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Abstract
The Faculty of Science and Engineering

Department of Physics and Astronomy

Master of Science by Research

Amplitude Level Evolution in QCD

by Robert J. Mears

Predictions for non-global observables necessitate the resummation procedure to in-

clude real emissions as well as virtuals. The FKS algorithm is a colour basis in-

dependent method of recursively inserting real emissions whilst interweaving virtual

corrections up to all orders. The algorithm has so far not be shown to be collinear

safe to all orders, however, and must be regularised using a collinear cut-off λ. I

use the FKS algorithm in the Colour flow basis to calculate the gaps-between-jets

observable at first, second and third order. The first order calculation is shown to be

analytically λ independent. The second and third order calculations are numerically

shown to exhibit λ independence for λ < 10−4 and λ < 10−5 respectively.
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Chapter 1

Introduction

1.1 Introduction

Quantum Chromodynamics (QCD) is the relativistic quantum field theory of strong

interactions. It describes interactions between colour charged fields: quarks, anti-

quarks and gluons, collectively known as partons. It is a SU(3)c gauge theory meaning

the quark fields, in the triplet representation, are invariant under the local gauge

transformations generated by 3 × 3 matrices in the fundamental representation, the

8 (= N2− 1) generators of the group. The 8 corresponding gauge fields are the gluon

fields and the set of gluons is the octet representation of the group [1, 2, 3].

The Lagrangian for QCD, ignoring the ghost and gauge fixing terms, is

L = −1

4
F a
µνF

µν
a +

∑
flavours

q̄i (i /D −m)ij qj (1.1)

where m is the quark mass and the covariant derivative is given by

/Dij = /∂δij + igtaij /A
a (1.2)

which transforms under local gauge transformations in the same way as the field it

acts on. The gluon gauge fields Aa
µ act to absorb the residual derivative terms when

the gauge fields are also transformed [1, 2, 3]. The field strength tensor is given by

F a
µν =

1

ig
[Dµ, Dν ]

= ∂µA
a
ν − ∂νA

a
µ − gfabcAb

µA
c
ν

(1.3)



16 Chapter 1. Introduction

where g is the strong coupling constant and the group structure constants are defined

in terms of the fundamental 3× 3 matrices

ifabctcij = [ta, tb]. (1.4)

The structure constants themselves obey

ifabcT c = [T a,T b]

(T a)bc = −ifabc
(1.5)

where (T a)bc is a generator of the adjoint representation of SU(3)c . These 8 × 8

matrices generate colour space transformations of the octet (gluon) representation.

The SU(3)c group is non-abelian meaning the structure constants fabc are non-zero.

Inserting the field strength tensor into the Lagrangian leads to terms which correspond

to triple and quartic gluon vertices: Gluons are colour charged and can therefore

self interact. This is the major distinction between Quantum Electrodynamics and

QCD which makes higher order calculations in QCD more challenging [4]. Any high

multiplicity calculations must include the effects of gluons radiating from other gluons

rather than just radiating from quarks.

At particle colliders high energy colour charged particles radiate via Bremsstrahlung

and pair production to form a parton shower, a cascade of colour charged radiation.

To test theory against experiment, properties of parton showers must be computed.

Performing these calculations perturbatively using the full Feynman rules becomes

impossible beyond a few orders as the work involved increases factorially with the

order [1]. Whats more, the Feynman amplitudes are enhanced for certain regions

of the phase space meaning fixed order calculations in perturbation theory lead to

unreliable predictions for observables: there will always be terms from higher order

diagrams that are more dominant but not being included [4]. For a particular Feyn-

man graph there may be several enhanced regions but the nature of the observable

being computed determines which are most significant. The approach taken is then

to approximate the shower by considering the Feynman graphs only in the enhanced

regions.

Gluons whose momentum components are all much smaller than the scale of its
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parent parton are said to be soft gluons [5]. Each soft gluon provides an enhancement

of ∫ Q

µ

dEk

Ek
= ln

(
Q

µ

)
≡ L (1.6)

where µ is an arbitrary ’soft’ scale which must be allowed to tend to zero to include

the possibility of infinitesimally soft gluon emissions. The upper scale Q is the hard

scale and corresponds to the scale of the hard process being dressed with radiation.

In this limit the Eikonal rules are valid which are a set of simplified Feynman rules

[5]. These approximations lead to further simplifications in terms of the spinors and

it can be shown (see chapter 2) that

dσn+1 = dσn
dEk

Ek

dΩk

2π

αs

2π

∑
i,j

Cij
E2

kpi · pj
pi · kpj · k

(1.7)

where: dσn+1 is the differential cross section for the process of interest plus one gluon;

dσn is the differential cross section for the original process;Ek and k are the energy

and four-momentum of the soft gluon; dΩk is the differential solid angle of the soft

gluon; pi, pj are the momenta of external legs from which the gluon was emitted in

the amplitude and conjugate amplitude and Cij is a colour factor calculated by taking

the trace over the colour algebra [1]. This is the soft factorisation theorem and it

states that the cross section for a hard process dressed with one soft real gluon can

be factorised into the cross-section for the hard process and the probability of soft

emission. This is the basis for all soft parton branching algorithms [6].

Factorisation of the emission process (described above) combined with factori-

sation of the phase space allows for the process to be exponentiated [7] and thus

applied to all orders. This is the basis of all orders resummation. An example of soft

gluon resummation for an observable that is inclusive above a cut off scale is [8]. The

factorised result for the first soft gluon virtual correction is exponentiated to obtain

a perturbative series in terms of αsL. This approach assumed real emissions were

not required as they would be cancelled exactly against virtual contributions via the

the Bloch-Nordsieck theorem. This states that for every real correction at the cross

section level there is an equal and opposite contribution from a virtual correction,

provided the observable is inclusive over the entire phase space. Diagrammatically it
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corresponds to a sum over cuts of the cross section diagram with the cut representing

where the amplitude ends and the conjugate amplitude begins [9].

This cancellation does not occur for non-global observables which are not inclusive

of real emissions over the entire phase space. For example, the gaps between jets

(GBJ) observable. The hard process e+e− → qq̄ produces a back to back quark-

anti-quark pair in the centre of mass frame. GBJ vetoes emissions into the region

between back to back jets. Because any detector has a finite resolution the theoretical

prediction for the result must be inclusive of the entire angular region below some

experimental energy cut-off ρ. These conditions are implemented in the calculation

by appending a set of Heaviside step functions to the phase space integrals for real

emissions. The measurement function for GBJ is

u(k) = Θout(k) + ΘinΘ(ρ > Ek) (1.8)

where Θout(k) is unity if k is in the out of gap region and ΘinΘ(ρ > Ek) is unity if k

is in the gap region and has energy below the experimental cut off [10]. Combining

equation 1.8 with

Θout(k) + Θin(k) = 1 (1.9)

gives the useful result

u(k)− 1 = −ΘinΘ(ρ < Ek). (1.10)

As pointed out in [11], observables of this type lead to corrections being enhanced

by a non-global logarithm. For the matrix element squared A of a generic scattering

event, the real and virtual corrections combine to give

R+ V =

∫ Q

µ

dEk

Ek

∫
all

dΩk A (u(k)− 1)

= −
∫ Q

ρ

dEk

Ek

∫
in
dΩk A

= − ln

(
Q

ρ

)∫
in
dΩk A

(1.11)

where u(k) acts to select the phase space region defined for the real contribution (see

above). The virtual correction’s phase space is global but imaginary factors result in

a relative minus sign. The second line follows from equation 1.10. The logarithmic
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enhancement is not singular as ρ is defined to be the finite experimental cut-off but it

is small enough for the non-global logarithm ln
(
Q
ρ

)
to provide significant enhance-

ments. An arbitrary number of reals must therefore be included in the resummation

procedure [11]. This is a significantly more difficult process than resumming the first

order loop correction.

QCD becomes increasingly complicated with successive real emissions. The main

reason for this is the non-abelian colour matrices which accompany every emission.

Each gluon considered acts to complicate the colour structure further and the prob-

lem of calculating the trace over the long list of SU(3)c matrices quickly becomes

intractable. Historically, this has been handled by working in the Large N ’t Hooft

limit [12]. This is useful because the colour charge operators can be decomposed into

colour flows, of which some are suppressed by powers of Nc. The suppressed colour

flows vanish and the colour structure is greatly simplified to that of colour-anti-colour

dipoles with colour lines that do not cross [11]. This is the approach currently im-

plemented in the general purpose event generators, HERWIG [13], Pythia [14] and

Sherpa [15, 6].

As will be shown, soft virtual corrections can be decomposed into an Eikonal

contribution and a Coulomb contribution. The prior has a structure which matches

with real emissions at the cross section level and the latter corresponds to the on shell

scattering of a pair of final or initial state partons [5].

Forshaw, Kyrieleis and Seymour developed a framework to systematically account

for the non-trivial colour structures of the Coulomb gluons [16, 17, 18]. The algorithm

developed is the basis of the work in this thesis and amounts to recursive insertions of

real soft emissions each dressed with soft virtual corrections to all orders. They found

miscancellations of soft real and virtual Eikonal gluons which gave single non-global

logarithms αm
s ln(Q/ρ)m as predicted in [11]. However, cross sections considering 4 or

more real emissions were shown to exhibit miscancellations of Coulomb gluons which

gave rise to super leading non-global logarithms of the form αm
s ln(Q/ρ)m+1 [16].

The algorithm rules (see chapter 2) are not Feynman rules but rather a set of effec-

tive rules for the leading log calculation of emission of any number of soft gluons.The

algorithm was shown in [10] to reproduce the BMS equation [19], a differential evo-

lution equation of leading N parton showers, which itself reproduced the numerical
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results of [11]. It has also been shown to be infrared safe. That is, the soft scale, µ

can tend to zero without the algorithm diverging.

However, the algorithm has so far not been proven to be collinear safe to all orders.

This is the requirement that gluon emissions must be allowed to be collinear with the

emitting parton without the observable diverging. Currently, collinear singularities,

which arise in the eikonal approximation, are cut from the phase space using Heaviside

step functions. These puncture holes of radius λ are centred on singular points and

thus cut away every singular region. For the algorithm to be correct, the observables

must not depend on the specific value of λ as it is an arbitrary parameter only,

introduced to regularise the singularities. If the algorithm gives an observable which

diverges as λ → 0 then the algorithm must be invalid.

In [10] the colour structures generated using the algorithm are evaluated in the

colour flow basis (CFB) [10, 20]. The colour algebra listed above can be represented

purely using Kronecker deltas with fundamental indices i = 1, 2, 3 = R,G,B corre-

sponding to the three colour/anti-colour charges quarks and anti-quarks can have.

The Kronecker deltas represent quark and anti-quark lines which conserve colour/

anti-colour along the line. In this picture colour structures required for n real emis-

sion cross sections are a network of colour and anti-colour lines and vertices through

which colour flows and is conserved. The CFB then decomposes amplitudes into

weighted sums of distinct colour flows. Using this approach observables can be calcu-

lated with full N colour dependence, a significant improvement on the large N limit

[20].

In this thesis I calculate the gaps between jets observable up to third order using

the FKS algorithm and test for collinear cut-off independence. I describe the FKS

algorithm in more detail and define groups of radiation functions ωk
ij (see equation

1.7) labelled emission functions, which are generated using the algorithm. These def-

initions are useful for analytically simplifying the integrals required for higher order

observables . I then derive results in the colour flow basis required to evaluate general

colour structures. The colour structures for second and third order are given. Using

the colour structure results and the emission functions the gaps between jets observ-

able is calculated and simplified as much as possible. I then numerically integrate

the expression for a range of λ. The results of which provide strong evidence that
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the FKS algorithm is independent of λ at second and third order and the collinear

divergences fully cancel.
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Chapter 2

The FKS Algorithm

2.1 Feynman Rules to Eikonal Rules

The FKS algorithm is a recursive method of calculating soft (real and virtual) gluon

corrections to a hard scattering process. The soft approximation allows for the use

of the eikonal rules, a set of simplified Feynman rules and, in turn, the factorisation

of the cross section into the original process and the effects of additional soft gluon

emissions. The following approximations remain a valid route for calculating a parton

shower because of the logarithmic enhancement for soft gluon emissions, that is, for

a gluon of momentum k being emitted from a parent parton of momentum p where

all elements of k are small compared to the largest component of p.

