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Abstract

This thesis presents the continued development and application of the amplitude-level
parton shower Monte Carlo CVolver, which is capable of resumming soft-gluon loga-
rithms at full colour. The framework is built on a soft evolution algorithm formulated in the
colour flow basis, which allows for a systematic treatment of colour suppression through-
out the evolution. We detail the most up-to-date implementation of CVolver, including
the methods used to steer the evolution in order to minimise event weights and maximise
efficiency in computing the most relevant contributions. CVolver supports two opera-
tional modes: a dedicated mode, optimised for efficiently resumming soft-gluon effects in
jet veto cross sections, and an event generator mode, which functions as a general-purpose
parton shower. Using the dedicated mode, we carry out a systematic and comprehensive
study of subleading-colour corrections in perturbative QCD processes. Specifically, we
analyse the processes Z — qq, H — g9, q¢ — qq, q9 — qg, and gg — gg, finding
significant subleading-colour effects at the 5-30% level, with even larger corrections aris-
ing from interference terms. Notably, we observe that leading-colour evolution provides
an accurate approximation to the full-colour result in 2 — 2 ¢-channel gluon exchange
processes with forward scattering kinematics. Finally, we use the event generator mode
of CVolver to investigate the differential structure of soft radiation, and find pronounced

subleading-colour effects at the 10% level in various angular regions.

11



Declaration of Authorship

I hereby confirm that no portion of the work referred to in the thesis has been submit-
ted in support of an application for another degree or qualification of this or any other

university or other institute of learning.

12



Copyright statement

i The author of this thesis (including any appendices and/or schedules to this thesis)
owns certain copyright or related rights in it (the “Copyright”) and s/he has given
The University of Manchester certain rights to use such Copyright, including for

administrative purposes.

ii Copies of this thesis, either in full or in extracts and whether in hard or electronic
copy, may be made only in accordance with the Copyright, Designs and Patents Act
1988 (as amended) and regulations issued under it or, where appropriate, in accor-
dance with licensing agreements which the University has from time to time. This

page must form part of any such copies made.

iii The ownership of certain Copyright, patents, designs, trademarks and other intellec-
tual property (the “Intellectual Property”) and any reproductions of copyright works
in the thesis, for example graphs and tables (“Reproductions”), which may be de-
scribed in this thesis, may not be owned by the author and may be owned by third
parties. Such Intellectual Property and Reproductions cannot and must not be made
available for use without the prior written permission of the owner(s) of the relevant

Intellectual Property and/or Reproductions.

iv Further information on the conditions under which disclosure, publication and com-
mercialisation of this thesis, the Copyright and any Intellectual Property and/or Re-
productions described in it may take place is available in the University IP Policy (see
http://documents.manchester.ac.uk/Doculnfo.aspx?DocID=24420), in any
relevant Thesis restriction declarations deposited in the University Library, The Uni-
versity Library’s regulations (seehttp://www.library.manchester.ac.uk/about/

regulations/) and in The University’s policy on Presentation of Theses.

13


http://documents.manchester.ac.uk/DocuInfo.aspx?DocID=24420
http://www.library.manchester.ac.uk/about/regulations/
http://www.library.manchester.ac.uk/about/regulations/

Acknowledgements

There are a lot of people I would like to thank for their guidance and support throughout
this project. The two most important are Jeff Forshaw and Simon Plétzer. Without their
passion and perseverance, [ would probably have given up multiple times over. Our outings

in Graz will remain some of my best memories of the past few years.

I also need to thank the computing support of the Particle Physics Groups at the uni-
versities of Manchester and Vienna. I would not be surprised if I have broken some sort
of record for the amount of computational resources I used. Special thanks to Conor Fitz-

patrick in Manchester and Helmut Moser in Vienna for accommodating me.

I am very lucky to have had many friends supporting me through this journey, and I

cannot do them justice in just a few paragraphs.

I will start with the non-physicists: James, Laora and Becca. I cannot imagine what
the past few years would have been like without you, and I hope you know how important

you are to me.

I continue with the physicists: Marion and Viola. You both kept me sane and reminded

me to have fun. Even now. “Just thank yourself and send it.”

I also want to acknowledge my friends whom I do not get to see nearly enough: César,
Christian, Marta. I know that no matter how far away we are, you’ll always be there for

me.

Lastly, my parents, Virginia and Antonio, and my sister, Silvia. Without your support, 1

would not be here, sitting in Manchester, writing the acknowledgements for my PhD thesis.

14



Introduction

The Standard Model of particle physics has withstood decades of experimental scrutiny
and boasts an impressive track record of predictive success. It encapsulates our most com-
prehensive understanding of three of the four fundamental forces of nature: electromag-
netism, the weak interaction, and the strong interaction, and some notable milestones in-
clude the prediction and subsequent discovery of the W and Z bosons [1, 2], the top quark
[3, 4], and the crowning achievement of the Higgs boson discovery [5—8]. Despite these
successes, the Standard Model remains incomplete. It does not incorporate gravity, offers
no explanation for the observed matter—antimatter asymmetry in the universe, and fails to
account for dark matter and dark energy, which dominate the energy content of the uni-
verse. These unresolved questions, and more, motivate the ongoing search for physics
beyond the Standard Model.

Among the interactions described by the Standard Model, the strong force—governed
by Quantum Chromodynamics (QCD)—plays a central role in shaping the structure of
matter and driving the dynamics of high-energy collisions. Yet, despite its fundamental
importance, QCD poses formidable challenges for theoretical calculations. These chal-
lenges become especially pronounced in the analysis of data from high-energy experi-
ments such as the LHC [9] and RHIC [10], as well as from proposed future colliders like
the FCC [11], where increasingly precise predictions for QCD processes are essential to
disentangle potential signals of new physics from the overwhelming background of strong

interactions.

To meet the growing demand for precision, a variety of computational tools—such as
Herwig [12—-14], Pythia [15], and Sherpa [16]—have been developed to simulate QCD ra-
diation using parton shower algorithms. Remarkable progress has been made in improv-
ing the underlying evolution models, with recent milestones including the achievement
of next-to-next-to-leading logarithmic (NNLL) accuracy by the PanScales collaboration
[17]. However, conventional parton showers remain fundamentally constrained by their re-
liance on probabilistic frameworks, which inherently neglect quantum interference effects.
This thesis is devoted to the development and application of an alternative approach: the
amplitude-level parton shower formalism and its Monte Carlo implementation, CVolver
(Colour eVolver). Building on several years of theoretical work [18-22] and algorithmic
development [23, 24], we present the most advanced implementation of CVolver to date.

Within this framework, we carry out a detailed investigation of subleading colour effects

15
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in perturbative QCD, providing new insight into quantum interference phenomena that lie

beyond the reach of traditional parton showers.

This work is structured as follows. Chapter 1 introduces the fundamental theoretical
concepts underlying QCD, along with an overview of soft radiation and logarithmic resum-
mation. Chapter 2 defines the general soft evolution algorithm that forms the backbone of
the amplitude-level parton shower, CVolver. We also introduce the colour flow basis and
use it to describe evolution in colour space. In Chapter 3, we present the Monte Carlo im-
plementation of CVolver, including its ability to track colour suppression throughout the
evolution. Chapter 4 contains a systematic study of subleading colour effects in processes
involving multiple soft gluon emissions, and in Chapter 5, we use CVolver as an event

generator to analyse soft radiation differentially.
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QCD preliminaries
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18 1 QCD preliminaries

1.1 The QCD Lagrangian

Quantum Chromodynamics (QCD) is the quantum field theory that describes the strong
interaction [25, 26] and its associated particles: quarks and gluons [27, 28]. It is a Yang-
Mills theory [29], governed by the non-Abelian gauge symmetry group SU(N,), where N,
is the number of colour charges [30-32]. What follows is a summary of the main building
blocks of QCD, and for detailed introductions we refer the reader to [33-35].

The QCD Lagrangian can be decomposed into three distinct parts: the classical La-

grangian, the gauge-fixing term, and a term for the ghost fields:

ACQCD = Eclassical + Egauge—ﬁxing + Eghosts- (11)

The classical part of the Lagrangian can be separated into the kinetic term for the gluon
field, and a term containing the quark fields, their masses, and their interactions with glu-

ons. It is given by

1
‘Cclassical = _ZF/?VFZW + Z (_]@ (UD - m)z’j Qja (12)

flavours

where £, is the gluon field strength tensor, and ID is the covariant derivative, where the
slashed notation implies contraction with the Dirac matrices [36, 37], I} = YuD*. The
quark spinor fields describe spin-% fermions of mass m, and spinor indices have been sup-
pressed. There are six different quark flavours, with different charges and masses each,
that are being summed over. The indices 7 and j run over the fundamental representa-
tion of SU(N,). In QCD, N, = 3 and therefore quarks fields are represented by triplet
states, sometimes referred to as red, green, and blue. The Greek indices indicate space-
time dimensions, with the flat metric n** = diag(1, —1, —1, —1). Gluons are in the adjoint
representation of SU(/V,), with indices a, b, c, ... that run over N2 — 1 degrees of freedom.

The gluon field strength tensor is defined as
Fﬁu = Op A, — &,AZ - gsfabCAZAi> (1.3)

where g, is the coupling constant, % are the structure constants of the Lie algebra of
SU(3), and A, is the gluon field. In an Abelian gauge theory, fabe = 0, forbidding the

self-interaction of force-carrying bosons. However, since the SU(/V,) structure constants
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are non-zero, the gluon field kinetic term Fy, [4* contains 3-point and 4-point gluon ver-
tices. The massless, self-interacting bosons of QCD are behind many of the fundamental

properties of QCD, such as colour confinement and asymptotic freedom [38—40].

The covariant derivate takes a different form depending on whether it acts on triplet

(quark) or octet (gluon) fields:

(Dp)ij = O0udij +igs(t"A%)ijy  (Dp)ab = Oubap + igs(T A} )ab, (1.4)

where t* are the generators of SU(/V,) in the fundamental representation, and 7' in the
adjoint representation. They have dimensions N, X N, and (N2—1) x (NZ—1) respectively

and satisfy the commutation relations of the Lie algebra [41]:

[ta’ tb] — Z-fabctc’ [Ta7 Tb] — ifabCTC. (15)

The generators in the adjoint representation are defined as the structure constants (7%)* =
—i f2%%. In the fundamental representation they are conventionally represented by the Gell-

Mann matrices ¢t = %)\“, which are given by[42]

0 0 — 0 1 0
>\1 = ) )\2 = ? ) )\3 - -1 0 )
0 0 0 0
—1 000
M=10 0|, A= , =00 1|, (1.6)
1 7 01 0
0 ) 1 0 O
)\7 = 0 0 —1 R )\8 = ﬁ 01 0 s
7 0 0 0 -2

which are Hermitian and traceless. The Gell-Mann matrices are normalised so that

5ab
Trtt = TR 0% = - (1.7)
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Another important element of the Lie algebra are the Casimir operators, which commute
with all other generators and characterise each representation. In the fundamental and

adjoint representations they are respectively defined:

N2—-1 4
t(l ta' — (51 = ¢ = —
2 thlly = Oy, Op=—5—= =g,
. (1.8)
> TTs = Cade, Ca=N.=3

where C'r and C'4 are the Casimir invariants of each representation, which appear fre-

quently in QCD calculations.

As stated at the beginning of this section, QCD is a gauge theory of SU(/V,), and there-
fore is invariant under the local gauge transformations of this Lie group. Local means
the redefinition of the fields can vary across each point in spacetime without altering the

physical quantities. In the case of the quark fields the gauge transformation is

¢i(x) = gi(x) = exp(it*0" (x))i;q;(x) = Q(x)ijq; (), (1.9)

where Q(x) = exp(it®0°(x)) is the gauge transformation as a function of the 4-dimensional

spacetime coordinate x. The covariant derivate also transforms like the quark fields:

Dliq;(z) = DYqi(x) = Quj(x) Dl (), (1.10)

1, ?

which requires that the gluon fields transform like:

AT AT = Q@) AN (@) + (9,0(2) 2 (2). (L.11)

From this result, the transformation of the gluon field strength tensor can be derived:
a a a la ara )—1
t"F,, —t F/iy = Q@)t"F;,Q  (v), (1.12)

and therefore, in contrast to the QED electromagnetic field tensor, it is not gauge invariant.

This is another consequence of the non-Abelian quality of SU(/V,). Combining the trans-
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formations given in Egs. (1.9), (1.10), and (1.12), it can be shown that the classical part
of the Lagrangian in Eq. (1.2) is gauge invariant, which is necessary for the renormaliz-
ability of the theory [43—46]. QCD is also invariant under many global symmetries, some
of them exact, like the Poincaré or U(1) groups, and some of them approximate, like the
light quark flavour symmetries. For a more thorough discussion of the symmetries within
QCD, see [34].

So far, we have considered the QCD Lagrangian within the framework of classical
field theory. However, to perform perturbative calculations [47], we must transition to a
quantum field theory (QFT) description. In QFT, fields are elevated to operators that act on
states in Fock space through a process called canonical quantisation [48]. This is analogous
to how position and momentum become operators in quantum mechanics. Consequently,
the Lagrangian itself becomes an operator. It separates into two components: a free part,
which governs the independent propagation of particles, and an interaction term, which

we handle using perturbation theory [33, 49].

In a quantised theory, Feynman rules emerge as a systematic way to compute scattering
amplitudes. We will provide an abridged overview of how this is done, but for details see
[33, 35]. The key quantity is the S-matrix, which relates the initial and final asymptotic
states of a scattering process. Formally, the S-matrix is constructed from the time evo-
lution operator in the interaction picture, expressed as a time-ordered exponential of the
interaction Lagrangian. Expanding this exponential in a perturbative series and inserting
a complete basis of states leads to a sum of integrals over intermediate virtual particles.
These integrals are naturally represented as Feynman diagrams, where each term in the ex-
pansion corresponds to a distinct interaction process. The Feynman rules, which provide
the mathematical expressions for these diagrams, follow directly from the structure of the
quantised Lagrangian: propagators arise from the free part, while vertices and interaction

terms originate from the perturbative expansion of the interacting part.

Attempting to derive a propagator for the gluon from the Lagrangian in Eq. (1.2) is

impossible due to gauge invariance. It is necessary to add a gauge fixing term:

1
Egauge—ﬁxing = _%(GNAZ)g, (113)

which defines the set of covariant gauges, so called because they are Lorentz invariant.
The gauge-fixing parameter £ can take different values: £ = 1 corresponds to the Feyn-
man gauge, and & = 0 corresponds to the Lorenz or Landau gauge. Due to the overall

gauge invariance of the theory, physical observables, specifically the S-matrix, will be
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independent of £. With this set of gauges, the gluon propagator can be derived:

'5ab p,upu
A (py = [y (1 - 1.14
0= (- E (L1

where the second term is null in the Feynman gauge. However, the price to pay for using
a covariant gauge is that a set of unphysical, ghost particles must be included, to restore
global BRST invariance [50, 51]. They are included with an additional term to the La-

grangian:
Eghosts = (auéa)DZbcb7 (1.15)

where ¢ and ¢ are the the Faddeev-Popov ghost fields, and they are anti-commuting
scalars [44, 52]. Without these unphysical degrees of freedom, QCD with a covariant
gauge loses gauge invariance and cannot be renormalised. There is an alternative gauge-

fixing term which results in the ghosts decoupling from physical processes:

1
‘Cgauge—ﬁxing = _i (TLMAZ) (nVAg), (116)

and these are called the axial gauges, where n* fixes some direction in spacetime. The

gluon propagator with this gauge is given by

6% prnY + ntp¥ pHpY
A,uu,ab — MV o 2 2 1.17
(p) p2+ie< L (n +§p)(p_n)2 : (1.17)

which has more terms than Eq. (1.14) and divergences at p - n = 0. The case where £ = 0
and n* is light-like is called the light-cone gauge [53], and it causes the last term to vanish.
These gauges can still lead to complicated calculations, especially if the p - n pole needs

to cancel in numerical simulations.

We end here our overview of the QCD Lagrangian and its properties as a quantised
gauge theory. A complete set of Feynman rules can be found in many sources, for example

[33-35]. We continue by considering a simple perturbative calculation.
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1.2 The ¢'q — q’q Born amplitude

q Ha

Y
Z
<

p17i

p?ul < kQ,k
v, a

Figure 1.1: Feynman diagram contributing to the ¢'G — ¢'g process in tree-level QCD.
The primes indicate different flavours. The four external fermions are labelled by their
momenta and fundamental representation index. The quark-gluon vertices are labelled by
the spacetime and adjoint representation indices of the gluon.

We begin by considering the Born amplitude of the ¢'G — ¢'q process. Due to the
different flavours, the only contributing diagram is ¢-channel gluon exchange, shown in
Fig. 1.1. We perform the calculation in the high energy limit, so all the fermions are

massless. The amplitude is given by

M = ity (k) (~igst50* () (q?j“;) vilke)(=igtinJoup),  (118)

where w;(p;) is the Dirac spinor of the incoming quark, @;(k;) of the outgoing quark,
vi (ko) of the outgoing anti-quark, and v;(py) of the incoming anti-quark. The exchanged
gluon has momentum ¢ = (p; — ky). Spinor indices have been suppressed. The gluon
propagator uses the covariant Feynman gauge £ = 1, defined in Eq. (1.14). We do not
need to worry about Faddeev-Popov ghosts because they do not contribute at tree level
[33, 44]. We can square the amplitude, sum over all spins and colours, and average over

the initial spins and colours to obtain:

1 1 9 1 " " g;‘f Y
5 > 1 > M= §Tr[tbt | Tr[t*t%] x 4—q4Tr[}é1’y”plfy | Te[ka 0],

colours  spins (119)
169,
= 9(]4 [(kl ’ k2)<p1 'p2) + (kl ‘pg)(pl . /Cg)]

and we note the colour part has factorised from the spin and kinematics. The second line

uses the relation Tr[t%t’] = §%°/2 to evaluate the colour traces. We have also used the
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completeness relations for the Dirac spinors [33, 35]:

Zu —p+m Y v p)v(p) = p—m, (1.20)

S

to obtain the spinor traces. These can be evaluated using standard identities [33, 35]. It is
useful to rewrite scattering amplitudes in terms of the Mandelstam variables [54], which

are defined:

s = (p1+p2)® = (k1 +k2)> = 2(p1 - p2)
t=(p —k1)* = (k2 — p2)* = —2(p1 - k1) (1.21)
u=(p1 —k2)* = (k1 — p2)> = =2(p1 - k»)

where the final equality works in the massless limit of the fermions. In the centre of mass

frame of the system, s = (p; + p2)* = E?

cm?

where F., is the total energy of the system in

this frame. The scattering amplitude in Eq. (1.19) then reads

s X o= [(5) + ()] 122

colours spins

which shows this contribution scales as s/t = (p; - p2)/q* when s > —t. Due to cross-
ing symmetry [33, 55], any 2 — 2 diagram with a virtual particle exchange will have a
corresponding scaling behaviour, obtained by exchanging the Mandelstam variables. For
example, the s-channel gluon exchange scattering contributing to ¢'¢’ — ¢q contains a
term (t2 + u?)/s%.

We shall go back to the Born scattering amplitude in Eq. (1.19), and consider an al-
ternative way of evaluating the colour factor. This might seem a little long-winded, but it
will provide a connection to the colour structures used for the rest of this thesis. We will

employ the Fierz identity:

1
Z tty, = <5ilakj - ﬁc@jakl) : (1.23)

which separates the gluon propagator connected to two fermion lines in Fig. 1.1 into two

terms contracting the four fundamental colour indices pairwise. These two terms can be
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understood as two different ways for the colour to “flow” in the diagram. If we apply the

Fierz identity twice to the squared amplitude, we obtain

1
E it E 0t = [ 0udjk) (Oindje) — 77 (0iadj) (9i50u)
¢ (1.24)

- Fc(éijélk:)(diléjk) + m(

0130 (3i50m:) .

C
where in each of the four terms the first parenthesised quantity contains the flow of fun-
damental colour indices in the amplitude, and the second parenthesised quantity contains
the flow in the conjugate amplitude. Thus we can write the squared amplitude as a density

matrix:

= () TG @] e

where H contains the kinematic and spin contributions to the squared amplitude, and each
of the four elements in the matrix corresponds to the possible ways to connect the colour
indices in the amplitude and conjugate amplitude, as per Eq. (1.24). We are working in a
vector space of dimension 2, each corresponding to the two terms of the Fierz identity in

Eq. (1.23). We also need to evaluate the Kronecker delta contractions that appear in Eq.
(1.24):

S — (6115jk)(61l5]k) (5i16jk)(5ij6lk) _ ‘]Vc2 NC 7 (126)
(64001 ) (0i50u) ~ (9150u:) (0i50u) Ne N¢

where we have defined S, the scalar product matrix that contains the contractions between
amplitude and conjugate amplitude for each combination of colour flows. Thus, the full
result of the scattering process, which is evaluated by performing the sum in Eq. (1.24),

can be written in this notation as

ZMWSW ey 196tgf {(2)2 + (g)z] . a2

and we have arrived to the same result as in Eq. (1.22). The labels o, 7 run over each

colour flow configuration, and in this case they take values 1 or 2, corresponding to each
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term in the Fierz identity. This is our first encounter with the colour flow basis [20, 56,
57], which will be discussed in depth in Chapter 2, and will remain important for the rest

of this work. Now we return to study QCD radiation in the soft limit.

1.3 The eikonal approximation

Experiments at hadron colliders produce a large amount of QCD radiation, which is
dominated by the points in phase-space where amplitudes become large or diverge. There-
fore, to make meaningful phenomenological predictions, we often need to account for soft
and collinear radiation beyond the Born amplitude. In this work we focus on the soft limit,

where we rescale the emitted momenta:
Kk — \EH (1.28)

where A is a scalar quantity. In the limit A — 0 all components of the emitted momentum
are vanishingly small relative to the hard partons. Taking this limit and keeping only the

leading terms in A is the eikonal approximation [58, 59].

We will consider only the emission of soft gluons, because the ¢ — qq splittings are
suppressed in the eikonal limit. We start with a general amplitude, M,,({p,}), which
contains n external hard partons with momenta {p,, }. Introducing an additional soft gluon
with momentum Ak, emitted from an outgoing quark with momentum p, modifies the

amplitude as
. i(p + NF)
A gttt (\k)) — T
Mn+1 u (p) |:( 1g 1]7 6# ( )) (p+)\k)2 +’l€
X My i(p1,...,p+ Ak, . D)

o (2P 20 — Ay
= Uz<p) [(_ngtijeu (Ak)) (p+ /\]{?)2 + e :|

X Mn,j(pl>"'7p+/\k7"'apn)

(1.29)

where M, is the amplitude for a soft gluon connected to an external quark. We have
extracted from M,, ; the spinor associated with the external quark from which the emission

occurs, u;(p), and we are working in the massless limit of the quarks. After taking the soft
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limit we obtain

. Wi(P) .a gsti;p"
tim M, = P ey |

p_kﬂ,e}Mn,j(pl,...,p,...,pn)+O(A0), (1.30)
which shows that the emission of the soft gluon factorises from the rest of the amplitude,
and it decouples from the spin of the emitter. We identify the factor (g.t{;p")/(p - k + ic)
as the effective Feynman rule of the emission. In the case of a soft gluon emitted from an
anti-quark, the Feynman rule is equivalent, but with an opposite sign. Emissions from off-
shell internal lines are suppressed, so we only consider external legs. This follows from
the denominator of the associated propagator, (p + \k)? /\—_>0> p? # 0 if the parton with

momentum p is off-shell [34].

An equivalent rule can be obtained for the emission of a soft gluon from an external
gluon line. The derivation, using the light-cone gauge, can be found in [34, 60], and the

final result is

*b

e (p)
/l\llf(l) Mn—H - )\

2 ({pn}) + O(N) (1.31)

o (k) [gsif“bcp”] M

p-k+e

where the emission factorises from the amplitude again and we identify another effective
Feynman rule, (g.if*°p”)/(p- k +ic). Note that the only difference between the Feynman
rulesin Eqgs. (1.30) and (1.31) is the colour structure at the vertex. Armed with the effective
Feynman rules in the eikonal approximation, we can evaluate the contribution of one soft

emission to any amplitude.

1.3.1 One real emission

The leading contribution in the soft limit is found by attaching a soft gluon to the external
legs. Therefore, to consider all possible contributions to a real soft emission we need to

sum over the external legs 7:

*(1

D|M.,,) Z Z T“ k +’ZE IM,,), (1.32)

where ) is the polarisation of the emitted gluon and | M,,) is the tree-level amplitude for the

scattering of n on-shell massless quarks and gluons. We have defined the colour charge
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operator T, which in the Gell-Mann basis will take a different form depending on the

parton ¢z, as shown in Egs. (1.30) and (1.31):

Lo 1=

(R 1=

a _tgd L=u
(Ti )dc = ) (1.33)

—tg. 1=

iflec  j=c¢

_Z‘fcad i = €

and we have omitted the colour indices in |M,,) that contract with T¢.

The amplitude for soft gluon emission exhibits divergences in two distinct regions. The
first occurs when the energy of the emission becomes vanishingly small, £ — 0. This is
the soft divergence. The second occurs when the emitted gluon becomes collinear with
any of the external legs, p; - k — 0. These are collinear divergences. These are the two
types of infrared (IR) divergences, which occur because the amplitude |M,, ;) becomes
indistinguishable from |M,,) when the emission has zero energy or is completely collinear
with another leg [61, 62]. We can cure these divergences by including all diagrams that

contribute at the same order in as, and so we proceed by considering a soft virtual loop.

1.3.2 One virtual loop

We want to evaluate the operator that dresses the tree-level amplitude | M,,) with all possi-
ble virtual soft gluon exchanges. A rigorous treatment is quite involved. The calculations
can be found in [58, 61-65], and they show that self-energy corrections, quark loops and
loops involving ghosts are all subleading in the soft limit. Contour integrals must also be
performed for the three leading topologies: virtual gluon exchange between two fermion

lines, a fermion and a gluon, or two gluons, arriving at the final result:

] dE o o
L|M,) = %Z(_Tg.Tg)/F: (/ T;wij(nk) —maij> IM,,), (1.34)

i<j

where i and j are distinct external legs in |M,,), and &;; is 1 if i and j are both incoming or

both outgoing, and zero otherwise. The imaginary term iﬁgij is the Coulomb contribution
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and we will return to it next section. The antenna function is defined:

Di - Dy

wim) = B Sy

(1.35)

which diverges if the energy of the emitted gluon vanishes, or if it becomes collinear with
¢ or j. This is the same infrared divergence structure that plagued the soft emission in
Eq. (1.32). In fact, when computing the fully inclusive correction to the amplitude from a

soft gluon, including both real and virtual contributions, there is total cancellation:
Re[ (M, [T|M.,)] + Re[(M, [TF|M,))] + / dll, 1 (M, [D'DIAM,) =0,  (136)

where dIl,,; denotes the phase-space element of the real emission. This cancellation
is not unexpected; it follows from the Kinoshita-Lee-Nauenberg (KLN) theorem, which
states that all IR divergences cancel perturbatively at each order in o, [66, 67]. An equiv-
alent result was proven by Bloch and Nordsieck for QED [68]. To cancel every IR pole
perturbatively, all degenerate states must be included. In this context, degenerate means
an amplitude with any number of soft or collinear gluons, which are physically indistin-

guishable from the tree-level amplitude.

We have not considered UV divergences. In this work we always work in the soft limit,
so UV divergences are regulated by the hard scale of the scattering. Nevertheless, if we
evaluated virtual corrections to the Born amplitude in Eq. (1.19) without the eikonal ap-
proximation, we would obtain UV divergent loop integrals [69]. These poles are removed
through renormalisation, and are systematically reabsorbed into a finite number of param-

eter redefinitions in the Lagrangian [43, 70-72].

1.4 The gaps-between-jets observable

For a fully-inclusive observable, soft virtual and real corrections cancel perturbatively,
as per the KLN theorem. However, this is not the case if a restriction is placed on the
phase-space of the real emissions spoiling the cancellation. We still require that the di-
vergent poles cancel, and observables which preserve this quality are named infrared and
collinear (IRC) safe [34]. Nevertheless, an IRC observable will generally incur finite and
potentially large logarithmic corrections due to soft and collinear radiation if the observ-

able is not fully-inclusive. These large logarithms L can spoil the perturbative expansion if
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they compensate for the smallness of the coupling constant s, thus requiring resummation

at all orders. We reorganise the perturbative series [34]:
by - n_mn7y2n - n ny2n—1 - n_nyt22n—2
E—OZ;(JO@SL +n§::101asL +nz::102asL T (1.37)

where X is an observable sensitive to soft and collinear enhancements, g is the contribu-
tion from the Born amplitude, and 08 = 1. The first term corresponds to the resummed
leading log (LL) contribution, the second term is the next-to-leading log (NLL), and so
forth.

ki < Qo

Y

Figure 1.2: The gaps-between-jets observable. The white circles are the two hard jets,
and radiation in the interjet rapidity region is constrained to k; < )y, where () is the
inclusivity scale.

