EXAMPLES SHEET 1: SOLUTIONS

1. Differentiate the Friedmann equation:

. ; 2K
2HH = %p—i—QKi:—&rGH(p—l-P)—&-—H
3 a3 a?
. : K
iee. H = —4nG(p+P)+ pol
and we also know that H = i/a — (@/a)? hence
d 8rG 4G
g — —47G(p+ P) + —7; p= ——7; (p+ 3P).

2. Friedmann says
Q Q
2 2 T m
H* = HO <4 + 3>

and we know that H = a’/a® where the prime indicates differentiation
with respect to conformal time. Thus

a? = w, +aw,, where w,=Q,HZ etc.

We can integrate this to get

2 a
n=|—-(w,+ awm)1/2

Wm 0

which can be re-arranged to give the scale factor:
1 2
a4 = /W) + Zwmn .

3. See the Natural Units handout (on the course web site).

(a) 10" Mg = (2 x 10% kg) giqgirig = 1.1 x 107 GeV

(b) 500 puly = (500 x 10732 Jm~2) LGV x(LITA I g 9 o 151
GeV? (Note: Jy is the Jansky, which is a unit of flux.)

() 1000 km s~1 = (100ms 1) LCV°X(O58x10 %) _ 53, 13

Planck density is &~ 1.6 x 10°7 GeV* and 1 GeV* = 1 GeV/(1 GeV)™? =
1.78 x 10727 kg) /(1.97 x 10716 m)? = 2.3 x 10%° kg m—3
( g g

10%2 GeV2 = 10% x 1 GeV/1 GeV~' = 10°% x 1.78 x 1027 kg/(1.97 x
107%%m) = 9 x 10?° kg m~*.

4. For pressureless matter p = p,/a® where p, is the current density, i.e.

bﬁzi — o'?4=Hy = /1a1/2da=Hoto = HOtU:g
HZ  a? 0 3



5. Friedmann says that
3
H = Hy(Qn (14 2)% 4+ Qu)Y2 = Hy(1 + 3 mz + 0(z%)).

Hence we can write

z dZ/
1+ =z
( )/0 Ho(1+ %sz’ + 0(2"?))

Hy'(1+ z)/ dz’ (1 - %sz’ +0(z'?))
0

dr(z)

Hy'(1+2)(z — %szz +0(2*))

Hi'(z+2%(1 - ng) +0(2%).

We can compare this to the defining expression for the deceleration para-
meter:

1
HOdL:Z+§(1_q0)22+"'

Whence we get

1 3
—(1— = 1-—-Q,
5(1 =) 1
3
ie. g = -1+ iQm.

6. We need the scale factor at matter-radiation equality, i.e.

Q. Q Q,

= Aeq = Q

at T g3
CLeq aeq m

from which we can deduce the conformal time using the result of Q.2:

1
aeq = Ho V aqumneq + zHngngq-

Solving this quadratic gives the required answer. The comoving horizon
at matter-radiation equality is just the conformal time 7,, and at the
present epoch this is also the co-ordinate size of the horizon (since ag =
1). Putting Hy' = 3000~! Mpc and ag,' = 1+ zeq = 23980(2mh?)
(see the list of useful constants which accompanies the exam paper) gives

Mo ~ 2(V2 — 1) Q2 —B000h L __Nfpe & 16(92,,h2) " *Mpe.

+/23980(Q,, h2)

7. For the first part just use

/dQ }/l;kn(ev (b))/l”rn' (07 ¢) = 01/ O -



10.

Azimuthal symmetry means

A 27
o / TT@ sinf do [ Y5, (0,6)de.
0

Putting
2041 (1 —m)!

dr I+ m)!eim¢PIm(COS %)

Yim(0,¢) =

we can do the integral over azimuth, which is non-zero only for m = 0.
Hence the final answer:

20+ 1
47

ap = 2w / %(Q)B(COS 0)sin @ dé.
0

The correlation function is defined by
1
&(r) = V/dBX A(x 4 r)A*(x),
which reduces to

&(r) = %Z/diﬂx S(x 41 —%,)5(x — x;)

in the particular case we are studying. The result follows after integrating
over x. To obtain the power spectrum we need to remember that

174 ,
A —_ A —ik-x
(X) (271_)3 Ek k€ )
from which we can show that

V 2 _ik-r
€08) = Ty 2 Il e

The power spectrum is thus the Fourier transform of the correlation func-
tion: ) .

A’ = = /dgr r)e®r = gtk (ximx),

A= [ el = g 3

In the radiation era a o /2 and so H = % Likewise, in the matter era

2/3 _ 2 . s s _ 3H% _ 3 .
a x t/° so H = 5;. Thus the czrltlcal density is pi = 577 = 39 gz I
3H

the radiation era and p.,; = 575 = ﬁ in the matter era.

In the radiation era, H?> = (87G/3)p, where p, = (72/30)gT*. From the
previous question we also know that H = 1/(2t) in this era. Thus
1 871G 72
= =TT
2~ 3 307



Re-arranging and putting mf)l =1/G gives

90 -1/2M!

e Mp1
39m3d 2

~ 0397228

t=