The algorithm implements soft gluon emissions from quarks, anti-quarks and real

gluon legs. Usually the eikonal rules only apply for soft gluon emissions from the hard

partons, q, q̄ [5]. However, the algorithm applies strong ordering which allows for the

assumption that each emission has much lower energy than the previous emission

[10]. The relevant Feynman rules are

α,i

a,µ

β,j

= −igtajiγ
µ
βα (2.1)
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a,µ

b,ν

c,ρ

= −gfabc ((p+ q)ρηµν + (q + r)µηνρ + (r − p)νηρµ) (2.2)

p
i,α j,β = δij

/pαβ +m

p2 −m2 + iε
(2.3)

where all the usual definitions as seen in the introduction apply. In particular, I have

used: lower alphabet greek characters α, β... for Dirac indices;middle alphabet greek

characters µ, ν... for Lorentz indices; lower alphabet characters a, b... for gluon colour

indices; and middle alphabet characters i, j, ... for quark line colour indices.

This thesis considers final state radiation dressing the e+e− → qq̄ hard scattering

process though the following derivation is valid for any hard scattering, X → qq̄. The

amplitude for one of the diagrams contributing to e+e− → qq̄g is

γ

pb

k

pa + k

i

pa

j
k

e−

e+

q̄

g

(2.4)

M ∝ū(sa)α (pa)
(
−igtaijγ

µ
αβ

)
ε∗(λ)µ (k)

iδjk

(
(pa + k)ρ γ

ρ +m
)
βγ

(pa + k)2 −m2 + iε


δklγ

ρ
γδv

(sb)
δ (pb)

ηρσ
q2

(
u(sc)ε (pc) γ

σ
εζ v̄

(sd)
ζ (pd)

)
(2.5)

where I have ignored constants from every term coming from the left of and including

the qq̄γ vertex. This vertex and all the terms coming from the left of it in the diagram
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can be summarized into a single term with the appropriate colour and dirac indices

Aγδ,kl(Q) =
∑

sc, sdδklγ
ρ
γδ

ηρσ
q2

(
u(sc)ε (pc) γ

σ
εζ v̄

(sd)
ζ (pd)

)
(2.6)

where I have ignored a few constants. The amplitude can always be expressed in this

form even for more complicated processes. With this definition the amplitude prior

to any final state radiation is

M0 ≡
∑
sa,sb

ū(sa)α (pa)Aαβ,kl(Q)v
(sb)
β (pb) . (2.7)

The amplitude with the emission is

M =ū(sa)α (pa)
(
−igtaijγ

µ
αβ

)
ε∗(λ)µ (k)

iδjk

(
(pa + k)ρ γ

ρ +m
)
βγ

(pa + k)2 −m2 + iε


Aγδ,kl(Q)v

(sb)
δ (pb).

(2.8)

In the High Energy limit p2a = p2b = m2
q ≈ 0 and k2 = 0 meaning (pa+k)2 ≈ 2pa ·k.

Also, in the soft gluon limit k � pa meaning pa + k ≈ pa. Together, these allow for

(
(pa + k)ρ γ

ρ +m
)
βγ

(pa + k)2 −m2 + iε
≈

(
(pa)ρ γ

ρ +m
)
βγ

2p·k + iε
(2.9)

which, combined with the spinor relation

(
/pa +m

)
βγ

=
∑
s′a,sa

u
(s′a)
β (pa)ū

(sa)
γ (pa) (2.10)

gives

M =
∑

s′a,s′′a ,

ū(sa)α (pa)
(
−igtaijγ

µ
αβ

)
ε∗(λ)µ (k)

iδjk
u
(s′a)
β (pa)ū

(s′′a)
γ (pa)

2p·k + iε


Aγδ,kl(Q)v

(sb)
δ (pb)

=

(
−igtaij

)
ε
∗(λ)
µ (k)

2p·k + iε
i
(
ū(sa)α (pa)γ

µ
αβu

(s′a)
β (pa)

)
ū(s

′′
a)

γ (pa)Aγδ,jl(Q)v
(sb)
δ (pb)

=

(
−igtaij

)
ε
∗(λ)
µ (k)

2p·k + iε
i
(
ū(sa)α (pa)γ

µ
αβu

(s′a)
β (pa)

)
M0

(2.11)
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where I have used equation 2.7 for M0. Thus, the effects of a soft gluon emission and

the original amplitude can be factorised. Similar derivations can be done for ampli-

tudes where a soft gluon is emitted from incoming and outgoing quarks, anti-quarks

and real gluons and the original amplitude is always recovered. The physical inter-

pretation of this result is that low energy emissions (long wavelength) cannot resolve

the large energy hard scattering process (short wavelength). This is the fundamental

result exploited by the FKS algorithm to recursively build the parton shower.

The terms in the middle set of brackets can be simplified by considering the Dirac

equation as follows

(/pa −m)u(pa) =0

/pau(pa) =mu(pa)

ū(pa)/pau(pa) =mū(pa)u(pa)

=2m2

(2.12)

also

2m2 =2pµp
µ (2.13)

meaning

ū(pa)γ
µu(pa) = 2pµa (2.14)

and

(
ū(sa)α (pa)γ

µ
αβu

(s′a)
β (pa)

)
=2pµδsa,s′a (2.15)

which gives the amplitude to be

M =

(
−igtaij

)
ε
∗(λ)
µ (k)

2p·k + iε
i2pµM0

=
i

2p·k + iε
taij (−ig2pµ) ε∗(λ)µ (k)M0

(2.16)
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Table 2.1: The Eikonal Rules

Direction and Flavour Propaga-
tor

Vertex Eikonal Feynman
Rule

Outgoing Quark i
2p·k+iε taij (−i2gpµ) ε

∗(λ)
µ (k)

taijgp
µε

∗(λ)
µ (k)

p·k+iε

Incoming Quark i
2p·k−iε −taji (−i2gpµ) ε

∗(λ)
µ (k)

−taijgp
µε

∗(λ)
µ (k)

p·k−iε

Outgoing Anti-Quark i
2p·k+iε −taji (−i2gpµ) ε

∗(λ)
µ (k)

−taijgp
µε

∗(λ)
µ (k)

p·k+iε

Incoming Anti-Quark i
2p·k−iε taij (−i2gpµ) ε

∗(λ)
µ (k)

taijgp
µε

∗(λ)
µ (k)

p·k−iε

Outgoing Gluon i
2p·k+iε −ifa

bc (−i2gpµ) ε
∗(λ)
µ (k)

−i taijgp
µε

∗(λ)
µ (k)

p·k+iε

Incoming Gluon i
2p·k−iε ifa

cb (−i2gpµ) ε
∗(λ)
µ (k)

i taijgp
µε

∗(λ)
µ (k)

p·k−iε

leading to the eikonal propagator and vertex factor rules for the emission from a

quark flavoured external parton

i

2p·k + iε
, taij (−ig2pµ) ε∗(λ)µ (k). (2.17)

Similar derivations can be done for the other flavours of radiating partons. For

example, the eikonal rules derivation for radiation from an outgoing anti-quark can

be found in [5, 21]. The eikonal rules are listed in table 2.1. Because e+e− are colour

neutral I am considering final state radiation only. Therefore, only the outgoing

eikonal rules are relevant here. The FKS algorithm can be applied to initial state

radiation for which the incoming eikonal rules would be relevant.

2.2 Real Corrections

The amplitude prior to radiation is recovered no mater how many soft gluons are

considered meaning the eikonal rules above can be applied any number of times

to produce a shower of n soft gluons. The difference is that with each emission

the number of real legs from which radiation can occur grows by one. To build a

gauge invariant cross section one must calculate the modulus squared of the sum of

all diagrams which contribute to an observable. Therefore, each application of the

recursion relation systematically inserts an emission from every real leg of the shower.



28 Chapter 2. The FKS Algorithm

Using the results from table 2.1 the operator to insert a soft emission from parton

i is

T a
i

i

2pi · k + iε
(−i2gpµi ) ε

∗(λ)
µ (k) = g T a

i

pµi
pi · k + iε

ε∗(λ)µ (2.18)

where the notation T a
i refers to the colour charge operator for a parton i emitting a

gluon a. The colour charge operators for different flavour partons are listed in the

brackets of the eikonal vertex factors (see table 2.1). Equation 2.18 is applied to every

real leg of the shower such that, in bra-ket notation,

|Mn〉 =
∑
j

gTan
j

pνj
pj · k

ε∗(λn)
ν |Mn−1〉

≡J†an
n |Mn−1〉

(2.19)

where I have used the definition of the soft gluon current, J , as used in [10]. Similarly,

the conjugate amplitude is evolved using

〈Mn| = 〈Mn−1|
∑
i

gT†an
i

pνi
pi · k

ε(λn)
ν

≡〈Mn−1| Jan
n

(2.20)

where the hermitian conjugate of the polarization vector and colour charge have been

used, the momentum terms remain unchanged.

The polarization vectors for gluons at the same level of evolution from the ampli-

tude and conjugate amplitude share polarization indices and momentum dependence.

Diagrammatically the gluons lines link in the amplitude squared diagrams. Therefore,

at the amplitude squared level the completeness relation for physical gluon polariza-

tion states ∑
T

ε(T )
ν (pn)ε

∗(T )
µ (pn) = −ηµ,ν , (2.21)

where T denotes transverse polarisation states, can be applied and the the 4-momenta

from each eikonal vertex are contracted. The sum over physical polarisations (T ) can

be replaced by the metric up to corrections beyond the leading log approximation [5].

The four momentum of the emitted soft gluon must then be integrated over the

Lorentz invariant phase space. Only the region where the gluon is soft compared to
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the hard process will give logarithmic enhancements meaning we can safely cut the

upper limit of the integral at hard scale, Q. Furthermore, the gluon is constrained to

be on-shell as it is an external gluon, giving

∫
dLIPSk ≈

∫ Q d4k

(2π)4
δ(k2)

=

∫ Q d3k

(2π)32Ek

=
αs

g2π

∫ Q dEk

Ek

∫
dΩk

4π
E2

k

(2.22)

where the dirac delta functions imposing conservation of momentum have already

been applied in the derivation of the eikonal rules i.e. q(p+k) → q(p)+g(k). Beyond

this point in the derivation we used the approximation of p+ k ≈ p which allows for

the integration over the additional gluon momentum to be factorised from the rest of

the phase space. Corrections to this approximation are known as recoil effects.

At the cross section level, the above two results lead to the formation of the

radiation function, ωk
ij . This is defined as

ωk
ij ≡

E2
kpi · pj

pi · pkpj · pk
(2.23)

in [1, 10, 5] and corresponds to an insertion of an emission joining leg i of the am-

plitude and leg j of the conjugate amplitude or vice versa. The emitting legs are all

external and are therefore on-shell which has the consequences

pi · pj = p2i = m2
i ≈ 0, i = j (2.24)

and

ωk
ii =

p2i
(pi · pk)2

≈ 0 (2.25)

for real radiation functions (radiation functions for virtual corrections are discussed

below). Furthermore, we can express the momenta as

pµ ≡ (p0, p1, p2, p3) = (E, p) = E(1, n) = Enµ (2.26)
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where n is the 3-dimensional unit vector pointing in the direction of p. This gives

ωk
ij ≡

E2
kpi · pj

pi · pkpj · pk

=
E2

kEiEjni · nj

E2
kEiEjni · nknj · nk

=
ni · nj

ni · nknj · nk

(2.27)

meaning the radiation function is a function of the directions of the partons involved

only. This identifies the two collinear poles

ni,j · nk

ni,j ·nk=1
−−−−−−→ ni,j · nk = 1− 1 = 0. (2.28)

Note that, due to the fundamental and adjoint representations of SU(3)c being

hermitian, the colour algebra terms for these links obey

∑
a

T †a
i T a

j = T i · T j

=
∑
a

T †a
j T a

i

=
∑
a

T a
jT

a
i

=
∑
a

T †a
j T †a

i

(2.29)

where the dot product definition is used in [5, 16, 10].