For most of this work we will focus on the gaps-between-jets observable, which vetoes
radiation above some scale in a “gap” region. It is depicted in Fig. 1.2, where y is rapidity
and ¢ is the azimuth. The two primary jets are represented with two white circles, and
radiation in the interjet region is restricted to k; < (Jo. Applying such a veto to suppress
radiation in the rapidity gap between two jets is of significant phenomenological impor-
tance, as it provides sensitivity to the underlying colour structure of the hard scattering
process. For example, in the vector boson fusion (VBF) production of the Higgs boson,
the initial-state partons exchange electroweak gauge bosons in a colour-singlet configura-
tion. As a consequence, the QCD radiation in the rapidity gap between the two final-state
quarks is suppressed. This clean rapidity gap is exploited experimentally to distinguish

VBF events from background processes involving colour-octet exchange, such as gluon
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fusion or QCD-induced dijet production, where additional radiation is more likely to pop-
ulate the gap. The absence of central jet activity is routinely used as a tagging criterion in

experimental analyses of VBF Higgs production, for example in [73].

The gaps-between-jets observable is sensitive to wide-angle soft gluon emissions and

inclusive over collinear radiation. Therefore, it is single logarithmic:

2 = n . nrn - n . nrn— - n . nrn—
E_OZZCO%L +) CrafL" ) CRalL" 4 (1.38)
n=0 n=1 n=1

The summation of these effects has a long history and is of considerable theoretical interest
[74-88]. The original calculation was performed by Oderda and Sterman in 1998 [75, 76].
They used the eikonal approximation to dress the g¢ — qq, t-channel scattering with all

possible soft virtual gluons, so as to sum the leading logarithms:

IM) =Vg,0lMo), Vap=exp [?/ —I‘} , (1.39)
where | M) is the tree-level scattering, () is the hard scale of the process, and ) is the veto
scale. The lower limit of the evolution can be set to the veto scale due to KLLN cancellation,
since the observable is inclusive over all radiation below that scale. The soft anomalous

dimension is

do .
I = dy— T, - T,w;; —2mi Ty - To, 1.40
/gap y27'('z j Wij UK S 2 ( )

1<j

which is the k7 ordered form of Eq. (1.34). The angular integration is over the gap region,
since KLN tells us again the virtuals will cancel with the reals out of gap. The incoming
partons are labelled 1 and 2, while the outgoing are 3 and 4. The logarithmic contribution

to the observable is found by squaring the evolved amplitudes:

Do = (MIM) = (Mo|V5, o VasolMo) = Tr(Vo, o HVY, o)- (1.41)

It may seem this is enough to capture correctly all leading logarithmic contributions,

but in 2001 Dasgupta and Salam spotted the error [86]. Figure 1.3 depicts the problem. In
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Figure 1.3: Depiction of the miscancellations leading to non-global logarithms. The blue
lines represent gluons out of the gap, while the red lines represent those in the gap. All
are above the inclusivity scale ).

(a) there is a single gluon being emitted into the out-of-gap region, which cancels with the
out-of-gap virtual in (b). Therefore, for a single emission it is safe to discard all emissions
out of gap. Now we consider 2 gluons, in (¢) and (d). In (c) the first gluon is emitted out
of gap, and then a virtual gluon is exchanged with momentum in the gap region between
the emitted gluon and a hard jet. In (d) the first gluon is the same out-of-gap emission,
and the second gluon is a real emission into the gap region. The veto forbids (d), but
allows (c), so that contribution survives and creates a new source of leading logarithms.
Therefore, we must dress the hard scattering with any number of out-of-gap emissions,
and dress all of those with any number of virtual exchanges. The contributions from these
miscancellations are termed non-global logarithms, as opposed to the global logarithms
evaluated in Eq. (1.41). The existence of non-global logarithms greatly increases the

challenge of resumming soft gluon corrections.

The story did not end there. In 2006, Forshaw, Kyrieleis, and Seymour found an-
other source of unaccounted-for logarithms, which arise from the imaginary parts in the
anomalous dimension [87, 88]. They occur at lowest order o} relative to the Born pro-
cess, and they were named the super-leading logarithms because at this order they go as
~ a’log® Q/Qo, which is super leading compared to the leading single logarithmic con-
tribution ~ a” log" (Q/Qy. There is a lot of on-going work being done to evaluate these
terms and their effects [89-100].
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The following chapter covers the general soft gluon evolution algorithm described in
[20], as well as results from [18, 22] which are necessary to understand the evolution in

colour space. The algorithm constitutes a special case of the more general approach given
in [19].

2.1 The general algorithm

We start by outlining the general evolution algorithm which computes the differen-
tial contribution of multiple soft-gluon emissions to a given observable. The precision
achieved by the algorithm is dependent on the observable, which is discussed in [19]. This
is the structure on which the CVolver Monte Carlo is built. The differential cross-section

after n gluon emissions is

o0 = Tr (V,.oH(Q)V] o ) = TrAo(x)

doy = Tr (V”,ElDfVEhQH(Q)VELQDT vi ) dI1,

11“’ ,LLzEl

= TrAl (,u)dHl,

doy = Tr (VH,EQDZVEQ,ElD‘fVEhQH(Q)VEl’QDhVTEQ’EngyVLEJ dIdll (5

=Tr A2 (u)dHldHQ

where H(Q) is the hard scattering matrix at a hard scale @, given by H = | M) (M|.
The vector | M) is the scattering amplitude. For the simple processes we consider it is
just a vector in colour space. Eq. (2.1) is a Markovian process which dresses the hard
scattering matrix with virtual evolution operators V and real emission operators D, the
latter increasing the dimension in colour space. The final virtual operator evolves down to
an infrared cutoff p. It is possible to reformulate this algorithm to make the cancellation

of infrared divergences explicit at each step, as done in [20].

We continue by defining each of the operators in Eq. (2.1). The real emission operator,
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in the eikonal limit, is given by

A n
D/ =) T,E—L =) "T,— (2.2)
J J

Pj-qi ng - Ny

for the emission of a gluon ¢ with energy £; and momentum ¢;. The sum over partons
J is context specific: it includes the partons from the hard process as well as all prior
gluon emissions. Similarly, the colour charge operators T; depend on the representation
in SU(3).. at each step. These are rectangular operators in colour; by adding another gluon,
they increase the size of the colour space. We will discuss what representation we choose
in Section 2.1.1. The second equality uses normalized four vectors, n! = p!'/ E;, making

explicit the fact that the soft limit of D’ does not depend on the scale of the emission.

The phase-space element associated with the emission of gluon i is

o dFE; d€);
dif; = - =2 ——~ 2.3
T F; 4w 2.3)

where o is the QCD coupling constant, and df2; = sin §,;d6;d¢; is the solid angle element,
with polar angle 6; and azimuthal angle ¢. The frame of reference used in the Monte Carlo

implementation is discussed in Section 3.1.1.

The soft-gluon anomalous dimension operator corresponds to dressing all possible
pairs of partons at any given step with a single virtual soft gluon exchange, and will serve

as the fundamental building block of the Sudakov operator. It is
Qg ko . =
r=— > (-T;-T)) (/ — i) - msij) (2.4)

where d;; is defined such that J;; = 1 if partons i and j are both in the initial state or both in
the final state, and zero otherwise. The final term corresponds to Coulomb gluon exchange.
The sum over parton pairs is also context specific, running over emitted soft gluons as well
as partons in the hard process. The colour charge products are also in a context specific
representation of SU(3)... The angular integral is a function of the normalised four vector

ny, meaning it only depends on its direction.
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The dipole, or antenna, function is defined

N _ 2 PiDj _ AR
i) = B o)~ () )’ @3)

where £ is the momentum of the emitted gluon. It is only a function of the direction of the
momenta of ¢, 7 and the virtual gluon with normalized momentum n;. Note the divergence
as nj, becomes collinear with n; or n;. As we discussed in the previous chapter, due to the
KLN theorem, these infrared divergences will cancel perturbatively with corresponding
collinear divergences in the real emissions, present in Eq. (2.2), when integrated over

phase-space.

These soft loops can be resummed, by considering diagrams with n virtual soft gluon
exchanges, and summing over all n in all possible orderings of gluon exchange. This

results in the Sudakov operator

The path ordering operator P can be dropped, because the expression in square brackets is
independent of the ordering variable, ;. Physically, the Sudakov operator represents the

probability of no emission occurring between scales a and b.

All the elements in Eq. (2.1) are now defined. We can condense the algorithm using

the amplitude operators A,,, which satisfy the recurrence relation
A,(E) = Vg5, DiA, 1(E,)D} VL o O(E < E,), (2.7)

where O(E < E,) is a Heaviside step function that constraints the scale of each subse-
quent emission to be lower or equal than the last. The first element in the recursion is
Ay = H, and the last one will evolve down to £ = pu. Eq. (2.7) exposes the structure
behind the algorithm: the amplitude operator at each step is related to the previous one
by a real emission in the amplitude and conjugate amplitude, and subsequent evolution
with virtual corrections at all orders down to the next scale. The amplitude operators A,

contain fixed order infrared poles, the cancellation of which only occurs after summing



2.1 The general algorithm 37

over n and integrating over their phase-space.

The final step is to compute a general observable with
S) = [ 32 donlu)un (R}, 23)

where u,, are the measurement functions that define the observable and depend on the set
of momenta for all soft gluons {k},, at a given multiplicity n. In terms of the amplitude

operators this is

S = [ 3 (H dlL) Tr An () ({F}). 29)

n

If we consider an observable that is fully inclusive below some scale p, the KLN the-
orem tells us that all real and virtual contributions will cancel below this scale, making it
safe to set 1 = p. A detailed proof is given in [20], but it can be summarised by using the

identities

b
Qs dE dQ)
V;bvlhb —1= —?/ FT;VTE76D2(nk)VE7b’
1, ‘ (2.10)
5D (k) = Z(_Ti - Tj)wij(nk)s

i<j

where D?(ny) = D¥(ny)D,,(nx), to rewrite the cross-section for n emissions as

do, = (H de) Tr (An(En) - / dHnHAnH(EnH)) . (2.11)
m=1

The observable is then given by

n+1

S(p)=TrH+ ) / (H dl'[m> Tr(Ans1(Eni1))

% (st ({1 ooy Fnn 1) — tn({Ft, ooy 1)),

(2.12)
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The observable being fully inclusive below scale p implies that w, 1 ({k1, ..., knt1}) =
un({k1, ..., kn}) for E, 11 < p, forcing all contributions to cancel. Therefore, for these

types of observable we can set the evolution cutoff to p.

As mentioned before, it is possible to recast the soft evolution algorithm in Eq. (2.1)
in a manifestly IR-finite form, tailored to the observable. Details can be found in [19, 20],
but we can provide an overview. We consider an event-shape observable, where we divide
the 47 solid angle into two regions, in gap and out of gap. The observable is inclusive
over all out-of-gap radiation, and some constraint is set on the in-gap radiation. This is the

gaps-between-jets observable we considered in Section 1.4.

We separate the soft-gluon anomalous dimension in two parts, I' = T',, + I,,, where
T',, contains virtual gluons in the out-of-gap region and T, in the in-gap region. We note
that, if the observable is IRC-safe, T',, should contain no infrared divergences. Then we
express the Sudakov operator by exponentiating the in-gap IT',, and expanding in insertions
of out-of-gap corrections I',,. We then rewrite a recursive amplitude operator A/ (F) as
only resumming over the in-gap virtual gluons, and including at each step another out-
of-gap real emission or out-of-gap virtual exchange. This amounts to an expansion in
“non-globalness”, where the global logarithms are captured by exponentiating I',,, which
do not cancel against any real emissions, and the non-global corrections are perturbatively
included by adding out-of-gap contributions. For each number of emissions n, the opera-
tors A/ (F) are explicitly IR-finite.

For the remainder of this work we will focus on the general formulation provided at
the beginning of this chapter, as we intend to capture all-orders non-global logarithms,
and we are also going to sum over all real emissions and integrate over their phase-space.
Analytically, this removes all infrared divergences, however computationally we will need
to be careful to keep the simulation numerically stable. We leave this discussion for Section
3.1.6.

We end here the summary of the general soft-gluon evolution algorithm. In a sense,
while fundamental and all-encompassing, what we have written so far is remarkably sim-
ple. A lot of the complexity in implementing amplitude-level evolution arises in the details
of the implementation. We now proceed by delving into the most pressing question left

unanswered in this section: how to represent the evolution in colour space.
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2.1.1 Evolution in the colour flow basis

The general algorithm suffers from rapidly increasing complexity in its colour structures,
which poses the greatest challenge to an exact colour treatment of large logarithmic contri-
butions. We will use the colour flow basis to disentangle the evolution in colour space, and
systematically break down all contributions to subleading colour. The fundamental colour
mechanics described in what follows are at the heart of CVolver, and will be essential to

the rest of this work.

The core principle behind this basis is to decompose the colour structure of the process
into a set of ‘flows’ connecting each particle with colour to another with anti-colour. A first
glimpse of this method was provided in Section 1.2. The colour flow description arises

from the Fierz identity:

0 s 1 1

(2.13)
om0 ) _ 1 i} ________ (l

where t§; € su(Ne)fundamentar are the generators of SU(N,). The index a runs over the
number of generators, the dimension of 5u(NC)adjoim, and 7 and j run over the number
of colours, the dimension of s1t( N;)fundamenta- The second line shows how the Kronecker
deltas can be understood diagrammatically as “connecting” the fundamental colour indices

of two quarks.

Eq. (2.13) separates the SU(N,) propagator for a gluon i into a U(V, ) gluon propagator,
with associated colour and anti-colour indices ¢; and ¢;, corresponding to the first set of
parallel flows, and a U(1) propagator, which does not carry any colour nor anti-colour
indices, corresponding to the second colourless flow. We will refer to these colourless

flows as singlet gluons'.

Outgoing quarks carry colour, incoming quarks carry anti-colour, and vice versa for
anti-quarks. Gluons carry both colour and anti-colour, and singlet gluons carry neither.
The colour indices ¢; are labelled from 1 to ny;,e, the total number of colour lines, and

are assigned to each of the colour-carrying partons. The anti-colour indices ¢; are then

"Multiple names have been proposed for this unphysical particle, perhaps the most accurate being
“traceless-condition gluon”, since it is required to maintain the traceless property of the Lie algebra of
SU(N.), which distinguishes it from U(V,). In this work we refer to them as singlet gluons for brevity.
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assigned to each of the anti-colour carrying partons.

We show an example towards the left in Fig. 2.1. There are four outgoing partons: a
quark, two gluons, and an anti-quark. These are labelled as partons 1 through 4. In total
there are three colour lines and three anti-colour lines, which are labelled 1 through 3 and
1 through 3 respectively. Quark 1 has colour line 1, gluon 2 has colour line 2 and anti-
colour line 1, gluon 3 has colour line 3 and anti-colour line 2, and lastly anti-quark 4 has
anti-colour line 3. We refer to this association of colour and anti-colour line indices to

partons as our “crossing”.

——>— 1 1
L« 1
0D L |L
—— 2
2
000" ¢ N
3
4 3 : : :
|123) |213) 1312) (123[123) (123|213) (123|312}

Figure 2.1: Diagrammatic representation of the colour flow basis applied to a process
with external final-state legs qggq. From the left: The four legs and their labels. The
grey arrows indicate which colour and anti-colour line indices belong to each leg. These
indices are connected in different ways to form a colour flow state; three out of the six
possible colour flows are shown. To the right, these colour flows are contracted and their
inner product is given by [V, to the power of the number of closed loops formed, following
from their Kronecker delta definition. Figure taken from [20].

The basis vectors consist of all possible ways to connect each colour index with an anti-
colour one. Algebraically, they are a series of Kronecker deltas contracting each pair of

connected indices:

9= 1) 0(2) . U(n)> =00, 0 (2.14)

where o(c;) is the anti-colour index connected to ¢; in state |0). We have also simplified
Thines = 1 as it should be clear that in this context it refers to the number of colour lines, and
not the number of emissions. We will refer to the basis vectors |o) as colour flows, hinting
at a physical interpretation of colour “flowing” through the system, and being conserved

at each vertex.

For any given process, there are n = n, +n, = n, + ng colour lines, where ny, n,, and
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ng are the total number of external gluons, quarks and anti-quarks respectively, including
hard process partons. This leads to n! possible colour flow permutations. Each colour

flow is naturally represented by one of these permutations, and we define the short-hand

1 2 3
= - - )=]312 2.15
=]y 1 3)=Ppm @.15)
to efficiently label each flow as a permutation. Since the top row of colour indices is

constant and ordered, we can omit it. Note we also drop the bars on the anti-colour line

indices.

Three possible colour flows are shown in Fig 2.1. Diagrammatically, colour flows can
be drawn by keeping the positions of each colour and anti-colour line fixed and connecting
them in different ways. Three possible colour flow diagrams are drawn: |123), |213), and
|312).

A closed colour loop results in a factor §;; = N.. The scalar product of two colour flow

basis tensors can be evaluated using their Kronecker delta definition:

S0

<O-‘ T> = 521(01) o(en

) ope) ol = Np T, (2.16)

where T(o, 7) is the minimum number of transpositions by which ¢ and 7 differ. Diagram-
matically, the number of closed loops formed will be the number of colour flows minus the

. . s of loops
number of transpositions, and the scalar product is N¢ * %

. Three example scalar prod-
ucts are shown on the right side of Fig. 2.1, and from the contracted colour flow diagrams

we obtain (123|123) = N3, (123|213) = N2, and (123|312) = N..

As we saw previously, each colour flow is represented by a permutation of n elements,
which leads to n! possible colour flow permutations. In Fig. 2.1 we have n = 3, thus
there is a total of six basis vectors, of which three are shown. This basis is overcomplete,
because n! is larger than the actual number of possible colour states [101]. Amplitudes
can be decomposed as | A) = > A,|o), where o labels the colour flow basis tensors, and

the density matrices of colour operators relate to the basis vectors via

A=Y A,lr)o]. (2.17)
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However, the colour flow basis is non-orthonormal and overcomplete, so in order to cal-

culate traces over operators in this basis we need to introduce a dual basis such that:
(o] 7] = [0] 7) = b4, and D o) lel =D lo) (o] = 1. (2.18)
g (e
Inserting the completeness relation, the trace of an operator in colour space becomes

TrA = Ti[AS] = Y [r|Alo] (o] ), (2.19)

o,T

where A has elements A, = [7| A, |0] = (7] A, |o) and the scalar product matrix has
elements S,, = (0| 7). We note that an explicit representation of the dual basis is not
needed for our purposes; the physical cross-section is built from matrix elements of colour
operators and scalar products of colour flows, as shown in Eq. (2.19). This structure fore-
shadows Chapter 3, as we will need to keep track of factors of /N, from both the evolution
operators A, and the scalar product matrix S,,. For now, we will focus on what the
colour evolution looks like within the former, which contains recursive insertions of the
colour operators T; and exp [~ >_,_,; T; - T;]. This dual basis is discussed in more detail

in [20] and [18], but for our purposes the results here are enough.

2.1.2 The colour charge operators

The two operators in colour space appearing in our soft gluon evolution algorithm are
the colour charge operator T;, in the real emission operator, and the exponentiated colour

charge products T; - T}, in the Sudakov operator. The former can be decomposed as

i(& —\i)s, (2.20)

C

Ti = )\,‘tci — j\zfgb —

where the operator t connects an additional gluon to the colour flow ¢;, t connects it to the
anti-colour flow ¢; and s emits a singlet gluon. The values of )\; and ); for each particle
can be found in Table 2.1. A singlet gluon has A\, = As = 0, so they do not emit at all.
Gluons carry A\, = /_\g — 1/+/2, so they cannot emit singlets. Only quarks and anti-quarks

can emit both gluons and singlets.
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Parton i i i

Quark V1R 0
Anti-quark 0 VIr
Gluon \ TR vV TR

Singlet gluon 0 0

Table 2.1: The A variables assigned to each different type of parton. T’z takes the conven-
tional value in QCD of 1/2. A non-zero J; indicates parton i carries colour, and a non-zero
)\; indicates it carries anti-colour. These values correspond to outgoing particles. For in-
coming particles the values of )\; and \; are exchanged.

The gluon emission operators are algebraically defined

1 - ¢ -+ n
te o) =t o(1) - o(e) ...0(n)> (2.21)
— 0(1) | ...0<n) U(ci)>’ (2.22)

connecting the new gluon’s colour line to anti-colour o (¢;), and reconnecting the colour
line ¢; to the new anti-colour line n + 1. The anti-colour line emission operators f(,(ci)
emit a gluon from an anti-colour line index o (c;), which is equivalent to emitting from the

colour index connected to it, ¢;. Thus, fo(ci) =t.,.

The singlet emission operator is defined

slo) =s (2.23)

1 -+ n e o n+1l
o(l) -~ o(n)/ |o@) - on)n+1/’
where a singlet is identified as a gluon whose colour and anti-colour indices are connected
to each other in |o). The operator s does not need a label as its action on |o) is equivalent
when emitted from any line. However, its coeflicient in T; still depends on the hard leg i,

so that label cannot be dropped.

The action of the gluon emission operators is diagrammatically represented in Fig. 2.2.
They create a new pair of colour and anti-colour lines which connect to the existing colour
flow, in the case of t., and t, ), or connect to themselves, independently of the existing

colour flow, in the case of s.

In the general soft evolution algorithm Eq. (2.1) the emission operators come in pairs
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n+1

tci -

——e— 0(¢) o(c;)
n+1
n—+1

— Ci Ci

S —

(=l

a(ci) =

Figure 2.2: Diagrammatic representation of the emission operators t.,, s and t,(,). The
first and last emit a gluon with colour and anti-colour, and reconnects these lines to the
emitting colour connected pair. Their action is equivalent when c; is colour connected to
o(c;). The s operator emits a singlet, which carries neither colour nor anti-colour, and is
represented as a gluon colour connected to itself. It can be equivalently emitted from any
line, as it does not interact with the existing colour flow.

D and DIH, and act to the left and right respectively of the density operator. Their matrix

elements can be contracted at cross-section level:

(71D} |o) (7| D}, 17 = Y [7] T |o) (3] T} 7] wyy (), (2.24)
i

which factorises into the antenna function from Eq. (2.5) and the matrix elements of

the colour charge operator, acting on the amplitude and conjugate amplitude colour flows
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respectively. We can write a complete algebraic expression for the colour operators [20]:

0| AT 7] = [o] Tila) (8| T} 7] [a| A |]
of

+ XX 00120, T () + Aidje,o(en) 0, T(Cn)
1 B _

- F(Aifscia*l(én) - )\iéém(cn))()‘j - )‘j)(sch’l(én)

— (i,0 <> j,7)

(2.25)

1 _ _
+ m()\i —Ai)(Aj — )\j)5cna—1(cn)5cm—1(cn)}

x [T\n|A]o\n],

where |0\n]| is the flow |o| where ¢, and ¢, are removed, the inverse of Egs. (2.21) and
(2.23). The second line includes the contributions where one gluon is emitted off a colour
line and the other off an anti-colour line. The third line includes contributions where
both gluons are emitted off either two colour lines or two anti-colour lines. The fourth
line corresponds to one gluon and one singlet emission, and the sixth line to two singlet
emissions. This expression is unwieldy. In terms of subleading colour corrections, it is
necessary to consider not only the explicit factors of 1/V, that have appeared here, but
also what impact the emissions will have on the scalar product matrix in Eq. (2.19). We
will return to it and break it down into palatable pieces in Section 2.3. We move on to
consider the colour charge products, T; - T;, which appear in the soft gluon anomalous
dimension, Eq. (2.4). Applying the definition of the colour charge operators, Eq. (2.20),
we end up with the products t., - t. , t, - EE]., t., -sands-s. These dot products are defined
by applying both colour emission operators to their respective lines, and contracting the

new colour and anti-colour indices.

We show diagrammatically in Fig. 2.3 the results for the dot products without singlets.
Note that we start counting from zero for the colour and anti-colour line labels, which
is a convention we will maintain for the rest of this work.?> We identify three cases: ex-
change between two colour lines (top row), exchange between a colour line and its colour-
connected anti-colour line (middle row), and exchange between a colour line and an anti-

colour line which are not connected (bottom row). Other exchanges are equivalent to one

2This is for consistency with the C++ implementation, discussed in Chapter 3.
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N I
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Figure 2.3: Diagrammatic representation of the t,-t; operator (top row), the t,-t; operator
when 0 and 0 are colour connected (middle row) and the t; - t; operator when 0 and 0 are
not colour connected (bottom row). In the top and bottom cases a swap occurs between
the initial and final colour flows. In the middle case the flow remains unchanged, and a
factor of NV, is gained.

of these: in particular fa(ci) -fa(cj) will always be equivalent to t., - t.,. The top and bottom

cases result in a rearrangement of the colour flow:

(to - t:)]01) = |10) and (to - T5)[10) = |01), (2.26)

while the middle row leaves the colour flows intact, with an additional factor of NV, from

the closed colour loop:

(to - £5)|01) = N.|01). 2.27)
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—>— 0 _|r- —— 0

14 .q =0 _1 — 1 =03
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Figure 2.4: Diagrammatic representation of the t; - s operator (top row), and the s - s
operator (bottom row). In both cases, the colour flows remain unchanged after applying the
operators; their action is completely independent of which lines they connect to. Explicit
factors of 1/N. are included from the definition of T;, which in combination with the
closed colour loop in s - s, result in an overall factor of 1/V, for both cases.

We will refer to a transposition of two elements in the colour flow permutation as a “swap”,
and this mechanism will be fundamental to the evolution in colour. Whether t - t; causes
a swap or not depends on the colour flow it acts on, as it can either create a closed loop
within a single colour connection, or rearrange two separate colour connections. However,

ty - t; always leads to a swap as two colour lines can never be connected to each other.

We now consider the exchanges which include an s operator, shown in Fig. 2.4. In all

cases the flows remain unchanged:

C

1 1 1

and the action of these operators is completely independent of the colour flows they act

on.

Similar to the real emissions, it is possible to put together all these cases to obtain an
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algebraic expression for the colour charge product operator [20]:

[T |Tl : T]| O'> = — NcéTU ()‘ij\jéci,afl(éj) + )\jj\iécwaq(@))

Nebro ey 3
- A=) (=)

> Orar (AiAiO(ab) (eey) T NiXjO(ab). (o (@)o-1(ey)
(ab)

(2.29)

—AiAi0(ab).(er.0-1 (7)) — AiAid(ab) (e 01 (1))

where (ab) denotes an ordered pair of indices, and |7(4)) is the colour flow |7) with el-
ements a and b swapped. The first line contains the colour-diagonal contributions (i.e.,
the colour flow remains unchanged) with an overall factor of V.. These are the terms that
include the middle row in Fig. 2.3. The third and fourth lines contain the off-diagonal
contributions, with one swap between the initial and final colour flows, which correspond
to the top and bottom rows in Fig. 2.3. Lastly, the second row contains the colour-diagonal
contributions with an overall factor of 1//NV,, which include both rows in Fig. 2.4. Note
that this matrix element is only non-zero when |o) = |7) or when they differ at most by

one swap.

We have identified three types of contribution, and it is very useful to separate the

anomalous dimension into three corresponding terms:

1
[7| T |o) = (NCFJ + F,o) Ore + Xrg (2.30)

C

where all the factors in the anomalous dimension have been absorbed, including the angu-
lar integral and Coulomb exchanges. Thus, these terms depend on the kinematic config-
uration of all legs, as well as the colour flows before and after the virtual exchange. The

three terms are defined as follows:
 [',: the colour-diagonal, leading-colour contributions, arising from t., - EE]., where ¢;
and ¢; are colour connected.
* p: the colour-diagonal, subleading colour contributions, arising from t., - s and s - s.

* Y. the colour off-diagonal, subleading-colour contributions arising from t., - t.,

and t, - Egj, where ¢; and ¢; are not colour connected.



2.1 The general algorithm 49

We have provided a breakdown of the leading and subleading colour effects that a single
virtual gluon exchange can inflict on the evolution. This is all well and good, but the sig-
nificant challenge of exponentiating the anomalous dimension remains. We will vanquish

this problem in the next section.
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2.2 The Sudakov operator

Exponentiating the soft anomalous dimension to obtain an expression for the Sudakov
operator at all orders in colour was achieved in [18]. We will overview the derivation and

explain the results, but the more rigorous algebraic details can be found there.

We start from the anomalous dimension as given in Eq. (2.30), broken down into three
pieces according to their respective effect on the colour flow. The leading colour part,
I',, is the identity in colour space, making it simple to exponentiate. From doing this
we obtain exp (IV.I',) as our zeroth-order approximation. We then treat p and 3., as
perturbations, where each insertion is accompanied by a factor of 1//N.. We can write
the full colour Sudakov operator as an infinite series in powers of 1/V,, where each order
includes another X, or p insertion. A matrix element of the Sudakov operator is then

given by

d

Y
71T o) = 6. R({o},T) +Z(;V15) 3o kp,)
=1 k=0

C

= (2.31)
X Z 7"70 Uz KO ( H Eaaﬂa-H) {‘707017 T ﬂgl*k}>r)’
{00,010, 01—k} a=0
where I' = {I',, | 0; € {00,01,...,0,_}}, and we should pause here to properly un-

pack this expression. We have introduced the R functions, which are complex scalars,
not matrix exponentials. They are in general functions of some sequence of colour flows
{00,071, ,0,_1}, and of the corresponding set of contributions {I',,,['s,,...,I's_, }.

The R functions are defined in closed form in [18]. For example, in the first term:

R({c},T) = eNete (2.32)

which is the zeroth-order approximation to the Sudakov operator we identified before.

