EXAMPLES SHEET 3: INFLATION AND TOPOLOGICAL DEFECTS

1. Flatness problem

In the radiation dominated epoch t < t.,, show that Q~'—1 is proportional to the square of
the scale factor. Using the inferred observational constraint 0 < 1—Q,, < 1073, extrapolate
back to the Planck epoch t ~ 1073 s to demonstrate the extreme initial fine-tuning

0<1-Q, <107,

2. Comoving scales

(a) Derive the formula for the number of e-foldings that occur before the end of inflation
(for a slowly rolling scalar field):
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(b) Consider a wave of comoving wavelength 1 h~* Mpc. When did it cross the particle
horizon?

(c) Assume inflation ended with instantaneous reheating to T = 10'* GeV. Equating the
critical density in the radiation era to the energy density after re-heating (to solve the

flatness problem) gives
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where g =~ 100 counts the number of degrees of freedom. Use this information to deduce
the time at which re-heating occurs (tz) and hence determine how many e-foldings from

the end of inflation the 1 A~ Mpc comoving wavelength leaves the horizon.

(d) For a scalar potential V' oc ¢* find the value of the scalar field at the instant when the
1 h=! Mpc comoving wavelength left the horizon

3. Power Law Inflation

By differentiating the Friedmann equation in the case of a Universe whose evolution is
dominated by a real scalar field, ¢, show that

H = —4nGd>.
Using this result, show that the equation of motion for a scalar field with potential
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has an exact solution corresponding to a(t) o t?, i.e. show that there is a power law
solution to the coupled scalar field and Friedmann equations without imposing the slow
roll condition. Under what condition for p can this model solve the flatness problem?
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4. Chaotic Inflation

For the inflaton potential V(¢) = A¢"/(nmy; 1), use the slow equations to describe the

evolution of a small region which becomes dominated by vacuum energy, i.e. V(¢) > $?
etc. Hence, find the quasi-exponential solutions
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Determine the value of ¢ when inflation ends. Given V(¢giart) ~ mfﬂ, find the overall
expansion factor due to inflation. Taking n = 4 and assuming g ~ 100 and A\ ~ 1074,

estimate the reheat temperature Tg and time ¢z (the duration of inflation).
5. Density fluctuations: Naive Argument

(a) By realising that quantum fluctuations mean that different regions reach the end of
inflation at different times, give a simple argument for the formula 77;/ >~ H? /.

(b) For a A\¢* potential and assuming 60 e-folds of inflation, show that normalising to the

observed value 73;/ 2 ~ 1077 leads to A ~ 1072, This smallness of ) is not natural and is
known as the fine tuning problem of inflation.

(c) For a A\¢* potential, determine the dependence of Pg on wavenumber given that the
perturbations are generated when modes leave the Hubble radius, i.e. when £ = aH. You
may neglect the time dependence of H.

6. Defect instability (Derrick’s theorem)

The energy of a localized static solution for a N-component real scalar field ®(r) in D-
dimensions is
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where the integral over all space converges. By considering E(«) under the rescaling
x — ax and assuming that V(®) is non-negative, prove that there are no stable time-
independent finite energy solutions in more than one dimension. Assume three dimensions
and a spontaneously broken global symmetry SO(N) — SO(N — 1) where N > 2, explain
why the solutions are unstable (N = 3 are global monopoles and N = 4 are known as
global textures). What happens if you introduces a fourth-order derivative term into the
energy and set the potential to zero?



7. Sine-Gordon domain wall

(a) Consider a real scalar field ¢ described by a Lagrangian density

1
L = 50.,60"¢ = 2X* [1 = cos (¢/n)] -
Show that the classical equation of motion is
9,0"¢ + 22’ sin(¢/n) = 0

and that this equation admits a time-independent solution in one-dimension with ¢(—o0) =
0 and ¢(o0) = 2mn of the form

¢(x) = artan”" [exp (Bz)] ,

where o and (3 are coefficients to be determined.