The amplitude squared 〈Mn|Mn〉 is then a sum of diagrams where all possible

pairs of emitting partons ij from the previous amplitude and conjugate amplitude are

linked by the real gluon line. Explicitly, the cross section for the insertion of the nth



2.2. Real Corrections 31

soft gluon is

σn =

∫
dLIPSn 〈Mn|Mn〉

=

∫
dLIPSn−1

∑
i,j,an,λn

∫ Q d4pn
(2π)4

δ(p2n) 〈Mn−1| J†an
n · Jan

n |Mn−1〉

=

∫
dLIPSn−1

αs

g2π

∫ Q E2
ndEn

En

∫
dΩ

4π∑
i,j,an,λn

〈Mn−1| gT†an
i

pνi
pi · pn

ε(λn)
ν gTan

j

pµj
pj · pn

ε∗(λn)
µ |Mn−1〉

=

∫
dLIPSn−1

αs

g2π

∫ Q E2
ndEn

En

∫
dΩ

4π∑
i,j

〈Mn−1| g2Ti ·Tj
pνi

pi · pn
(−ηµν)

pµj
pj · pn

|Mn−1〉

= −
∫

dLIPSn−1
αs

π

∫ Q dEn

En

∫
dΩn

4π

∑
i,j

〈Mn−1|Ti ·Tj
E2

npi · pj
pi · pnpj · pn

|Mn−1〉

= −
∫

dLIPSn−1
αs

π

∫ Q dEn

En

∫
dΩn

4π

∑
i,j

〈Mn−1|Ti ·Tj |Mn−1〉ωn
ij

(2.30)

where I have used equations 2.22, 2.23 and 2.29.

In general the colour charge operators from each level of the evolution cannot join

in this way, it is only those from the last emission that can. The non-abelian quality

of SU(3)c means the colour charge operators cannot commute past the previous and

subsequent emission terms. The string of colour charge operators is collectively known

as the colour structure. Chapter 3 is dedicated to analysing the colour structure for

up to 3 emissions and discusses how the FKS algorithm does so up to any order

using the colour flow basis. The Lorentz space, labeled by indices µ, ν... , is distinct

from the colour space meaning for every real emission the momentum terms can

commute past the colour algebra to form a sum of radiation functions, ωk
ij , weighted

by colour factors, Cij , which are not, in general, equivalent to T i ·T j . This allows for

the complete factorisation of the previous differential cross section element and the

probability of a real soft gluon emission

dσn = dσn−1

−αs

π

dEn

En

dΩn

4π

∑
i,j

Cijω
n
ij

 . (2.31)
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which is referred to as soft factorisation [1].

2.3 Virtual Corrections

The effect of virtual gluons in the shower is to exchange colour between real legs

i.e. to alter the colour structure. The eikonal rules from table 2.1 are still valid

for these diagrams except the internal gluon propagator inserts an extra −i
k2+iε

factor

and absorbs the polarization vectors from each eikonal vertex. The momentum of

the internal gluon line, k, circulates around the loop created by the internal line

meaning it is not an observable and must therefore be integrated over all possible

momenta. This means propagators from the emitting real legs having opposite signs

to accommodate the flow of momentum. Therefore, the amplitude with an inserted

virtual correction between every pair of partons i, j is

|M (1)
n 〉 =

∑
i<j

∫
d4k

(2π)4
gTan

i

pµi
−pi · k + iε

−iηµν
k2 + iε

gTan
j

pνj
pj · k + iε

|M (1)
n 〉

=
∑
i<j

−i

∫
d4k

(2π)4
Ti ·Tjg

2pi · pj
1

(−pi · k + iε)(k2 + iε)(pj · k + iε)
|M (1)

n 〉

≡Iann |M (0)
n 〉

(2.32)

where the sum is over partons i < j instead of i, j to prevent double counting and I

have used the notation Iann from [5]. Note also that self energy graphs, where i = j,

do not contribute to the cross sections in the Feynman gauge for reasons outlined in

equation 2.25.

The integral can be simplified by performing a contour integral around the sin-

gularities which have been perturbed from the real axis into the complex plane of k0

using the iε prescription. The relevant integral is then

∫
dko
2π

1

((pi − k)2 + iε)((k)2 + iε)((pj + k)2 + iε)

=

∫
dko
2π

1

(−pi · k + iε)(k2 + iε)(pj · k + iε)

=

∫
dko
2π

1

(−k0pi0 + p
i
· k + iε)(k0 + |k|+ iε)(k0 − |k| − iε)(k0pj0 − p

j
· k + iε)

(2.33)
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which has poles at

k0 = (
p
i
· k

pi0
+ iε), (−Ek − iε), (Ek + iε), (

p
j
· k

pj0
− iε) (2.34)

where I have used Ek = |k|. Closing the contour to include the positive half of the

imaginary axis encompasses the first and third poles in the list and using Cauchy’s

residue theorem gives

∫
dko
2π

1

((pi − k)2 + iε)((k)2 + iε)((pj + k)2 + iε)

= −i2π
1

2π(k2 + iε)((
p
i
·k

pi0
pj0 − p

j
· k + iε)

− i2π
1

2π(−Ekpi0 + p
i
· k + iε)(k0 + Ek + iε)(Ekpj0 − p

j
· k + iε)

=
−i

(k2 + iε)((
p
i
·k

pi0
pj0 − p

j
· k + iε)

+
−i

2Ek(−pi · k)(pj · k)

=
−i

(k2 + iε)((
p
i
·k

pi0
pj0 − p

j
· k + iε)

+
i

2Ek(pi · k)(pj · k)

(2.35)

The residue with k0 = Ek corresponds to the gluon propagator going on-shell and

gives the following real valued term in the full virtual correction function

Rn = Re[In] =
∑
i<j

−i

∫
d3k

(2π)3
Ti ·Tjg

2pi · pj
i

2Ek(pi · k)(pj · k)

=
∑
i<j

∫
d3k

2Ek(2π)3
Ti ·Tjg

2pi · pj
1

(pi · k)(pj · k)

=
∑
i<j

α

π

∫
dEk

Ek

∫
dΩk

4π
Ti ·Tjpi · pj

1

(pi · k)(pj · k)

=− α

π

∑
i<j

∫
dEk

Ek

∫
dΩk

4π
(−Ti ·Tj)ω

k
ij

(2.36)

which is known as the radiative or Eikonal virtual gluon contribution as it exhibits

the same structure as equation 2.30. Note, however the relative difference of −1
2 .

The sign difference originates from the conservation of momentum flowing into the

second eikonal vertex (i.e. −pi · pk instead of pi · pk ). Here I have chosen the gluon

momentum to flow into parton i but the above argument is valid for choosing parton

j, the important point is that the two propagators should have opposite signs. The

factor of a half is due to the pair ij being a distinct contribution from ji in the real
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radiation equation but is considered the same event for the virtual radiation and so

is not included to prevent double counting.

The remaining term from equation 2.35 can be shown to evaluate to a complex

term of the form

An ≡ Im[In] = −αs

π

∑
i<j

∫
dEk

Ek

∫
dΩk

4π
(−Ti ·Tj)(−iπ)δ̃ij (2.37)

where δ̃ij = 1 if partons i, j are both incoming or outgoing and 0 otherwise [5].

This thesis concerns the e+e− hard process which can only give rise to final state

radiation as the incoming particles are colour neutral. I can therefore set δ̃ij = 1.

The imaginary term is referred to as the Coulomb or absorptive gluon (hence An).

The amplitude for the insertion of a virtual gluon between every real leg in the

shower amplitude can now be written

In |Mn〉 = Rn |Mn〉+An |Mn〉 (2.38)

and the corresponding operation for the conjugate amplitude is

〈Mn| I†n = 〈Mn|R†
n + 〈Mn|A†

n

= 〈Mn|Rn − 〈Mn|An

(2.39)

where I have used equation 2.29 and the fact only An is imaginary. This leads to

cancellations of the absorptive term between certain pairs of squared amplitude terms.

For example, the cross section for the bare scattering dressed with one virtual gluon

is the sum of the amplitude and conjugate sides being dressed

σ
(1)
0 =

∫
dLIPS0 〈M0| I0 |M0〉+ 〈M0| I†0 |M0〉

=

∫
dLIPS0 〈M0|R0 |M0〉+ 〈M0|A0 |M0〉+ 〈M0|R†

0 |M0〉+ 〈M0|A†
0 |M0〉

=

∫
dLIPS0 〈M0|R0 |M0〉+ 〈M0|A0 |M0〉+ 〈M0|R†

0 |M0〉 − 〈M0|A0 |M0〉

=

∫
dLIPS02 〈M0|R0 |M0〉 .

(2.40)
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Chapter 3 will show how cancellations of this type occur for the first three orders. At

fourth order there is miscancellation which leads to the super leading logs [16, 17].

The virtual correction is then applied to all orders using the Sudakov factor. This

describes the probability of the shower not radiating between certain energy scales

[1]. In the algorithm these two scales are the scales of the previous and subsequent

real emission. It is the sum of products of In

V En+1,En = 1 +

∫ En

En+1

dEk

Ek
f(Ωk) +

∫ En

En+1

dEk

Ek
f(Ωk)

∫ Ek

En+1

dEk+1

Ek+1
f(Ωk+1) + · · ·

= exp

[∫ En

En+1

dEk

Ek
f(Ωk)

]

= exp [In]

(2.41)

where f(Ωk) refers to everything in In except the energy integral.

2.4 The Algorithm Rules

The algorithm applies the operators Ji and VEi+1,Ei to recursively build up the number

of gluons considered in the cross sections for parton shower observables. This sys-

tematically inserts real gluon emissions from every real leg in the shower and dresses

the subsequent shower with virtual corrections between each real parton up to any

order. The modulus squared amplitude is written in trace form to make calculations

of the colour factors easier (see chapter 3) and the real emissions are integrated over

Lorentz invariant phase space weighted with a measurement function specific to an

observable.

A general observable calculated up to pth order is

Σ(p)(µ) =

∫ p∑
n=0

dσ(p)
n un (k1, k2, · · · , kn) (2.42)

where dσ
(p)
n is the differential cross section for n real emissions and p− n virtual cor-

rections. For GBJ, which is our focus, the measurement function, un (k1, k2, · · · , kn),

acts to veto certain regions of the phase space and as such consists of Heaviside theta

functions which are unity in the accepted region and zero otherwise. The real emission
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phase space is weighted by these, as in equation 2.42, but the virtual phase space is

not. Written out in full, the algorithm evolves the differential cross section as follows

dσn =Tr
(
V En+1,EnD

µ
n · · ·V E2,E1D

ν
1V E1,QH(Q)V †

E1,Q
D†

1νV
†
E2,E1

· · ·D†
nµV

†
En+1,En

)
dΠ1dΠ2 · · · dΠn

(2.43)

where

Dµ
i =

∑
j

TjEi

pµj
pj · qi

Θcut (2.44)

inserts real emissions. This is effectively the soft gluon current, J i except it includes

an energy factor and an uncontracted momentum term destined to form radiation

functions ωk
ij when contracted with the momentum part of the corresponding D†.The

Θcut term is product of Heaviside step functions which puncture holes in the phase

space of radius λ around unit vectors collinear to the emitting partons. In this case

there is only one collinear singularity but Θcut is used generally as

Θcut =
∏
i,k

Θ(nk · ni − λ) . (2.45)

where i and k label the parton and gluon. The aim of this thesis is to calculate the

effects of allowing λ → 0. The Sudakov factor is

V Ei+1,Ei = P exp

[
−αs

π

∫ Ei

Ei+1

dEk

Ek

∑
i<j

−T i · T j

∫
dΩk

4π
ωk
ijΘcut +Ai

 (2.46)

where I have kept the absorptive (Coulomb) term unspecified as it will be shown to

cancel for the cases I am considering. The Sudakov factors following Di dress the

shower after i emissions with virtual corrections up to all orders. Expansion of the

exponential up to the mth order and selecting the mth order terms corresponds to

dressing the real legs of the shower amplitude with m virtual gluons in all combina-

tions possible.
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The phase space element is that of a real emission meaning equation 2.30 can

always be used. This gives

dΠi ≡ −αs

π

dEi

Ei

dΩi

4π
. (2.47)

Strong energy ordering has been implemented by assuming the most energetic gluon

can be considered first followed by lower energy gluons and so on. This is imposed

by setting the upper integral limit equal to the energy of the previous emission. The

reasoning for using this assumption is detailed in [10]. This algorithm has been

derived in a basis-independent notation of SU(3)c and only universal properties of

the group have been used, specifically that elements of the group must be hermitian.