The first summation is over powers of 1/, up to some order d. We can take d — oo
for an exact Sudakov operator, or choose a finite d to set a maximum order in subleading
colour accuracy. We will return to this in Chapter 3. The second summation is over how
many p insertions are present at order (1/N,)'; from zero to I. The second line is more
sophisticated, and includes the necessary number of Y5 insertions to reach (1/N,)!. As

we saw before, X, is only non-zero when o and 3 differ by exactly one swap. For example,
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if | — k = 2, then all possible sequences >.,,>,, need to be considered, where 7 and o
are fixed colour flows, since we are evaluating [7|eF|o), and o can be any colour flow
which is exactly one swap away from 7 and one swap away from o. All such sequences

of colour flows, of length [ — k, are summed over by > (00,01, and the Kronecker

A
deltas impose that the final and initial colour flows correspond with the matrix element.
Then, the Y contributions associated with each sequence of colour flows is inserted by
(Hl_k_l Y0oa +1)' Finally, for each sequence in colour flows there is an accompanying

a=0

R function.

We can look at the first few terms to further appreciate the structure of the series. The

Sudakov operator, up to next-to-next-to-leading-colour (NNLC), is given by

T\ _ P N1, 1o
[Tle" o) = 0. R({c},{Tx}) + (5mﬁce — TCR({T, o}, {l-, T, })

1
+ ﬁ < Z ETQZQUR({TJ(){? 0}7{FT7FQ7FU}) (2.33)

¢ {T7a’o—}

2
— pXoR({7, 0}, {T'+,Tx}) + %%e_N“F”),

where the first line contains the zeroth and first orders. The first order contains either a
single p or single X, insertion. The second order is in lines two and three, suppressed by
a factor 1/ N2, and contains three terms: a double ¥, double p, or a 3 and a p. In the first
case, it is necessary to sum over all possible colour flow sequences {7, o, o}, such that 7 is
one swap away from «, which is itself one swap away from o. Depending on the number
of colour lines, this sum can grow significantly large. The R functions that appear here

are given by

e—Nelr _ o=NeT'o
R({r,0},T') = T T
e—NCFT
R({T,a,a},F):<F T _F>+(THJ)+(THQ) (2.34)
~N.T» ~N.To _ —N.»
R({r,a,7},T) = —N,— 4 © <.

r.—T, (T, — [o)?

where the last 12 function is for the case where 7 swaps to « and then performs the same
swap back to 7 again. It it found by simply taking the limit 0 — 7 for R({7, o, 0}, T).
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We will discuss how the sums over sequences of colour flows and their corresponding R
functions are implemented in Chapter 3.

The p contributions, although subleading in colour, are colour diagonal. It follows
that we can easily exponentiate them to all orders, and expand only in the number of >,

insertions. The Sudakov operator with resummed virtual singlet exchanges is given by

[Tl e" o) = 0o R({o},{T})

d ! -1

1 /

+ ;_1 <_ﬁc) Z }57-0'()50'170' <H) EU&+17O'a) R({UO, ey O'l}’ I )
- 1 a=

{0—07"'70-

(2.35)

where IV, = I'; — p/NZ, and I" = {I", | 0; € {0¢,01,...,0:}}. When d is set to zero,
we refer to the evolution with resummed virtual singlets as the LC" approximation, where
the prime indicates we include some subleading colour terms beyond LC. To completely
capture the Sudakov at some subleading order in colour we will need d > 0, and that
is our N’LC’ approximation. The LC’ approximation is equivalent to the replacement
N./2 — CF in the diagonal part of the virtual evolution, and we will study how well it

captures subleading colour effects in Chapter 4.

For now, let us provide a summary of what we have achieved thus far. First, we used
the colour flow basis to find representations of the colour structures that appear in the
general soft evolution algorithm. We decomposed both the real emissions and anomalous
dimension in terms of the possible ways they can guide the colour evolution. We then
used the decomposition of the anomalous dimension as a starting point to exponentiate it,
resumming all diagonal terms and inserting oftf-diagonal contributions as perturbations. In
doing so, we have gained insight into the subleading colour structure of the Sudakov. On
the other hand, for the real emissions we stopped at a somewhat-ugly algebraic expression
in Eq. (2.25), without much understanding of its subleading colour structure or how it
relates to the scalar product matrix (Eq. (2.19)). In order to rectify this, we need to take a

short detour into the topic of rings and strings.
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2.3 Rings and strings

The rings and strings formalism was introduced in [22], and it constitutes a set of basis
functions for the kinematic part of the amplitudes described in Section 2.1. This formal-
ism builds on the work by Dokshitzer and Marchesini on the “5th form factor” [102]. In
the following we will outline the results, and explain how these structures emerge in the

evolution of colour flows.

It is a well-known result that collinear poles can only emerge in colour-diagonal struc-
tures, [22] provides a short proof. Consequently, any colour sub-leading contributions
must be free of collinear poles. This is not apparent in the formulation of the general algo-
rithm in Section 2.1, and it seems almost unlikely due to the appearance of the dipole func-
tions w;;(ny), defined in Eq. (2.5), which contain poles as emission k£ becomes collinear

with particles ¢ or j.

These dipole functions are kinematic factors associated with both the virtual evolution,
since they appear in the Sudakov operator V,;, and the cross-section level contraction
of the emission operators D/, given in Eq. (2.24). As discussed in Section 2.1, the soft
evolution algorithm is IR-safe after summing over all emissions and integrating over their
phase-space. However, in a Monte Carlo implementation, observables are evaluated by
sampling random trajectories in kinematics and colour, and therefore a single event may
contain uncancelled collinear poles. To circumvent this problem it is possible to implement
a collinear cutoff which removes collinear poles from the reals and virtuals, keeping the
cross-section intact due to the KLLN theorem. This is entirely an implementation-side issue,

and will be discussed in depth in Section 3.1.6.

Although we have a method for handling collinear divergences in the Monte Carlo,
computationally their cancellation is still a major source of numerical instability. This
creates plenty of incentive to develop an alternative set of basis kinematic functions which
are explicitly regular in colour off-diagonal contributions, significantly reducing the com-
putational complexity of cancelling all collinear enhancements. This is achieved with the
ring and string basis functions, a name that will soon become self-explanatory. The short-

est ring is given by
1,7

kil — wij(Qn) - wik(qn) - wjl(qn) + Wkl(Qn)a (2.36)

where 7,7, k,l € {1,2,...,n — 1} are all distinct particles, and ¢, is the momentum of

the n'™ emission. The pole cancellation pattern is clear: w;; introduces collinear poles
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associated with partons ¢ and j, which are then subtracted by w;;(¢,) and wj;(g,). These,
in turn, introduce collinear poles along the directions of £ and [, which are ultimately
cancelled by adding wy;(g,). A similar logic applies starting from any of the four dipole
functions. This circular pattern is reminiscent of a ring, and one can conclude that a linear
combination of any number of dipoles will be finite as long as it follows this closed ring

structure. Diagrammatic expressions are shown in [22].

It follows that linear combinations of dipoles which do not form closed rings will con-

tain uncancelled poles. These are referred to as strings, with the simplest one being:

; 1
Sg’k = §< ij (qn) + wir(qn) — ij(qn)>, (2.37)
where again ¢, 5,k € {1,2,...,n — 1} are all distinct particles. There is a remaining
collinear pole with respect to 7. More details on the construction of this basis and its
diagrammatic representation are in [22], however we only need the general forms in order

to exploit the collinear safety of subleading colour evolution.

2.3.1 Colour evolution in terms of dipoles, rings and strings

We will consider the virtuals first. In Section 2.2 we stated an expansion of the Sudakov
operator in powers of 1//N.. The kinematic factors in the colour sub-leading terms are
contained in X, which was introduced in Eq. (2.30) as the part of the anomalous dimen-
sion operator responsible for colour off-diagonal contributions. An analytic expression for
.- can be found by keeping track of the kinematic factors from Eq. (2.4) associated with
the terms in the colour product operator that result in a swap of colour connections. This

leads to

Sre= > > Qi+ Qu— Qe — Qi (2.38)

ilcc ino jkcc. inT

Q=" <9) / d—mwij(qn), (2.39)

T a 47

where “7, [ c.c. in ¢” indicates that partons 7 and [ are colour connected in the colour flow
o. We do not consider Coulomb gluons in this discussion, however the general algorithm
and the Monte Carlo implementation are able to include them. We can now identify this

as a ring, or more accurately, a solid angle integral over a ring, which can be evaluated
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analytically to give

do .. Py .
- 2]1 =21n (w) , (2.40)

47 ng =Ny NG Ny

which contains no poles. Since we work directly with factors of >, in the Sudakov ex-
pansion, we are already explicitly collinear safe in the colour-subleading evolution, and so

there are no improvements to be made on the side of the virtuals.

The story is very different with respect to the real emissions. In a Monte Carlo algorithm
it is beneficial to tailor the sampling of the evolution according to the matrix elements, in
order to reduce the spread of event weights and therefore the statistics required. This is
called importance sampling. Looking at the form of the real emission matrix elements in
Eq. (2.24), it seems the obvious choice is to select an emitting pair z and j and sample the
direction of the emission according to w;;. We can then select the colour flows after the

emission from the list of accessible colour flows after the action of the T; and T} operators.

This method, although straightforward, introduces two collinear poles with respect to
the directions 7 and j. However, we know that if the contribution is subleading in colour,
these poles should cancel. This prompts us to instead consider the possible trajectories a
real emission can follow in colour space, and combine together the dipoles that contribute

to the same trajectory.

We show the different possibilities in Fig. 2.5. We do not consider the emission of
singlets for now. As we saw in Fig. 2.2, the action of t., is equivalent to t,(.,), so we only
need to focus on which colour-connected lines the emission is from. In the bottom row,
and for each of the three diagrams, a gluon emission, depicted by wavy lines, is emitted
in the amplitude (gluon emitted towards the left) and conjugate amplitude (gluon emitted
towards the right). The left case corresponds to the gluon being emitted from the same
colour connected lines on both sides, ¢; connected to ¢;. The middle case has one colour
line in common, ¢;, but they differ in anti-colour line: ¢; for the amplitude, and ¢, for
the conjugate amplitude. The right case corresponds to the gluons being emitted from
entirely different colour connected lines: c¢; to ¢; in the amplitude, c; to ¢; in the conjugate
amplitude. The top row shows the flows before the emission for each case, and the coloured
dots indicate all the possible dipoles from which the emission can occur, such that the new
colour and anti-colour lines attach as drawn in the bottom row. We categorise the three

cases:

* Left: Emission off the same colour-connected pair in both the amplitude and conju-



56 2 Amplitude evolution

_ N o
o, ci O ® @ T Y
>
@
A
A A
— —— L« .
Ck; Cr @ @
- o 9 B L4 ‘e
Cj Cj ¢ j L J&2
C; ) ” C; G h \ ” C; C;
iy
AV AV { !
— »- A -« _
A 4 Cj; Cl _
¢ S ¢ S Ck

Figure 2.5: Top row of each diagram shows the colour flows before emission, the bot-
tom row shows them after emission. Each diagram has the amplitude on the left, and the
conjugate amplitude on the right. Each pair of lines labelled with the same coloured dot
represents a possible dipole pair to emit from to obtain the flows directly below. Flows
that do not participate in the emission are not drawn. The left diagram corresponds to a
dipole emission, the middle one to a string, and the right one to a ring. Figure taken from
[22].

gate amplitude. The associated kinematic factor is —w;;. This is our dipole contri-

bution.

* Middle: Emission off colour connections that only share either a colour line, or an
anti-colour line. The associated kinematic factor is —(w;; + wir — wj;). This is our

string contribution.

* Right: Emissions do not share colour lines or anti-colour lines in the amplitude and
conjugate amplitude. The associated kinematic factor is —(w;; + wi; — Wi — wjj)-

This is our ring contribution.

We should look at whether these are leading or subleading colour contributions. This
is not a trivial task; factors of 1/ N, can come from both the real emission matrix elements
themselves, but also the scalar product matrix, which appeared in Eq. (2.19). We can

combine both effects and define the quantity

o7 = U101, 10y g1 107, 24D
Y (o] o) ’

Q
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where {0, 7} are the colour flows before the emission, in the amplitude and conjugate am-
plitude respectively, and {7, 7} are the colour flows after the emission. The colour charge
operator matrix elements will include any explicit factors of 1/V, as well as become zero
if the flows after the emission are not accessible from the initial flows. The (7| 7) / (0| 7)
fraction contains factors of /V, arising from the trajectory within the scalar product matrix.
(ro57)

The quantity &;;

real emissions, and it is also used for sampling trajectories in colour space in the Monte

is crucial for keeping track of the colour suppression inflicted by the

Carlo. Both of these points will be discussed in Sections 3.1.8 and 3.1.9. Let us go back
to the three scenarios:
(to57)

* Dipole emission: &;; = N,, always. The original closed colour loop becomes

two loops. This is a I' contribution.

e String emission: fi(}"ﬁ) = N, always. Again, the original closed colour loop be-
comes two loops. However, a string emission can only occur if |o) # |7), and so we

are off-diagonal in colour. This is a X contribution.

* Ring emission: fgaa?) = N or 1/N,, depending on |o) and |7). In the former case,
a single closed loop becomes two. In the latter, two disjointed loops become one. In

either case, this is a > contribution.

We have used the idea behind the pieces of the anomalous dimension in Eq. (2.30) to also
categorise the real emissions. As before, a I' contribution is leading colour and colour
diagonal, while a X contribution is off-diagonal in colour. Note that ring contributions,

which contain no collinear poles, are subleading in colour.

We need to consider also emissions of singlet gluons. These will be the p contributions.
In terms of the contributing kinematic dipoles, these are more complicated as a singlet
can be emitted off any quark, and the effect on the colour flows will be equivalent in all
cases. If a singlet is emitted on one side and a gluon on the other, the associated kinematic
factor is Zjeq Wij — Z@ Wi — Zjeq Wi + Zleq wyi, where the gluon is emitted from
colour connected legs 7 and k, and w; = 0. If two singlets are emitted, then we have

to sum over all quarks and anti-quarks in both the amplitude and conjugate amplitude:
ZiEq <Zj€q,i7£j Wij — Zleq Wil) + Zkeq (Zqu Wkj — Zleq,k;«él Wkl)-

We should clarify our definition of a ring or string emission. We introduced them as in
[22], such that a string contains one collinear divergence and a ring contains none. Then,
we discussed how ring and string structures emerge when considering the > contribu-

tions to colour evolution, in Fig. 2.5. Notably, rings can only emerge if there are at least
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four distinct partons available to emit, and strings require three. This corresponds to the
colour line indices in Fig. 2.5 belonging to a different particle each. However, as gluons
carry colour and anti-colour, it is perfectly possible for two of the indices, for example
¢; and ¢;, to belong to the same gluon. Then the kinematic factor of a ring collapses to
—(wk; — wii — wi;). We will still refer to this as a ring emission, as we are more inter-
ested in its trajectory in colour space, and these types of emission fall into the category
of off-diagonal, ¥ contributions. Therefore, we only require two colour lines for a ring
emission, and three for a string. Similarly, the >, structures (Eq. (2.38)) that appear in
the anomalous dimension also collapse into fewer than four dipole functions if multiple

colour line indices belong to the same parton.

Fig 2.6 provides a review of the colour flow basis and examples of emissions from a
dipole, string, or ring in the gg — gg process. Fig. 2.6a shows the diagram, which is
an s-channel gluon exchange, and the colour and anti-colour line labels of each hard leg.
We will present results for this process in Chapter 4. Fig. 2.6b shows a possible colour
flow contributing to the hard process matrix. Fig. 2.6¢c shows this flow using our stan-
dard diagrammatic representation of the permutation, and Fig. 2.6d shows an interference
element in the hard density matrix, with the permutation of the amplitude to the left and
the conjugate amplitude to the right. Lastly, Fig. 2.6e shows the resulting colour flows
after a dipole, string or ring emission. The ring emission provides an example of what
we discussed before; the w; dipole is zero, because colour line 1 and anti-colour line 1

belong to the same gluon.

At this stage, we have presented the necessary groundwork to develop an amplitude-
level Monte Carlo. The colour flow basis, its diagrammatic representation, and the action
of the colour charge and colour product operators was defined in Section 2.1.1. We found
that the anomalous dimension can be separated into three pieces: a leading colour part
I', an off-diagonal subleading colour part, >, and a diagonal subleading colour part, p.
We then used these pieces to find an expression for the Sudakov as an infinite series of
subleading insertions in Section 2.2. Finally, we went back to the reals, and through the
construct of rings and strings we categorised real emissions into the same three pieces:
I', 3, and p. At this stage we are ready to implement the evolution as a Monte Carlo

algorithm, a task which is anything but trivial. This is the goal of Chapter 3.
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(d) An interference contribution to the
hard scattering density matrix.
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(e) The emission of a gluon via the D operator from a dipole, a string and a ring. The kinematic
factor and updated density matrix after the emission are also indicated. For the string and ring,
only one gluon is emitted from a colour line in the amplitude and conjugate. The different possi-

bilities are coloured differently.

Figure 2.6: An example to illustrate the colour flow basis and how we classify real
emissions in terms of dipoles, strings and rings. Figure taken from [103].
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CVolver is a framework for solving colour evolution equations of the class outlined
in [19, 20]. It utilizes a plugin structure to solve structurally similar evolution equations,
which might, however, have different physics applications or different levels of sophistica-
tion. In its current version, CVolver systematically expands around the large-/V, limit and

combines techniques from normal parton showers as well as novel sampling approaches.

The framework originates from the development centred around [18], and was subse-
quently developed into the current structure by Matthew De Angelis, Jeff Forshaw, Patrick
Kirchgaesser, Simon Plitzer and Fernando Torre Gonzélez, with its first application to the
studies presented in [23]. The first step in setting up CVolver was to address the virtual
evolution, one of the major bottlenecks of soft gluon evolution algorithms. For this it is
crucial to understand the inner workings of the colour flow basis and how it relates to the
structure of anomalous dimension matrices. This needed to be complemented by a sam-
pling of real-emission colour flows, along with a connection between the real and virtual
weights, currently optimised to achieve almost constant weights for the real emission. The
colour structures of gluon exchanges and emissions are now also available at two loops
and for double emissions [104]. It was always important to keep track of different orders
in N, for the final cross section [20], a functionality which has been driving CVolver de-
velopment since its beginning. Besides the soft gluon plugin, which has been built with
the philosophy of the highest level of theoretical control for a specific observable, other
plugins and interfaces are in development paving the way to a full event generator or other

dedicated applications.

The present chapter summarizes the key ingredients of the soft gluon plugin [23, 105]
and several improvements and additional data and analysis handling which have been de-
veloped in the context of this thesis to efficiently and flexibly simulate the full colour

evolution of jet processes.

3.1 The Monte Carlo algorithm

We start by providing an overview of the whole algorithm, listing every step within
one event. Then, we will describe in detail what happens at each step, what sampling
distributions we use, and how the matrix elements are calculated, in the order followed
by the algorithm. And to reinforce the theory with practical application, we will end the
section by revisiting the overarching algorithm and printing out the calculation and results

for a randomly selected event.

We can insert the colour flow basis completeness relation at each step in the general



62 3 CVolwer

evolution, given in Eq. (2.1), so that the evolved density matrix becomes a product of
matrix elements of the real emission and Sudakov operators. The matrix elements contain
sums over colour charge operators, in the case of the reals, and exponentiated colour prod-
uct operators, in the case of the virtuals, and they each map a given colour flow vector to
another. We rewrote the trace of the density matrix as a sum over final state colour flows
in Eq. (2.19), and with these ingredients we are in good shape to implement the evolution

using a Monte Carlo.

To calculate the cross-section, we simply need to integrate over the real emission phase-
space elements, in Eq. (2.3), and sum over all possible trajectories in colour space. Ateach
insertion of a real or virtual operator we choose one of the accessible colour flows after

the operation. Summing over all possible trajectories is equivalent to taking the trace.

| | | | |
| | | | |
1 ! ! ! | < ! < 1
| | 1 11 | B
3
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P E . : l 2
| | |§‘ il | |
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| | | | | |
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lp) el D) [r|V]e)  [o| H|o] (a| V7] (7] D |p] (r|
| | | | | |
| | | | | |
p=(312) r=(21) o=(12) 5= (21) F=(21) p=(231)

Figure 3.1: One contribution to the evolution operator up to the first real emission, start-
ing from |12) [12| H |21] (21]. The colour and anti-colour line indices are shown in red.
The dotted lines indicate the colour flow state at each step. Figure taken from [23].

A diagrammatic example of one path in colour is shown in Fig. 3.1. The hard process
has two colour and anti-colour lines each, which could be a contribution to, for example,
H — gg or q¢ — qq. First, the hard process colour states {0, 5} are selected from the
list of possible ones. Then, the scale of the first emission £ is sampled, and the new
colour flow states {7, 7} after virtual evolution are chosen from the list of accessible ones.
The colour flows after the real emission {p, p} are then selected. The elements of the
hard process, Sudakov operator, real emission operator, and their conjugates are multiplied
together, to arrive at the complete matrix element. The process is repeated until one of the

termination conditions is reached, which will be discussed later. This constitutes one event
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in the Monte Carlo simulation, and the total cross-section is found by averaging over the

weights of a large number of such events.

The iterative procedure clan be expressed as a recursion relation, which encodes the
evolution of the colour flow states at each step of the parton shower. Thus, we write the

recursion from the general soft evolution algorithm, Eq. (2.7), in terms of matrix elements:

as dE dS) _ 1 _
Mp(E) = —— 41— 0| D& |7) [T V.5 |0) Moy (E') (6] Vi |7] (7| D |7]

T,0,T,0

(3.1)
where E is the energy of the next emission and E’ the energy of the previous emission.
For the first emission, £ = (), which is the hard scale. The phase-space element of the
emitted gluon is also included at each step. We note that for the reminder of this work we
use a fixed coupling g = 0.118, although the CVolver implementation can easily extend
to a running coupling. A running coupling is formally needed to achieve full LL accuracy.
This expression constitutes a map from the colour flows {7, 5} to {p, p}, and it lies at the

core of CVolver.

The implementation we discuss first is optimized for the gaps-between-jets observable,
which was discussed in Section 1.4, where emissions above a certain energy scale are ve-
toed within an interjet region, which we refer to as the gap. We call this implementation the
‘dedicated mode” of CVolver. The measurement function of this non-global observable

is given by

n

wn({k}a) = [T ui(ki) = [ (Ooulk:) + Ou(k:)O(E; < p)) ., (32)

=1 =1

where p is the veto scale, Oy (k;) is unity if k; is emitted in the out-of-gap region, and
zero otherwise, and the opposite for O;,(k;). We can safely set the evolution cutoff to the
veto scale, ;1 = p, since all contributions cancel below that scale, as shown in Section 2.1.
Therefore, if the sampled phase-space point of an emission falls in the veto region, the

event can be terminated and its weight discarded.

CVolver can also function in “event generator mode”, in which no measurement func-
tion is applied during the evolution, and observables are measured after the event has
terminated. It is simple to modify the implementation of CVolver to a general purpose

one, which is discussed in Section 3.3.2.

Algorithm 1 describes a single event from a Monte Carlo implementation of Eq. (3.1),
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in the dedicated mode. It takes as input the maximum number of emissions to consider,
Nmax, the lowest veto scale to evolve down to, p., the angular definition of the gap (1,
a parameter A to set the size of the collinear cutoff, the maximum order d for which to
evaluate the Sudakov operator expansion in Eq. (2.31), a parameter m to set a maximum
suppression in V., and the external legs and colour structure of the hard process. These are
the most significant parameters that guide the evolution, however the full list of parameters

is much longer, and is given in Section 3.3

The symbol ¢ represents the set of external legs, while the subscript indicates the num-
ber of emissions. It contains the momentum and colour representation of each parton.
The functions ayy and o are used to sample the initial basis tensors in the amplitude and
conjugate amplitude. The functions «,, and &,, sample the tensors after the action of the
Sudakov operator, and o, 11, &, 11, the tensors after a real emission. The function £, sam-
ples the energy scale of the next emission, while £/, samples the veto scale to evolve down
to, between p. and 1. Each sampling method has a weight W associated with it. The
cumulative weight of the event is w, which includes contributions from the matrix ele-
ment evaluations, as well as sampling weights required to cancel the unphysical sampling

distributions.

This algorithm outlines the structure we have described thus far: we select the hard
scattering density matrix to evolve from (lines 1-3), we select the veto scale of the event
(lines 4-5), and then we enter a loop of emissions (line 6). For each emission, colour
flows after the virtual evolution are sampled, and the matrix element of the Sudakov is
computed (lines 7-12). Then, the kinematic phase-space and colour flow of the emission
are selected, and its matrix element computed (lines 17-20). The loop is repeated after
setting the new number of emissions and the new scale to evolve from (lines 22-24). The
while loop ends and the weight of the event added to the cross-section if the maximum

number of emissions, or the veto scale, are reached (lines 13-16).

On top of this, there are a series of other veto conditions that can cause the event to be
discarded. There are three of them, and the points at which these conditions are checked
are indicated with coloured horizontal lines on the algorithm. The colour and emission

cutoff vetoes were implemented into CVolver by the author of this thesis.

The red line indicates the gap veto, which was discussed previously, and causes the
event to be discarded if an emission occurs out of gap, as per the measurement function.

It is evaluated after the direction of the new emission is sampled.

The blue line indicates the emission cutoff veto, which stops CVolver from evolv-
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Algorithm 1: Evolution algorithm for a single event, dedicated mode for the

gap veto cross-section.

1

Input : npax, Pe, Qeap A, d, m and hard process: {¢y, H}
Output ¢, w

b — do, B Qu,n + 0;

{07 6} < {a0(¢,H), @O(¢a H)},
M + [o|H|o],w < Whaa({o,0},H), S < (0| 7);

4 p < Ep(p0>;
5w < w x Wg,(pe);
¢ while n < n,,,, and u,(¢) > 0 do
7 | {7 {an(d, {o}. d), an(9. {0}, d)};
8 w4 w X Wan(¢> {U7T}7d) X de(¢> {5-77_-}7d);
9 E « E.(¢,E' {1,7});
10 w<—w X Wg, (¢, E, E' {7, T});
| M [r|Vep o) x M x (5| V0 |7):
12 S+ Sx|(r|7)/S;
13 if n = ny or E = p then
14 w < w X Re(MS);
15 return {¢, w}
16 ¢ Py (P, N);
17 w—wx We,, (¢,N);
18 {p7 p} — {an+1 (¢a {7—7 77_})7 @n+l(¢a {7_7 ’?})};
19 w—w X We, (6,7, 7}) x W5, (6, {7, T});
20 | M« [p|Dg|r) x M x (7| D} |p;
21 S« Sx{plp/S;
2 E + FE,
23 O 4 p,0 < p;
24 n<n+1
25 end
Vetos:

—— Gap veto: If ©,,1(p, A) € Qgqp, terminate the event and set w = 0.

—— Colour veto: If " > m, where 1/ NCT is the accumulated colour suppression,
terminate the event and set w = 0.

——— Emission cutoff veto: If emission is not from a ring or string and
Orap(Pr41, A) = 0, terminate the event and set w = 0.
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ing events where an emission from a dipole has occurred into the region removed by the

collinear cutoff. This veto is discussed in Section 3.1.9.

The green line is the colour veto. Ateach step in the evolution the overall factor of 1/ NI
is calculated. If 7' > m, where m is a maximum limit set as an input to the evolution,
the evolution has steered too far away from leading colour and gets terminated. This is
fundamental to the convergence of our results, and is a central part of the algorithm. It
relies on being able to keep track of every factor of V. with each matrix element insertion,
and the important result that the Sudakov and real emissions operators can never bring the
evolution closer to leading colour, i.e., at each step, 7' can only stay constant or increase.
We will also keep track of every factor of V. that we need to count as we discuss every

step.

Now that we have detailed the overarching structure, we can proceed by following in
detail each line in Algorithm 1. We will state explicitly how CVolver handles every sam-

pling distribution and matrix element calculation.

3.1.1 Selecting the Hard Scatter Matrix element

The evolution starts by selecting the kinematics and colour flows of the hard scattering

process. This corresponds to lines 1-3 in Algorithm 1.

There are currently seven different hard processes implemented in CVolver. For each
of these, there is an automatic setting for the colour flows and different options for the

kinematics. The available processes are shown in Table 3.1.

The colour flows can be set in two ways. The first is to set them manually for each
run, with the -initialFlows command line argument. For example, a simulation with
the settings ~hardProcess 4 -initialFlows 10 01 will run the qg — ¢q process,
where the amplitude starts from the colour flow |10) and the conjugate amplitude from
|01), as per the colour line labels in Fig. 4.9. Setting the colour flows manually as a run
parameter is generally the most useful way to run CVolver, since each matrix element can
appear with different kinematic prefactors in different Feynman diagrams, see again Fig.
4.9. After generating a set of runs for each contributing matrix element, the cross-section
for each diagram is found by combining the runs from each set of colour flows with the
appropriate prefactors. Manually setting the hard process colour flows also introduces no

unnecessary weights due to their sampling.

