
1 EXAMPLES SHEET 1: SOLUTIONS

1. Differentiate the Friedmann equation:

2HḢ =
8πG

3
ρ̇+ 2K

ȧ

a3
= −8πGH(ρ+ P ) +

2K

a2
H

i.e. Ḣ = −4πG(ρ+ P ) +
K

a2

and we also know that Ḣ = ä/a− (ȧ/a)2 hence

ä

a
= −4πG(ρ+ P ) +

8πG

3
ρ = −4πG

3
(ρ+ 3P ).

2. Friedmann says

H2 = H2
0

(
Ωr
a4

+
Ωm
a3

)
and we know that H = a′/a2 where the prime indicates differentiation
with respect to conformal time. Thus

a′2 = ωr + aωm where ωr = ΩrH
2
0 etc.

We can integrate this to get

η =

[
2

ωm
(ωr + aωm)1/2

]a
0

which can be re-arranged to give the scale factor:

a =
√
ωrη +

1

4
ωmη

2.

3. See the Natural Units handout (on the course web site).
(a) 1015M� = (2× 1045 kg) 1 GeV

1.78×10−27 kg = 1.1× 1072 GeV

(b) 500 µJy = (500× 10−32 Jm−2) 1 GeV3 ×(1.97×10−16)2m2

1.6×10−10 J = 1.2× 10−51

GeV3 (Note: Jy is the Jansky, which is a unit of flux.)

(c) 1000 km s−1 = (106ms−1) 1 GeV0 ×(6.58×10−25s)
1.97×10−16 m = 3.3× 10−3

Planck density is ≈ 1.6× 1057 GeV4 and 1 GeV4 = 1 GeV/(1 GeV)−3 =
(1.78× 10−27 kg)/(1.97× 10−16 m)3 = 2.3× 1020 kg m−3

1032 GeV2 = 1032 × 1 GeV/1 GeV−1 = 1032 × 1.78 × 1027 kg/(1.97 ×
10−16m) = 9× 1020 kg m−1.

4. For pressureless matter ρ = ρ0/a
3 where ρ0 is the current density, i.e.

H2

H2
0

=
1

a3
=⇒ a1/2ȧ = H0 =⇒

∫ 1

0

a1/2da = H0t0 =⇒ H0t0 =
2

3
.
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5. Friedmann says that

H = H0(Ωm(1 + z)3 + ΩΛ)1/2 = H0(1 +
3

2
Ωmz +O(z2)).

Hence we can write

dL(z) = (1 + z)

∫ z

0

dz′

H0(1 + 3
2Ωmz′ +O(z′2))

= H−1
0 (1 + z)

∫ z

0

dz′ (1− 3

2
Ωmz

′ +O(z
′2))

= H−1
0 (1 + z)(z − 3

4
Ωmz

2 +O(z3))

= H−1
0 (z + z2(1− 3

4
Ωm) +O(z3)).

We can compare this to the defining expression for the deceleration para-
meter:

H0dL = z +
1

2
(1− q0)z2 + · · ·

Whence we get

1

2
(1− q0) = 1− 3

4
Ωm

i.e. q0 = −1 +
3

2
Ωm.

6. We need the scale factor at matter-radiation equality, i.e.

Ωr
a4
eq

=
Ωm
a3
eq

=⇒ aeq =
Ωr
Ωm

from which we can deduce the conformal time using the result of Q.2:

aeq = H0

√
aeqΩmηeq +

1

4
H2

0 Ωmη
2
eq .

Solving this quadratic gives the required answer. The comoving horizon
at matter-radiation equality is just the conformal time ηeq and at the
present epoch this is also the co-ordinate size of the horizon (since a0 =
1). Putting H−1

0 = 3000h−1 Mpc and a−1
eq = 1 + zeq = 23980(Ωmh

2)
(see the list of useful constants which accompanies the exam paper) gives
ηeq ≈ 2(

√
2− 1)Ω

−1/2
m

3000h−1√
23980(Ωmh2)

Mpc ≈ 16(Ωmh
2)−1Mpc.

7. For the first part just use∫
dΩ Y ∗lm(θ, φ)Yl′m′(θ, φ) = δll′δmm′ .
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Azimuthal symmetry means

alm =

∫
∆T

T
(θ) sin θ dθ

∫ 2π

0

Y ∗lm(θ, φ)dφ.

Putting

Ylm(θ, φ) =

√
2l + 1

4π

(l −m)!

(l +m)!
eimφPml (cos θ)

we can do the integral over azimuth, which is non-zero only for m = 0.
Hence the final answer:

al0 = 2π

√
2l + 1

4π

∫ π

0

∆T

T
(θ)Pl(cos θ) sin θ dθ.

8. The correlation function is defined by

ξ(r) =
1

V

∫
d3x ∆(x+ r)∆∗(x),

which reduces to

ξ(r) =
1

V

∑
ij

∫
d3x δ(x+ r− xi)δ(x− xj)

in the particular case we are studying. The result follows after integrating
over x. To obtain the power spectrum we need to remember that

∆(x) =
V

(2π)3

∑
k

∆ke−ik·x,

from which we can show that

ξ(r) =
V

(2π)3

∑
k

|∆k|2 e−ik·r.

The power spectrum is thus the Fourier transform of the correlation func-
tion:

|∆k|2 =
1

V

∫
d3r ξ(r)eik·r =

1

V 2

∑
ij

eik·(xi−xj).

9. In the radiation era a ∝ t1/2 and so H = 1
2t . Likewise, in the matter era

a ∝ t2/3 so H = 2
3t . Thus the critical density is ρcrit = 3H2

8πG = 3
32πGt2 in

the radiation era and ρcrit = 3H2

8πG = 3
6πGt2 in the matter era.

10. In the radiation era, H2 = (8πG/3)ρr where ρr = (π2/30)gT 4. From the
previous question we also know that H = 1/(2t) in this era. Thus

1

4t2
=

8πG

3

π2

30
gT 4.
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Re-arranging and putting m2
pl = 1/G gives

t =

√
90

32π3
g−1/2mpl

T 2
≈ 0.3g−1/2mpl

T 2
.
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