2.5 The Gaps between Jets observable

The gaps between jets observable vetoes emissions into the angular region between

the two cones centred on the back to back quarks as illustrated in figure 2.1. This

means un can be factorised into n Heaviside functions which make the appropriate

cuts on the phase space for each real gluon emission

un (q1, . . . , qn) =
n∏

i=1

u1 (qi) (2.48)

u1(k) = Θout(k) + ΘinΘ(ρ > Ek) (2.49)

where Θout(k) is unity if k is in the out of gap region and ΘinΘ(ρ > Ek) is unity if k

is in the gap region and has energy below the experimental cut off ρ [10]. For reasons

outlined in the introduction we can effectively set ρ = µ.

The measurement function therefore affect the real emission phase space as follows

∫
dΠ1 · · ·

∫
dΠnf (Ω1,Ω2, · · · ,Ωn)un (n1 · · ·nn) =

(
−αs

π

)n
∫ Q

µ

dE1

E1
· · ·

∫ En−1

µ

dEn

En∫
Out

dΩ1

4π
· · ·

∫
Out

dΩn

4π

f (Ω1,Ω2, · · · ,Ωn)Θcut

(2.50)
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Figure 2.1: Diagram to illustrate the regions of the phase space.
InGap is the vetoed region in-between the back to back jets.
Out of Gap is the region occupied by the jets. α is the opening angle

of the jets from the back to back quark-anti-quark pair.
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where Out refers region out of the gap between back to back jets of opening angle α,

i.e. the out region is the jet region

∫
Out

dΩi

4π
f (Ωi)Θcut =

∫ α

0

dθi sin (θi)

2

∫ 2π

0

dφi

2π
f (Ωi)Θcut

+

∫ π

π−α

dθi sin (θi)

2

∫ 2π

0

dφi

2π
f (Ωi)Θcut

=

∫ 1

c

dxi
2

∫ 2π

0

dφi

2π
f (Ωi)Θcut

+

∫ −c

−1

dxi
2

∫ 2π

0

dφi

2π
f (Ωi)Θcut

≡ f̈ (Ωi)

(2.51)

where xi ≡ cos(θi) and c ≡ cos(α) .

Similarly, a function integrated over the region in the gap is

∫
in

dΩi

4π
f (Ωi)Θcut =

∫ π−α

α

dθi sin (θi)

2

∫ 2π

0

dφi

2π
f (Ωi)Θcut

=

∫ −c

c

dxi
2

∫ 2π

0

dφi

2π
f (Ωi)Θcut

≡ ḟ (Ωi) .

(2.52)

Finally a function integrated over the entire region is defined

∫
all

dΩi

4π
f (Ωi)Θcut =

∫ π

0

dθi sin (θi)

2

∫ 2π

0

dφi

2π
f (Ωi)Θcut

=

∫ 1

−1

dxi
2

∫ 2π

0

dφi

2π
f (Ωi)Θcut

≡ f̄ (Ωi)

(2.53)

meaning

f̄ (Ωi) = f̈ (Ωi) + ḟ (Ωi)

all = out+ in.

(2.54)

The emissions are ordered in energy such that the most energetic gluon is considered

first, hence we have the energy integrals

∫ E0≡Q

µ

dE1

E1

∫ E1

µ

dE2

E2
· · ·

∫ En−1

µ

dEn

En
(2.55)
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for a shower involving n emissions. This integral can be simplified using

ti ≡ ln

(
Ei

µ

)
(2.56)

leading to ∫ t0

0
dt1

∫ t1

0
dt2 · · ·

∫ tn−1

0
dtn. (2.57)

This notation can be extended to simplify the energy integrals included in the Sudakov

factors. The energy of each virtual gluon is integrated between the energy of the

previous real emission energy scale, Ei, and that of the next, Ei+1. The integral

simplifies to

∫ Ei

Ei+1

dEk

Ek
= ln

(
Ei

Ei+1

)
= ln

(
Ei

µ

)
− ln

(
Ei+1

µ

)
= ti − ti+1

≡ t́i

(2.58)

where t́i has been defined. This definition holds for the final, nth, Sudakov if we define

the lower energy limit, En+1 to be the soft scale, µ. It follows that

t́n = ln

(
En

µ

)
− ln

(
µ

µ

)
= ln

(
En

µ

) (2.59)

which matches with ∫ En

µ

dEk

Ek
. (2.60)

In this form the energy ordered expansion of the Sudakov subsequent to the nth

real emission up to pth order has a structure similar to the real emission energy

ordering ∫ t́n

0
dx1

∫ x1

0
dx2 · · ·

∫ xp−1

0
dxp =

t́n
p

p!
(2.61)

which holds because the rest of the exponent has no energy dependence.
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It is also helpful to define an expression to include the colour factors linked with

the corresponding ω functions for Eikonal virtual gluons

F (k)
m ≡

∑
i<j

−Ti · Tjω
k
ij

 (2.62)

where the upper (k) index labels the gluon number which, for virtuals, starts at one

above the real emission number. For example, the first virtual gluon considered in a

shower with 2 real emissions will have a label of k = 3. However, this doesn’t mean

it was emitted below the two real gluons in the energy scale. The lower index of F

dictates at what point in the shower evolution the virtual gluon was exchanged. F
(k)
0

acts to exchange a virtual gluon between the quark anti-quark legs prior to emissions.

F
(k)
1 is the sum of all the ways a gluon can be exchanged between the real shower legs

after 1 real emission, F (k)
2 is for after 2 real emissions and so on. It is true then for

any F
(k)
m function that m < k. Virtual Eikonal gluons are integrated over the entire

phase space as follows

F̄ (k)
m ≡

∑
i<j

−Ti · Tj

∫
all

dΩk

4π
ωk
ijΘcut

 (2.63)

which, combined with equations 2.58 and 2.46, allows for the Sudakov factor with

no Coulomb gluon terms to be written as

VEm+1,Em = exp
[
−αs

π
t́mF̄m

]
. (2.64)

It is useful to consider the trace of a cross section with no virtual corrections

ε(1,··· ,m)
m ≡ Tr

(
Dµ

m · · ·Dν
1H(Q)D†

1ν · · ·D
†
mµ

)
(2.65)

where the upper index lists the gluons considered in the trace and the lower index is

the number of real emissions. Due to the cyclicity of the trace

ε(1,··· ,m)
m ≡ Tr

(
D†

mµD
µ
m · · ·Dν

1H(Q)D†
1ν · · ·D

†
m−1µ

)
. (2.66)
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The D†
mDm combination can be simplified as follows

D†
mµD

µ
m =

m−1∑
i,j

T
†(m)
i

niµ

ni · nm
T

(m)
j

nµ
j

nj · nm

=
m−1∑
i 6=j

T
†(m)
i T

(m)
j ωm

ij

= 2

m−1∑
i<j

Ti · Tjω
m
ij

= −2F
(m)
m−1

(2.67)

where I have used the result that the gluons are on shell and therefore ωii = 0. I have

also used

Ti · Tj ≡ T
†(m)
i T

(m)
j (2.68)

where the (m) in both charge operators indicated they describe the addition of the

same gluon and the colour lines therefore link when taking the trace.

Finally, the virtual colour-momentum structures, F , can be extracted from the

trace by defining

f (k)
m ≡

Tr
(
F k
mDµ

m · · ·D†
mµ

)
Tr

(
Dµ

m · · ·D†
mµ

)
=

Tr
(
F k
mDµ

m · · ·D†
mµ

)
ε
(1,··· ,m)
m

(2.69)

which allows for

Tr
(
F (k)
m Dµ

m · · ·D†
mµ

)
= ε(1,··· ,m)

m f (k)
m (2.70)

and, in turn

ε
(1,··· ,m,m+1)
m+1 = Tr

(
Dν

m+1D
µ
m · · ·D†

mµD
†
m+1ν

)
= Tr

(
D†

m+1νD
ν
m+1D

µ
m · · ·D†

mµ

)
= Tr

(
−2F (m+1)

m Dµ
m · · ·D†

mµ

)
= −2ε(1,··· ,m)

m f (m+1)
m

(2.71)

which is true for any value of m.

Using the emission functions (EFs) ε, f or F to calculate cross sections can lead

to some explicit cancellations of entire groups of Ti · Tjω
k
ij terms. Likewise, using the
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hatted emission functions (HEFs), marked by −, · or ··, helps to recognise cancella-

tions of the EFs in specific regions of the phase space (see equation 2.54). However,

cross sections written in this way are strings of multiple HEFs and care must be

taken when manipulating them to find cancellations and when converting the result

back to standard integration notation. This section discusses what manipulations are

consistent with equation 2.43.

Firstly, in general, the integration coupled with each ε, f or F , marked by −, ·

or ·· must include the entire cross section structure in the integrands as in 2.43. For

example, if k 6= l

Ẍ(l)Ẏ (k) ≡
∫
Out

dΩl

4π

∫
In

dΩk

4π
X(l)Y (k) (2.72)

rather than [∫
Out

dΩ1

4π
X(l)

] [∫
In

dΩk

4π
Y (k)

]
(2.73)

where X and Y are generic emission functions. In other words HEFs are not neces-

sarily factorisable, in contrast to ε and f . This is because Y (k) (X(l)) could, (and

often does), have Ωl (Ωk) dependence.

This is the normal situation because EFs depend on the momenta of the emitting

partons. No gluons are emitted from virtual gluons meaning no other functions will

be dependent on their solid angle and the integration associated with these functions

must be completed first. The real EFs will be dependant on the solid angles of the

earlier emissions so integrals associated with the real emission must be ordered from

last to first. Hence the integration for a multiplicity p observable must be ordered

∫
dΩ1

4π

∫
dΩ2

4π
· · ·

∫
dΩp

4π
, (2.74)

as in 2.43. This region of each integral is tracked by the type of hat and the upper

index of each HEF.

The order of integration can be altered in some cases. For example, the order of

the virtual integrals is arbitrary for the reason mentioned above. This corresponds to

being able to switch the upper indices of f̄ (k)
m . A general cross section with virtuals

at stages a and b where a, b ∈ 1, ...,m has the structure
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Ẍ(1,··· ,m)f̄ (k)
a f̄

(l)
b ≡

∫
Out

dΩ1

4π
· · ·

∫
Out

dΩm

4π

∫
All

dΩk

4π

∫
All

dΩl

4π

X(1,··· ,m)(Ω1 · · ·Ωm)f (k)
a (Ω1 · · ·Ωm,Ωk)f

(l)
b (Ω1 · · ·Ωm,Ωl)

=

[∫
Out

dΩ1

4π
· · ·

∫
Out

dΩm

4π
X(1,··· ,m)(Ω1, · · · ,Ωm)[∫

All

dΩk

4π
f (k)
a (Ω1 · · ·Ωa,Ωk)

] [∫
All

dΩl

4π
f
(l)
b (Ω1 · · ·Ωb,Ωl)

]]
=

[∫
Out

dΩ1

4π
· · ·

∫
Out

dΩm

4π
X(1,··· ,m)(Ω1, · · · ,Ωm)[∫

All

dΩl

4π
f
(l)
b (Ω1 · · ·Ωb,Ωl)

] [∫
All

dΩk

4π
f (k)
a (Ω1 · · ·Ωa,Ωk)

]]
= Ẍ(1,··· ,m)f̄

(l)
b f̄ (k)

a

(2.75)

where in the second to last line the dummy indices of l and k have just been switched.

This means the virtual f functions can commute past each other. By similar reasoning

Ẍ(1,··· ,m)f̄ (k)
m f̈ (l)

m ≡
∫
Out

dΩ1

4π
· · ·

∫
Out

dΩm

4π

∫
All

dΩk

4π

∫
Out

dΩl

4π

X(1,··· ,m)(Ω1 · · ·Ωm)f (k)
m (Ω1 · · ·Ωm,Ωk)f

(l)
m (Ω1 · · ·Ωm,Ωl)

=

∫
Out

dΩ1

4π
· · ·

∫
Out

dΩm

4π
X(1,··· ,m)(Ω1, · · · ,Ωm)[∫

All

dΩk

4π
f (k)
m (Ω1 · · ·Ωm,Ωk)

] [∫
Out

dΩl

4π
f (l)
m (Ω1 · · ·Ωm,Ωl)

]
=

∫
Out

dΩ1

4π
· · ·

∫
Out

dΩm

4π
X(1,··· ,m)(Ω1, · · · ,Ωm)[∫

Out

dΩl

4π
f (l)
m (Ω1 · · ·Ωm,Ωl)

] [∫
All

dΩk

4π
f (k)
m (Ω1 · · ·Ωm,Ωk)

]
= Ẍ(1,··· ,m)f̈ (l)

m f̄ (k)
m

(2.76)

i.e. the two fm functions integrated over different regions can commute past each

other provided the lower index matches.
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Chapter 3

Colour Structure Calculations

3.1 Colour Structure Calculations

The FKS algorithm detailed in the last chapter gives a sum of amplitudes, squared.