The second method to select colour flows is to select the Feynman diagram, which is
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Number of distinct,
, Number of | Number of s .
Hard Process | ProcessOption . contributing matrix
colour lines | colour flows
elements
Z — qq 1 1 1 1 diag.
H — gg 2 2 2 2 diag. + 1 interf.
Z — qqqq 3 2 2 2 diag. + 1 interf.
qq — qq 4 2 2 2 diag. + 1 interf.
qq — 1l 5 1 1 1 diag.
g9 — gg 6 4 24 6 diag. + 15 interf.
q9 — qg 7 3 5 diag. + 10 interf.

Table 3.1: Hard processes currently implemented in CVolver. The ProcessOption
parameter is the name given to each of the processes within the code. The contributing
matrix elements for the 2 — 2 processes consider all gluon exchange channels. We do
not double count interferences, since the evolution is symmetric between amplitude and
conjugate amplitude. For the colour flow contributions to each channel in gg — ¢gg and
gg — gg see Figs. 4.10a and 4.10b.

implemented for each process. These sample over the contributing colour matrix elements,
with a weight according to their prefactor in the full hard process. We can consider as an
example H — gg. There are n,! = 2! possible colour flow configurations, and so the

density matrix has four contributing terms:

1

1 1
H,, = |10) (10| — N |01) (10| — A |10) (01] + 2 |01) (01], (3.3)

where the states with singlet gluons have a factor of —1/ N, associated with them as per the
Fierz identity. The two interference terms are equivalent, and we do not need to evolve both
of them separately. The initial colour flows are selected following the discrete probability

distribution:

|[o| Hy, |o]| N2
(N.+1)2

pgg<07 U) =

(3.4)

and afterwards the weight, hard scattering matrix element, and initial scalar product matrix

are assigned:

1
Whard e~

pgg(a,a)’

M,, = [o|H,, 5], Sos = (0] 5). (3.5)
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An equivalent distribution is implemented for every other process. In the case of 2 — 2
scattering, the preset diagram is always ¢-channel gluon exchange. Other diagrams are
simple to implement, but it has not been done yet. Setting the hard process colour flows
manually is generally more computationally efficient, as sometimes the same colour matrix

element contributes to different Feynman diagrams with different colour prefactors.

The evaluation of S, and M, constitute the first source of colour suppression 1/NP.
The colour veto checks p against the colour suppression limit 1 and terminates the evolu-
tion if p > m. Normally we want to include all interference contributions to each diagram,
thus m is usually chosen so that the colour veto always passes at this stage. Also note that
if the colour flows were set manually, then M,; = W}, = 1, and p can only be non-zero

if the colour flows correspond to an interference.

The kinematics depend on the choice of process. For the two jet processes, their nor-

malised four-momenta are set to

ne = (1,0,0,1) ny, = (1,sin 6,0, cos b)), (3.6)

where 6 is set with the ~dipoleangle command line argument, and the preset is for the
jets to be back-to-back.

The 2 — 2 kinematics can be set in two ways. In both cases the initial-state jets are back-

to-back. Using the -dipoleangle argument, the jets are defined with the four-momenta:

ne = (1,0,0, 1) ny = (1,0,0, —1)
3.7
n. = (1,sin 0,0, cos 0) ng = (1, —sind,0, — cos 0)

where a, b are incoming, ¢, d are outgoing, and again -dipoleangle sets . Alternatively,
the final state can be defined to not be back-to-back:

n. = (1,0,0,1) ny, = (1,0,0,—1)
(3.8)
n. = (1,sechy,, 0, tanhy,) nqg = (1, sechyg, 0, tanh y4)

where ., y4 are set through the —-jet-rapidities command line argument. These two
settings correspond to the two kinematic configurations we use for the results in Chapter
4.
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The definition of the gap region depends on how the kinematics were defined. For the
0 — 2 processes, or the 2 — 2 processes when using the ~dipoleangle argument, the
gap is defined as the region — cos 6, < cos @ < cos 6, where the angles are with respect
to the beam axis (1, 0,0, 1), and 6,, is set with the ~cone command line argument. Figures

for the 0 — 2 and 2 — 2 cases are shown in Figs. 4.1 and 4.8 respectively.

If the kinematics were set with —jet-rapidities, then the gap region is defined as
ya + R < y < y. — R, where R is set with the —cone argument. This command line
argument is important to obtain results efficiently for a given gap size, as evolution is
terminated when emitting into the gap region (the red veto between lines 16 and 17). Since
the measurement function for small gap would set the weight of a subset of events to
zero, the Analyses part of the implementation, where all observables and histograms are
defined, can generate any cross-section from a sample with a larger gap region than the
one defined with —cone. There is also a special case: setting —~cone -1 removes the gap
altogether, accepting all emissions. We have used this setup extensively to test the unitarity

of the algorithm.

These are the preset configurations and the already-implemented command line argu-
ments, however it is quite simple to code directly into HardProcessMatrix any kinemat-
ics or other particles. The colour algebra and the evolution are completely modularised,
and can handle any hard process. The options we have described were implemented into
CVolver by the author of this work to facilitate the studies in Chapters 4 and 5.

3.1.2 Setting the evolution cutoff

In CVolver, the energy of every particle in the process is normalised with respect to the
hard scale ()y. Thus, the initial scale to start evolution from () is defined as 1, with

subsequent emissions having energies between 0 and 1.

In dedicated mode a cutoff scale for the evolution must be chosen for each event. This
will be the energy cutoft below which the observable is inclusive of all emissions, p. Dif-
ferent evolution cutoffs must be chosen for each event in order to populate the observable
Y(p) for different p, down to p. which is set as an external parameter of the run. This

method corresponds to lines 4 and 5 in Algorithm 1.



70 3 CVolwer

The evolution cutoff is sampled between p. and 1 with a probability density function

| 1
In p.
P =9 _av1 (3.9)
Ppp—— pc_a“p a>1

where o > 1 is a parameter that can be increased to prioritise sampling events with low
evolution cutoffs. In general, lower values of p require higher statistics because higher
multiplicities contribute more, and these require exploring a larger number of trajectories
in colour space. The cutoff is sampled by inversion, and uses a source of random numbers
drawn from a flat distribution within the range [0, 1], denoted R. Thus, the cutoff is selected

from

1-R

Ey(p) =4 o (3.10)
p= Pc) = —a .
’ (R+ (1= R)pye )Vt o5,
This process also contributes a weight to the event:
1
1 pln p_ a=1
Wg, = —= < (3.11)
Tople) | el
—a+1

The parameter « constitutes our first lever to manipulate the sampling distributions within
CVolver. These sampling parameters are fundamental for the Monte Carlo to converge,
since the available phase-space is computationally astronomical, and it is necessary to
steer the evolution towards the regions with significant contributions. They were imple-
mented in order to improve convergence for the results presented in Chapters 4 and 5. As
we continue detailing each step, we will find these parameters appear in many sampling

distributions. We will discuss their effects, and sensible choices for them in Section 3.3.1.

With the hard scattering matrix element calculated, the initial colour flows chosen, and
the evolution cutoff determined, the next step in the algorithm is to enter the evolution

loop, which starts on line 6 of Algorithm 1.
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3.1.3 Selecting flows after the virtual evolution

The virtual evolution consists of three steps, as shown in Algorithm 1: the new colour flows
in the amplitude and conjugate amplitude after the action of the Sudakov operator must be
selected (lines 7 and 8). Then, the energy of the next emission is sampled, which specifies
the scale to evolve down to (lines 9 and 10). Finally, the matrix element contributions are

calculated and multiplied by the amplitude and conjugate amplitude (lines 11 and 12).

This section follows the explanation given in [24], although some modifications to the
algorithm have been made, and the notation has been changed to closer reflect what is

currently implemented in CVolver.

The N4LC’ approximation of the Sudakov operator in Eq. (2.31) has the advantage that
it limits the list of colour flow vectors accessible after the action of the Sudakov operator to
those at most d swaps away from the initial flow. Therefore, we only have to sample from
the colour flows that satisfy this condition, significantly reducing the number of possible
trajectories, and greatly simplifying the computational complexity. The parameter d is set

through the command line as is one of the main input parameters to Algorithm 1.

The number of swaps d’ is sampled according to an exponentially falling distribution.
Therefore, elements closer to the colour diagonal, which are not colour suppressed, are
prioritised. After this, the level-swap algorithm, detailed later, is used to select a permu-
tation which is d’ swaps away. These steps are performed independently in the amplitude
and conjugate amplitude.

Before proceeding with the sampling, all singlet flows are taken out of the colour flow
permutations in the amplitude and conjugate amplitude, reducing the number of colour
lines from n, = ns to n, and n}, which may not be equal. Singlets do not carry colour nor
anti-colour, and therefore cannot connect to any virtual gluon exchanges or real emissions.

They do not participate in the subsequent evolution, and can be referred to as sterile modes.

To determine the number of swaps d’, CVolver uses sampling by inversion from the

continuous probability distribution

InNe s (3.12)

p(-f) = L Ngs(dmaerl) c

for x between dpi, = 0 and dy,x = min(d,n/, — 1) + 1 for the amplitude, or dy,x =

min(d,n, — 1) + 1 for the conjugate amplitude. We have also introduced the second
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sampling parameter s, which is set through the command line argument -dSup. Its purpose
is to suppress or enhance the number of swaps during evolution, and in the former case
keep the evolution from straying too far off the diagonal. It is particularly important for

the 2 — 2 processes, and we discuss it further in Section 3.3.1.

The definition of d,,,x accounts for the fact that for the first steps of the evolution, it is
possible that the maximum number of possible swaps n, — 1 or n’, — 1 is smaller than the
externally set parameter d. The additional unit is necessary since we take d’ to be the floor

of the continuous variable: d’ = |2 |. Thus the probability of sampling d’ is given b
p y pling g Yy

d'+1 sd s
Nstmsn(1 — N¥)
A _ c c sd
p(d) = /d’ p(z)dr = N D N, (3.13)

with an associated weight W, = 1/p(d'), which will be included within W,,, and Wj, .

Once the number of swaps d’ has been chosen, it is necessary to find all vector flows
which are d’ swaps away from the colour state the Sudakov operator will be acting on. This

is done with the level swap algorithm, represented in Figure 3.2.

We can walk through each step on the diagram to explain the method to generate the

o).

The first layer consists of a subset of intermediate tensors which are one swap away from

accessible basis tensors. The 0" layer corresponds to the initial colour permutation,

|o), and from which all the tensors two swaps away can be accessed by a particular swap.
Each layer of swaps is achieved by first picking an index ¢, denoted by the red numbers
above each branch, as the colour index corresponding to one of the pairs of anti colour
indices we wish to swap. In general, i runs from 0 to n/ — 1, but at each given layer the
only values allowed are from d' — [ — 1 to 4, — 1, where [ denotes the layer of branching,
and 7;_; is the ¢ value of the branch in the layer above the one being considered, with
ip = n, — 1. The second anti-colour we wish to swap with, i + k, can take any value above
i, 80 k is in the range [1, n/ —i— 1]. The number of possible values of k is indicated by the
blue number in each bubble. The layering process is repeated, where each 7 corresponds

to a new branch, until layer d’ is reached.

By applying to |o) all the swaps described by following each of the branches (where
each swap of an intermediate layer is combined with the following swaps), the whole set of
permutations precisely d’ swaps away from |o) is generated. Therefore, the total number
of such permutations can be found by summing all the possible k indices on the last layer,
multiplied by the number of £ indices on each previous branch. It is necessary to determine

the multiplicity of permutations in each branch in order to sample tensors in an unbiased
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U... U... .U.. U... .U.. ..U.
m.. m.. .TLT. L] LN .T;T. ..w
I‘. ‘I LN LN

Figure 3.2: Pictorial representation of the level swap algorithm, which samples all tensors
that are exactly two swaps away from |o) = |12345). The red number above each branch
indicates the first of the two indices being swapped, called ;. The total number of indices
k, which represent the second index partaking in the swap, is written in blue. For each
layer and branch the possible swaps that occur are shown explicitly, on the first layer using
the specific anti-colour indices, and on the second layer with dots. Figure taken from [24].

manner. This is given by the expression

—1
Mya(Li)= Y (n—=1=j)x Mya(l+1,5), (3.14)

j=d'—1-1

where M,, (1, 4;) is the multiplicity on layer [ and branch ¢; for the process with n colour
lines (excluding singlets) and d’ swaps. This expression can be used recursively until
M, «#(l = d,j) = 1is reached. To illustrate how this formula works, let us use it to

calculate the total number of tensors in the final layer of Figure 3.2. This is given by

M572(l = O,io = 4) =3 X M572(1, 1) + 2 X M5’2(1,2) +1x M572<1,3>

(3.15)
—Bx4+[2x (@A+3)]+[1 x (4+3+2)] =35,

which gives the same result as counting directly the number of tensors along each branch
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in Figure 3.2.

Having found the list of accessible tensors and a way to count them, it is possible to
select the next colour flow in the evolution. This is done recursively by following a single
branch at each layer of the level swap algorithm: starting from the 0" layer, a branch i is

selected with probability

(=i — DMy (l+1,i)
P, = : 1
n,d J(Z) Mn,d’ (l, Zl) (3 6)

which gives each 7 a probability proportional to the number of tensors along that branch.
After an ¢ is selected, k is chosen from a flat distribution in the range of possible values,
from 1 to n —7 — 1. The anti-colour indices associated with colour indices ¢ and % are then
swapped. This process is repeated, going layer by layer, until there have been d’ swaps.
The final step is to reintroduce in the tensor the singlet flows that were taken out at the

beginning.

Contextualising this within Algorithm 1, this method corresponds to the functions
a, (o) and &, (), which select the colour flows 7 and 7 in the amplitude and conjugate
amplitude respectively after virtual evolution. The two functions are equal, but need to be

performed independently as the initial colour states ¢ and & are in general not the same.

Since all possible flows are considered with equal probability, the weight associated
with this sampling is given by the total number of accessible tensors. To obtain the full
weight associated with the selection of colour flows after virtual evolution, we need to

combine the weights from sampling the number of swaps and the new basis vector:

—5(dmax+1
L e\
p(r)  Ngt(1—Ng)

W, = Wy

n

X My, ao(1 = 0,i9 = nl, — 1) (3.17)

and equivalently for the conjugate amplitude.

3.1.4 Sampling the scale of the next emission

Having selected the colour flows after evolution, the next step in Algorithm 1 is to choose
what scale to evolve down to, lines 9 and 10. This selection has a deep impact on the
shower evolution, as it also dictates the energy of the next emission, and thus it controls

the multiplicity of the sampled events at each energy scale.



3.1 The Monte Carlo algorithm 75

At each step in the evolution the best choice of sampling distributions are those that
follow the physical distributions themselves. For this reason, we will take the real emission

scale distribution directly from Eq. (3.1):

asdE _ _ dQ
dR(E,n,7,7) = —— > [7| Ti|o) (7] T! |7] wij(n) 7 (3.18)
i#]

which is simply the cross-section level contraction of emission operators in Eq. (2.24),
with the phase-space element in Eq. (2.3). The minus sign in the latter was absorbed in
the contraction of polarisation vectors to form the dipole function w;;. This distribution
includes information about the energy scale, direction, and colour flows of the emission,
and we want to define a probability density function to sample each of these quantities. It

is possible to factorise them in order to obtain independent and normalised distributions:

AR(E,n,77) = 2003 6,0, ¢ (w”( >dQ>

Q. 41
i#] 17
ATy @l Tii | | [ [Tl I T o
\[T\ T, |0) (5| T} Iﬂl (o] &) .

where ﬁij is the quantity we use to normalise the radiation pattern distribution, and will

be defined in Sec. 3.1.7. The quantity ;; is given by:

1) g 1oy (a1 1
=2 1o 17Tl (o1 T 171 (3.20)

which is the colour factor associated with a cross-section contracted emission, as we de-
fined in Eq. (2.41), summed over all possible colour flows after the emission. There is
a lot to unpack in Eq. (3.19). The first parenthesised quantity consists of a normalised
distribution over the direction of the emission. Similarly, the third term in parentheses
encodes the relative importance of the possible flows after emission, 7, 7. It includes the
change in scalar product matrix, which was not present in Eq. (3.18). Sampling distribu-
tions need to be positive definite, so any change of sign arising from the choice of colour
flows is contained in the second parenthesis. These are the distributions that will be used

to sample the momentum and colour flows of the next emission.
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Discussing these ingredients would be skipping a few steps ahead, since we have yet to
evaluate the virtual evolution. The remaining part of Eq. (3.19), outside any parenthesis,
consists of a probability distribution for emitting with energy £).. However, this distribu-
tion is incomplete; it does not reflect the fact that no particle has been emitted between the
current energy scale and the next one. To take the non-emission probability into account,

we use the Sudakov veto algorithm, which samples according to the distribution:

E/
dSp(E|E") = P(F)exp (—/ P(q)dq) dE = P(E)Ap(E|E")dE, (3.21)
E
where E’ is the scale of the previous emission, or £/ = QQy = 1 for the first emission.
The first factor, P(E), constitutes the probability for emitting a soft gluon with energy F,
while Ap(E|E’) is the probability for not emitting any particles between energy scales F
and E’. We can identify P(FE) with the energy distribution found in dR(Ej,n, 7, 7T), and

we will add a few more parameters to steer the sampling:

& (WvOwy, + (1 - Owy)) 1 o
HEsg (805(n) + (1 — ©5(n))) E ;5”9”' (3.22)

where the second fraction includes the introduced sampling parameters, and the rest was
taken directly from dR(Ey, n, T, 7). The ( parameter is our third lever, it can be set through
the command line argument -beta, and its purpose is to manipulate the probability of
selecting higher or lower scales, and therefore enhancing or suppressing the rate of emis-
sions. It is accompanied by ©3(n), which is a switch that can activate the § parameter
at some multiplicity n, which is set through the command line argument -beta-switch.
These parameters are necessary in order to enhance the statistics of certain multiplicities

at certain energy scales.

On the numerator we have Wy, which is the weight associated with the selection of
colour flows after the Sudakov operator: Wy = W, x W45, . We can also absorb this fac-
tor from the virtuals into the scale selection as a way to reduce the event weights. Whether
to do this or not is set through the -virtual-weights-in-proposal command line ar-
gument, which turns Oyy,, on or off. This is our fourth lever for steering the evolution and

will be discussed, along the 3 parameter, in Section 3.3.1.

One might notice that this distribution has not been taken faithfully from Eq. (3.19);

> 4 &ij ﬁij cannot be factored out since it is followed by other i j-dependent terms, in the
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second and third parentheses. Fundamentally, the problem arises from the cross-section
contracted real emission distribution involving a sum over all dipole pairs ¢« # j, when in
our Monte Carlo algorithm we are choosing a single trajectory in colour and kinematics.

We can solve both problems at once by selecting an emitting dipole from the distribution:

£

—_—, (3.23)
Zi;&j §ij i

Pdip(iaj) =

where the denominator cancels part of the weight introduced from selecting the energy
scale, and the numerator will cancel with the normalisations of the direction and colour

flow distributions respectively.

Returning to the energy scale selection, we use sampling by inversion from dSp(FE|E’),
Eq. (3.21), using a source of equal probability random numbers R € (0, 1), to select the

energy scale of the next emission:

E=F(1-R) (BO5(n)+(1-65(n)))m/ [as (WVGWVJr(l*@WV)) 2ij &jﬁzj]. (3.24)

However, the scale sampled here cannot be immediately accepted, and the weight of the
selection depends on how the evolution proceeds. Section 3.1.5 will focus on this, and
only after validating the scale can we proceed to evaluate the Sudakov matrix elements
(lines 10-12 in Algorithm 1).

We have not described yet the calculation of §;; and (NZZ-J- for each possible pair 7j. The
former is discussed in Section 3.1.8, since it follows the same calculation used for sampling
the after-emission colour flows. The latter is dependent on the collinear cutoff prescription,
which we have alluded to a few times, but not defined properly so far. Clearly the integral
over wj; diverges as the emission becomes collinear with ¢ or j, although we know these
infrared poles will cancel against the equivalent poles in the phase-space integral of the real
emissions. We need to cut them out of each individual piece in order to obtain convergent
matrix elements within individual Monte Carlo events. The collinear cutoff prescription
is defined in Section 3.1.6. For now, it suffices to note that Qij is finite, so we can proceed

with evaluating the Sudakov matrix element.
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3.1.5 Validating the emission scale and evaluating the evolution oper-

ator element

In reality, the expression given for dSp(E|E’) in Eq. (3.21) is incomplete; it does not take
into account the maximum number of emissions n,,y, nor the cutoff scale p, below which

particles should not be emitted. A complete and normalised distribution is given by:

dSp(p, E|E') = Ap(p|E')d(E — p)dE
+ (1 = Ap(plE)) On 6 (B — p)dE (3.25)
+ P(E)Ap(E|E")(1 = 0pny, )O(E" — E)O(E — p)dE.

The details of its construction are found in [106]. For our purposes it is enough to under-
stand where each line comes from. The third line is inherited from Eq. (3.21): for energy
scales p < E < F', the probability of the next emission occurring at energy E is the prod-
uct of the non-emission probability between £’ and E, Ap(FE|E’), and the probability of
emitting with energy £, P(E'). Notice that this term applies to all emissions, except when
the maximum number of emissions has been reached, and only within the energy range

set by the step functions.

If the maximum multiplicity has not been reached, but the sampled E is below p, only
the first line of the distribution survives, which tells us to discard the selected scale and

set /' = p, with an associated probability for not emitting down to the evolution cutoff,
Ap(plE).

On the other hand, if the maximum multiplicity has been reached, i.e., n = np,, the

first and second lines partly cancel and we are forced to select £/ = p with probability 1.

We can now go back to the scale E selected naively from Eq. (3.21) and correct it

according to Eq. (3.25). There are four cases:

Case 1: > p,n # Nmax

The scale is accepted, and the sampling process is equivalent to multiplying the weight by
P(E)Ap(F|E'"). We keep the factor related to the emission operators, but we divide out
the non-emission probability Ap(F|E’) from the weight since we want to use instead the
correct Sudakov matrix elements. We also have to divide out the unphysical emission rate
parameter and the weight from virtual flows selection, (Wy O, +(1—6ws,))/(805(n)+
(1 —©3(n))). If O, = 1, then Wy gets divided out from the weight at this stage and
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it will cancel the weight applied on line 8 of Algorithm 1, thus completely absorbing the
virtual flows selection weight into the scale proposal, and reducing the overall weight of

the event.

Case2: F < p,n # Nmax
This emission is forbidden, so we set £ = p and virtually evolve the event to the cutoff
scale. This selection is made with probability Ap(p|E’), and we divide it out of the weight

in order to use instead the correct Sudakov matrix element.

The last two cases are more subtle.

Case 3: I/ < p,n = Nmax

At this stage in the evolution, the event can only be virtually evolved to the cutoff, since
no more emissions are allowed. Thus, the selected scale is not entirely relevant, and only
serves to indicate whether the event would actually terminate at this multiplicity, if £/ < p
is sampled from the distribution, or if the event is being forcefully made not to emit. As
such, we can associate the weight of these events with any constant 0 < a < 1, which is

simply done by multiplying the weight by a/Ap(p|E’).

Cased: E/ > p,n = Nypax

We require that events in this case carry a total weight 1 — a, in order to maintain normal-
isation. However, cancelling the selection weight is more complicated in this case, since
it is given by the integral over P(FE)Ap(E|E’). To do so, we modify the weight of each

event with the terms in red:

df(¢) 1-a

@ ENVP(q) dg f(E) - flp) 1 —a, (3.26)

El
| Pa@sralE )
P Ap

where f(¢) can be any continuous real-valued function defined for ¢ € [p, E']. After
running the Monte Carlo and sampling over the region p < E' < E’, the total probability

associated with this scenario integrates to 1 — a.

The choice of a and f(q) is arbitrary, and they only serve to weight differently events
which have the same behaviour: evolving down to p and terminating. In previous versions

of CVolver the physical values a = Ap(p|E’) and f(q) = Ap(q|E’) were used, however



80 3 CVolwer

these could lead to weight fluctuations depending on the sampled scale E’. The current
version uses a = 0.5, and f(¢q) = ¢. These give every possible scale selection the same
weight, which improves numerical convergence. It is important to note that the selection
weights are not required to be physical, and that the choice to terminate evolution and
evolve down to the cutoff at a certain multiplicity is not physical either. Lastly, these
weights do not usually have a large impact, as they only affect the last emission and 7,
is usually chosen to be larger than the number of necessary emissions for the cross-section

to converge at some p. We discuss these parameters in Section 3.3.1.

This validation process for the scale selection is contained within the function
E.(¢,E',{r,7}) in line 9 of Algorithm 1. The following steps indicate the evaluation
of the Sudakov matrix elements and the updated scalar product matrix (lines 11 and 12).
With both the colour flows and scale after virtual evolution chosen, it is relatively simple
to evaluate the matrix element from the 1/NV,-series expansion of the Sudakov operator in
Eq. (2.35). As discussed previously, the I', p, and > components are calculated by track-
ing the coefficients in front of the different colour product operators in Figs. 2.3 and 2.4.
An expression for > was given as an example in Eq. (2.38). Then, all possible sequences
of colour flows {0y, ..., 0y}, of length d’, where 0 = o and 0; = 7 must be found. Lastly,
the R functions must be computed. The closed form expression for an R function for any
number of flows is implemented in CVolver, however, in practice all cases where one or
more flows become degenerate must be added in manually to avoid numerical instability.
At this time, all degenerate R functions needed up to d’ = 4 are implemented. For details
on the implementation for both the closed form R functions and colour flow sequences

algorithm see [24].

The evaluation of the Sudakov matrix elements and the update to the scalar product
matrix brings us to the second colour veto. As a reminder, assuming no emissions have
occurred yet, we have arrived at this point with a total colour suppression factor 7' = p,
where T is from the accumulated colour 1/NZ, and p is the suppression arising from
the hard scatter and initial scalar product matrix elements. There are now two additional
contributions to colour suppression: explicit factors of 1/, arising from the Sudakov
operator series expansion, and further suppression from the scalar product. The former
will add s = d’ + d' powers of 1/N,, where d’ and d’ are the numbers of swaps taken in
the amplitude and conjugate amplitude respectively, since each swap is associated with a
factor of 1/N,. The latter source is the update to the scalar product (7|7)/{(c|a) = 1/N{.

An important result is that the combined action of the Sudakov and scalar product can

never bring the evolution closer to leading colour: s 4+ ¢ > 0. For example, if one swap
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changes the density element from |10) (01| to |01) (01|, then the 1/ N, from the swap cancels
the N, from the scalar product, and s + ¢ = 0.

In total, the event gets terminated if ' = p + (s + t) > m, since the event is deemed
too suppressed and not worth the computational time. Otherwise, we can continue our
journey down Algorithm 1, and we find a branching point in line 13. The first option is to
continue emitting, and this occurs when the energy scale sampled falls within Case 1. In
Cases 2, 3 and 4, the process is evolved down to the cutoff scale and the event terminates
(lines 19, 20 and 21). We will continue the path following from Case 1, and the next step

is to sample the direction of the next emission, in lines 14 and 15.

3.1.6 Collinear cutoff prescription

We must first tie some loose ends and finally define the collinear cutoff prescription. This is
the procedure by which we remove small cones around the direction of each jet, removing
collinear singularities. We can safely do this for observables that are inclusive over all
hard-collinear physics, such as the gap veto cross-section. Furthermore, if the cone size
is determined by a parameter )\, then testing if our results are independent of A for small

enough values provides another cross-check.

There are many ways to implement the collinear cutoff prescription. The current defini-
tion implemented is called the rapidity-type cutoff, and it is the one used for all the results

presented in Chapters 4 and 5. This cutoff is defined with the Heaviside theta function

@rapz(a(min(”'"i ”'”j)— A ) (3.27)

)
n-nj n-n; ni-nj

where \ determines the size of the removed regions, and n is the normalised four-
momentum of an emission from parents 7 and 5. We must remove contributions that fail
this condition in both the virtual angular integral, and the phase-space of the real emis-
sions, to ensure they cancel. The quantity w;;Oy,,, is difficult to integrate in the lab frame,

but we can define a boost to the zero momentum frame (ZMF) of the 75 pair:

Al = %(1, 0,0,1) = (A" (n; - ny)) nt,
(3.28)
Y = s nj(1,0,07 —1) = (A (n; - ”j))l:”?‘
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where the vectors in the lab frame are oriented such that

néL = (170707 1)
(3.29)
n; = (1,sin 0,0, cos 0;;).
The virtual angular integral transforms as
dQ Py -y
gy [ _mm g (un . nj>
4 n-n; n-n, n-n;
:/ ~\012 [(A n)A] An Anj @rap <7} 7} ;ﬁi : ﬁj) (330)
4 [((An)O]"  n-ny -y n-n;

dQ A - P heng R
= —AAZ—A]A@rap A—Al,nz"nj :Qija
dm n-n; n-n; n-n;
where i = (1, sin f cos ¢, sin € sin ¢, cos 0) is the normalised four-momentum of the emis-
sion in the 77-ZMF. We have shown one of the advantages of the rapidity-type cutoff: it
transforms nicely into the 7j-ZMF, and we can calculate the exact angular integral analyt-

ically:

dQ ng-n;

Qij = / Ewij@mp =In (331)

Therefore, applying the collinear cutoff to the virtuals is easily achieved by using this result
when evaluating the anomalous dimension coefficients. For the reals, the collinear cutoff

appears in the direction sampling and the matrix element evaluation.

