the investigation of divergences, Chapter 3 provided a rigorous calcu-

lation of a scattering cross section with first-order quantum chromodynamics (QCD)

corrections, using conventional QFT methods. We demonstrated that exclusive ob-

servables, such as the cross section for the process e−e+ → qq̄, were IR-divergent,

and required the use of dimensional regularisation to cancel these infinite divergences.

Chapter 5 then investigated similar calculations using the causal approach. We used

scalar field theory as a simplified model of particle scattering, avoiding the subtleties

and analytic complexities of gauge theories. We presented a new set of rules to gen-

erate probability-level diagrams, whose sum yields the total transition probability

for a given process. Using the causal formalism, we explicitly calculated the tran-
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sition probabilities for inclusive particle decay and pair-annihilation, obtaining re-

sults that conformed with the rules. Notably, the appearance of retarded propagators

and related causal structures, such as the retarded self-energy, underscores the man-

ifest causality of our formalism. We also observed that terms corresponding to ‘real

emissions’ (as defined in the traditional calculation) were not separable from other

contributions, suggesting an intrinsic summation over degenerate processes. This is

a promising avenue for further exploration of the cancellation of IR divergences, or

even their potential absence, in this framework.

Chapter 6 applied the causal formalism to investigate the Unruh effect. We derived

the excitation rate of a uniformly accelerating Unruh-DeWitt (UdW) detector in terms

of commutators and anticommutators. We carefully calculated this transition rate

from both the perspective of an inertial observer and an accelerating observer, show-

ing that the rate was equal despite their differing physical interpretations. By con-

sidering an inertial observer in a Minkowski thermal bath, we emphasised that the

Rindler thermal bath perceived by an accelerated observer is distinct from the inertial

definition of a thermal bath. This is the essence of the Unruh effect—the concept of a

particle, and hence the vacuum state, is inherently observer-dependent.

This is a natural prerequisite for the study of a detector’s response in curved space-

times, for which Chapter 7 served as an instructive introduction and literature review.

Black holes offer an extreme environment in which to explore quantum fields in curved

spacetime and emergent phenomena such as Hawking radiation. Although the de-

tector response to Hawking radiation remains an open question, with transient ef-

fects potentially obscuring the underlying physics, we have summarised results from

Refs. [227] and [214] for the response of an UdW detector in (3 + 1)-dimensional

Schwarzschild spacetime along static, circular, and radially infalling trajectories.

Looking ahead, natural questions arise regarding the extension of this causal formal-

ism to gauge theories and semi-inclusive observables. In particular, how can the re-

sults and rules established in Chapter 5 be generalised and applied to the calcula-

tions presented in Chapter 3? Furthermore, instead of considering observables that

are fully inclusive over gluon final states, we would like to explore how the outcomes

change when one adopts a semi-inclusive final state that accounts for the real emis-

sion of gluons only in the soft and collinear momentum regions. Ref. [105] discusses

further semi-inclusive observables that can be analysed using the causal formalism.
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Additionally, our formalism allows for a straightforward generalisation of initial and

final states to mixed states. This feature makes it well-suited for studies in relativistic

quantum information (RQI), where mixed states naturally arise.

Further investigation of the quantum properties of black holes may provide crucial

insights into a fundamental theory that successfully unites QFT and gravity. In this

context, a deeper understanding of the response of an UdW detector in black hole

spacetimes represents a promising avenue for future research. The causal formalism

presented here may contribute to this endeavour, as it addresses the often counterintu-

itive role of causality in the presence of an event horizon and the complex behaviour

of quantum entanglement between multiple detectors in such spacetimes.
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Appendix A

First-Order Decay Expressions

Eqs. (A.0.1)–(A.0.12) display the full expressions of each term in Eq. (5.4.6).
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Appendix B

Symmetrising the Time-Ordering in

the Annihilation Probability

Here, we show analytically how the time-ordered integral in Eq. (5.5.16) can be sym-

metrised and written as an integral over all times, as is shown in Fig. 5.14. We only

show this for the diagrams containing Feynman loops, but the same procedure can be

applied to each line in Fig. 5.14.

The terms containing Feynman loops in the annihilation probability are

P ⊃ −
4 g2ψg

2
φ

(2ωp1)(2ωp2)

∫︂
d4x1 d4x2 d4x3 d4x4(︄
eip1·x1eip2·x1e−ip1·x2e−ip2·x2

(︂
F φ
34

)︂2
Rχ

13R
χ
24Θ12Θ23Θ34

+ eip1·x1eip2·x1e−ip1·x2e−ip2·x2
(︂
F φ
34

)︂2
Rχ

14R
χ
23Θ12Θ23Θ34

+ eip1·x1eip2·x1e−ip1·x3e−ip2·x3
(︂
F φ
24

)︂2
Rχ

12R
χ
34Θ12Θ23Θ34

+ e−ip1·x1e−ip2·x1eip1·x2eip2·x2
(︂
F φ
34

)︂2
Rχ

13R
χ
24Θ12Θ23Θ34

+ e−ip1·x1e−ip2·x1eip1·x2eip2·x2
(︂
F φ
34

)︂2
Rχ

14R
χ
23Θ12Θ23Θ34

+ e−ip1·x1e−ip2·x1eip1·x3eip2·x3
(︂
F φ
24

)︂2
Rχ

12R
χ
34Θ12Θ23Θ34

)︄
,

(B.0.1)

where the Θ-function has been rewritten as Θ1234 = Θ12Θ23Θ34. We are free to re-

label the integration variables in each term as

P ⊃ −
4 g2ψg

2
φ

(2ωp1)(2ωp2)

∫︂
d4x1 d4x2 d4x3 d4x4(︄
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(︂
F φ
34

)︂2
Rχ

13R
χ
24Θ12Θ23Θ34
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+ eip1·x1eip2·x1e−ip1·x2e−ip2·x2
(︂
F φ
34

)︂2
Rχ

13R
χ
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14R
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(B.0.2)

where we have used F φ
xy = F φ

yx. Using the relations

ΘxyΘyz = ΘxyΘyzΘxz (B.0.3)

Θxy +Θyx = 1 (B.0.4)

ΘxyR
χ
xy = Rχ

xy , (B.0.5)

we obtain
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. (B.0.6)

Re-labelling x1 ↔ x2 in the second term yields

P ⊃ −
4 g2ψg
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φ
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This result is equal to the first term in Eq. (B.0.1), but integrated over all times since

there is no time-ordering Θ-function.
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Appendix C

Excitation Rate of an Inertial Detector

in the Minkowski Vacuum

Here we consider the excitation probability of an inertial detector in the Minkowski

vacuum. For a time-like interval, one can always boost to a frame in which

x1 − x2 = 0, such that,

∆R
12

⃓⃓
α=0

=

∫︂
d4p

(2π)4
e−ip

0t12

(p0 + iϵ)2 − ω2
p
= − 1
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∫︂ ∞

m

dωp
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(C.0.1a)
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(C.0.1b)

Using equation (6.2.20), we have

P(2; t)|α=0 =
|µ|2

2π2

∫︂ t
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Performing the time integrals, we have

P(2; t)|α=0 =
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2π2
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dωp

√︂
ω2
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such that the transition rate is

∂P(2; t)
∂t

⃓⃓⃓⃓
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m
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This transition rate exhibits an ultraviolet (UV) divergence due to the treatment of
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the detector as point-like. By considering the difference of two transition rates in

Eq. (6.2.30) (e.g., accelerated rate minus inertial rate), we subtract this divergence.
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