This is written in trace form and integrated over the appropriate phase space for a

given observable. This chapter will describe how the trace is calculated. The Dirac

and Lorentz matrices can commute past the colour algebra meaning each pair of

Dµ
n · · ·D†

µn terms gives a sum of radiation functions ωn
ij where ij are all the distinct

pairs of real legs in the shower at that point. The colour charge operators T i and T †
j

coupled to the momentum parts remain in place of the full D terms. Similarly, from

the radiative virtual gluon contribution Rn we can extract −ωk
ij and leave T i · T j .

For the purposes of this section I will assume the absorptive terms from the virtuals

cancel and do not need to be considered.

For example, a subset of the cross section diagrams at third order are those cor-

responding to 2 real emissions and 1 virtual correction occurring between the scales

of the first and second emission on the amplitude side. The trace giving this sum of

diagrams is

Tr[Dµ
2F

(3)
1 Dν

1HD†
1νD

†
2µ] (3.1)

where for the time being I have ignored the factor of −αst1′

π and the integration over

Ek, Ωk from the Sudakov. The Coulomb term would give a trace structure identical

to this but would have a factor of iπ instead of−ω3
kl inside F

(3)
1 . The hard scattering

matrix has also been set to the identity matrix as we are considering a colour singlet
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production process. Expanding the terms out gives

∑
{ij},{k<l},{mn}

Tr[TmT k · T lT iT
†
jT

†
n]ω

1
ijω

2
mn(−ω3

kl) (3.2)

where

{ij} = ab, ba

{mn} = ab, ba, a1, 1a, b1, 1b

{k < l} = ab, a1, b1.

(3.3)

Note, we choose to label the real gluons before the virtual gluons even if the virtual

is emitted at a higher energy scale than the real emission [10].

Equations such as the one above are sometimes referred to as an antenna patterns

[1] as they describe how the shower can branch outwards and the colour factor weights

associated with each branching. The above antenna pattern is just one in the set

which contribute to the third order calculation. Others are the patterns where the

virtual gluon is inserted in a different position in the trace or patterns where there

are a different number of virtuals and reals. In general, they will have a structure

similar to that of equation 3.2 with a product of n radiation functions and a colour

structure factor consisting of a trace of 2n colour charge operators where n is the

order of the calculation.

At this point a representation for the SU(3)c algebra must be chosen to evalu-

ate the value of the colour structure. One contribution to the antenna pattern of

equation 3.2 considers the legs

i = a, j = b, k = a, l = b, m = 1, n = a (3.4)

where leg a is the quark leg, b is the anti-quark leg and all numbered legs correspond

to gluons. Figure 3.1 contains the diagram for the colour structure.



3.1. Colour Structure Calculations 47

Figure 3.1: A cross section level diagram displaying the colour struc-
ture for one configuration of 2 real emissions and 1 virtual correction

occurring between the scales of the first and second emission.

Using the fundamental and adjoint representations, equation 3.2 evaluates to

Tr[T 1T a · T bT aT
†
bT

†
a]ω

1
abω

2
a1(−ω3

ab) =Tr[ifabc(−tdkjt
d
nm)tajit

c
mlt

b
lk]ω

1
abω

2
a1(−ω3

ab)

(3.5)

where I have used the results from table 2.1 for the colour charge operators. The

correct assignment of the fundamental and adjoint indices (i, j, k, l,m and a, b, c, d

respectively) requires drawing the colour structure diagram which is not easily auto-

mated. Calculating the trace once the indices are labelled then involves the applica-

tion of numerous identities. For large multiplicity cross sections, this algebra quickly

becomes intractable by hand and difficult to automate.
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3.2 Colour Algebra Diagrams

A quicker and more intuitive approach to evaluating the trace is to use diagrams.

The diagrammatic rules are derived by expressing the colour algebra terms in the

fundamental basis using

ifabc = 2Tr[[ta, tb]tc] (3.6)

and then expressing the Gell-Mann matrices as combinations of Kronecker deltas

such that the properties of the group hold. Specifically, we can express the octet

representation of SU(3)c as a nonet with the over-counted singlet state removed [4].

The Kronecker deltas can then be expressed diagrammatically using quark or anti-

quark lines which carry a colour and anti-colour index respectively. The diagram

identities required for this work are:

δii = = Nc (3.7a)

taii =
a = 0 (3.7b)

(3.7c)
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(3.7d)

These diagrams can then be used to arrive at the Fierz identity and the alternative

representation of the structure constants, ifabc:

(3.8a)

(3.8b)

Colour operator products can then be evaluated. T a · T b between the hard scat-

tering process and the first emission and T a · T b and T a · T 1 between the first and
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second emission are given by:

(3.9a)

(3.9b)

(3.9c)
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(3.9d)

(3.9e)

(3.9f)

where the factors of −1 in the first two diagrams are due to the colour charge

operator at the anti-quark leg. The red gluon is coloured differently only for clarity

to emphasise there is no vertex at the crossing of the gluons. After the colour charge

operators have been applied, the diagrams make no distinction between the quark

and anti-quark lines leaving the hard scattering vertex, it is a single colour line.

Each of the operators act to reproduce the original colour structure diagram with

a constant prefactor. They are therefore group invariants and proportional to the

identity matrix. The same can be shown for T b · T 1. The operators T a · T b above
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the scale of the first emission and T a · T b, T a · T 1 and T b · T 1 above the scale of

the second emission are abelian which means F 0 and F 1 are also abelian and can be

moved around and extracted from the trace. These qualities are used extensively in

the next chapter.

Using these results the colour structure of figure 3.1 can be quickly evaluated:

(3.10)

where I have included the effects of the factor of −1 coming from T b. In this fashion,

these diagrams allow for the evaluation of arbitrarily complex colour structures. Once

a diagram has been evaluated, it can be used to calculate higher order diagrams and

this can be repeated indefinitely. However, equation 3.5 is just one of many colour

structures to be calculated at third order. Therefore, up to the orders required for

parton shower resummations, calculating the colour structures in this way remains

impractical.

One approach used in the past is to calculate in the large N ’t Hooft limit [12].

This sets the number of colours to be N � 1 which suppresses the colour singlet term

in the Fierz identity. Calculations using this limit are said to be Leading N [4].

3.3 The Colour Flow Basis

The Colour Flow Basis (CFB) decomposes amplitudes into weighted sums of all pos-

sible routes external anti-colour lines can flow to external colour lines in the colour

structure. This choice of representation for the SU(3)c algebra provides a method of
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calculating colour structures up to any order whilst maintaining full colour depen-

dence or expanding in terms of N [20].

The approach is related to the diagrammatic approach and uses the results de-

scribed in the previous section. Consider equation 3.8a, each diagrammatic term

represents a different route the colour or anti-colour lines can take. In the CFB each

of these terms is a basis tensor. In this way, amplitudes are described as a sum of the

basis tensors weighted by a product of the colour algebra factors ( TR, Nc , Ng etc.)

and any other factors that apply to the entire colour structure.

The quark (anti-quark) carries colour (anti-colour) meaning it is represented by

a colour (anti-colour) leg. Gluons carry both colour and anti-colour meaning each

real gluon emission adds a colour leg and anti-colour leg. An amplitude with n real

emissions therefore has n + 1 colour and n + 1 anti-colour legs. Each basis tensor

is defined as a product of Kronecker deltas which link the fundamental indices of

external colour legs with external anti-colour legs in a distinct way. In other words

each basis tensor for an amplitude with n pairs of legs is a permutation of the list

1, ..., n and as such is one of n! tensors. The tensors are defined as

|σ〉 ≡ |σ(1) · · ·σ(m)〉

=δα1
ᾱσ(1)

· · · δαm
ᾱσ(1)

(3.11)

where the upper indices are the fundamental colour indices of the ith colour leg and

the lower indices are the fundamental anti-colour indices. Amplitudes are then given

by

|M〉 =
∑
σ

Mσ |σ〉 (3.12)

where the sum is over the set of permutations. Conjugate basis tensors are given by

〈σ| ≡ 〈σ(1) · · ·σ(m)|

=δ
ᾱσ(1)
α1 · · · δᾱσ(m)

αm .

(3.13)
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where the position i in the bra indicates which colour line the anti-colour line c̄σ(i)

flows to. The inner product is then

〈τ |σ〉 =δ
ᾱτ(1)
α1 · · · δᾱτ(m)

αm δα1
ᾱσ(1)

· · · δαm
ᾱσ(m)

. (3.14)

If two permutations differ by one transposition such that τ(i) = σ(j), τ(j) = σ(i),

the inner product is

〈τ |σ〉 =δ
ᾱτ(1)
α1 δα1

ᾱσ(1)
· · · δᾱτ(i)

αi δαi
ᾱσ(i)

δ
ᾱτ(j)
αj δ

αj

ᾱσ(j)
· · · δᾱτ(m)

αm δαm
ᾱσ(m)

=δ
ᾱτ(1)

ᾱτ(1)
· · · δᾱτ(i)

ᾱτ(i)
· · · δᾱτ(m)

ᾱτ(m)

=Nn−1

(3.15)

where every pair of Kronecker deltas contracts to give a factor of N except for the

four involved with the transposition which all contract to give just one factor of N .

This happens for each transposition meaning, in general

Sτσ ≡ 〈τ |σ〉 =Nn−#trans(σ,τ) (3.16)

where #trans(σ, τ) is the number of transpositions between the two permutations

and the scalar product matrix, Sτσ, has been defined. The CFB tensors are therefore

non-orthogonal.

This means basis independent operators such as the colour charge operators can-

not be represented solely using the basis. Projecting operators onto the basis states

to calculate the matrix elements leads to contradictions, in general we have

R =
∑
σ,τ

〈σ|R |τ〉 |σ〉 〈τ |

=
∑

σ,τ,α,β

〈σ| 〈α|R |β〉 |α〉 〈β| |τ〉 |σ〉 〈τ |

=
∑

σ,τ,α,β

〈α|R |β〉 〈σ| |α〉 〈β| |τ〉 |σ〉 〈τ |

=
∑

σ,τ,α,β

〈α|R |β〉N2n−#trans(σ,α)−#trans(β,τ) |σ〉 〈τ |

6=
∑
σ,τ

〈σ|R |τ〉 |σ〉 〈τ | .

(3.17)
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To remedy this, a dual basis is introduced which has the defining properties

I =|α] 〈α| = |α〉 [β|

δαβ = 〈α|β] = [β |α〉
(3.18)

which allows for operators to be defined as

R =
∑
σ,τ

[σ|R|τ ] |σ〉 〈τ |

=
∑
σ,τ

Rστ |σ〉 〈τ |
(3.19)

where Rστ are the dual basis matrix elements not the matrix elements of the basis

independent operator R. This definition is now self-consistent because

R =
∑
σ,τ

[σ|R|τ ] |σ〉 〈τ |

=
∑

σ,τ,α,β

[σ|[α|R|β] |α〉 〈β| τ ] |σ〉 〈τ |

=
∑

σ,τ,α,β

Rαβ[σ |α〉 〈β| τ ] |σ〉 〈τ |

=
∑

σ,τ,α,β

Rαβδσαδβτ |σ〉 〈τ |

=
∑
σ,τ

Rστ |σ〉 〈τ | .

(3.20)

To calculate colour structures we need to evaluate objects such as

Tr[A] = Tr[LHR] (3.21)

where H = |M0〉 〈M0| is the hard scattering matrix, L is a product of colour charge

operators evolving the amplitude colour structure and R evolves the conjugate am-

plitude colour structure. The trace is the sum of diagonal terms of the operator

sandwiched between orthogonal basis tensors:

Tr[A] =
∑
ρ

[ρ|A |ρ〉 (3.22)
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inserting the identity matrix and using equation 3.19 gives

Tr[A] =
∑
ρ,σ

[ρ|A|σ] 〈σ|ρ〉

=
∑
ρ,σ

AρσSσρ

=Tr[AS]

(3.23)

where the scalar product matrix Sσρ corrects for the non-orthogonality of the basis.