3.1.7 Direction sampling

Equipped with a collinear cutoff, we can continue by selecting the direction of the next
emission. Fortunately, some of the hard work has already been done; the physical distri-
bution over angular phase-space, as given by the emission operators in Eq. (2.1), is found
in the first parenthesis of dR(F, n, T, 7), Eq. (3.19).

We already selected a dipole to emit from, from the distribution in Eq. (3.23). Now we
need to select the direction of the emitted particle according to the physical distribution.

However, implementing the collinear cutoff naively would result in holes around the legs
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¢ and j where no radiation is emitted. This creates problems when evaluating the real
emission matrix elements using rings and strings, because the other participating dipoles
can still radiate close to 7 and 7. For this reason we want the sampled direction to cover
the entire 47 solid angle, without any holes. We still need to avoid the radiation diverging

at the collinear poles, so we define the distribution:

(i) a0
ﬁij 4m [(Aﬁ)of

deir(ea ¢) =
(3.32)

P (ﬁ, TALl', ﬁj) dQ . (wij(ﬁ, ﬁi, ﬁj)@rap + C(l — @rap>> dQ
Qij

Qi Am 4r’
where p(n, n;,72;) is the probability density function of the emission direction in the ;-
ZMF, and c is a constant defined to take the value of w;;(7) when 7 is at the boundary of

the collinear cutoff:

1—X\/n;-n; (1+X/n; - n;)?
= Wjj 0= ) = e 3.33
c wj<c0s 1+)\/ni-nj) N (3.33)
We have also used 7; - ; = n; - n;. Finally, the quantity (NZij is the integral over

p(#, 75, 71;)d€Y /4. Tt differs from €2;;, which we use for the anomalous dimension co-

efficients, due to the flat regions inside the collinear cutoff cones.

We have defined the distribution in the back-to-back frame of 75 as that makes it possible
to sample by inversion from it. We can then transform the emission back into the lab frame.

However, the constant c picks up a boost factor in the transformation:

A

p ((An—ﬁ)mfzi,ﬁj) [(%?0}2 = p(n,n;,n;)dQ
— (wis (12, 15)Brap + € [(AR)]” (1 = Opy) ) A2

(3.34)

The radiation patterns in each frame for a slice at fixed ¢ are shown in Fig. 3.3. In the

ij-ZMF, radiation increases until it enters the collinear cutoff cones around (0,0, 1) and

(0,0, —1), where it becomes flat at constant value c. When boosted back into the lab frame,

the radiation inside the cutoff cones becomes distorted. The value chosen for the cutoff

parameter )\ in these plots is much larger than normal, so as to make these features more
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prominent.
40 |
30
10
-1.0 -0.5 0.0 0.5 1.0 -1.0 -0.5 0.0 0.5 1.0
Cos 6 Cos 6
(a) ij-ZMF: p(n, 7, ). (b) Lab frame: p(n, n;, n;).

Figure 3.3: The distributions for the direction sampling of real emissions, which can emit
into the collinear cutoff cones, shown for the slice ¢ = 0. In the lab frame, n; = (1,0, 0, 1)
and n; = (1,1,0,0). The collinear cutoff is set to A = 0.05.

The radiation distribution in the lab frame is important when we consider the evaluation
of the real emission matrix element with rings and strings, in Section 3.1.9. For now, we
simply need to sample by inversion from the distribution in the 7j-ZMF. We first define
two regions, A and I3, where O, = 1 or 0 respectively. We select in which region to emit

with probabilities

Qs In(n;-nj/N)

P(A) ==~ = o _ LA mm,

PB)==—=——=—"—+ 3.35
S P =g (339)

where Qij = Q4 + Qp. This selection cancels the @ij weight introduced when selecting
the dipole from Eq. (3.23), and introduces either {24 or {25, which will cancel when we
sample by inversion from their respective distributions. If the emission is chosen to go

into A, the polar angle is sampled from

2(\/ni - ny)"®

3.36

cosf =1—

where R is a uniform random number in the interval (0, 1). This selection recreates the
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central region in Fig. 3.3a. Alternatively, if region B is selected, the distribution

3.37

cosf =

generates the flat radiation at the edges of Fig. 3.3a. In either case, ¢ is sampled from a flat
distribution in the range [0, 27], and the sampled polar angle is flipped, cos§ — — cos @
with probability of a half.

With the direction of the next emission in the ij-ZMF selected, the next step is to

transform it back to the lab frame. We use the inverse of the boost defined in Eq. (3.28),

which is given by
2 N 0
1— 2 1 0 —y/1—"=2
A= ’ ’ (3.38)
0 0 1 0

/ 2 [ ij / 2 [ Nij

where n;; = n; - n;. In general, n; and n; will not be oriented exactly as in Eq. (3.29), and

we will need to rotate them back to their lab frame orientation:

nt = (1, sin 6, cos ¢;, sin 6; sin ¢;, cos 6;)
(3.39)
n); = (1,sin@; cos ¢;, sin 0; sin ¢, cos ),

which we can do with the rotation matrix given by

(nij — 1) Eisi + Eij stz'gi — CZ'SjEj Z s
(2 = niz) ny (2 = nij) ny
R = (nij — 1) S8;S; + Sjgj CiEij — CjEl‘Sl‘ o5
(2 = nij) ni (2 — nij) ni
(nij _ 1) ¢ + ¢ \/_612 — CJZ -2 (ni]’ — 1) CiCj — (ni]’ — 2) Nij
(2 — nij) ni (2 = ny) ny;
(3.40)

where ¢, = cos 0y, s, = sin by, ¢ = cos ¢y, and 5 = sin ¢y.
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We have now completed the direction sampling of the next emission, which is line 16
in Algorithm 1. This brings us to the second type of veto, indicated with the red line.
With the sampled emission four-momentum 7 in the correct, unrotated lab frame, we can
check if the emission was made in the gap region. If it is, the measurement function of
the gap veto cross-section, in Eq. (3.2), will set the weight of the whole event to zero, and
thus we can terminate it. This veto makes the dedicated mode of CVolver very efficient
for evaluating this cross-section, as no computational time is spent on events that do not
contribute to the observable. When running in event generator mode, the gap veto does

not apply (see Section 3.3.2).

Line 17 corresponds to including the weight from the direction sampling. We should
summarise all the contributions. First, we selected an emitting dipole according to Eq.
(3.23), and the denominator cancelled with the corresponding factor of emission scale
proposal in Eq. (3.24). The Qij in the numerator cancels with the selection of emitting
into the A or B region, in Eq. (3.35), and the cos # sampling for either distribution can-
cels Q4 or Qp respectively. The surviving weight is either w;;(n), if in the A region, or
¢[(AR)°]?, if in the B region. We will keep these weights in the event until we finish the
real emission matrix element evaluation in Section 3.1.9. Another remaining weight is the
&i; in the numerator of the dipole selection, and we will deal with it when selecting the

after-emission colour flows.

3.1.8 Selecting flows after a real emission

With the scale, parent dipole, and direction of the next emission selected, the only missing
components are final the colour flows. The probability distribution for selecting the colour

flows after an emission is taken from the third term in parentheses in Eq. (3.19):

(r| 7 |[FI Tilo) (o] T |7
(o] o) §ij ’

P(r,7) = (3.41)

which has two parts: the ratio of scalar product matrices and the colour charge matrix
elements. The colour charge matrix elements, defined in (2.20), are null if the flows {7, 7}
are not accessible from an emission off the flows {, 7}, and otherwise they include factors
of \;, \;, and 1 /N in the case of singlet emissions. The absolute value is taken to ensure
a positive definite probability distribution. The scalar product ratio weighs each pair of

flows with respect to their effect in colour space, and can only evaluate to N, or 1/V..
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Lastly, &;;, which normalises the distribution, is defined:

TOOT <T‘ 7_—> _ _
6 = {TZT}@-& ) = > el (I |o) (3] T} 7] (3.42)

and we used fz(; o%7)

from a dipole, ring, or string.

in Section 2.3 to calculate the contribution to colour of an emission

The evaluation of P(,7) is performed as follows. We consider first the emission of
two gluons, with no singlets. If 7 and j are quarks or anti-quarks, there will only be one
possible way of emitting gluons, and only one corresponding pair {77}. If i and j are a
quark or anti-quark and a gluon, there will be two possible ways of attaching the gluon
emission, and two corresponding pairs {77}, as one of the emissions can attach to either
the colour line or anti-colour line of the gluon. If ¢ and j are two gluons, there will be four
possible ways of attaching the emissions, and four pairs {77}. For each accessible pair
of after-emission colour flows {77}, there will be two more legs | and &k from which the
emissions can occur, and which lead to the same colour flows. For example, if - and j are a
quark and anti-quark, which are colour connected to anti-quark [ and quark £ respectively,
the flows after the emission will be equivalent whether the amplitude emission attaches to
¢ or [ and the conjugate amplitude emission attaches to j or k, see Fig. 2.2 and the text
around it. Therefore, for each pair {77} we have four participating legs. Note that these
legs are not necessarily distinct; in our example, if ¢ is colour connected to 7, then ¢ = [

and j = k.

Now we consider the possible singlet emissions. If a gluon is emitted from ¢ and a
singlet is emitted from j, there can be one or two possible flows 7 in the amplitude, de-
pending on whether ¢ is a quark or gluon. There is only one possible 7 in the conjugate
amplitude, because a singlet emission results in the same flow every time. However, it can
attach to any quark or anti-quark, and contribute to the same 7. Similarly, if two singlets
are emitted, there is only one accessible pair {77} of colour flows, and the singlets could

have been emitted off of any quark or anti-quark.

With the whole list of accessible flows, they are weighted and selected according to
P(7, 7). Thus, we end the sampling with a selected pair {77}, and a list of possible legs

contributing to these colour flows.

Sampling from Eq. (3.41) removes the remaining factor of &;; from the weight in-

troduced when selecting the dipole pair with Eq. (3.23). Additionally, we divide by
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((r| 7)/{o| a)) |[T| T;|o) (] T} |7]| to eliminate the residual contribution from P(r, 7).
We are left with a remaining weight of w;;(n) or ¢ [(A7)°), depending on whether the
emission was sampled into the A or B region. We conclude the colour flow sampling,
lines 18 and 19 in Algorithm 1, and continue with the final step: to evaluate the full real

emission matrix element.

3.1.9 Evaluating the emission operator element with rings and strings

We need to reconstruct the full real emission matrix element, as given in Eq. (3.18). For
this purpose we define the /K functions, which cancel the direction sampling weight we
introduced in Section 3.1.7, and evaluate the dipole, ring or string contributing to the
colour flows selected in Section 3.1.8. The weight of the event gets multiplied by K to
complete the evaluation of the real emission matrix elements, in line 20 of Algorithm 1.
We consider first the case of a gluon being emitted in both the amplitude and conjugate

amplitude. The corresponding K function is defined

no singlets
” 2 wij + wj + wkj -+ Wy

O 0l AkJ kl
1 wij @rap wll@rap Wk @rap + wkl@rap
== , (3.43)

which requires some explanation. In the numerator we have a sum over four dipole func-
tions, which correspond to the four dipoles that can emit into the same colour flows, as
was shown in Fig. 2.5. The legs are those we stored during the selection of colour flows
in the previous section. The collinear poles are subtracted according to the rapidity cutoff,
and @ﬁgp is simply Oy, defined in Eq. (3.27), with respect to legs ¢ and j. This numerator
encodes the physical kinematic contribution to the real emission, where we have combined
all kinematic dipoles that contribute to this trajectory in colour space, thus aiding in the
statistical cancellations across events. Note that, if the emission is not from a ring, then
some of the legs will be degenerate, and w;; = 0, so the above expression works for emis-
sions from dipoles and strings too. The signs of each dipole are in accordance with the
signs within the colour charge matrix elements, [7| T; |0} and (7| T} 7], and the factor of

a half arises from \; = \; = 1/1/2. In the denominator, we have

By = wy©9 4 ¢ [(AR)°]* (1 — ©i), (3.44)

rap rap
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which is the weight we introduced when performing the direction sampling over the whole
solid angle in Section 3.1.7. Since we are now working in the lab frame, the boost factor
that appears in front of c needs to be evaluated, which is done through the zeroth compo-

nent of the relation ﬁ = A"'R~'n, where A~! and R~! are the inverse of the matrices
defined in Eqgs. (3.38) and (3.40).! The purpose of the denominator is to cancel the direc-

tion sampling weights across all the dipoles that contribute to this trajectory in colour.

In the case of a dipole emission, where i = j and £ = [ (see again Fig. 2.5), and the
direction was sampled into the A region, where O,,, = 1, then K Z.";’k?“glets = 1. Therefore,
we do not introduce any unnecessary weights, and the kinematic factor is included from
the importance sampling of the direction. If the emission is from a ring or string, then
K fjf’kii“glets may introduce some weight, although the collinear enhancements will cancel
explicitly, instead of relying on the statistical cancellation across different Monte Carlo
events. Overall, the inclusion of rings and strings proves a significant improvement to
the convergence of the Monte Carlo, as shown in [22]. However, we have introduced an
inefficiency. If we consider again an emission from a dipole, but this time into the B
region, where ©,,, = 0, then K Zf)k?nglets = 0 and the whole event has zero weight. The

purpose of the emission cutoff veto, represented by a blue line after line 20 in Algorithm

1, is to veto events where this happens and avoid wasting computational resources.

The root cause of this problem is sampling the direction from a dipole instead of from
a ring or string directly. This would also reduce the weights introduced in K ;.Okii“glets. At
present, implementing importance sampling from a ring or string remains an open avenue

for improvement of the CVolver algorithm.

We continue by considering the cases with singlet emissions. If a gluon is emitted in
the amplitude and a singlet is emitted in the conjugate amplitude, the weighting factor

becomes

Kone singlet _ 1 Zqu (_wij@gp + Wi @fa]p) + Zjeq (wijggp - wk’j@fa{))
ik 2N, > ieq @ij + Thg) + 3 jeq @ij + @iy)

, (345

where 7 is a leg with colour index ¢;, which is colour connected to leg &£ with anti-colour

index ¢. This is equivalent to K infk?“glets, but the indices k and [ run over all quarks and

. . . . . it =1
anti-quarks respectively. The action of the singlet emission operator s in (5| T} |7], is

"We cannot calculate A7 directly because the code for the evaluation of the matrix elements is inde-
pendent of the direction sampling, and therefore the former does not have access to the coordinates of the
emission in the ZMF of the parent legs. Modularisation of the code is essential to keep it organised, read-
able, and scalable.
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accompanied by an explicit factor of 1/N.. If the singlet is emitted in the amplitude and

Kone singlet
gl

Finally, if a singlet is emitted on both sides, the weighting factor is given by

the gluon in the conjugate amplitude, the weight has the equivalent structure.

17 ki
o singlets __ 1 2 Zieq (Zqu wij@féP o Zj@? Wij @rajp>
- 2N? ~ ~
¢ 2 ZiEq (ngq Wi + Zjeq CL)Z]>

, (3.46)

where the factors of two in the fraction make explicit that the sums also run for ¢ <> j,
and there is an explicit suppression of 1/NZ due to two insertions of the singlet emission

operator s.

We have completed our evaluation of the real emission matrix elements, which corre-
sponds to line 20 of Algorithm 1. This step is followed by updating the scalar product
matrix, and checking against the colour veto for the third time. We have two sources of
colour suppression: first, an explicit factor 1/NZ from each singlet emission, which we
included in our K weights. Therefore, ¢ = 0,1 or 2 for zero, one, or two singlets re-
spectively. The second source is from the update to the scalar product matrix, and we
count by how many more swaps the amplitude and conjugate amplitude differ after the
emission, which we name r. We count the change in the number of swaps, as we do not
want to double count any suppression. The difference in the minimum number of swaps
contributes 1/N7. We already categorised the different types of emissions according to

the scalar product matrix in Section 2.3, but we review them here:
* Emission from a dipole: I" contribution. No more swaps induced, ¢+r = 0+ 0 = 0.

* Emission from a string: > contribution. No more swaps induced, ¢+ =0+ 0 = 0.

* Emission from aring: > contribution. Two more swaps induced, ¢ +r =0+ 2 = 2.

Alternatively, no more swaps induced, ¢ +r =0+ 0 = 0.

* One singlet and one gluon emission: p contribution. One swap induced, ¢ + r =
1+1=2.

* Two singlets emitted: p contribution. No more swaps induced, g +r =2+ 0 = 2.

where we notice that ¢+ = 0 or 2, and crucially, the sum cannot be negative. Therefore,
a real emission cannot make the evolution less colour suppressed. Moreover, although
some ring emissions and all string emissions maintain the same level of suppression in the

evolution, they are still a 32 contribution, and are therefore subleading colour effects.
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At this stage we have accrued a colour suppression 1/ NI, where T = p + (s + t) +
(¢ + r). As before, if T' > m we terminate the event, where m was an input parameter
that we choose as the maximum colour suppression we intend to calculate to. This veto is
fundamental in keeping the evolution sufficiently close to the colour diagonal, since with a
growing number of emissions there are increased chances of sampling subleading colour.
Furthermore, once a level of suppression is attained it cannot be undone by any mechanism
in the evolution. Without the colour veto, the results shown in Chapters 4 and 5 would not

have been possible to generate.

The final part of Algorithm 1, lines 22, 23 and 24 correspond to setting up the variables
necessary to evaluate the next virtual evolution: set the new scale to evolve from, set the
new colour flows to evolve from as the colour flows after the emission, and increasing the
number of emissions by one. The loop of emissions then continues until the evolution
reaches the evolution cutoff p, the maximum number of emissions is reached, or one of

the vetos triggers.

As the number of emissions increases, the complexity of the steps described in this
chapter can grow very large. In particular, the number of colour flows grows factorially
with the number of emissions, which can quickly become computationally intractable.
The algorithm in CVolver is only feasible because it tracks systematically every possible
step taken in colour space, and prioritises the trajectories that contribute most to the cross-
section. To illustrate this point, and to provide a practical example of everything we have
discussed thus far, in the next section we will follow the whole algorithm, step by step, for

a single CVolver event with four emissions.
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3.2 An example: one event, step by step

The previous section covered every step of Algorithm 1 in detail, and the implemen-
tation into the CVolver Monte Carlo. Now we consider an actual event, print out every
weight and selection made, and analyse its evolution.> We evolve a ¢ — ¢g hard process,
and we have set the maximum colour suppression to m = 5. The output is shown in Table
3.1, and the structure follows the order of the previous section and of Algorithm 1: The
first three rows correspond to setting the hard process and the evolution cutoff. It is then
followed by the emissions loop, which contains six steps: the selection of virtual evolution
colour flows, selection of the next emission scale, evaluation of the virtual matrix element,
sampling the emission direction, selection of the flows after real emission, and evaluation
of the real emission matrix element. For the first run through the loop, which corresponds
to the 1% emission, the subsections that describe each step are given. For the subsequent
emissions, the emission number is given instead. We will overview the evolution, and

point out interesting features.

The first two steps are selecting the hard process kinematics and the colour flows. The
kinematics are set according to Eq. (3.7) with # = 7/6, and the colour flows are set to
|10) (01]. This is one of the kinematic configurations that we consider in Chapters 4 and 5,
and in fact this event contributes to Fig. 4.11. We are evolving an interference contribution,
which is very badly described without including all subleading colour effects, as discussed
next chapter. This example will provide some insight into this result. For now, we note that
the evolution starts at colour suppression 1/ NI, where T' = p = 1, and we have picked up
this suppression from the scalar product of the interference, (10/01) = IV, relative to the

highest order in colour contributing to this process, which is (01]01) = (10]10) = N2.

The veto scale, or evolution cutoft of the event is chosen to be p = (.15, and a cor-
responding weight applied. The virtual evolution proceeds uneventfully; no swaps are
selected on either the amplitude nor conjugate amplitude, and the scale of the first emis-
sion is chosen to be F; = 0.829, which is above the veto scale and below the maximum
number of emissions, so the emission is allowed. The direction is sampled into region
A from parents a and b, and we note that no weight needs to be applied as the sampling

distributions follow the physical real emission distribution. Any weight from other dipole

2This event can be recreated with the version 1139 : 93 f55d4193ca of CVolver, and running
the command dijetVetoHistograms -d 2 -n 20000000 -r 8 -s 1 -rc 0.1 -nbins 40 -
lcprime 1 -hardprocess 4 -initialFlows 10 01 -emit2max O -1 0.01 -inclusive O -
no-singlets 0 -beta 4 -cutoff rapidity -leadingNflows O -beta-switch 1 -dSup 1
-cone 4 -dipoleangle 6 -N 3 -colour-limit 5 -virtual-weights-in-proposal O -nMin
0 -colourOrderMin O -coulomb O. It is the first event for this seed to fail the colour veto during the
4*h emission, and it can be found with a corresponding assert () line in the code.
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contributions will be included in the K factors defined in Section 3.1.9. Indeed, the flows
after real emission are selected to be from two singlet emissions, which will involve mul-
tiple kinematic dipole contributions. First we check that the weight applied corresponds

with dividing out the numerator of the real emission colour flows distribution in Eq. 3.1.8:

(7] 7) _a| (102]012) T
<O'| 5’> [T| Ta |J> <0| Tb |T] - <10| 01> [1O2| Ta |10> <01| Tb ’012}
T (3.47)
— NC)\a/\bm = 6

C

which agrees with the weight applied w — w x 6. Since singlets can be emitted from
any quark or anti-quark, there are six distinct dipoles participating in K™°singlets: g qc,
ad, be, bd, cd. It is instructive to consider some of them: the coordinates of the emission
were sampled to be close in angle to n;,, which explains how w,, ~ 70,wy. ~ 68 are
enhanced relative to w,. ~ 0.03. Furthermore, w,; and wy,. appear with opposite signs in
the numerator of K™ singlets  dque to ab being a colour and anti-colour line, and bc being
two colour lines. These enhancements cancel and the overall factor is small: /™0 singlets —
0.020. If we were not including all contributing dipoles then only w,;, ~ 70 would survive
in the event, since ab was the selected dipole originally, and it would require statistical
cancellation with the other dipoles across different events. It is evident that the inclusion
of all contributing dipoles in the K factors is essential to the convergence of the Monte
Carlo.

We should also pay attention to the accumulated colour suppression at this point. The
two singlet emissions increase 1" by ¢ = 2, but the scalar product remains at the same
suppression. This corresponds to the last case listed at the end of Section 3.1.9. Therefore,

T < m = 5 and the evolution continues.

The next interesting feature occurs at the selection of colour flows after the second
emission. The selected flows, |1320)(3120|, correspond to an emission in the amplitude
from colour line 1 or anti-colour line 0, and in the conjugate amplitude from colour line
0 or anti-colour line 0, which is a string emission as shown in Fig 2.5. Moreover, every
possible non-singlet emission from these set of flows is a string contribution which are
subleading colour X terms. Therefore, if no subleading colour emissions were allowed,
no emissions could occur whatsoever when evolving an interference contribution. This
explains why strict leading colour evolution completely fails at describing the evolution of
interferences in Chapter 4. Again, the values of the contributing dipoles are noteworthy:

Wap =~ 81, weq >~ 91, and wy ~ 8. The first two contribute with opposing signs, and
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the resulting weight is kept under control, K™ sinelSasct ~ (0.457. Also, string emissions,
although subleading colour effects, do not contribute to any further colour suppression,

and T = 3 remains.

The following virtual evolution, starting the loop for the third emission, has dramatic
effects; two swaps are selected in the amplitude, and one in the conjugate amplitude. The
low probability of this occurring is associated with a large weight w — w x 338. But the
remarkable effect is the swaps reduce the scalar product matrix suppression: one of the
amplitude swaps brings the flows to the colour diagonal (where the event has never been
so far as it started from an interference) and the remaining swaps on each side match each
other. Therefore, the evolution is now at the colour diagonal, |0123)(0123|. However,
it has accumulated some colour suppression on its way: from this step, the event gains
s+t = 3 — 1, corresponding to an explicit factor of 1/N3 from the Sudakov expansion,
and —1 due to gaining a factor of N, in the scalar product. This brings the total colour
suppression to 7' = 5, which as the limit of what is allowed. Also, the Sudakov matrix
element decreases the overall weight significantly: w — w x (—1.33 x 107%), which
justifies and counteracts the number of swaps distribution allocating a small probability to

this contribution.

The event then proceeds, and survives the third emission: it is a dipole emission, and
therefore a leading colour contribution. The following virtual evolution selects no further
swaps. However, the event then emits another singlet in the fourth emission loop, which
brings 7" above m, and the event is terminated. At the end, it had accumulated a factor of
1/N7, which made it too suppressed to be worth the computational resources, and it was

terminated and discarded.

We have showcased many fundamental and interesting features of the amplitude level
evolution in CVolver. Not only can interferences be evolved, but their full colour be-
haviour cannot be captured whatsoever without subleading colour effects. We have also
shown how Algorithm 1 minimises large weights by importance sampling when possible,
and how ring and string structures are not only essential to breaking down the evolution
in colour, but they provide systematic cancellation of collinear enhancements. Most im-
portantly, the algorithm described here is able to track every order in 1/ N, at each step
in the soft evolution. These are the ingredients that make the results in Chapters 4 and 5

possible.

Designing a Monte Carlo that explores efficiently all possible colour trajectories is a
challenging task. The colour veto is necessary to avoid the evolution drifting too sublead-

ing in colour, especially for higher multiplicities. Furthermore, throughout the algorithm
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we described many possible settings and parameters to steer the evolution. Next section
we summarise most of the options currently implemented in CVolver, including those we

use to improve the convergence of our results.

Colour
Step within Sampled quantities suppression
) ] Colour flows
evolution and weights T =p+(s+t)+
(g+r)
(2, Y, 2) =
(0.529, —0.700, —0.479)
Hard process:
. . ne(z,y,2) = T=0=0+
kinematics N/A
) (0.879, —0.353, —0.321) (04-0)4(0+40)
Section 3.1.1
Ny = —Ng, Ng = —Ne¢
w=1
Hard process:
Flows set manually T'=1=1+
colour flows ) |10)(01| (04+0)1(040)
— w X
Section 3.1.1 o
Evolution cutoff
) p = 0.150 T=1=1+
selection 0.345 |10) (01| (04+0)+(0+0)
— w x 0.
Section 3.1.2 e
Evolution matrix: -
d=d=0 T=1=1+
next flows 778 |10)(01| (04+0)1(040)
— w X 1.
Section 3.1.3 o
Next emission E; =0.829
scale Dipole selected: a, b T=1=1+
. [10)(01]
Sections 3.1.4 Case 1 (04+0)+(0+40)
and 3.1.5 w— w X 2.485
Evolution matrix:

. T'=1=1+
evaluation w — w x 0.857 |10)(01| (04+0)1(040)
Section 3.1.5
Emission matrix: | Region A
direction sam- ni(x,y,z) = 110)/01] T'=1=1+
pling (—0.604,0.726,0.329) (040)4(0+40)
Section 3.1.7 w—wx1
Emission matrix:

Two singlets T'=3=1+
next flows 1102) (012
_ w—w X6 (040)+(240)
Section 3.1.8
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Continued from previous page

sion)

w— w X 7.66

Colour
Step within Sampled quantities suppression
Colour flows
evolution and weights T =p+(s+t)+
(g+r)
Emission matrix: Si ficipating dinol To3-14
ix participating dipoles =3 =
evaluation P patine <ip 1102) (012
' w — w x 0.020 (040)+(2+0)
Section 3.1.9
Evolution matrix: -
q d=d = I'=3=1+
next flows (2" 1102) (012
o w— w x 1.778 (040)+(2+0)
emission)
o Ey, =0.735
Next emission
4 Dipole selected: a, b T'=3=1+
scale (2" emis- 1102) (012
. Case 1 (040)+(2+0)
sion)
w— w X 4.635
Evolution matrix:
evaluation (2" w — w x 0.905 1102) (012
- (040)+(2+0)
emission)
Emission matrix: | Region A
direction sam- na(T,y,2) = T=3=1+
R 2(2,9,2) 1102)(012]
pling (2" emis- | (0.547, —0.592, —0.592) (0+0)+(2+0)
sion) w—w X1
Emission matrix: ) o
g String emission T=3=1+
next flows (2" |1320)(3120|
o w — w % 0.666 (040)+(2+0)
emission)
Emission matrix: | Three participating
T=3=1+
evaluation (2" dipoles |1320) (3120
o (04-0)+(2+0)
emission) w — w x 0.457
Evolution matrix: -
d'=2d= T=5=1+
next flows (3™ |0123)(0123]
o w — w X 338 (3—1)+(2+40)
emission)
o E3 =0.299
Next emission )
4. Dipole selected: a, b T=5=1+
scale (3™ emis- |0123)(0123|
Case 1 (3—1)+(2+0)
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Continued from previous page
Colour
Step within Sampled quantities suppression
Colour flows
evolution and weights T =p+(s+t)+
(g+r)
Evolution matrix:
T=5=1+
evaluation (3 w— w x (—1.33 x 1078) |0123) (0123
" (3—1)+(2+0)
emission)
Emission matrix: | Region A
direction sam- nz(x,y, z) = T=5=1+
oon e (.9, 2) 10123) (0123
pling (3" emis- (—0.487,0.859,0.154) (3—1)+(2+40)
sion) w—w X1
Emission matrix:
Dipole emission T'=5=1+
next flows (3™ 141230) (41230
o w — w X 0.666 (3—1)+(240)
emission)
Emission matrix: o dcipatine diol T 514
ne participating dipole =5 =
evaluation (3™ PATHCIPTHRS P 141230) (41230
o w— w x 0.5 (3—1)+(2+0)
emission)
Evolution matrix: _
d=d=0 T=5=1+
next flows (4™ 141230) (41230
o w— w x 2.09 (3—1)+(240)
emission)
o E,=0.229
Next emission )
W Dipole selected: a, 1 T'=5=1+
scale (4™ emis- |41230) (41230
. Case 1 (3—1)+(2+40)
sion)
w— w X 5.27
Evolution matrix:
] . T=5=1+
evaluation (4' w — w x 0.703 |41230) (41230
. (3—1)+(2+0)
emission)
Emission matrix: | Region B
direction sam- n4(T,y,z) = T=5=1+
OO S @y, 2) 141230) (41230
pling (4™ emis- (—0.890, 0.238, 0.388) (3—1)+(240)
sion) w—w X1
Emission matrix: )
N One singlet T'=7=1+
next flows (4" 1412305) (412350
w—w X6 (3—1)+(3+1)

emission)
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Continued from previous page

Colour
Step within Sampled quantities suppression
Colour flows
evolution and weights T =p+(s+t)+
(g+7)
Emission matrix: - ticipating dipol T4
ive participating dipoles =7=
evaluation (4" PATHCIPEHNS P 1412305) (412350
. w — w x —0.005 (3—1)+(3+1)
emission)
Colour veto failed
Event termina- T=7T=1+
] T>m |412305) (412350
tion (3—1)+(3+1)
w—w X0

Table 3.2: An example of all the steps taken by CVolver for one event. The hard process
is qq¢ — qq, the collinear cutoff A = 0.01, the Sudakov operator expansion is taken at order
d = 2, the maximum number of emissions is nn,,x = 8, and the colour suppression limit
is m = 5. The variable w is the weight of the event. The hard process partons are called
a, b for the incoming, and ¢, d for the outgoing. The subsequent emissions are numbered.
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3.3 Settings and algorithm modifications

Throughout this chapter we have described some of the input parameters to the evolu-
tion in CVolver in the order they appear in Algorithm 1. We list here most of the options
currently implemented. The parameters listed here are enough to recreate all the results

presented in Chapter 4 and 5. These parameters relate to the basic settings of the evolution:
e (-r): Maximum number of emissions allowed 72,
* (-1): Collinear cutoff parameter A, used in Eq. (3.27).
* (-rc): Lowest veto scale to evolve down to p., used in Eq. (3.9).
e (-N): Number of colours V..

