
EXAMPLES SHEET 3: INFLATION AND TOPOLOGICAL DEFECTS

1. Flatness problem

In the radiation dominated epoch t < teq, show that Ω−1−1 is proportional to the square of
the scale factor. Using the inferred observational constraint 0 ≤ 1−Ωeq ≤ 10−3, extrapolate
back to the Planck epoch t ∼ 10−43 s to demonstrate the extreme initial fine-tuning

0 ≤ 1 − Ωpl ≤ 10−58 .

2. Comoving scales

(a) Derive the formula for the number of e-foldings that occur before the end of inflation
(for a slowly rolling scalar field):

N(φ) ≈ 8πG

∫ φ

φend

dφ′ V (φ′)
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dφ′

]

−1

(b) Consider a wave of comoving wavelength 1 h−1 Mpc. When did it cross the particle
horizon?

(c) Assume inflation ended with instantaneous reheating to TR = 1014 GeV. Equating the
critical density in the radiation era to the energy density after re-heating (to solve the
flatness problem) gives
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32πG

1
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R

where g ≈ 100 counts the number of degrees of freedom. Use this information to deduce
the time at which re-heating occurs (tR) and hence determine how many e-foldings from
the end of inflation the 1 h−1 Mpc comoving wavelength leaves the horizon.

(d) For a scalar potential V ∝ φ4 find the value of the scalar field at the instant when the
1 h−1 Mpc comoving wavelength left the horizon

3. Power Law Inflation

By differentiating the Friedmann equation in the case of a Universe whose evolution is
dominated by a real scalar field, φ, show that

Ḣ = −4πGφ̇2.

Using this result, show that the equation of motion for a scalar field with potential

V (φ) ∝ exp

(
√

16π

p

φ

mpl

)

has an exact solution corresponding to a(t) ∝ tp, i.e. show that there is a power law
solution to the coupled scalar field and Friedmann equations without imposing the slow
roll condition. Under what condition for p can this model solve the flatness problem?
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4. Chaotic Inflation

For the inflaton potential V (φ) = λφn/(nmn−4
pl ) , use the slow equations to describe the

evolution of a small region which becomes dominated by vacuum energy, i.e. V (φ) ≫ φ̇2

etc. Hence, find the quasi-exponential solutions

φ(t)(4−n)/2 = φ
(4−n)/2
start +

(4 − n)t

2

(

nλ

24π

)1/2

m
(6−n)/2
pl , n 6= 4 ,

φ(t) = φstart exp
(

−
√

λ/6π mpl t
)

, n = 4 ,

a(t) = astart exp

[

4π

nm2
pl

(φ2
start − φ2(t))

]

.

Determine the value of φ when inflation ends. Given V (φstart) ≈ m4
pl, find the overall

expansion factor due to inflation. Taking n = 4 and assuming g ≈ 100 and λ ∼ 10−14,
estimate the reheat temperature TR and time tR (the duration of inflation).

5. Density fluctuations: Naive Argument

(a) By realising that quantum fluctuations mean that different regions reach the end of

inflation at different times, give a simple argument for the formula P
1/2
S ∼ H2/φ̇.

(b) For a λφ4 potential and assuming 60 e-folds of inflation, show that normalising to the

observed value P
1/2
S ∼ 10−5 leads to λ ∼ 10−12. This smallness of λ is not natural and is

known as the fine tuning problem of inflation.

(c) For a λφ4 potential, determine the dependence of PS on wavenumber given that the
perturbations are generated when modes leave the Hubble radius, i.e. when k = aH . You
may neglect the time dependence of H .

6. Defect instability (Derrick’s theorem)

The energy of a localized static solution for a N -component real scalar field Φ(r) in D-
dimensions is

E =

∫

dDx
[

1
2
(∇Φ)2 + V (Φ)

]

,

where the integral over all space converges. By considering E(α) under the rescaling
x → αx and assuming that V (Φ) is non-negative, prove that there are no stable time-
independent finite energy solutions in more than one dimension. Assume three dimensions
and a spontaneously broken global symmetry SO(N) → SO(N − 1) where N > 2, explain
why the solutions are unstable (N = 3 are global monopoles and N = 4 are known as
global textures). What happens if you introduces a fourth-order derivative term into the
energy and set the potential to zero?
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7. Sine-Gordon domain wall

(a) Consider a real scalar field φ described by a Lagrangian density

L =
1

2
∂µφ∂µφ − 2λη4 [1 − cos (φ/η)] .

Show that the classical equation of motion is

∂µ∂
µφ + 2λη3 sin(φ/η) = 0

and that this equation admits a time-independent solution in one-dimension with φ(−∞) =
0 and φ(∞) = 2πη of the form

φ(x) = α tan−1 [exp (βx)] ,

where α and β are coefficients to be determined.
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