The matrix elements Aρσ contain the evolution of the colour structure.

These matrix elements are calculated by inserting the identity to recursively strip

and evaluate the outermost colour charge operators until the Hard Scattering matrix

is reached. For example:

[ρ|A|σ] = [ρ|LHR|σ]

=
∑
αβ

[ρ|L |α〉 [α|H|β] 〈β|R|σ]

=
∑
αβ

[α|H|β][ρ |α′〉Cα
LC

β
R 〈β′|σ]

=
∑
αβ

[α|H|β]δρα′δβ′σC
α
LC

β
R

=
∑
αβ

[α| |H〉 〈H| |β]δρα′δβ′σC
α
LC

β
R

(3.24)

where Cα
L and Cβ

R are a set of constants generated after evolving the colour flow α

and β using operators L and R. The Kronecker deltas force the permutations ρ and

σ to match α′ and β′ i.e. those arrived at by evolving α with L and β with R . From

this point I will refer to terms such as [ρ|L |α〉 ≡ δρα′Cα
L as matrix elements of the

operator L.

3.4 Real Corrections

By relabelling the indices in equations 3.7c, 3.8b the specific form of the colour charge

operators in the Colour Flow basis can be determined. For an emission from a quark
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line:

(3.25)

where c̄σ(i) is the anti-colour line from which the quark’s colour flowed prior to the

emission. The index ci is the colour line of the quark. The first term acts to insert

a colour line g and an anti-colour line ḡ such that colour flows from c̄σ(i) to g and

from ḡ to ci. In CFB tensor notation this is equivalent to appending an element at

the end of the permutation list and the switching it with the location of σ(i). For a

basis tensor with m colour lines, the new gluon colour line and anti-colour line will

have the indices m+ 1:

tci |σ(m)〉 = tci |σ(1) · · ·σ(i) · · ·σ(m)〉

= |σ(1) · · · (m+ 1) · · ·σ(m), σ(i)〉 .
(3.26)

The second term simply inserts a colour line which flows from the newly formed anti-

colour line. The operator therefore just appends the index of the new gluon at the

end of the permutation list:

s |σ(m)〉 = s |σ(1) · · ·σ(i) · · ·σ(m)〉

= |σ(1) · · ·σ(i) · · ·σ(m), (m+ 1)〉 .
(3.27)

The colour charge operator for an anti-quark leg has a relative minus sign to that of

the quark and the colour flows in the opposite direction:

(3.28)
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where σ−1(i) is the anti-permutation meaning the anti-colour line c̄i flows to the

colour line cσ−1(i). The first term is defined to be the result of

t̄c̄i |σ(m)〉 = t̄c̄i |1 · · · i · · ·m〉

= |1 · · · (m+ 1) · · ·m, i〉

= tcσ−1(i)
|σ(m)〉

t̄c̄σ(i)
|σ(m)〉 = tci |σ(m)〉

(3.29)

where the last line makes the link between ti and t̄i explicit: A gluon emission from

any where along the colour flow has the same effect on the permutation. Redrawing

the colour charge operator for a gluon leg from equation 3.8b such that no lines cross

gives

(3.30)

meaning the first term can be arrived at by applying the operator t̄c̄i and the second

term requires tci .

The operators ti, t̄i and s are collectively know as colour line operators. Combined

with the definitions in table 3.1 the general colour charge operator for leg i is then

T i = λitci − λ̄it̄c̄i −
1

N
(λi − λ̄i)s. (3.31)

The hermitian conjugate T †
j has the same effect on 〈σ|. The quark leg is labelled a,

the anti-quark leg is labelled b and the nth gluon leg is labelled n. The gluon legs are

composed of a colour line cn = n+1 and an anti-colour line c̄n = n+1. The values of

λi and λ̄i are labelled such that the operator T i (equation 3.31) reverts back to the

colour charge operator for a quark, anti-quark or gluon depending on the leg being

considered.
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Leg i ci c̄i λi λ̄i

Quark = a 1 0 1√
2

0

Anti-quark= b 0 1 0 1√
2

Gluon=n n+ 1 n+ 1 1√
2

1√
2

Table 3.1: Colour Flow Basis book keeping.

To strip T i and T †
j operators from the amplitude we then need to compute

[ρ|An|σ] = [ρ|T iAn−1T
†
j |σ]

=
∑
αβ

[ρ|T i |α〉 [α|H|β] 〈β|T †
j |σ]

=
∑
αβ

[α|H|β][ρ |α′〉Cα
Ti
Cβ
Tj

〈β′|σ]

=
∑
αβ

[α|H|β]δρα′δβ′σC
α
LC

β
R

(3.32)

Considering just the amplitude evolution we have

[ρ|T i |α〉 = λi[ρ|tci |α〉 − λ̄i[ρ|̄tc̄i |α〉 −
1

N
(λi − λ̄i)[ρ|s |α〉

= δρα′λi − δρα′′ λ̄i −
1

N
(λi − λ̄i)δρα′′′

(3.33)

meaning T i causes three distinct new colour flows to be generated, α′, α′′ and α′′′. All

three involve the addition of the lines cn and c̄n. In α′, ci is set to be the destination

of the newly added anti-colour line hence we have a factor of δciρ−1(n) to impose this

colour flow on the basis tensor ρ. In α′, c̄i is set to be the origin of the newly added

colour line hence we have a factor of δc̄iρ(n). Finally, in α′′′, ci and c̄i are unaltered

and cn flows from c̄n meaning a factor of δcnρ−1(n). The rest of the permutation of α

is unchanged. An additional Kronecker delta must be applied to each of the terms

to impose this. This is given by δρ/n,α which sets the permutation ρ, with the nth

lines removed and the resulting gap stitched, equivalent to the original α. Hence, the

matrix elements for T i are
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[ρ|T i |α〉 = δρ/n,α

(
λiδciρ−1(n) − λ̄iδc̄iρ(n) −

1

N
(λi − λ̄i)δcnρ−1(n)

)
. (3.34)

Similarly,

〈σ|T j |β] = λj 〈σ| tcj |β]− λ̄j 〈σ| t̄c̄j |β]−
1

N
(λj − λ̄j) 〈σ| s|β]

=

(
λjδcjσ−1(n) − λ̄jδc̄jσ(n) −

1

N
(λj − λ̄j)δcnσ−1(n)

)
δσ/n,β .

(3.35)

3.5 Virtual Corrections

The virtual corrections are marked by a dot product of colour charge operators

T i · T j = T
(g)
i T

(g)
j (3.36)

which has the effect of T i acting on leg i to insert a pair of colour/anti-colour lines

and T j doing the same to leg j. The dot product indicates that we should join the

newly formed gluon colour lines at leg i with those at j. This is a consequence of the

two operators sharing a gluon index g.

The expansion of the dot product requires:

s · s = NI (3.37a)

tci · s = I (3.37b)

t̄c̄i · s = I (3.37c)

tci · t̄c̄j = {c̄j c̄σ(i)} = {cicσ−1(j)} (3.37d)

t̄c̄i · t̄c̄j = {c̄ic̄j} = {cσ−1(i)cσ−1(j)} (3.37e)

tci · tcj = {cicj} = {c̄σ(i)c̄σ(j)} (3.37f)

where elements in curly brackets correspond to a transposition in the colour flow. For

example, {cicj} refers to the transposition of the colour lines i and j.
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The matrix elements for the expansion of T i · T j are then given by:

λi

(
− 1

N
(λj − λ̄j)

)
[τ |tci · s |σ〉+ (i ↔ j) = λi

(
− 1

N
(λj − λ̄j)

)
[τ |σ〉+ (i ↔ j)

= λi

(
− 1

N
(λj − λ̄j)

)
δτσ + (i ↔ j)

(3.38a)

−λ̄i

(
− 1

N
(λj − λ̄j)

)
[τ |̄tc̄i · s |σ〉+ (i ↔ j) = −λ̄i

(
− 1

N
(λj − λ̄j)

)
[τ |σ〉+ (i ↔ j)

= −λ̄i

(
− 1

N
(λj − λ̄j)

)
δτσ + (i ↔ j)

(3.38b)(
− 1

N
(λi − λ̄i)

)(
− 1

N
(λj − λ̄j)

)
[τ |s · s |σ〉 =

(
− 1

N
(λi − λ̄i)

)(
− 1

N
(λj − λ̄j)

)
N [τ |σ〉

=
1

N
(λi − λ̄i)(λj − λ̄j)δτσ

(3.38c)

1

N
(λi − λ̄i)(λj − λ̄j) + (−λ̄i

(
− 1

N
(λj − λ̄j)

)
+ (i ↔ j)) + (λi

(
− 1

N
(λj − λ̄j)

)
+ (i ↔ j))

= − 1

N
(λi − λ̄i)(λj − λ̄j)

(3.38d)

where the last line is the sum of the coefficients of δτσ. The dot product tci ·tcj results

in the transposition of the colour lines ci and cj . If τ differs from σ by more than

one transposition, the transposed colour flow σ′ will still be at least one transposition

away from τ and [τ |σ′〉 = δτσ′ = 0. This is the case if τ matches σ exactly as the

transposition will shift σ away from τ and [τ |σ′〉 = δτσ′ = 0. However, if τ differs

from σ by the exact transposition that tci · tcj causes then [τ |σ′〉 = δτσ′ = 1 as the

dot product reverses the transposition. The matrix elements for tci ·tcjmust therefore

given by a sum over transpositions of colour lines {ab} between τ and σ to include

each of these possibilities:

λiλj [τ |tci · tcj |σ〉 = λiλjδτσ′

= λiλj

∑
{ab}

δτ(ab)σ(δ(ab),(cicj)).
(3.39)
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The same logic is applied for the matrix elements of t̄c̄i · t̄c̄j except the transposition

between τ and σ must match the transposition generated by t̄c̄i · t̄c̄j , {cσ−1(i)cσ−1(j)}:

λiλj [τ |̄tc̄i · t̄c̄j |σ〉 = λ̄iλ̄jδτσ′

= λ̄iλ̄j

∑
{ab}

δτ(ab)σ(δ(ab),(σ−1(i)σ−1(j)))
(3.40)

where I have used the simplified notation {σ−1(i)σ−1(j)} ≡ {cσ−1(i)cσ−1(j)}. Finally,

tci · t̄c̄j generates the transposition

tci · t̄c̄j = {c̄j c̄σ(i)} = {cicσ−1(j)} (3.41)

which forms a closed loop if the legs i and j were colour connected in the original

flow and as such we assign a factor of N . Colour connected refers to the cases where

i = σ−1(j) meaning the colour line c̄j flows to ci. If the legs are not colour connected

then the terms results in a transposition and the same argument as above is applied

to arrive at

−λiλ̄j [τ |̄tc̄i · t̄c̄j |σ〉 = −λiλ̄jδτσ′

= −λiλ̄jNδτσδcic̄σ−1(j)
− λiλ̄j

∑
{ab}

δτ(ab)σ(δ(ab),(iσ−1(j)))
(3.42)

The term tcj · t̄c̄i leads to the same result with i ↔ j.

Combining each of these terms gives the entire colour charge operator dot product

to be

[τ |T i · T j |σ〉 = −Nδτσ

(
λiλ̄jδcic̄σ−1(j)

+ λj λ̄iδcj c̄σ−1(i)
+

1

N2
(λi − λ̄i)(λj − λ̄j)

)
∑
{ab}

δτ(ab)σ
(
−λiλ̄jδ(ab),(iσ−1(j)) − λiλ̄jδ(ab),(jσ−1(i))

+λ̄iλ̄jδ(ab),(σ−1(i)σ−1(j)) + λiλjδ(ab),(ij)
)
.