* (-s): Sets the seed for the random number generator in the Monte Carlo.

* (-n): Sets the number of events requested. The Monte Carlo will run until this num-
ber of events is reached. It does not count events which get vetoed, only events with

non-zero weight.

The last three were not mentioned in Section 3.1. The parameter -N sets the value of
N, for the whole calculation, making it possible to suppress or enhance the contribution
of subleading colour. The full colour gap veto cross-section for different values of N, is
presented in Fig. 4.2. The following parameters control how subleading colour is handled

in the evolution:
* (-d): Maximum number of virtual swaps allowed per insertion of the Sudakov oper-
ator, used in Eq. (3.13).

* (-lcprime): Enable the LC'approximation, which exponentiates the p contributions

in the expansion of the Sudakov operator, given by Eq. (2.35).

* (-leadingNflows): Enforce leading colour evolution in the reals. Therefore, no

ring, string, or singlet emissions are allowed.

* (-colour-limit): Sets m, where 1/N" is the maximum amount of colour suppres-

sion allowed before an event is vetoed.

e (-coulomb): Includes ¢7 factors in the anomalous dimension.
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To achieve strict leading colour evolution, the ~1eadingNflows option can be used in
combination with setting the maximum number of virtual swaps d to zero, and disabling
the LC’ approximation with -1cprime false. The different approximations to sublead-
ing colour shown in Chapter 4 are achieved with different combinations of the above set-
tings, with the exception of L3 (LC’, dipole and singlet emissions allowed, but no ring or
strings emissions). For this type of evolution it is necessary to make a simple modification
to the code that implements the real emission colour flows distribution in Eq. (3.41), so

only singlets or dipole emissions can be selected.
These parameters control the hard process and the gap region:
* (-cone): Defines the gap region. In dedicated mode, if an event is emitted into the
gap the event is vetoed. Discussed in Section 3.1.1.
* (-hardprocess): Choose hard scattering process, options are shown in Table 3.1.
* (-initialFlows): Choose hard process colour flows, discussed in Section 3.1.1.
* (-dipoleangle) and (-jet-rapidities): Choose hard process kinematics, dis-

cussed in Section 3.1.1.

It is very simple to implement in the code more hard scattering processes, kinematics or

gap definitions.

3.3.1 The sampling distributions

We continue with the parameters that shift the sampling distributions:
* (-alpha): Sets «, which enhances the sampling of events with small veto scales.
Used in Eq. (3.9).
* (-dSup): Sets s, which suppresses the sampling of virtual swaps. Used in Eq. (3.13).

* (-beta): Sets (3, which shifts the sampling of emission scales to lower values, and

therefore reduces the average number of emissions per event. Used in Eq. (3.24).

* (-beta-switch): Sets at which multiplicity ©3(n) switches to 1, activating the /3

parameter and reducing the rate of emissions. Used in Eq. (3.24).
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* (-virtual-weights-in-proposal): Sets Oy, = 0 or 1, which pushes selection
weight from the colour flows after virtual evolution into the emission scale sampling.
Used in Eq. (3.24).

These parameters do not affect the physical predictions of the evolution, as shifts in the
sampling distributions are exactly compensated by corresponding weights. Nevertheless,
modifying them impacts statistical convergence. In the most pathological cases, the sam-
pling could be avoiding an entire region of phase-space, neglecting its contribution. For
example, if the § parameter is too small, the average event will have very high multiplic-
ity. This can result in close to zero events with 0 emissions below some energy scale,

completely missing this contribution to the cross-section.

In Table 3.3 we provide the choice for sampling parameters that have been used for the
results presented in the following chapters. In the cases of Z — gq and H — gg, these
choices were tested in depth and they were found to produce the smoothest results. Increas-
ing the ( parameter tends to improve the convergence of low-multiplicity results at the cost
of the high multiplicities. This is expected, as not only do they reduce the proportion of
events sampled with high multiplicity, they also accrue a weight proportional to 3", where
n is the number of emissions. The beta switch parameter ©5(n) was implemented to solve
this issue: by activating the § parameter at a specific multiplicity, it lets events naturally
get to the desired multiplicity without accruing unnecessary weight. Therefore, these two
parameters can be used in combination to enhance the statistics for different multiplicity
events. The total cross-section can then be reconstructed by combining runs with different

sampling parameters. This proved a very useful method for generating smooth results.

Hard process s | B | Opn) | Ow,
Z —qq
1 504] o0 1
(0 - 4) emissions
Z —qq
1 504 4 1
(5 - 10) emissions
H — gg 514 0 1
qq — qq 1|3 0 0
q9 — qg 113 0 0
g9 — gg 1|4 0 0

Table 3.3: Sampling parameters used for the full colour results shown in Chapters 4 and
5. In all cases, o was chosen to be 1.

For the 2 — 2 processes, the sampling parameters were studied in less depth, so it is
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unlikely these are the optimal choices. However, they were good enough to produce the
results in the following chapters. By tweaking these, and in particular ©(n), it would be

possible to generate smoother results for higher multiplicities.

We note as well that, on top of accessing different phase-space regions and reducing
large weights, another factor to consider is the impact on the run time of the Monte Carlo.
For example, decreasing [ results in more events with higher multiplicities, which take
more time to compute. For this reason « is set to 1 for all our results, as more events with
low evolution cutoffs significantly increases the average time taken per event, and we did

not explore low enough values of p to require shifting the evolution cutoff distribution.

Finally, the best choices for sampling parameters also depend on the amount of sub-
leading colour. All the discussion above pertains to full colour evolution, which is the
computationally challenging task. For leading colour evolution 5 = 1 is the best choice,
and the other parameters will have no effect. Similarly, smooth leading colour results can
be very easily generated from CVolver with ~ 107 events, while full colour typically

requires ~ 10! events.

3.3.2 Event generator mode

So far in this chapter we have considered the “dedicated” mode of CVolver, which is
optimised for the gaps-between-jets observable. However, CVolver is more than a re-
summation tool for a specific calculation, and it can be run as a partonic event generator.
The “event-generator” mode of CVolver is used extensively for the results presented in

Chapter 5, and it requires a few changes to Algorithm 1.

The goal is to dress some hard-process with soft QCD radiation and obtain a weight
w, and a set of kinematics for the emitted gluons {k},. We also store the colour suppres-
sion 1/NZ, in order to analyse the subleading colour effects of any observable. Then, a
measurement function u({k},) can be applied. The changes to the algorithm required are
relatively simple: first, the IR cutoff of the evolution y is selected as an input parameter,
and all events must evolve down to p since the inclusivity of the observable below some
scale is a priori unknown. This means the steps in Section 3.1.2 are skipped. The evo-
lution then proceeds as normal, except that the event is not terminated if some kinematic
condition is met. Overall, in Algorithm 1 the lines 4, 5, and the gap veto between lines 16

and 17 are skipped.

We note that in the current implementation recoil effects are not accounted for, and
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therefore conservation of four-momentum is neglected. Presently, we aim to evaluate ob-
servables at LL accuracy, where strong ordering of the evolution variable can be assumed
and each emission can be treated independently. To improve the accuracy to NLL and

beyond, a recoil prescription will be needed.

It is possible to recreate the gaps-between-jets observable, as a cross-check between the
two modes of CVolver. This observable vetoes events with emissions within some fixed
angular region above an inclusivity scale p, so the lowest possible value of this inclusivity
scale must be found, pu,;n, such that the event would still contribute. The particles within

the gap region are selected, and then pp;, is given by

Pmin = Max{E;, 7 € Qgp}. (3.48)

Therefore, each event contributes to X(p) for any p > pun; the distribution is filled cumu-

latively. Results showing agreement between the two modes are shown in Chapters 4 and
5.

The parameters that control the event generator mode of CVolver are listed here:

* (-ircutoff): Select infrared cutoff 1 to evolve down to in event generator mode.

e (-inclusive): Disable final virtual evolution when number of emissions reaches

nmax‘
* (-nMin): Sets the minimum number of emissions an event must have to store its data.

* (-colourOrderMin): Sets the minimum colour suppression an event must have to

store its data.

The -inclusive setting is required to account for further emissions that could occur past
nmax- 1N event-generator mode an event with infinite emissions will still contribute to
on—0(p) of the gaps-between-jets observable if the first particle was emitted in-gap. For
that purpose, removing the final virtual evolution for the final emission makes that cross-
section inclusive over any number of extra emissions, and provides a correction over simply
evolving down to ;« when n,,,,, is reached. Algorithmically, inclusive mode always follows
Cases 1 and 2 in Section 3.1.5, even for n = np,. For the final emission it also skips the
virtual evolution, lines 7, 8, 11, 12 in Algorithm 1, and then terminates the event. However,

for the results presented in Chapter 5 the maximum number of emissions is always chosen
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to be larger than what is numerically needed, so inclusive mode does not make a significant

impact.

The last two options listed, -nMin and -colourOrderMin, relate to the data storage
component of CVolver. Since the soft evolution in event-generator mode is observable
independent, it is computationally sensible to store the generated data, which can then be
reanalysed without significant computing power needed. CVolver stores its events using
the HDF5 data format [107, 108], and for each event it stores the hard process information,
the weight, the colour suppression, and the kinematics of the emissions. The data stor-
age module of CVolver was implemented by the author of this thesis, and it links to the
myStatistics package to produce histograms [109]. Due to the large number of events
needed for statistical convergence, the amount of disk space required can be very large. It
strongly depends on the average number of emissions per event, but the data for the evo-
lution of a single hard process kinematic configuration, from a specific set of initial flows,
occupies ~ 700GB. The total amount of data generated for the studies presented in Chap-
ter 5 occupies ~ 25TB. The options -nMin and -colourOrderMin are used to store only
the most statistically significant events. For example, 0 emissions at leading colour can be

easily produced with a few thousand events, and storing any more would be unnecessary.
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In the previous chapter we described how the amplitude level evolution defined in Chap-
ter 2, based on work done in [20], can be implemented as a Monte Carlo parton shower,
CVolver. We discussed how CVolver is able to track all factors of 1/ N, that appear in
the evolution, and how the sampling is steered in order to maximise computing efficiency.
Some initial results from CVolver have been published in previous publications [23, 24],
but the results presented here correspond to the most up-to-date and efficient implemen-
tation. We use the dedicated mode, defined in Section 3.1, to perform a systematic and
comprehensive analysis of subleading colour corrections in the gaps-between-jets observ-
able. This chapter is based on a publication [103] which was produced in collaboration
with J. R. Forshaw and S. Plitzer.

The remainder of this chapter is organised as follows. Section 4.1 presents results on
primary dijet production from a colour singlet initial state, as might occur in Z — ¢q or
H — gg. We focus our attention on the jet veto cross-section for fixed kinematics of the
jets, i.e. we veto the production of additional gluons in some fixed angular region if their
energy exceeds some threshold. Our goal is to provide a systematic study of sub-leading
colour effects in a clear and controlled manner. In Section 4.2 we move on to study dijet
production in hadron-hadron collisions, again for fixed parton kinematics. Finally, we look
at the colour singlet production of ¢gqgq, as might occur following the hadronic decay of

two Z bosons.

4.1 Colour singlet production of dijets

We start with the production of a pair of jets from a colour singlet initial state, such
as might be produced in Z — gq or H — gg. We fix the hard process kinematics such
that the two jets are produced back-to-back, each with energy (). Additional radiation is
vetoed if it falls in the interjet region, which is defined by cones centred on each jet with
an opening angle of 7/2, and has energy £ > (), as illustrated in Fig. 4.1. The relevant
large logarithm is In(1/p) where p = Qo/Q. For this process the hard process density

matrix is simply H = N, corresponding to a single colour flow.

In Fig. 4.2 we show how CVolver is able to compute the terms in the 1/ N, expansion.
The figure shows the cross-section (normalized to unity at p = 1) for different values of N,
(these are the different line types). The different colours show the contributions from each
colour order. We could present results strictly in the expansion of 1//V, but since it is very
easy to sum the colour diagonal virtual corrections to all orders (our LC" approximation)

we choose to do so. Specifically, the black curves are computed at full colour, the red
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E<Q0

e

E < Qo

Figure 4.1: Two partons (here a quark and anti-quark) are produced back-to-back and
radiation is vetoed in between the corresponding jets.

curves are the LC’ contribution, the blue curves are the 1/ N2 suppressed contributions, the
orange are the 1/ N suppressed contributions, etc. The solid green curve indicates that the
1/NS$ contribution is suppressed by 3 orders of magnitude, which is as one would naively
anticipate. The figure also illustrates the effect of changing the numerical value of /V; and,
as expected, we see an increase in the size of the N, suppressed terms as N, is reduced. In
what follows we shall have much more to say about the nature of the sub-leading colour
contributions. For now we simply note that the subleading colour contributions to the LC’

approximation are substantial (= 20% for N, = 3 at p = 1072).

Fig. 4.3 shows the veto cross-section broken down by multiplicity and colour accuracy.
The line-types used in this plot will be used consistently throughout the remainder of the
chapter for processes involving any number of quarks or anti-quarks. They are defined as

follows.

» Short-dashed: the strictly leading colour result. We will refer to this as our L1 result.

* Dotted: the LC’ result with the leading colour approximation in the real emissions.

We will refer to this as our L2 result.

* Long-dashed: the LC’ result but with the real emissions computed by also including
singlet emissions. This approximation should be closest to that of a standard parton
shower algorithm. We will refer to this as our L3 result. We emphasise that the
analogy to standard parton showers refers only to their treatment of colour; many
effects, such as the running of the coupling and recoil, among others, are not included

and can significantly alter the picture.

e Dash-dotted: the LC’ result with a full colour treatment of the real emissions. This

is the first approximation to include dipoles, rings and strings. It is our L4 result.
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Figure 4.2: The veto cross-section as a function of veto scale for 7 — ¢g. Solid:

N, = 3, Dash-dotted: N. = /2, Dashed: N, = 4. Black: Full colour, Red: LC’, Blue:
NNLC’, Orange: NYLC’, Green: N°LC’, Yellow: N®LC’. The blue and green contribu-
tions are negative.

* Solid: the full colour result. Here we go beyond the LC’ approximation for the virtual
corrections, i.e. we go beyond d = 0 in Eq. (2.35). This involves substantially greater

computational effort than the other approximations and is our L5 result.

A striking observation here is that the L4 and L5 results agree at the percent level. This is
in accord with the observations made by Hatta and Ueda in [110] and PanScales in [111],
if we assume that our L4 result is approximately equal to the mean field approximation
of [110] and the two schemes presented in [111]. A corollary to this is that we can safely
use the d = 0 LC’ approximation in the expansion of the virtual corrections. In other
words, N./2 — Cp in the diagonal part of the virtual corrections combined with a full
colour treatment of the real emissions is sufficient to capture sub-leading colour effects in
Z — qq. As we shall see, this feature does not extend to other processes. Note also that the
zero emission curves for L2-1.4 are exactly degenerate since the subsequent enhancements

only impact upon the real emissions.

Fig. 4.4 shows three control plots to illustrate that CVolver is working well. The first
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Figure 4.3: The veto cross-section as a function of veto scale for Z — ¢g. Solid: Full
colour (L5), Dash-dotted: LC’ + FCR (L.4), Long-dashed: LC’ + LCR + singlets (L3),
Dotted: LC’ + LCR (L2), Short-dashed: strict LC (LL1). The different coloured curves
correspond to different multiplicities (0 up to 6 emissions) and the black curves are the
total cross-section. The lower residual plot is for the total cross-section.
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10”2 107! 1
p

(a) Testing Lorentz invariance. The solid
curves are for the standard kinematic config-
uration whilst the dashed curves correspond
to a boosted configuration where the dijets
have an opening angle of 7 /4. The interjet re-
gion and collinear cutoff are correspondingly
boosted.

102 107! 1

(b) Testing unitarity. The gap is eliminated
so that real emissions are not vetoed and the
fixed multiplicity curves sum up to a constant
total (IV.).

107!
p

(c) Testing cutoff independence. The solid
curves correspond to A = 0.01 and the dashed
curves to A = 0.005. Though the results are
very different per multiplicity, the total is in-
dependent of A.

Figure 4.4: Control plots for Z — gg. In all cases, the upper curves are for the total and
the lower curves are the contributions from different multiplicities (from O to 5 emis-

sions).
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plot compares the veto cross-section obtained in the standard configuration with that ob-
tained by boosting the two hard partons such that their opening angle is 7/4. The same
boost is applied to the definition of the interjet region and to the collinear cutoff, i.e.
A = 0.01 for the standard configuration and A = 0.00146 for the boosted configura-
tion, such that the ratio n; - n;/\ is constant. The second plot shows that when we remove
the gap the individual multiplicities give contributions that sum up to N,.. This is a highly
non-trivial check of the algorithm. As is the third plot, which checks that our results do not
depend on the choice of collinear cutoff over the range in p that we explore. This is despite
the fact that reducing the collinear cutoff enhances the effect of higher multiplicities, e.g.
the dashed-grey 5 emission contribution, corresponding to the smaller cutoff, is similar in

size to the solid-purple 6 emissions contribution for the larger cutoff.

We now turn to consider colour singlet production of a pair of gluons, e.g. H — gg.

In this case the hard process density matrix is
H = ]10)(10] ! |10)(01| ! |01)(10| + ! |01)(01] 4.1)
B N, N, N2 ’ '

which is represented by the matrix whose elements are (H);; = (i|H|j) where

H:<1/NC2 —1/Nc> 42)
~1/N. 1

and the scalar product matrix is S = I = ). |i|(i|, which is represented by the matrix

whose elements are (S);; = [i|S|j] = (i|j) where

N2 N,
s=1 v w)- (4.3)

The total cross-section is 0 = Tr(HS) = N2 — 1. The veto cross section is presented in
Fig. 4.5 and it exhibits the remarkable property first noted in [112], and further verified in
[111], whereby the full colour result is correctly described by the leading colour approxi-
mation up to a factor of (N2 — 1)/NZ2. We cannot explain this result but it is noteworthy
that three of the four contributions to H do not evolve at all (the three terms involving
singlet gluons). In other words, the singlet gluons do not emit and their colour evolution is

trivial. However, it is surprising that even the multi-gluon emission cross-section with full
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Figure 4.5: The veto cross-section as a function of veto scale for H — ¢gg. Solid: Full
colour, Dashed: leading colour. The different coloured curves correspond to different
multiplicities (0 up to 5 emissions) and the black curves are the total cross-section. The
lower residual plot is for the total cross-section.
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Figure 4.6: The veto cross-section as a function of veto scale for H — ¢gg. The red
curves correspond to O emissions, and the blue curves to 1 emission.

colour evolution still only differs from the leading colour result by a factor (N2 — 1)/N2.
Note that the approximations equivalent to L1, L2 and L3 in the quark case (but with LC
rather than LC’) are all equivalent in the gluon case. Approximation L4 differs because of
the way that real emissions from rings and strings can move the density matrix away from
the leading colour form. As a result, for purely gluonic processes, we shall refer to the
LCR (leading colour real) approximation, which excludes rings and strings, and FCR (full
colour real). We shall also refer to LCH (leading colour in the hard scatter matrix) and
FCH (full colour in the hard scatter matrix), and to LCV (leading colour virtuals) and FCV
(full colour virtuals). In this language, Fig. 4.5 illustrates that (FCH,FCR,FCV) is equal to
(LCH,LCR,LCV) up to a factor (N2 — 1)/NZ. This means there is a conspiracy between

the real and virtual evolution that leads to a cancellation of the sub-leading colour.

This intriguing result is explored further in Fig. 4.6, which shows results for zero
and one gluon emission. In the zero emission case, the two new curves correspond to
(LCH,FCV) evolution (the upper dot-dashed curve) and (FCH,LCV) (long dashed). Both
of these are very different from the (FCH,FCV) and (LCH,LCV) curves (solid and short
dashed). Remember that we always re-scale the LCH curves to match the total cross-
section, i.e. to ensure agreement with FCH at p = 1. The message for zero emissions is
clear: it is all or nothing, in that one must evolve the complete hard scatter matrix with full

colour evolution or the leading colour hard scatter matrix with leading colour evolution.
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(a) The veto cross section for Z — qq. (b) The veto cross section for H — gg.

Figure 4.7: Comparison of the dedicated (solid curves) and event generator (dashed
curves) modes of CVolver broken down by multiplicity. The total cross sections agree
perfectly whilst those for individual multiplicities are very different.

The way in which the conspiracy works is illustrated by the one gluon emission curves
in the figure. We now show the (FCH,LCR,FCV) (solid) and (LCH,FCR,LCV) (long
dashed) curves. Remarkably, the (FCH,LCR,FCV) curve is larger than the correct result
((FCH,FCR,FCV)=(LCH,LCR,LCV)) by a factor N?/(N?—1) and the (LCH,FCR,LCV)
result is smaller than the correct result by a factor (N2 — 1)/NZ. This scaling persists at
least up to 5 emissions and indicates that the (very simple) hard process normalisation is

somehow encoded in the (very complicated) real emissions.

We conclude this section by showcasing the operation of CVolver as an event gener-
ator. Fig. 4.7 shows the veto cross-section for Z — ¢q and H — gg broken down by
multiplicity. Notice that there is perfect agreement between the two modes for the total
cross-section, which is built up from a highly non-trivial sum over multiplicities. The
dashed curves correspond to the veto cross-sections for a fixed number of emissions and
they exhibit the correct physical behaviour, i.e. flat for zero emissions and falling as the
veto increases in severity (i.e. as p falls) for higher multiplicities. In this case, emissions
may be in the angular region where the veto operates provided they have energy less than
(Qo- This is in stark contrast to the dedicated mode where all emissions are necessarily
emitted at angles outside of the veto region and () is fixed by the energy of the first emis-
sion into the veto region. A detailed study of colour evolution using the dedicated event
generator mode will be presented in Chapter 5. For the remainder of this chapter, we shall

focus on results obtained using the dedicated mode.
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4.2 Two-to-Two processes

Figure 4.8: Two outgoing partons are produced back-to-back and at an angle of /6 rel-
ative to the axis defined by the incoming particles. Radiation is vetoed in the central re-
gion.

+ M,

+ A, + A,

Figure 4.9: The diagrams contributing to the amplitude for qg — ¢q.

We now turn our attention to two-to-two hard scattering processes. The goal is to ex-
plore the dynamics of sub-leading colour in a controlled and systematic way. To this end
we will analyse qqg — qq, qg — qg and gg — gg. We will consider a veto region defined
as in Fig. 4.8. This is the same configuration as that studied in [112] and it allows us to
compare with the results in that paper. We will also consider a more asymmetric config-
uration. We do not include the i terms due to Coulomb gluon exchanges in the virtual
evolution operator. This is because the cross-section is divergent in the limit A — 0 in
the soft approximation due to the presence of super-leading logarithms [87, 88]. We do
see this as a logarithmic dependence upon the collinear cutoff for all two-to-two scatter-
ing processes. This dependence cancels in the processes we considered in the previous

section, since the Coulomb gluon contribution precisely cancels in those cases. We aim
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Figure 4.10: The diagrams and colour flows for the qg and gg scattering processes.

to study Coulomb exchanges in more detail in a future analysis. In this section, we focus
on presenting our results without detailing the extensive cross-checks performed to verify
their validity. Nevertheless, considerable effort has gone into ensuring their correctness,

and selected examples of these cross-checks are provided in Appendix A.
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4.2.1 qq — qq

The matrix element for qg — qq is illustrated in Fig. 4.9 and, in the colour flow basis, it

can be written

(M. M, M, M,
Maygsag = (7 e +At> 10) + ( T +A3) 01).  (44)

We shall not concern ourselves with the kinematic factors (M, and A,;), preferring
instead to focus on the contributions from specific terms in the density matrix. The hard
10)(10| and |01)(10| and we shall

now investigate the veto cross-section arising from each of these three possibilities.

’

scatter matrix includes contributions from |01)(01

In Fig. 4.11 we show the L1 to L5 curves for the case H = |01)(01|. This is the
configuration where the outgoing particles are colour connected and the incoming particles
are colour connected. At leading colour in the hard process, this corresponds to ¢-channel
gluon exchange (or s-channel v/Z exchange). The lower pane shows the residuals for
the total rates and indicates that leading colour LC’ (L2) agrees best with the full colour
result. This is in contrast to the Z — ¢q case, where L4 provided the best approximation.
Notice that the agreement between L1 and L2 is only for the total. Even at zero emissions
there is a big difference between red L5 and red L4=1.3=1L.2, which implies large effects
from virtual swaps. The differences between LS5 and L4 show that virtual swaps are also

involved in the cancellations beyond L2.

In Fig. 4.12 we show the L1 to L5 curves for the case H = |10)(10|. This is the
configuration where the incoming quark is colour connected to the outgoing quark and
similarly for the incoming and outgoing antiquarks. At leading colour in the hard process,
this corresponds to s-channel gluon exchange (or ¢t-channel 7/Z exchange). In contrast
to the previous case, it is L4 that agrees best with the full colour result and the leading
colour LC’ approximation fails. This conclusion appears to be in agreement with [112]
who study gq¢ — qq with t-channel electroweak boson exchange and find that the mean
field approximation agrees best with full colour!. Contrary to Fig. 4.11, this time the
agreement L4=L5 works at the level of each multiplicity, which shows there is little effect
from virtual swaps, i.e. it seems the evolution does not favour swapping to the other colour

configuration.

We now turn to the interference contribution arising from H = |10)(01|, which is

IThough [112] say that their result may be unreliable due to lattice artifacts.
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illustrated in Fig. 4.13. Only L3, L4 and L5 have any emissions. That is because the L1 and
L2 approximations require that emission be off dipoles and in this case there are no dipoles
to emit from. Hence the L1 and L2 total cross-section is equal to the zero emission cross-
section. The L3, one-emission curve is the blue, long-dashed curve towards the bottom of
the plot. It is negative and we plot the absolute value. As before, the zero emission curves
for L2, L3 and L4 are all coincident. Clearly, none of the LC" approximations is good with

differences in all cases exceeding 50% at p = 0.1.

We can also explore the veto cross-section for s-channel and ¢-channel gluon exchanges,
which is achieved by combining the previous results. The corresponding hard scatter ma-

trices are proportional to

( 1/N2 —1/NC> ( 1 —1/NC)
H, = and H; = . 4.5)
~1/N. 1 —1/N, 1/N?

The s-channel contribution is the complete lowest-order QCD contribution to g7 — QQ.
The corresponding veto cross-section is shown in Fig. 4.14. Again we see that, though the
approximations do steadily improve, none agrees well with the full colour result. In fact
in all cases, the difference exceeds 10% at p = 0.1. The equivalent curves in the case of
t-channel gluon exchange are in Fig. 4.15. This would be the complete lowest-order QCD
contribution to g@QQ — ¢g@Q. Again none of the L1-L.3 approximations is good and the L4

approximation is breaking down at low p.

