EXAMPLES SHEET 2: SOLUTIONS

. Correlation function is just
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To deduce the power spectrum we need
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. Putting §,, = (2/3 4+ y)v(y) as suggested gives
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which can be re-written as
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In the lectures we found d,, « (Inn+ C) in the radiation era (y <« 1) and
Sm o At?/3 4+ B/t in the matter era (y > 1). Since a o« t*/3 in the matter
era and a x 7 in the radiation era agreement follows.



3. We want to compute
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Now let X’ —x=u
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and hence the result, since Py = |0|>.

For P, = Ak™ we have (whilst outside the horizon) P(k,n) = (n/n:)*P;
and thus
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which is independent of time if n = 1.

4. We can approximate the integral over k& as follows:
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and have assumed the window function cuts off sharply at kR > 1. Match-
ing the two integrands at k.q fixes B ~ A and converting to dimensionless
integrals:
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For keqR < 1, the second term dominates (except very close to keqR = 1)
and so we can fix A given the window function and g = 0.8. For keq R > 1
it is the first term that matters, i.e.
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So a measurement of og allows us to predict or for R > kgql.

If the dark matter is hot, we know that free-streaming suppresses power

on small scales, i.e. P(k) ~ 0 for k > kpg where kpg ~ (1 — 10) Mpe.

. We know P = p,./3 and p = p,,, + p. We also know that
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. We know that the modes grow until they cross the horizon at ng = 27/k
and that they stop growing at na. In the intervening period they experi-
ence a Mezaros growth. Thus
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We need to compute the various terms. For a matter-radiation universe
we can use the Friedmann equation (o’ = /wy,a + w, with w; = Q;HZ) to
derive that
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Since aeq = wy/wy, this gives
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Substituting in gives
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which is of the required form upon writing neq/ng = k/keq-

. Differentiate the first equation to get

0. 2a
27!t r
WH __%{E_FJ
2w, 1 2a’
= k%5, — —Ek2H'
a2 4 a
o (w2~ Crgs
a 2a2

. Data give m,, = v/2.5 x 1073eV = 0.05 eV. From the notes we know
that
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The electron-neutrino becomes non-relativistic when 7' ~ m = 0.05 eV.
Using a o< 1/T gives
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To get the horizon size use
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