(3.43)
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3.6 Using the Colour Flow Basis

Rules to generate these matrix elements were written into a Mathematica document

by Matthew De Angelis [10]. I then expanded this document to calculate the emission

functions as defined in chapter 2. The results are given in seen in table 3.2.
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Emission Functions

ε0 N

ε
(1)
1 −

(
N2 − 1

)
ω1
ab

ε
(1,2)
2

(
N2−1

)
ω1
ab

(
N2

(
ω2
a1+ω2

b1

)
−ω2

ab

)
N

ε
(1,2,3)
3 −

(
N2 − 1

)
ω1
ab

(
N2

(
ω2
a1

(
ω3
a2 + ω3

b1 + ω3
1 2

)
+ ω2

b1

(
ω3
a1 + ω3

b2 + ω3
1 2

)))

+
(
N2−1

)
ω1
ab

(
N2

(
ω2
a1+ω2

b1

)
ω3
ab+ω2

ab

((
N2+1

)
ω3
ab−N2

(
ω3
a1+ω3

a2+ω3
b1+ω3

b2

)))
N2

f
(k)
0

(
N2−1

)
ωk
ab

2N

f
(k)
1

1
2N

(
ωk
a1 + ωk

b1

)
− ωk

ab
2N

f
(k)
2

N2
(
N2ω2

a1ω
k
b1+ωk

a2

(
N2ω2

a1−ω2
ab

)
+ωk

a1

(
N2ω2

b1−ω2
ab

))
2N3

(
ω2
a1+ω2

b1

)
−2Nω2

ab

+
(
−ω2

abωb1
k−ωab

2ωb2
k+N2ω2

a1ω
k
1 2+N2ω2

b1ω
k
12+N2ω2

b1ω
k
b2

)
+ωk

ab

((
N2+1

)
ω2
ab−N2

(
ω2
a1+ω2

b1

))
2N3

(
ω2
a1+ω2

b1

)
−2Nω2

ab

Table 3.2: Emission Functions calculated using the Colour Flow Ba-
sis
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Chapter 4

Gaps between Jets up to Third

Order

This chapter will calculate the cross sections for the gaps between jets observable up

to first, second and third order in αsL
π . The dependence on the collinear cut-off λ is

shown to cancel exactly for the first order calculation whereas the second and third

order calculations retain potential dependence on λ. I simplify the calculations as

much as possible, ready to be numerically integrated to test for λ independence. At

any point where I express an emission function (ε or f) in terms of colour factors and

radiation functions ωk
ij I have used table 3.2 from chapter 3.

4.1 Zero Reals

The cross-section for zero real emissions up to pth order is

Σ
(p)
0 (µ) =

∫
dσ

(p)
0 (4.1)

which is the the subset of terms in

Tr[V µ,QH(Q)V †
µ,Q] (4.2)

which are pth order in αsL
π . As shown in Chapter 3

T a · T b = −CF I (4.3)
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which makes the Sudakov abelian. The exponent of the Sudakov and conjugate

Sudakov can be combined and then extracted from the trace which leads to the

cancellation of the absorptive (Coulomb) term

Tr[V µ,QH(Q)V †
µ,Q] = Tr[V †

µ,QV µ,QH]

= Tr[exp
[
I0 + I†

0

]
H]

= Tr[exp
[
R0 +R†

0 +A†
0 +A0

]
H]

= Tr[exp [2R0 −A0 +A0]H]

= Tr[exp [2R0]H]

= Tr[exp
[
−2

αs

π
t́0F̄

(k)
0

]
H]

= exp
[
−2

αs

π
t́0f̄

(k)
0

]
Tr[H]

(4.4)

This gives

Σ
(p)
0 (µ) =

(
−αs

π

)p

ε0

(
2t́0f̄

(k)
0

)p

p!
(4.5)

where

t́0 = t0 − ln
µ

µ
= ln

Q

µ
= L (4.6)

resulting in

Σ
(p)
0 (µ) =

(
−αsL

π

)p

ε0

(
2f̄

(k)
0

)p

p!
. (4.7)

4.2 One Real

In chapter 3 the colour matrices for the Sudakov between the first and second emission

were shown to be

T a · T b =

(
CA

2
− CF

)
I (4.8a)

T a · T 1 = −CA

2
I (4.8b)

T b · T 1 = −CA

2
I (4.8c)

meaning the exponent of the second Sudakov is also abelian. The first and second

pair of Sudakovs can both be extracted from the trace and the absorptive terms from
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both can be cancelled

Tr[V µ,E1D
ν
1V E1,QH(Q)V †

E1,Q
D†

1νV
†
µ,E1

] = Tr[exp[I0 + I1 + I†
0 + I†

1]D
ν
1H(Q)D†

1ν ]

= Tr[exp[2R0 + 2R1]D
ν
1H(Q)D†

1ν ]

= exp

(
−2αs

π

(
t́0f̄

(k)
0 + t́1f̄

(k)
1

))
Tr[Dν

1H(Q)D†
1ν ]

(4.9)

which gives the cross section up to all orders as

Σ1(µ) =

∫
dσ1u1 (k1)

=

(
−αs

π

)∫ t0

0
dt1ε̈

(1)
1 exp

(
−2αs

π

(
t́0f̄

(k)
0 + t́1f̄

(k)
1

))

=

(
−αs

π

)∫ t0

0
dt1ε̈

(1)
1

 ∞∑
p=0

(
−2αs

π

)p

(
t́0f̄

(k)
0 + t́1f̄

(k)
1

)p

p!


=

(
−αs

π

)∫ t0

0
dt1ε̈

(1)
1

 ∞∑
p=1

(
−2αs

π

)p−1

(
t́0f̄

(k)
0 + t́1f̄

(k)
1

)p−1

(p− 1)!



(4.10)

Terms of order p can then be extracted corresponding to cross section contribu-

tions of 1 real emissions and p− 1 virtual corrections (note t0 ≡ L = ln Q
µ ):

Σ
(1)
1 (µ) =

(
−αs

π

)∫ t0

0
dt1ε̈

(1)
1

(−αs

π

)(1−1)

(
2t́0f̄

(k)
0 + 2t́1f̄

(k)
1

)(1−1)

(1− 1)!


=

(
−αsL

π

)
ε̈
(1)
1

(4.11)

Σ
(2)
1 (µ) =

(
−αs

π

)∫ t0

0
dt1ε̈

(1)
1

(−αs

π

)(2−1)

(
2t́0f̄

(2)
0 + 2t́1f̄

(2)
1

)(2−1)

(2− 1)!


=

(
−αs

π

)∫ t0

0
dt1ε̈

(1)
1

[(
−αs

π

)
2
(
t́0f̄

(2)
0 + t́1f̄

(2)
1

)]
=

(
−αs

π

)∫ t0

0
dt1ε̈

(1)
1

[(
−αs

π

)
2
(
(t0 − t1)f̄

(2)
0 + t1f̄

(2)
1

)]
=

(
−αs

π

)
ε̈
(1)
1

[(
−αs

π

)
2

(
(t20 −

t20
2
)f̄

(2)
0 +

t20
2
f̄
(2)
1

)]
=

(
−αsL

π

)2

ε̈
(1)
1

[(
f̄
(2)
0 + f̄

(2)
1

)]

(4.12)
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Σ
(3)
1 (µ) =

(
−αs

π

)∫ t0

0
dt1ε̈

(1)
1

(−αs

π

)(3−1)

(
2t́0f̄

(k)
0 + 2t́1f̄

(k)
1

)(3−1)

(3− 1)!


=

(
−αs

π

)∫ t0

0
dt1ε̈

(1)
1

[(
−αs

π

)2 22

(2)!

(
t́0f̄

(2)
0 + t́1f̄

(2)
1

)(
t́0f̄

(3)
0 + t́1f̄

(3)
1

)]

=

(
−αsL

π

)3 2

3
ε̈
(1)
1

(
f̄
(2)
0 f̄

(3)
0 + f̄

(2)
0 f̄

(3)
1 + f̄

(2)
1 f̄

(3)
1

)
(4.13)

The steps below make the calculation more explicit

∫ t0

0
dt1

(
t́0f̄

(2)
0 + t́1f̄

(2)
1

)(
t́0f̄

(3)
0 + t́1f̄

(3)
1

)
=

∫ t0

0
dt1

[
(t20 − 2t0t1 + t21)f̄

(2)
0 f̄

(3)
0 +

t1(t0 − t1)f̄
(2)
0 f̄

(3)
1

+t1(t0 − t1)f̄
(2)
1 f̄

(3)
0 + t21f̄

(2)
1 f̄

(3)
1

]
=

∫ t0

0
dt1

[
(t20 − 2t0t1 + t21)f̄

(2)
0 f̄

(3)
0 +

2t1(t0 − t1)f̄
(2)
1 f̄

(3)
0 + t21f̄

(2)
1 f̄

(3)
1

]
= L3

(
1

3
f̄
(2)
0 f̄

(3)
0 +

1

3
f̄
(2)
1 f̄

(3)
0 +

1

3
f̄
(2)
1 f̄

(3)
1

)
(4.14)

where I have used in the middle line the fact that the gluon labels for virtual f emission

functions can be switched i.e.the order in which they are integrated is arbitrary (see

2.75).

4.3 Two Reals

The trace for 2 real emissions is

Tr
(
V E3=µ,E2D

µ
2V E2,E1D

ν
1V E1,QH(Q)V †

E1,Q
D†

1νV
†
E2,E1

D†
2µV

†
E3=µ,E2

)
(4.15)

The colour factors for the third Sudakov are not abelian however the outermost

Sudakovs can always be combined due to the cyclicity of the trace and the remaining
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two pairs can be commuted which leads to the cancellation of the absorptive terms

Tr
(
V E3=µ,E2D

µ
2V E2,E1D

ν
1V E1,QH(Q)V †

E1,Q
D†

1νV
†
E2,E1

D†
2µV

†
E3=µ,E2

)
= Tr

(
V †

E3=µ,E2
V E3=µ,E2V E2,E1VE1,QV

†
E1,Q

V †
E2,E1

Dµ
2D

ν
1H(Q)D†

1νD
†
2µ

)
= Tr

(
exp

(
−2αs

π

(
t́0F̄

(k)
0 + t́1F̄

(k)
1 + t́2F̄

(k)
2

))
Dµ

2D
ν
1H(Q)D†

1νD
†
2µ

)

= Tr

 ∞∑
p=0

(
−2αs

π

)p

(
t́0F̄

(k)
0 + t́1F̄

(k)
1 + t́2F̄

(k)
2

)p

p!

Dµ
2D

ν
1H(Q)D†

1νD
†
2µ


(4.16)

where combining the exponents of the Sudakovs and conjugate Sudakovs has lead to

the cancellation of the absorptive terms as it did for the case of zero and one real

emission. However, the expansion must remain in the trace as F
(k)
2 is non-abelian,

this gives

Σ2(µ) =

(
−αs

π

)2 ∫ t0

0
dt1

∫ t1

0
dt2

Tr


 ∞∑
p=2

(
−2αs

π

)p−2

(
t́0F̄

(k)
0 + t́1F̄

(k)
1 + t́2F̄

(k)
2

)p−2

(p− 2)!

Dµ
2D

ν
1H(Q)D†

1νD
†
2µ


(4.17)

Terms of order p can then be extracted corresponding to cross sections for 2 real

emissions and p− 2 virtual corrections:

Σ
(2)
2 (µ) =

(
−αs

π

)2 ∫ t0

0
dt1

∫ t1

0
dt2

Tr


(−2αs

π

)2−2

(
t́0F̄

(k)
0 + t́1F̄

(k)
1 + t́2F̄

(k)
2

)2−2

(2− 2)!

 D̈
µ
2D̈

ν
1H(Q)D̈

†
1νD̈

†
2µ


=

(
−αs

π

)2 ∫ t0

0
dt1t1Tr

(
D̈

µ
2D̈

ν
1H(Q)D̈

†
1νD̈

†
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Σ
(3)
2 (µ) =
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where I have used

f̄
(k)
2 ≡

Tr(F̄ (k)
2 Dµ

2D
ν
1H(Q)D†

1,νD
†
2,µ)

ε2
(4.20)

from Chapter 2.
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4.4 Three Reals

For the third order calculation, expanding the Sudakovs in the 3 reals trace is not

necessary. The required contribution is

Σ
(3)
3 (µ) =

(
−αs

π

)3 ∫ t0

0
dt1

∫ t1

0
dt2

∫ t2

0
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=
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(
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3 · 2
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3 .