The results we just presented for s and ¢-channel gluon exchange evolved from the
full-colour hard-scatter matrices in Eq. (4.5). Starting instead from the leading-colour
hard-scatter matrices for the L1-L.4 approximations (i.e. we still use the full-colour hard-
scatter matrix for L5) we find that the L1-L4 approximations fare significantly better than
before?. In fact, the t-channel contribution shown in Fig. 4.16 again confirms a result first
found in [112] that the full-colour evolution of the full-colour hard process is very well
approximated by the leading-colour evolution of the leading-colour hard process (i.e. the
strictly leading colour approximation). This is the same result we found for H — gg,
though in this case is perhaps even more surprising since the agreement is found by taking
Cr — N./2 even in the diagonal part of the virtual evolution. Indeed, this change shifts
the slope of the zero emission curve in such a way to compensate shifts in the higher
multiplicity contributions, which is in contrast to Fig. 4.6 where the agreement occurs for

each multiplicity. The success of the strictly leading colour approximation does not hold

>The L1-L4 curves on Fig. 4.16 are identical to those on Fig. 4.11 and those on Fig. 4.17 are identical
to those on Fig. 4.12. Only the solid (L5) curves differ.
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for s-channel gluon exchange, as illustrated in Fig. 4.17.

Let us now change the kinematics and put the final state quark at rapidity y = 4 and
the final state antiquark at y = —2. The veto region is the interjet region —1.3 < y < 3.3.
This asymmetric, low-angle scenario leads to very different results from the previous con-
figuration. The |10)(10| configuration is much less likely to radiate into the veto region
than the |01)(01]* and this immediately renders all of the LC" approximations inadequate
whenever the |[01)(01| contribution is important since none are able to flip the colour of
the |01)(01]| configuration, via a virtual exchange, into the |10) (10| state. We expect that
this effect would be even more dramatic had we included Coulomb exchanges. Note that
in a hadron-hadron collision, the |01)(01| contribution would be leading since ¢-channel
gluon exchange dominates for low-angle scattering. Conversely, the L4 approximation is
very good for the evolution of the |10) (10| configuration. These features are all illustrated
in Fig. 4.18-Fig. 4.20. Fig. 4.19 also shows that the L1 (strictly leading colour) approxi-

mation is a good approximation for the evolution of the |10) (10| configuration.

For the evolution of the s-channel gluon exchange diagram starting from the full-colour
hard scatter matrix (H,), we find that all of the LC" approximations are at least 20% above
the full colour result at p = 0.1. For evolution of the dominant ¢-channel gluon exchange
diagram, the situation is, as expected, even more extreme and none is correct within a
factor of 2 at this value of p. Starting from the leading colour hard-scatter again improves
matters and the L1 strictly leading colour curve once again agrees with the full colour

result. These features are illustrated in Fig. 4.21-Fig. 4.24.

A word on the control that we have over these results. We have checked that the d-
approximation is convergent (the d = 2 approximation is sufficient for all of the plots
presented so far) and we have checked that our results agree perfectly with independent
analytic calculations for zero emissions and one emission. That the d = 2 approximation
is sufficient for the full-colour curves is at first a surprise since d = 4 is formally required at
this order in 1/N.. However, the lower multiplicities have the largest relative contribution
from larger d for combinatoric reasons, i.e. there are many more possible d = 1 contribu-
tions at high multiplicities, and for these we can check explicitly that d = 2 is good. We
have also checked that our results are precisely independent of the collinear cutoff. For the
symmetric scenario we find that A = (0.01 is sufficient and for the asymmetric scenario we

need to take a smaller value, A = 0.001.

3To a lesser extent this was also true for the previous kinematics.
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FCH LCH
Channel . - . -
symmetric asymmetric symmetric asymmetric
s L4:~15% (L1,L.2,L3):~35% | L2:~10% (L1,L2,L3):~50%
t ~14 =14 =L1[112] =L1,12,1L3
U L4:~15% (L1,L2,L3):~35% | L2:~15% (L1,L2,L3):~50%
st ~1 .4 ~14 ~[1 ~L1,L2,L3
su L1:~130% (L1,L2,L3):~80% N/A N/A
tu ~L4 ~L4 ~L1,L3 ~L1,L2,1L3

Table 4.1: Summary of results for gg — ¢g. In all cases, the comparison is with the
full-colour evolution starting from the full-colour hard scatter matrix modulo an over-
all normalization. In the cases were none of the approximations successfully reproduce
the full colour result, the best performing approximations are listed along their deviation
from the full colour result at p = 0.1.

4.2.2 qg — qg

Now we turn our attention to quark-gluon scattering. There are 3 diagrams to consider, as
illustrated in Fig. 4.10a and the corresponding hard scatter matrices are now rank 6. In total
there are 6 distinct contributions corresponding to the s, ¢ and u-channel contributions plus
the three (st, su and tu) interference contributions. In what follows we will be systematic
and explore the contributions to the veto cross-section for each of these. We will do this
starting from full-colour in the hard process (FCH) and also leading-colour in the hard
processes (LCH). And also for the symmetric and asymmetric kinematic configurations
that we explored in the previous section. In total this means we will present 24 plots in
Fig. 4.25 to Fig. 4.46. Table 4.1 summarizes the key features of all 24 plots.

In the asymmetric configuration, we find that L1 ~ L2 ~ L3. This is because in this
configuration the quark-quark pair is the closest in angle, suppressing that dipole relative

to the others, and reducing the impact of singlet exchanges and emissions.

In both kinematic configurations, starting from the LCH, L1 does very well at approx-
imating the L5 result for the -, st-, and tu- channels. We also see L4 is within 2% of
the full colour result for the same channels starting from the FCH. For the other channels,
none of the approximations work. In the symmetric configuration, the approximation L2
is never satisfactory, while in the asymmetric configuration the approximations L1-L3 al-
ways perform similarly for the reasons explained before. We should also note that, for the
channels where subleading colour effects cannot be described without LS evolution, we
see substantial subleading colour corrections: of order 10-20% for the symmetric case
and 30-50% for the asymmetric case at p = 0.1, when compared to the best performing

approximation, for the s- and u- channels. The su- interference has enormous effects and
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0 ¢
q 0 0
7| 27/3 | 5n/12
q | 1lx/12 | w/2
q| 3m/4 /4

Table 4.2: The directions of the quarks and anti-quarks produced in ZZ — ¢qqq. The
veto cross-section is defined by vetoing radiation with £ > (), outside of cones centred
on each parton and with an opening angle 7 /4.

needs full colour evolution.

4.2.3 gg — gg

To complete our analysis of two-to-two scattering we study gg — ¢g. In this case, we
compare the full-colour result (FCR,FCV,FCH) with the strictly leading-colour approxi-
mation (LCR,LCV,LCH). Since the results do not depend much on whether we consider
the symmetric or asymmetric veto cross-section we show results only for the asymmetric
case in Fig. 4.47 to Fig. 4.52. The remarkable agreement between strict leading colour and
full colour for ¢-channel processes persists and holds even for the tu and st interference
contributions. Given the complexity of the subleading colour effects, the success of the
vastly simpler leading colour approximation in the ¢-channel gluon exchange processes is
quite remarkable, especially since we do observe very large differences in the evolution
between d = 0, d = 1 and d = 2 and emissions from rings and strings, which are absent in
the leading colour approximation, greatly increase the possible trajectories in colour space.
It seems there is a widespread and very non-trivial cancellation of sub-leading colour ef-
fects for these observables (subject to an overall normalization) the structure of which we

will be investigating in more detail in the next chapter.

4.3 Colour singlet production of four jets

For our final study we will look at the production of four jets, as might be produced in

Z 7 — qqqq. In this case we fix the kinematics as in Table 4.2.

There are two possible colour flows, corresponding to the two possible production am-
plitudes: |01) and |10). In the former, the first two particles in Table 4.2 are colour con-
nected and so are the final two. In the latter colour flow, it is the first and last particles

(and the second and third particles) in the table that are colour connected. Fig. 4.53 shows
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that the L1 and L4 approximations are closest to the full colour result for the evolution of
the |01) (01| hard process but both differ by 4% at p = 0.1. For evolution starting from
the crossed-channel |10) (10| contribution, the L4 approximation is within 1% of the full
colour result (Fig. 4.54). Finally, in Fig. 4.55 we once again see that none of the approx-
imations is adequate and that approximations L1-L3 differ by 80% from the full colour

result.

There is a systematic hierarchy between L1, L2 and L3 present in all processes with
quarks. L3 is always closer to L1 than L2 is, which implies that adding real singlet emis-
sions counterbalances part of the effect of LC’. Therefore, in every diagram where L1
performs well then L3 will perform better than L2. The only cases where L2 performs
better than L3 are those where L1 is not good and the overcorrection of LC’ is in the
right direction: Fig. 4.11, where L2 performs best, and some cases where none of the ap-
proximations work well, specifically Figs. 4.31 and 4.33 and the evolutions of individiual

interference terms, Figs. 4.13, 4.20 and 4.55.
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Figure 4.11: The veto cross-section for the |01) (01| contribution to gg — ¢g. Solid:
Full colour (L5), Dash-dotted: LC’ + FCR (L4), Long-dashed: LC’ + LCR + singlets

(L3), Dotted: LC’ + LCR (L2), Short-dashed: strict LC (L1).
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Figure 4.12: The veto cross-section for the |10)(10| contribution to ¢g — ¢g. Solid:
Full colour (L5), Dash-dotted: LC’ + FCR (L4), Long-dashed: LC’ + LCR + singlets
(L3), Dotted: LC’ + LCR (L2), Short-dashed: strict LC (L1).
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Figure 4.13: The veto cross-section for the [10)(01| (interference) contribution to qg —
qq. Solid: Full colour (L5), Dash-dotted: LC’ + FCR (L4), Long-dashed: LC’ + LCR +
singlets (L3), Dotted: LC’ + LCR (L2), Short-dashed: strict LC (L1). The L3, 1 emis-
sion cuve (blue, long-dashed) is negative and the absolute value is plotted.
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Figure 4.14: The veto cross-section for the s-channel gluon exchange contribution to
qq — qq. Solid: Full colour (L5), Dash-dotted: LC" + FCR (L4), Long-dashed: LC’ +
LCR + singlets (L3), Dotted: LC" + LCR (L2), Short-dashed: strict LC (L1).
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Figure 4.15: The veto cross-section for the ¢-channel gluon exchange contribution to
qq — qq. Solid: Full colour (L5), Dash-dotted: LC’ + FCR (L4), Long-dashed: LC’ +
LCR + singlets (L3), Dotted: LC’ + LCR (L2), Short-dashed: strict LC (L1).
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Figure 4.16: The veto cross-section for the ¢-channel gluon exchange contribution to

qq — qq. Solid: Full colour (L5), Dash-dotted: LC’ + FCR (L4), Long-dashed: LC’

+ LCR + singlets (L.3), Dotted: LC’ + LCR (L2), Short-dashed: strict LC (L.1). For the
L1-L4 curves we start the evolution using the leading-colour approximation to the hard-
scatter matrix.
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Figure 4.17: The veto cross-section for the s-channel gluon exchange contribution to
qq — qq. Solid: Full colour (L5), Dash-dotted: LC’' + FCR (L4), Long-dashed: LC’

+ LCR + singlets (L.3), Dotted: LC’ + LCR (L2), Short-dashed: strict LC (L.1). For the
L1-L4 curves we start the evolution using the leading-colour approximation to the hard-
scatter matrix.
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Figure 4.18: The veto cross-section for the |01)(01| contribution to g¢ — ¢q in the
asymmetric configuration. Solid: Full colour (L5), Dash-dotted: LC’ + FCR (L4), Long-
dashed: LC’ + LCR + singlets (L.3), Dotted: LC’ + LCR (L2), Short-dashed: strict LC
(L1).
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Figure 4.19: The veto cross-section for the [10)(10| contribution to g¢ — ¢q in the
asymmetric configuration. Solid: Full colour (L5), Dash-dotted: LC’ + FCR (L4), Long-
dashed: LC’ + LCR + singlets (L3), Dotted: LC’ + LCR (L.2), Short-dashed: strict LC
(L1).
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Figure 4.20: The veto cross-section for the |10)(01| (interference) contribution to qg —
qq in the asymmetric configuration. Solid: Full colour (L5), Dash-dotted: LC" + FCR
(L4), Long-dashed: LC’ + LCR + singlets (L.3), Dotted: LC’ + LCR (L.2), Short-dashed:
strict LC (L1).



4.3 Colour singlet production of four jets

2x1072

0.4
0.3
0.2
0.1

0
0.1
02 —
-0.3

(oL5-01x)/ (oL5)

—_-—
e e —— "

-0.4
107!

133

Figure 4.21: The veto cross-section for the s-channel gluon exchange contribution to
qq — qq in the asymmetric configuration. Solid: Full colour (L5), Dash-dotted: LC’ +
FCR (L4), Long-dashed: LC’ + LCR + singlets (L.3), Dotted: LC’ + LCR (L.2), Short-
dashed: strict LC (L1).
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Figure 4.22: The veto cross-section for the ¢-channel gluon exchange contribution to
qq — qq in the asymmetric configuration. Solid: Full colour (L5), Dash-dotted: LC’ +
FCR (L4), Long-dashed: LC’ + LCR + singlets (L.3), Dotted: LC’ + LCR (L.2), Short-
dashed: strict LC (L1).
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Figure 4.23: The veto cross-section for the ¢-channel gluon exchange contribution to
qq — qq in the asymmetric configuration. Solid: Full colour (L5), Dash-dotted: LC’ +
FCR (L4), Long-dashed: LC" + LCR + singlets (L.3), Dotted: LC’ + LCR (L2), Short-
dashed: strict LC (L1). For the L1-L4 curves we start the evolution using the leading-
colour approximation to the hard-scatter matrix.
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Figure 4.24: The veto cross-section for the s-channel gluon exchange contribution to
qq — qq in the asymmetric configuration. Solid: Full colour (L5), Dash-dotted: LC’ +
FCR (L4), Long-dashed: LC’ + LCR + singlets (L.3), Dotted: LC’ + LCR (L.2), Short-
dashed: strict LC (L1). For the L1-L4 curves we start the evolution using the leading-
colour approximation to the hard-scatter matrix.
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Figure 4.25: The veto cross-section for the s-channel quark exchange contribution to
qg9 — qg in the symmetric configuration. Solid: Full colour (LS5), Dash-dotted: LC’ +
FCR (L4), Long-dashed: LC’ + LCR + singlets (L.3), Dotted: LC’ + LCR (L.2), Short-
dashed: strict LC (LL1). Evolution starts from the full-colour hard-scatter matrix.
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Figure 4.26: The veto cross-section for the ¢-channel gluon exchange contribution to
qg9 — qg in the symmetric configuration. Solid: Full colour (LS5), Dash-dotted: LC’ +
FCR (L4), Long-dashed: LC’ + LCR + singlets (L.3), Dotted: LC’ + LCR (L.2), Short-
dashed: strict LC (L1). Evolution starts from the full-colour hard-scatter matrix.
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Figure 4.27: The veto cross-section for the u-channel quark exchange contribution to
qg9 — qg in the symmetric configuration. Solid: Full colour (LS5), Dash-dotted: LC’ +
FCR (L4), Long-dashed: LC’ + LCR + singlets (L.3), Dotted: LC’ + LCR (L.2), Short-

dashed: strict LC (LL1). Evolution starts from the full-colour hard-scatter matrix.
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Figure 4.28: The veto cross-section for the st-channel interference contribution to

qg9 — qg in the symmetric configuration. Solid: Full colour (LS5), Dash-dotted: LC’ +
FCR (L4), Long-dashed: LC’ + LCR + singlets (L.3), Dotted: LC’ + LCR (L.2), Short-
dashed: strict LC (L1). Evolution starts from the full-colour hard-scatter matrix.
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Figure 4.29: The veto cross-section for the su-channel interference contribution to

qg9 — qg in the symmetric configuration. Solid: Full colour (LS5), Dash-dotted: LC’ +
FCR (L4), Long-dashed: LC’ + LCR + singlets (L.3), Dotted: LC’ + LCR (L.2), Short-
dashed: strict LC (LL1). Evolution starts from the full-colour hard-scatter matrix.



142 4 Exact colour evolution for jet observables

2x1072

0.1 . : : ———
0.08 |- a
0.06 |- :
0.04 K .
0.02 F\ sy . A .

0 — VN7
002 | T
-0.04 ot -
20.06 o= i
'008 I~ - _/ N - 7 v\ = = ; / _
0.1 e - —

107! 5x107! 1
p

(or5-01x)/ (OL5)
T 1T
A

Figure 4.30: The veto cross-section for the tu-channel interference contribution to

qg9 — qg in the symmetric configuration. Solid: Full colour (LS5), Dash-dotted: LC’ +
FCR (L4), Long-dashed: LC’ + LCR + singlets (L.3), Dotted: LC’ + LCR (L.2), Short-
dashed: strict LC (L1). Evolution starts from the full-colour hard-scatter matrix.
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Figure 4.31: The veto cross-section for the s-channel quark exchange contribution to
qg9 — qg in the symmetric configuration. Solid: Full colour (LS5), Dash-dotted: LC’ +
FCR (L4), Long-dashed: LC’ + LCR + singlets (L.3), Dotted: LC’ + LCR (L.2), Short-

dashed: strict LC (L1). Evolution starts from the leading-colour hard-scatter matrix.
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Figure 4.32: The veto cross-section for the ¢-channel gluon exchange contribution to
qg9 — qg in the symmetric configuration. Solid: Full colour (LS5), Dash-dotted: LC’ +
FCR (L4), Long-dashed: LC’ + LCR + singlets (L.3), Dotted: LC’ + LCR (L.2), Short-
dashed: strict LC (L1). Evolution starts from the leading-colour hard-scatter matrix.



4.3 Colour singlet production of four jets 145

2x1072
0.4 . ; . ———
03 ~. . _
02 b \\‘/

VRN -~ -
0‘1 - ..(0./.‘---.., .'—?.‘_—~

0.1 -
02 R
0.3 R
_0'4 1 1 1 I 1 1 1 1

107! 5x107! 1
p

(oL5-01x)/ (oL5)
)
|
f

Figure 4.33: The veto cross-section for the u-channel quark exchange contribution to

qg9 — qg in the symmetric configuration. Solid: Full colour (LS5), Dash-dotted: LC’ +
FCR (L4), Long-dashed: LC’ + LCR + singlets (L.3), Dotted: LC’ + LCR (L.2), Short-
dashed: strict LC (L1). Evolution starts from the leading-colour hard-scatter matrix.
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Figure 4.34: The veto cross-section for the st-channel interference contribution to

qg9 — qg in the symmetric configuration. Solid: Full colour (LS5), Dash-dotted: LC’ +
FCR (L4), Long-dashed: LC’ + LCR + singlets (L.3), Dotted: LC’ + LCR (L.2), Short-
dashed: strict LC (L1). Evolution starts from the leading-colour hard-scatter matrix.
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Figure 4.35: The veto cross-section for the tu-channel interference contribution to

q9 — qg in the symmetric configuration. Solid: Full colour (L5), Dash-dotted: LC’ +
FCR (L4), Long-dashed: LC" + LCR + singlets (L.3), Dotted: LC’ + LCR (L2), Short-
dashed: strict LC (L1). Evolution starts from the leading-colour hard-scatter matrix.
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Figure 4.36: The veto cross-section for the s-channel quark exchange contribution to
qg9 — qg in the asymmetric configuration. Solid: Full colour (L5), Dash-dotted: LC" +
FCR (L4), Long-dashed: LC’ + LCR + singlets (L.3), Dotted: LC’ + LCR (L.2), Short-
dashed: strict LC (LL1). Evolution starts from the full-colour hard-scatter matrix.
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Figure 4.37: The veto cross-section for the ¢-channel gluon exchange contribution to

149

qg9 — qg in the asymmetric configuration. Solid: Full colour (L5), Dash-dotted: LC’ +

FCR (L4), Long-dashed: LC’ + LCR + singlets (L.3), Dotted: LC’ + LCR (L.2), Short-
dashed: strict LC (LL1). Evolution starts from the full-colour hard-scatter matrix.
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Figure 4.38: The veto cross-section for the u-channel quark exchange contribution to
qg9 — qg in the asymmetric configuration. Solid: Full colour (L5), Dash-dotted: LC" +
FCR (L4), Long-dashed: LC’ + LCR + singlets (L.3), Dotted: LC’ + LCR (L.2), Short-
dashed: strict LC (LL1). Evolution starts from the full-colour hard-scatter matrix.
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Figure 4.39: The veto cross-section for the st-channel interference contribution to qg —
qg in the asymmetric configuration. Solid: Full colour (LS5), Dash-dotted: LC’ + FCR
(L4), Long-dashed: LC’ + LCR + singlets (L3), Dotted: LC’ + LCR (L.2), Short-dashed:
strict LC (L1). Evolution starts from the full-colour hard-scatter matrix.
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Figure 4.40: The veto cross-section for the su-channel interference contribution to

qg — qg in the asymmetric configuration. Solid: Full colour (L5), Dash-dotted: LC’
+ FCR (L4), Long-dashed: LC’ + LCR + singlets (L3), Dotted: LC’ + LCR (L2), Short-
dashed: strict LC (L1). Evolution starts from the full-colour hard-scatter matrix.
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Figure 4.41: The veto cross-section for the tu-channel interference contribution to

qg9 — qg in the asymmetric configuration. Solid: Full colour (L5), Dash-dotted: LC’
+ FCR (L4), Long-dashed: LC’ + LCR + singlets (L3), Dotted: LC’ + LCR (L2), Short-
dashed: strict LC (LL1). Evolution starts from the full-colour hard-scatter matrix.



154 4 Exact colour evolution for jet observables

2x1072

1 - - - T T
08 N
0.6 etz m
04 TTTe— = L N
02 T SIZr—ma N

o i
-02 - N
-04 - N
-0.6 N

-0.8 - m
-1 I I I | I I I I

107! 5x107! 1
p

(oLs5-01x) / (oL5)

Figure 4.42: The veto cross-section for the s-channel quark exchange contribution to
qg9 — qg in the asymmetric configuration. Solid: Full colour (L5), Dash-dotted: LC" +
FCR (L4), Long-dashed: LC’ + LCR + singlets (L.3), Dotted: LC’ + LCR (L.2), Short-
dashed: strict LC (L1). Evolution starts from the leading-colour hard-scatter matrix.
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Figure 4.43: The veto cross-section for the ¢-channel gluon exchange contribution to
qg9 — qg in the asymmetric configuration. Solid: Full colour (L5), Dash-dotted: LC’ +
FCR (L4), Long-dashed: LC’ + LCR + singlets (L.3), Dotted: LC’ + LCR (L.2), Short-
dashed: strict LC (L1). Evolution starts from the leading-colour hard-scatter matrix.
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Figure 4.44: The veto cross-section for the u-channel quark exchange contribution to
qg9 — qg in the asymmetric configuration. Solid: Full colour (L5), Dash-dotted: LC" +
FCR (L4), Long-dashed: LC’ + LCR + singlets (L.3), Dotted: LC’ + LCR (L.2), Short-
dashed: strict LC (L1). Evolution starts from the leading-colour hard-scatter matrix.
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Figure 4.45: The veto cross-section for the st-channel interference contribution to qg —
qg in the asymmetric configuration. Solid: Full colour (LS5), Dash-dotted: LC’ + FCR
(L4), Long-dashed: LC’ + LCR + singlets (L3), Dotted: LC’ + LCR (L.2), Short-dashed:
strict LC (L1). Evolution starts from the leading-colour hard-scatter matrix.
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Figure 4.46: The veto cross-section for the tu-channel interference contribution to

qg — qg in the asymmetric configuration. Solid: Full colour (L5), Dash-dotted: LC’
+ FCR (L4), Long-dashed: LC’ + LCR + singlets (L3), Dotted: LC’ + LCR (L2), Short-
dashed: strict LC (L1). Evolution starts from the leading-colour hard-scatter matrix.
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Figure 4.47: The veto cross-section for the s-channel contribution to gg — ¢gg. Solid:
Full colour, Short-dashed: Leading colour.
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Figure 4.48: The veto cross-section for the ¢-channel contribution to gg — ¢gg. Solid:
Full colour, Short-dashed: Leading colour.
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Figure 4.49: The veto cross-section for the u-channel contribution to gg — gg. Solid:
Full colour, Short-dashed: Leading colour.
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Figure 4.50: The veto cross-section for the st-interference contribution to gg — gg.
Solid: Full colour, Short-dashed: Leading colour.
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Figure 4.51: The veto cross-section for the su-interference contribution to gg — ¢g.
Solid: Full colour, Short-dashed: Leading colour.
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Figure 4.52: The veto cross-section for the tu-interference contribution to gg — gg.
Solid: Full colour, Short-dashed: Leading colour.
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Figure 4.53: The veto cross-section for the |01) (01| contribution to ZZ — ¢gqq. Solid:
Full colour (L5), Dash-dotted: LC’ + FCR (L4), Long-dashed: LC’ + LCR + singlets
(L3), Dotted: LC’ + LCR (L2), Short-dashed: strict LC (L1).
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Figure 4.54: The veto cross-section for the |10) (10| contribution to ZZ — ¢gqq. Solid:
Full colour (L5), Dash-dotted: LC’ + FCR (L4), Long-dashed: LC’ + LCR + singlets
(L3), Dotted: LC’ + LCR (L2), Short-dashed: strict LC (L1).
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Figure 4.55: The veto cross-section for the |01)(10| (interference) contribution to

Z 7 — qqqq. Solid: Full colour (L5), Dash-dotted: LC’ + FCR (L4), Long-dashed: LC’
+ LCR + singlets (L3), Dotted: LC’ + LCR (L2), Short-dashed: strict LC (L.1). The L3,
1 emission cuve (blue, long-dashed) is negative and the absolute value is plotted.
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Event generator and differential
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In the previous chapter we investigated in detail the effect of subleading colour in the
gaps-between-jets observable, by comparing different approximations to the full-colour
result for the cumulative observable, as a function of the veto scale p. Now we proceed by
employing the event generator mode of CVolver, which was described in detail in Sec-
tion 3.3.2, to analyse the wide-angle soft radiation differentially. This chapter is structured
as follows: In Section 5.1 we compare the gaps-between-jets cross-section between ded-
icated mode and event generator mode for ¢qg — ¢q, and we also perform unitarity tests.
In Section 5.2 we define the differential observables we will be using for the rest of the
chapter. In Sections 5.3 through 5.6 we present differential results for different kinematic

configurations and discuss the subleading colour effects.

5.1 Dedicated mode agreement and unitarity check

As a cross-check of the event generator mode of CVolver, we compare the cumulative
gaps-between-jets cross-section with the results from dedicated mode. This is presented,
broken down by multiplicity, in Fig. 5.1. The process is ¢qg — ¢g in the fully-symmetric
final state kinematics, defined in Table 5.1, with a gap in the region 37 /4 < cos < /4.
It is equivalent to the “symmetric configuration” we considered in Chapter 4. The colours

used to represent each multiplicity will remain the same for the rest of this chapter.

For the |10)(10| and |10) (01| contributions we observe perfect agreement between the
two modes. This is especially non-trivial as the multiplicities build the cross-section dif-
ferently: in dedicated mode all emissions are out of gap, while in event generator mode
emissions can be in any region, and contribute cumulatively above the scale of the highest-
energy emission in the gap. The event generator data was evolved down to an infrared scale
i = 0.1, and to contribute to the cross-section at p = 0.1 all emissions must have been out
of the gap. Therefore, for the lowest p bin the event generator mode and dedicated mode

are equivalent.

We do not see agreement between the two modes at high p for the |01) (01| evolution.
This colour configuration radiates more into the gap region than |10) (01| and |10) (10| (see
Section 5.3), and at high p the contributions from higher multiplicities, for example 5 or
6, come at the same order as the contributions from 3 and 4 emissions in |10)(10|. We
can estimate based on the magnitude of the disagreement and the contributions from each
multiplicity that the 7 and 8 multiplicity curves are required to capture correctly the high

p cross-section in |01)(01].

We can also compute the fully-inclusive (no gap) cross-section in order to test unitarity.
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Figure 5.1: Comparison of the event generator and dedicated modes of CVolver, for the
qq — qq process. The solid curves are the full colour (L5) event generator evolution and
the dash-dotted curves are the full colour (L5) dedicated mode evolution. Fig. 5.1d shows

the multiplicity legend used for the rest of this chapter.

This is presented for both modes in Fig. 5.2. As before, we observe good agreement for

the |10)(01| and |10)(10| contributions. The total cross-section remains constant as all

virtual and real contributions cancel. This is a highly non-trivial check as the evolution is

performed at full-colour. On the other hand, |01)(01] fails the cross-check, for the same

reason it failed in Fig. 5.1. We require at least the 7 emissions and 8 emissions curves to

restore unitarity. In dedicated mode, 7 emissions was also needed (dash-dotted blue-green

curve, underneath dash-dotted grey) to maintain unitarity close to p = 0.1.
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Figure 5.2: Comparison of the event generator and dedicated modes of CVolver, for the
qq — qq process, broken down by multiplicity and without a gap region, testing unitarity.
The solid curves are the full colour (L5) event generator evolution, and the dash-dotted
curves are the full colour (L5) dedicated mode evolution.