(4.21)

4.5 Gaps between Jets up to First Order

The gaps between jets observable up to 1st order is

Σ(1)(µ) = Σ
(1)
0 (µ) + Σ

(1)
1 (µ)

=

(
−αsL

π

)ε0
(
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=
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2ε0ḟ
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=
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)∫ c
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2CA(CFω
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abΘcut)

=
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0
dx12CACFω

1
ab

(4.22)

where the Heaviside function cuts away the collinear poles at na and nb (see equa-

tion 2.45). The 3-vector parts of these point along the forward x1 = 1 and backward

x1 = −1 azimuthal axes meaning the integral region of x1 = −c to x1 = c = cos(α)

does not include the poles and the integral is automatically λ independent. I have

also used the fact that

ω1
ab =

na · nb

na · n1nb · n1
=

2

1− x21
(4.23)

meaning the integral has no azimuthal dependence and is symmetric about x1 = 0.
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4.6 Gaps between Jets up to Second Order

The gaps between jets observable up to 2nd order is

Σ(2)(µ) = Σ
(2)
0 (µ) + Σ

(2)
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=
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(4.24)

From equation 2.54

ε̈1f̄1 − ε̈1f̈1 = ε̈1ḟ1

(−ε̄1)f̄0 + ε̈1f̄0 = −ε̇1f̄0

(4.25)

and from equation 2.76

ε̇1f̄0 = −2ε0ḟ0f̄0

= −2ε0f̄0ḟ0

= ε̄1ḟ0

(4.26)

which give
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ḟ
(2)
1 − ḟ

(2)
0

)
− ε̇

(1)
1 ḟ
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(4.27)
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Applying the integration rules 2.52 , 2.51 and 2.53 gives
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where the Heaviside function (see equation 2.45) attached to the second term is

redundant as the integral region does not include the poles at n1, n2 → na, nb. The

integrand of the second term is also symmetric about x1 = 0 and x2 = 0 and has no

azimuthal dependence. The first gluon is defined to travel along the φ1 = 0 direction

meaning we can drop the first azimuthal dependence but this is not the case for φ2

as

ω2
a1 =

na · n1

na · n2n1 · n2
=

1− x1
(1− x2)(1− y1y2cos(φ2)− x1x2)

(4.29)

where yi = sin(θi). This term is also not symmetric about x1 = 0 meaning the x1

integral cannot be simplified.

Three poles remain at:

• x1 → xb = −1

• x1 → xa = 1
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• x2 → x1 = c and φ2 → φ1 = 0

The first two are not expected to diverge as the integrand vanishes at the pole. At

the poles we have that

ω2
a1 + ω2

b1 − ω2
ab

n1→na−−−−→ ω2
ba − ω2

ab = 0 (4.30)

and

ω2
a1 + ω2

b1 − ω2
ab

n1→nb−−−−→ ω2
ba − ω2

ab = 0 (4.31)

however this is just a heuristic approach and the numerics in the next chapter will

demonstrate the cut-off independence.

The final pole occurs at the boundary of the jet opening angle where gluon one

is in the out-of-gap region and gluon two is in the gap. The formal definition of the

out of gap region is x1 < c rather than x1 ≤ c so the pole is technically not reached.

However, we would still expect a divergence leading up to the boundary and therefore

a residual λ dependence.



4.7. Gaps between Jets up to third order 75

4.7 Gaps between Jets up to third order

Using the results from the previous sections, up to third order the cross section is
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where the −D can be written as
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(4.33)

The manipulations in equation 4.32 were carried out in an attempt to prove λ

independence analytically and to greater understand the structure of the calculation

in the hope of doing the same at higher orders. However, equation 4.32 does not

present any clear arguments for λ independence. In the following chapter the final

line is numerically integrated.





77

Chapter 5

Numerical Integration

5.1 Second Order

The numerical integration for Σ(2) was implemented easily in Mathematica and re-

quired only 5×105 sampling points for the in-built Monte-Carlo function to converge.

I chose the following parameters to test the function:

• µ = 0.01

• Q = 1

• c = 1√
2
= cos(π/4)

• λ = 10−1 → 10−6

The results are shown in figure 5.1. As can be seen from figure 5.1 the observable is

Figure 5.1: Dependence of Σ(2) on the Collinear Cut-off, λ.
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independent of λ for

ln(1/λ) > 8

λ < 10−4
(5.1)

which is strong evidence that the co-linear divergences in Σ(2) cancel and the FKS

algorithm works as it should. This suggests that the divergences at

• x1 → xb = −1

• x1 → xa = 1

cancel because the integrand vanishes as n1 → na and n1 → nb, as postulated in the

previous chapter. The divergence at the pole

• x2 → x1 = c and φ2 → φ1 = 0

clearly must also cancel. The reason for this cancellation is unclear, however. Further

investigation into this type of cancellation would be helpful as this residual λ depen-

dence at the boundary of the jet opening angle will occur at all orders. It occurs

when a general emission function f (k) integrated over the out-of-gap region (real) is

subtracted from the same emission function integrated over the entire phase space

(virtual) which leaves

f̄ (k) − f̈ (k) = ḟ (k). (5.2)

As gluons are only emitted from real legs which by definition do not occur in the gap

region, the gluon k can only be co-linear to the parent partons at the boundary of the

two regions. This type of subtraction will occur most often for Bloch-Nordsieck type

cancellations between terms with n reals and terms with n − 1 reals and 1 virtual.

For example,

2ε̈
(1···n−1)
n−1 f̄

(n)
n−1 + ε̈(1···n)n = 2ε̈

(1···n−1)
n−1 f̄

(n)
n−1 − 2ε̈

(1···n−1)
n−1 f̈

(n)
n−1 = 2ε̈

(1···n−1)
n−1 ḟ

(n)
n−1. (5.3)

But, as the manipulations of last chapter show, it could occur between less obviously

paired terms. It would therefore be useful to understand whether the residual λ
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dependence at the boundary will vanish for every subtraction of this form or whether

it only works at second order.

The graph shows a strong dependence on λ as it approaches 1. This is expected

as increasing λ corresponds to cutting increasingly large holes out of the phase space.

Figure 5.1 suggests that the scale at which this effect becomes significant is λ ≈ 10−4.

5.2 Third Order

The numerical integration required for the third order calculation was more difficult.

This is expected considering the integral contains many more singular regions. The

in-built numerical integrator could not give a stable result and took too long to

compute. I therefore used Suave, a numerical integrator from the Cuba package [22],

which can handle highly oscillatory functions more effectively. I also expressed the

integrands from A,B,C and D as piecewise functions which took the value of the

integrand in the integration regions and zero elsewhere. The piecewise functions were

then combined before being integrated over the entire phase space. This was to cancel

as many divergences as possible prior to numerical integration rather than integrating

over multiple divergent regions and summing the results. This helped to provide a

stable result.

Another issue was the implementation of the Heaviside function, Θcut. The inbuilt

Heaviside function gives a piecewise function which returns 0 if its argument is in the

region to be cut from the phase space and unity otherwise. However, Mathematica

simply then multiplies 0 with the attached function which is also evaluated. For

example a radiation function appended with the cut-off function evaluates to

ωk
ijΘcut =

ni · nj

ni · nknk · nj
Θ(ni · nk − λ)Θ(nj · nk − λ)

ni→nk−−−−→ 1

0
× (0)

(5.4)

if the singular point is sampled. Though the chances of this are low, with 20 poles in

the phase space the effect is significant enough to cause the numerical integration to

break down. Furthermore, as the number of points sampled increases, this becomes

increasingly likely.
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Instead of the inbuilt function I replaced every ωk
ijΘcut with an if statement

If[(ni · nk > λ)&&(nj · nk > λ), ωk
ij , 0] (5.5)

which evaluates to the same piecewise function as the product of Heaviside functions

but can also be integrated with other Piecewise functions. This rule was then applied

to every radiation function in the A,B,C and D integrands. Applying Piecewise-

Expand to the sum of each integrand then gave a single piecewise function which

evaluated to zero if sampled within λ of any co-linear singularity or if in the vetoed

region defined by the jet opening angle. In other words this method entirely cut the

singular regions from the integral, as required. This was not a problem with Σ(2) be-

cause there were only three poles and the number of points required for the integral

to converge was much lower.

The results for Σ(3) with λ = 10−2 → 10−6 using 10, 40 and 100 million points

are shown in figure 5.2. Each plot used a different seed for the integration. The 10

million point plot diverges as λ → 0 but with more points the graphs converge to the

shape exhibited by the 100 million point plot. This plot displays λ independence in

the region

ln(1/λ) < 11.5

λ < 10−5
(5.6)

and shows Σ(3) to vary by only 10% between λ = 10−6 → 10−3. Figure 5.3 displays

each of the plots on the same axes. The lack of divergence as λ → 0 for the observable

at third order is evidence that the FKS algorithm is co-linear cut-off independent.

There are significant differences between the graphs for Σ(3) and the graph for Σ(2).

First, the dependence on large λ is different for the two functions, the second order

graph has a dependence close to 1/x for λ > 10−4 and the third order graph displays a

roughly logarithmic dependence ln(x) for λ > 10−5 where x axis variable is x = ln
(
1
λ

)
.

The former positively diverges for large λ whereas the latter negatively diverges. As

mentioned, the observable becomes meaningless for large λ as it corresponds to cutting

significantly sized regions from the phase space, thus altering the requirements for

the observable set using the measurement function. However, it would be beneficial
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Figure 5.2: Dependence of Σ(3) on the Collinear Cut-off λ using 10,
40 and 100 million sampling points.

(a) The plot using 10 million points. This diverges as λ → 0.

(b) The plot using 40 million points. The graph does not di-
verge as λ → 0 but remains unstable for small λ.

(c) The plot using 100 million points. The graph is λ indepen-
dent for λ < 10−5.
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Figure 5.3: Dependence of Σ(3) on the Collinear Cut-off λ using 10,
40 and 100 million sampling points.

to understand why the two orders display distinct behaviours in these regions.

To summarize, these results suggest the algorithm does not depend on the collinear

cut-off scale, suggesting collinear singularities cancel for the second and third order

GBJ observable. Obvious topics for further study are higher order calculations, the

same order using improved numerical techniques and investigations into the analytical

cancellation of collinear poles. This was heuristically done for second order due to

the small number of terms involved but the analytic proof proved intractable for the

third order calculation. A route into these investigations could be to split the integral

for third order and summing different combinations of integrated radiation functions.

This would elucidate a possible cancellation regime that could in turn be applied to

all orders.
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Chapter 6

Conclusion

Soft gluon corrections provide logarithmic enhancements which cause the standard

perturbative expansion of the Feynman rules to be invalid. Instead the perturbative

series must be reordered, i.e. resummed, in terms of diagrams which are enhanced.

For single soft gluon logarithms this amounts to a perturbative series in αs ln
(
Q
µ

)
.

Fortunately, the Feynman rules in the soft approximation lead to the simplified eikonal

rules. Non-global observables necessitate calculations involving real emissions. This

greatly complicates the colour algebra. General parton shower event generators work

in the large N limit to simplify these calculations but the approach was shown to

omit vital super leading logarithms and so must be improved. The FKS algorithm

derived these super leading logs and has since been developed to generate recursive

QCD amplitudes for the radiation of any number of soft gluons and virtual correc-

tions resummed to all orders. It is basis independent but the colour flow basis is a

convenient choice. Using this basis the algorithm reproduced the BMS equation, a

differential evolution equation for leading N resummations.

The algorithm is still in development and checks must be carried out on its validity.

One such check is whether the observables it calculates are dependent on arbitrary

parameters used to regularize singularities. If they are then the algorithm is producing

invalid results. I consider the gaps between jets observable regularised from the

collinear singularities using the collinear cut-off, λ. I used the algorithm to calculate

the observable up to first, second and third order. I then explained how the colour

flow basis is used to evaluate the colour structures in these calculations.

The first order expression was shown to be analytically λ independent. The second

and third order expressions were evaluated numerically for a range of λ = 10−2 to
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λ = 10−6 (the second order expression was evaluated down to λ = 10−1). For second

order the observable was independent of λ in the region λ < 10−4 . For λ above this

scale the observable positively diverged for increasing λ, though the exact dependence

was not tested.

The observable for third order required O(1000) more points to produce a plot

which was numerically stable. The final plot gave λ independence in the region

λ < 10−5. The dependence above this scale was negatively divergent for increasing

λ.

In both cases the collinear singularities have been shown to cancel and this is a

success of the algorithm. However, the structure of these cancellations is unclear.

Further work would attempt to identify these structures in a hope to find an analytic

proof for λ independence of the algorithm at all orders.
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