5.2 Differential observables

The goal is to analyse subleading colour effects in different angular regions of the soft

radiation. For this purpose we define the triple-differential cross-section for soft radiation:

& _ dx,o0 E;)o(Q—-Q 5.1
iy = 2 | 00 B @) 6.0

where i is the soft emission of highest energy in a gap region €,,,. Therefore, only events
with at least one emission in the gap region will contribute to the differential cross-section.

If we integrate this observable over (), and p, and include the contributions from events
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Fully-symmetric | ¢-symmetric | Fully-asymmetric 0—4
final state final state final state Fully asymmetric
0 0] 0 0] 0 0] 0 )
¢ 0 0 0 0 0 0 0 0
s T 0 T 0 T 0 27/3 /12
| /6 0 0037 0 7/6 0 11mr/12 0
g, | 57/6 7T 2873 | /3 | 197/12 3r/4 /4

Table 5.1: The directions of the quarks and anti-quarks for each of the kinematic config-
urations considered.

with no emissions, or all emissions out of gap, the cumulative gaps-between-jets observ-
able presented in Fig. 5.1 is reproduced. This has been checked numerically. We can

integrate the triple-differential cross-section to generate a number of different observables:

d?%(r) Tod3Y
= [ dp—= 5.2
0 /0 Pacdy’ (5:2)

where we have integrated over p to obtain the differential cross-section over solid angle.
The upper bound r on the p integral vetoes all gluon radiation into the gap region with
energy above r. We can also obtain the differential radiation with respect to the polar

angle:

dX(r) morr a3
= dpd 53
dcosd /0 /0 P ¢dep’ 5-3)

and the azimuth:

ax(r)y [ [7 3o
a0 —/0 /0 dpd(cos@)dﬂdp. (5.4)

The last differential cross-section we consider is with respect to the rapidity between jet

pairs ¢ and j:

dx r 1. n;-n(Q)) d3%
= [dQ [ dpd |y — =1 , 5.5
dy;; / /0 P (yj 2 n n; - n(Q)) dQdp S

which is equivalent to boosting the radiation to the frame where 7 and j are back to back,

and evaluating the differential cross-section with respect to rapidity in that frame. The
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direction of n; corresponds to y;; — —o0, and the direction of n; corresponds to y;; —
+00. As a final note on the observables, we will not normalise any of them according to

their hard process normalisations, as opposed to the results shown in the previous chapter.

In Section 5.1 we observed that we need higher multiplicity contributions to accurately
evaluate the gaps-between-jets observable at high p for specific colour states. To circum-
vent this problem, the analysis of the differential observables (defined in Egs. (5.2), (5.3),
(5.4), and (5.5)) presented in the following sections is performed with = 0.3. This vetoes
all radiation above p = 0.3, and therefore enhances the contribution from low multiplic-
ities, which have a higher probability of surviving without emitting into the gap. This
can be seen looking at the region 0.1 < p < 0.3 in Fig. 5.1: for |10)(01| and |10)(10],

which have less probability of emitting into the gap, the contribution from each multiplic-

ity remains at the same order of magnitude throughout p. On the other hand, for |01)(01],

where there is a higher probability of emitting into the gap, the contributions from high

multiplicities are suppressed for low values of p.

We introduce the differential observables by presenting the soft radiation plotted in a 2D
histogram over the angular variables cos # and ¢, i.e., the differential cross-section defined
in Eq. (5.2). We only focus on events with exactly three emissions, in or out of gap. We did
not generate more statistics for this process than the others, and these plots are indicative
that we are well within reach of analysing the full colour soft radiation differentially. The
three contributions to the ZZ — qqqq process are presented in Fig. 5.4. The locations of
the hard jets are marked on the plot, with colours matching Fig. 5.3, and in this particular
case all four jets are outgoing. The kinematics are in the final column of Table 5.1, and
the gap is defined as the region outside four cones centred around each of the hard jets,
with opening angle arccos (0.95). The out-of-gap region is indicated by the black areas
surrounding the hard jets, where no radiation occurs. A noticeable feature is the strong
radiation between ¢; (pink line at cos # = 1) and g, (light blue cross) in the |01)(01] plot,
which is much weaker for the |10) (10| contribution. In the latter, ¢, is colour connected
with g, (red cross), which shifts the radiation slightly higher in ¢, and is weaker likely due
to the wider angle. The radiation of the [10)(01| contribution is an entirely subleading

colour effect, because the interference cannot emit at leading colour (L1).

5.3 Fully-symmetric final state, gg — qgq

We continue the analysis by considering the differential observables for the simplest

kinematics: the fully-symmetric final state configuration, as defined in Table 5.1. The gap
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Figure 5.3: Possible kinematic configuration of the four hard legs, with a veto on the en-
ergy in a gap region. The angles of the different configurations considered are given in
Table 5.1, and the gap definitions for each configuration are given in the text. The colours
of the four legs (pink ¢y, light blue g,, dark green g3, red g,) are used in the figures through-
out this chapter to indicate the location of the hard jets. For 2 — 2 processes, the colour
state |01) corresponds to pink-light blue colour connected, and dark green-red connected.
The colour state |10) corresponds to pink-dark green connected, and light blue-red con-
nected. For 0 — 4 processes, the colour state |01) corresponds to pink-light blue colour
connected, and dark green-red connected. The colour state |10) corresponds to pink-red
connected, and light blue-dark green connected.

is defined as the central region —0.8 < cos(f) < 0.8. For each observable we plot the
|01)(01] and |10) (10| contributions side by side in the top row, and the ¢-channel and s-
channel contributions in the bottom row. The |01)(01| configuration corresponds to the
incoming particles being colour connected and the outgoing particles being colour con-
nected (in Fig. 5.3, ¢ connected to ¢» and ¢3 connected to g4). The |10) (10| configuration
corresponds to the incoming quark connected to the outgoing quark and equivalently for

the antiquarks (¢; connected to g3 and g2 connected to qy).

For each contribution we show the full colour (L5) evolution and the strict LC (L1)
evolution, and for the s- and ¢- channel gluon exchange contributions we start the L1 evo-
lution from the leading-colour part of the hard-scatter matrix. The L1, LCH approximation
was chosen as it is the best performing approximation to the full-colour gaps-between-jets
observable: we found that L1,LCH showed very good agreement with the full colour L5
result for £-channel gluon exchange in every 2 — 2 scattering process we considered. By
analysing the differential soft radiation patterns we aim to stress-test the success of this

approximation.
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Figure 5.4: The full-colour (L5) 3-emission differential cross-section d/dS2 of the con-
tributions to the ZZ — qqqq process. The location of the hard jets is marked with the
colours used in Fig. 5.3 (the four crosses in cos(#) < 0, and the pink line at cos(f) = 1).
The black bins around the jets indicate the out-of-gap regions.

The d¥/d(cos @) distributions are shown in Fig. 5.5. As expected, we see the radia-
tion grows as it gets closer to the hard jets (their location is indicated with vertical lines
matching the colours in Fig. 5.3). Radiation hits a minimum in the middle of the gap, the
furthest point from all jets. The |01)(01| distribution is less steep than |10)(10|, which
follows from the colour flows: in the former configuration, the colour-connected pairs are
back-to-back (light blue is connected to pink, and red is connected to dark green), which
causes them to emit in every direction, including the gap region. In contrast, |10) (10| has
the connected pairs at angles of 7/6, aiming towards the out-of-gap region (light blue is
connected to red, and dark green is connected to pink), which leads to most of the radiation

being emitted out of gap, and results in a much steeper soft radiation pattern.

Since L1,LCH and L5 have different normalisations, we should focus on the shape of
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the residuals. We see that the residual for the [10) (10| contribution is approximately flat.
This is consistent with Fig. 4.12, where the L1 result is only 1-2% away from the L5, and so
we do not expect large effects between full colour and leading colour. On the other hand,
the residual for the |01)(01| shows a 5-10% effect between the edges of the gap and the
middle, although we have some fluctuations. It is also possible to see this effect looking at
the 1, 2 or 3 emission curves (blue, orange, light green respectively). It is caused by swaps
to the |10)(10| configuration, which radiates more into the out-of-gap region, therefore
enhancing the differential cross-section near the gap edges. These results are consistent
with the veto cross-section Fig. 4.11, where there is a 20% difference between L1 and
L5 at p = 1. That said, we will have a more clear example (with smaller fluctuations)
for the same distribution when we consider the ¢-symmetric kinematic configuration in
Section 5.4.

The t-channel contribution has a flat residual, showing the subleading-colour effects
discussed previously for the |01)(01| evolution cancel when including the interference
contribution, shown in Fig. 5.10, and the subleading |10) (10| contribution. Again, this is
in agreement with Fig. 4.16, where L1, starting from the LCH, is a good approximation
to the full-colour result. We note that the interference evolution cannot be approximated
at all at L1, as there would be no radiation, and also that its radiation pattern is different
(steeper) from those of the |01)(01] and |10) (10| contributions.

Lastly, the s-channel contribution shows the largest discrepancy between the full colour
and leading colour results. The inclusion of the subleading |01)(01| and |10)(01]| contri-
butions flatten the full-colour radiation pattern, causing an overall 40% effect between the

edges and the middle of the gap.

We move on to the dX:/d¢ distribution, in Fig. 5.6. The positions in ¢ of the two outgo-
ing particles are shown with vertical lines on the plot. Again, we see that the the [01) (01]
contribution radiates more evenly in ¢ than the |10)(10| contribution, which prioritises
radiation along the directions of the two colour-connected pairs. The |10)(10| residual is
approximately flat, while the |01) (01| residual shows ~ 5% effects between the directions
of the outgoing particles and the in-between regions. The ¢-channel residual is approxi-

mately flat, although with fluctuations, while the s-channel one shows ~ 10% effects.

We now consider the d¥2/ dy;; observables. Asareminder, these are equivalent to boost-
ing the radiation pattern to the frame where are ¢ and j are back-to-back, where 7 is at
y = —oo and j is at y = oo. The gap region gets boosted too, which results in highly-
asymmetrical radiation patterns. For example, in Fig. 5.7, the radiation extends further in

the region ;3 > 0 than in y;3 < 0, due to ¢; being located in the middle of the out-of-gap
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region, while ¢3 is closer to the boundary. We note that the outermost bins of the distri-
bution will have strong edge effects, as the gap boundary will not be aligned with the bin
boundaries, which was not the case for the d¥/d(cos 6) and dX/d¢ distributions. We will

ignore the behaviour at the edges during the following discussion.

Due to the symmetries of this kinematic configuration, some of the rapidity distribu-
tions are equivalent to one another: d¥/dy;3 ~ d¥/dys4, and d¥/dy14 ~ dX/dyss, so we
only need to consider a subset of these. The d¥/dys, distribution differs from d¥/dy;s,
and therefore from dX/d(cos f), by the rotated gap with respect to the centre-of-mass

frame, even though a boost is not required.

All three distributions d>/dy;5 (Fig. 5.7), d¥/dyy4 (Fig. 5.8), and dX/dys4 (Fig. 5.9)
follow similar trends: the shapes of the |01) (01| and |10)(10| contributions can be broadly
understood in terms of which hard legs are colour connected. The |10)(10]| residual is
approximately flat, the |01)(01| residual shows ~ 10% effects, and the L1 approxima-
tion completely fails for the s-channel gluon exchange. More interestingly, the ¢-channel
residuals are not flat, although the effects are somewhat subtle: in all three plots there
are ~ 10% effects between the central rapidity regions and the tails of the distributions.
There are also shape differences between the LS and the L1,LCH radiation distributions. It
follows that the exceptional agreement found previously for the ¢-channel gluon exchange
gaps-between-jets cross-section between L5 and L1 does not always hold when consider-
ing the differential distributions.

5.4 ¢-symmetric final state, qg — q@q

We move on the the ¢-symmetric kinematic configuration, as defined in Table 5.1. The
gap is defined as the central region —0.9 < cos(#) < 0.9. Itis the same as the “asymmetric

configuration” in Chapter 4.

The d¥/d(cos @) distribution in Fig. 5.11 clearly shows the effect of the small, and
asymmetric, scattering angles: the |10)(10]| contribution is now highly asymmetric in
0. The ¢; and q3 opening is much smaller than the ¢, and ¢, opening, suppressing the
former dipole, and enhancing radiation around the latter dipole. On the other hand, the
|01)(01| contribution, where the colour-connected pairs are almost back-to-back, remains
more symmetric, but not completely: full-colour evolution can swap from this colour con-
figuration to the other, which visibly enhances the L5 curves towards cos # = —1. This is

most visible for the L5, 1 emission curve (solid blue), but is present in all of them.
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The |10) (10| evolution emits mostly out-of-gap, and disfavours swapping to a different
colour configuration, as doing so would increase radiation into the gap, causing it to get
vetoed. This results in a very good agreement between LS5 and L1 (as we saw in Fig. 4.19).
On the other hand, the |01) (01| contribution prefers swapping over, in order to enhance the
radiation out-of-gap, which manifests as large subleading colour effects. This is the same

effect we saw for the fully-symmetric kinematics in Fig. 5.5, but made more dramatic.

The s-channel gluon exchange contribution has massive deviations between L5 and
L1, as the latter never accesses the configuration that radiates strongly in the gap region.
Interestingly, the t-channel L5 result sees the enhancement near cos # = —1 of the |10) (10|
evolution completely cancel with the interference (Fig. 5.14) and the subleading |10) (10|

contributions.

Other differential distributions are shown in Figs. 5.12 and 5.13, and the interferences
are shown in Fig. 5.14. We note that all of them show the same characteristics: the |10) (10|
contribution has very good agreement between L5 and L1. The |01)(01| contribution
shows L5 enhances the radiation in the region near the hard jets. The s-channel gluon
exchange completely fails to be described by L1 evolution. Lastly, the ¢-channel gluon
exchange shows the enhancement in [01)(01| cancels with the |10)(10| and interference

contributions, resulting in good agreement between L5 and L1.

5.5 Fully-asymmetric final state, gg — qq

We continue with the fully-asymmetric final-state kinematics, as defined in Table 5.1.
The gap is defined as the region outside four cones centred around each of the hard jets,
with opening angle arccos (0.95). In this configuration both final state jets point in the gen-
eral direction of the incoming ¢;, thus not favouring any particular colour configuration.
The goal is to test whether this will spoil the agreement between full colour and leading
colour for the radiation patterns of the ¢-channel gluon exchange. We find the evolution of
the individual |01) (01| and |10)(10| contributions do not show any remarkable features,
likely due to the angles of the connected pairs being of similar magnitudes between one
another, so we omit them for brevity. We focus on the s- and ¢- channel gluon exchange

contributions, in Figs. 5.15 and 5.16.

In general, we find that the full-colour (LS) cross-section is enhanced relative to the
leading colour (L1) in the region near the three closer jets ¢i, g3, and g, for both gluon
exchange channels. It is clearly visible for example in Fig. 5.15. We can also observe

significantly different radiation shapes between L5 and L1, which are most clearly visible
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looking at individual multiplicities. For example, in Fig. 5.16, ¢-channel gluon exchange,
the 2 emissions orange L5 and L1 curves are different. There are multiple competing
colour configurations which radiate in this region, which might explain why full-colour

evolution, which can access all competing processes, may enhance radiation.

5.6 Colour singlet production of four jets

Lastly, we consider the production of four jets in ZZ — qqqq, with the kinematics as
in Table 5.1. The gap is defined as the region outside four cones centred around each of
the hard jets, with opening angle arccos (0.95). This is the same configuration we plotted
over a 2D solid angle histogram in Fig. 5.4. We continue using the colours of the four jets
in Fig. 5.3, however now ¢; and g, are also outgoing. There are two possible production
amplitudes which correspond with a different colour flow each. The first is |01), in which
¢ is connected to g, (pink with light blue) and g3 is connected to g, (dark green with red).
The second is |10), in which ¢; is connected to g, (pink with red) and g, is connected to

qs3 (light blue with dark green).

We present the cosf and ¢ differential distributions for the |01)(01|, [10)(10| and
|10)(01] contributions in Fig. 5.17. We find that there is good agreement between L5
and L1 for the |01)(01| and |10) (10| contributions, up to fluctuations. However, the most
interesting feature is that the interference distributions have significantly different radiation
patterns compared to the colour-diagonal contributions. The d¥./d¢ interference radiation

in particular is much steeper in the region away from the hard jets.
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(c) The t-channel gluon exchange contribution. (d) The s-channel gluon exchange contribution.

Figure 5.5: The differential cross-section d3/d(cos ) of the different contributions to
the qg — qq process, in the fully-symmetric final state configuration, and broken down by
multiplicity. The solid curves are the full colour (L5) evolution, and the dashed curves are
the strict LC (L1) evolution. For the L1 curves we start the evolution using the leading-
colour approximation to the hard-scatter matrix. The locations of the hard jets are marked
with vertical lines matching the colours used in Fig. 5.3. The shaded vertical bars indicate
the out-of-gap regions.
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Figure 5.6: The differential cross-section dX/d¢ of the different contributions to the
qq — qq process, in the fully-symmetric final state configuration, and broken down by
multiplicity. The solid curves are the full colour (L5) evolution, and the dashed curves are
the strict LC (L1) evolution. For the L1 curves we start the evolution using the leading-
colour approximation to the hard-scatter matrix. The locations of the hard jets are marked
with vertical lines matching the colours used in Fig. 5.3.
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(c¢) The t-channel gluon exchange contribution. (d) The s-channel gluon exchange contribution.

Figure 5.7: The differential cross-section dX/dy;3 of the different contributions to the
qq — qq process, in the fully-symmetric final state configuration, and broken down by
multiplicity. The solid curves are the full colour (L5) evolution, and the dashed curves are
the strict LC (L1) evolution. For the L1 curves we start the evolution using the leading-
colour approximation to the hard-scatter matrix. The locations of the hard jets are marked
with vertical lines matching the colours used in Fig. 5.3.
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(¢) The t-channel gluon exchange contribution. (d) The s-channel gluon exchange contribution.

Figure 5.8: The differential cross-section dX/dy;4 of the different contributions to the
qq — qq process, in the fully-symmetric final state configuration, and broken down by
multiplicity. The solid curves are the full colour (L5) evolution, and the dashed curves are
the strict LC (L1) evolution. For the L1 curves we start the evolution using the leading-
colour approximation to the hard-scatter matrix. The locations of the hard jets are marked
with vertical lines matching the colours used in Fig. 5.3.
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1F 1F T T T T T
& 1071 T
107 | o101 |
g u 3 N
2| A
= kS
102 | 102 |
304 T T T 804 T T T T T
W 03y 4 03|
= 02 4 = 02} -
S olr i =R PR
W T O] w0 F 7 R
w 02 - i n 02 el 1=
303 F o 4 03 S
w04 L L L 04 1 ] ] | |
-3 2 -1 0 3 -3 2 -1 0 1 2
Y34 V34

(c¢) The t-channel gluon exchange contribution. (d) The s-channel gluon exchange contribution.

Figure 5.9: The differential cross-section d¥/dys, of the different contributions to the
qq — qq process, in the fully-symmetric final state configuration, and broken down by
multiplicity. The solid curves are the full colour (L5) evolution, and the dashed curves are
the strict LC (L1) evolution. For the L1 curves we start the evolution using the leading-
colour approximation to the hard-scatter matrix. The locations of the hard jets are marked
with vertical lines matching the colours used in Fig. 5.3.
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Figure 5.10: The differential cross-sections of the |10)(01| (interference) contribution to
the qg — qq process, in the fully-symmetric final state configuration, and broken down
by multiplicity. The solid curves are the full colour (L5) evolution, and there is no L1
differential cross-section since there are no dipoles to emit from. The locations of the hard
jets are marked with vertical lines matching the colours used in Fig. 5.3.
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(c) The t-channel gluon exchange contribution. (d) The s-channel gluon exchange contribution.

Figure 5.11: The differential cross-section dX/d(cos ) of the different contributions to
the qg — qq process, in the ¢-symmetric final state configuration, and broken down by
multiplicity. The solid curves are the full colour (L5) evolution, and the dashed curves are
the strict LC (L1) evolution. For the L1 curves we start the evolution using the leading-
colour approximation to the hard-scatter matrix. The locations of the hard jets are marked
with vertical lines matching the colours used in Fig. 5.3. The shaded vertical bars indicate
the out-of-gap regions.
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(b) The |10) (10| contribution.
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(¢) The t-channel gluon exchange contribution. (d) The s-channel gluon exchange contribution.

Figure 5.12: The differential cross-section dX/d¢ of the different contributions to the
qq — qq process, in the ¢-symmetric final state configuration, and broken down by mul-
tiplicity. The solid curves are the full colour (L.5) evolution, and the dashed curves are the
strict LC (L1) evolution. For the L1 curves we start the evolution using the leading-colour
approximation to the hard-scatter matrix. The locations of the hard jets are marked with
vertical lines matching the colours used in Fig. 5.3.
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Figure 5.13: The differential cross-section d¥/dy,3 of the different contributions to the
qq — qq process, in the ¢p-symmetric final state configuration, and broken down by mul-

tiplicity. The solid curves are the full colour

(L5) evolution, and the dashed curves are the

strict LC (L1) evolution. For the L1 curves we start the evolution using the leading-colour
approximation to the hard-scatter matrix. The locations of the hard jets are marked with
vertical lines matching the colours used in Fig. 5.3.
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(a) The t-channel gluon exchange contribution. (b) The s-channel gluon exchange contribution.

Figure 5.15: The differential cross-section dX/d(cos ) of the different contributions to
the q¢ — qq process, in the fully-asymmetric final state configuration, and broken down
by multiplicity. The solid curves are the full colour (L5) evolution, and the dashed curves
are the strict LC (L.1) evolution. For the L1 curves we start the evolution using the leading-
colour approximation to the hard-scatter matrix. The locations of the hard jets are marked
with vertical lines matching the colours used in Fig. 5.3. The shaded vertical bars indicate
the width of the out-of-gap cones around each hard jet. Darker shades indicate an overlap

of multiple jet-cones.
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Figure 5.16: The differential cross-section dX/d¢ of the different contributions to the
qq — qq process, in the fully-asymmetric final state configuration, and broken down by
multiplicity. The solid curves are the full colour (LS5) evolution, and the dashed curves are
the strict LC (L1) evolution. For the L1 curves we start the evolution using the leading-
colour approximation to the hard-scatter matrix. The locations of the hard jets are marked
with vertical lines matching the colours used in Fig. 5.3.
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qqqq process, and broken down by multiplicity. The top row is the |01) (01| contribution,
the middle row is the |10)(10| contribution, and the bottom row is the |10) (01| (interfer-
ence) contribution. The solid curves are the full colour (L5) evolution, and the dashed
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hard jets are marked with vertical lines matching the colours used in Fig. 5.3. The shaded
vertical bars indicate the width of the out-of-gap cones around each hard jet. Darker shades
indicate an overlap of multiple jet-cones.



Summary and conclusions

Accurate theoretical predictions from QCD are essential for interpreting collider data
and uncovering potential signals of new physics. Parton shower algorithms play a criti-
cal role in this task by resumming the large logarithms that arise from soft and collinear
enhancements at all orders in perturbation theory. However, while traditional parton show-
ers have achieved remarkable success, they cannot incorporate the quantum interference

effects which are required for a full-colour treatment of non-global observables.

In recent years, significant progress has been made in computing non-global logarithms
beyond the leading-colour limit [110-116]. In this thesis we have continued the develop-
ment of the amplitude-level parton shower framework, CVolver, capable of resumming
soft-gluon logarithms at full colour [20, 23, 24]. We have provided a concrete and system-
atic solution to the long-standing challenge of computing subleading-colour effects within

a general-purpose Monte Carlo algorithm.

In Chapter 2, we introduced the general soft-gluon evolution algorithm that underpins
our approach. Working in the colour flow basis, we developed a method to track the evolu-
tion of scattering amplitudes in colour space, enabling a systematic accounting of colour
suppression effects. For virtual corrections, we expanded the Sudakov form factor as an
infinite series in 1/N, [18], and for real emissions, we employed the rings and strings
formalism to categorise emissions based on their impact on the underlying colour flows
[22].

The practical implementation of this algorithm was presented in Chapter 3, where we
described the Monte Carlo parton shower CVolver. We developed two distinct modes of
operation: a dedicated mode tailored to efficiently evaluate wide-angle soft-gluon effects
in observables like gaps-between-jets, and a general-purpose event generator mode. We
documented the algorithm in detail, including the construction of all relevant sampling
distributions and the methods used to guide the evolution toward numerically convergent
results. The computational challenge posed by the complexity of the full-colour evolution

was considerable and represented the most significant hurdle to overcome in this work.

In Chapter 4, we applied CVolver to compute subleading-colour effects in the jet veto
cross-section under fixed kinematics. Our findings revealed substantial corrections in
many cases, highlighting the importance of including full-colour effects. Interestingly, in

a small subset of processes, we observed a non-trivial cancellation of subleading-colour
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contributions, in agreement with [110, 112]. These cancellations are non-trivial and point

to intricate dynamics in the evolution of colour.

In Chapter 5, we used CVolver in event generator mode to study soft radiation patterns
differentially across phase-space. These investigations revealed pronounced subleading-
colour effects in specific angular regions, underlining the role of colour dynamics in shap-
ing observables sensitive to radiation patterns. Even in cases where the jet veto cross-
section at full colour appeared to be well described by leading-colour evolution, we found
that differential distributions exposed deviations between full-colour and leading-colour

predictions.

Through this work, we have demonstrated that subleading-colour effects in general
QCD scattering processes can be computed using amplitude-level parton shower tech-
niques. This opens the door to a range of future investigations. A natural next step is to
move beyond the soft-gluon approximation by incorporating hard-collinear emissions and
incoming hadrons, since the theoretical framework for their addition to general algorithm
has already been developed [21]. Further developments include the implementation of
collinear and higher-order anomalous dimensions [19, 104], as well as the study of so-
phisticated hadronisation models [19]. In addition, the inclusion of collinear physics will
allow us to explore super-leading logarithms, which so far have only been studied analyt-

ically in specific processes [90, 94—-100].
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Appendix A
Validation plots

We compile a small selection of validation plots, with the purpose of verifying the soft

gluon algorithm and the CVolver implementation.

204



alp)

|
L
sx107! 1 - s5x107! 1
p

P
(a) The |01) (01| contribution

(b) The |10) (10| contribution

a(p)
/

N\
N
N

107! -

10! 5x10°! 1

P

(c) The |10)(01]| contribution

Figure A.1: Gap veto cross-section, broken down by multiplicity, for g — ¢q in the sym-
metric kinematic configuration defined in Chapter 4. The solid curves correspondto d = 2,
and the dashed curves correspond to d = 3. This is evidence that d = 2 is enough for the
Sudakov expansion to converge for this process. Two additional black-dashed curves are
overlaid on the 0 and 1 emission curves, respectively. These are independent semi-analytic
calculations, performed with the GSL Vegas integrator [117], the Armadillo package for
exponentiating the anomalous dimension [118], and the Matrices2 library for evaluat-
ing matrix elements in the colour flow basis [119]. They show perfect agreement with

CVolver, which validates the implementation of the evolution and also the convergence

of the Sudakov expansion. These semi-analytic cross-checks were performed for every
process presented in this thesis, up to 1 emission. The only exceptions are gg — gg and

some kinematic configurations of ¢qg — qg, for which the matrix exponentiation does not
converge.

205




olp)
/

10!

Vo
\ \
N
sx107 1 107!
p

sx10°! 1
p
(a) The |01)(01| contribution

(b) The |10) (10| contribution
- - — -

a(p)
i/

AN

- \'
107!

5x10°!
p

(c) The |10) (01| contribution

Figure A.2: Gap veto cross-section, broken down by multiplicity, for ¢qg — ¢q in the
asymmetric kinematic configuration defined in Chapter 4. The solid curves correspond to
d = 2, and the dashed curves correspond to d = 3. This is evidence that d = 2 is enough

for the Sudakov expansion to converge for this process. The semi-analytic black dashed
curves all agree with CVolver.
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solid curves are A = 0.01, and the dashed are The solid curves are A = 0.001, the dashed
A = 0.005. are A\ = 0.0005, and the dash-dotted are A =

0.005.

Figure A.3: Gap veto cross-section, broken down by multiplicity, for ¢-channel gluon ex-
change qqg — qq in the kinematic configurations defined in Chapter 4. Testing indepen-
dence of the collinear cutoft A\, defined in Eq. (3.27). The collinear cutoff required for
independence depends on the kinematics of the process: A = 0.005 is too big in the asym-
metric kinematics, but is small enough for the symmetric case.
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Figure A.4: Testing the impact of including Coulomb gluons. In Z — ¢g, which has a
colourless initial state, the imaginary parts cancel. The cross-section remains collinear
cutoff independent with Coulombs included. In qg — ¢q including the Coulombs has a
noticeable effect. The existence of super-leading logarithms means we expect the cross-
section to become collinear cutoff dependent: the effect is small for p > 0.1. Semi-analytic
tests were also performed with Coulomb gluons, and found to agree with CVolver.
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Figure A.S: Effect of Coulomb gluons in ¢-channel gluon exchange qg — ¢¢ in the asym-
metric configuration.
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Figure A.6: Unitarity test, the gap is removed and all emissions are accepted in dedicated
mode. The process is Z — qg, broken down by multiplicity. The dashed lines are full
colour, and the full colour total cross-section remains constant. The solid lines are full
colour except for the p contributions in the virtuals, which are removed. It fails the unitarity
test.
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