
1 EXAMPLES SHEET 2: SOLUTIONS

1. Correlation function is just

ξ(r) =
1

V

∫

d3
x ∆(x + r)∆∗(x)

=
1

V

∑

ij

∫

d3
x δ(x + r − xi)δ(x − xj)

=
1

V

∑

ij

δ(r − xi + xj).

To deduce the power spectrum we need

|∆k|2 =
1

V

∫

d3
r ξ(r) eik·r =

1

V 2

∑

ij

eik·(xi−xj).

2. Putting δm = (2/3 + y)v(y) as suggested gives

(

2

3
+ y

)

d2v

dy2
+

[

2 +
3
2 (2

3 + y)2

y(1 + y)

]

dv

dy
= 0,

which can be re-written as

d2v

dy2
= −

[

6

2 + 3y
+

1

y
+

1

2(1 + y)

]

dv

dy
.

Integrating gives
dv

dy
=

C

y(2 + 3y)2(1 + y)1/2

and integrating again gives

v = C

∫

dy

y(2 + 3y)2(1 + y)1/2
.

For y ≪ 1 this reduces to

v ≈ C

4

∫

dy

y
=

C

4
ln y =⇒ δm ∝ ln y

and for y ≫ 1 it is

v ≈ D

9

∫

dy

y7/2
= −2D

45
y−5/2 =⇒ δm ∝ y−3/2.

In the lectures we found δm ∝ (ln η + C) in the radiation era (y ≪ 1) and
δm ∝ At2/3 + B/t in the matter era (y ≫ 1). Since a ∝ t2/3 in the matter
era and a ∝ η in the radiation era agreement follows.
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3. We want to compute

σ2
R =

1

V

∫

d3
x |δ(R,x)|2

where

|δ(R,x)|2 =
1

V 2

∫

|W (x′ − x)δ(x′)| |W (x′′ − x)δ(x′′)| d3
x
′ d3

x
′′

=
1

V 2

∫

W (x′ − x)W (x′ + r − x)δ(x′)δ(x′ + r) d3
x
′ d3

r

=
1

V 2

V 2

(2π)6

∑

k,k′

∫

W (x′ − x)W (x′ + r − x)δke−ik·x′

δk′ e−ik′
·(x′+r)d3

x
′ d3

r.

Now let x
′ − x = u

|δ(R,x)|2 =
1

(2π)6

∑

k,k′

∫

W (u)W (u + r)δkδk′ e−ik·(x+u) e−ik′
·(x+u+r)d3

u d3
r.

=
1

(2π)6

∑

k,k′

WkWk′ δkδk′ e−ix·(k+k
′).

Thus

σ2
R =

1

(2π)3

∑

k

WkW−k δkδ−k

=
1

(2π)3

∑

k

|Wk|2 |δk|2

and hence the result, since Pk = |δk|2.

For Pi = Akn we have (whilst outside the horizon) P (k, η) = (η/ηi)
4Pi

and thus

σ2
R =

A

(2π)3
η4

η4
i

∫

d3
k |W (kR)|2 kn

=
4πA

(2π)3
η4

η4
i

∫

∞

0

kn+2|W (kR)|2dk

=
A

2π2

η4

η4
i

R−n−3

∫

∞

0

dx xn+2 |W (x)|2

∝ η1−n for η = R,

which is independent of time if n = 1.

4. We can approximate the integral over k as follows:

σ2
R ≈

∫ keq

0

dk

(2π)3
B

k

k4
eq

4πk2W (kR)2 +

∫ 1/R

keq

dk

(2π)3
A

1

k3
4πk2W (kR)2
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and have assumed the window function cuts off sharply at kR > 1. Match-
ing the two integrands at keq fixes B ≈ A and converting to dimensionless
integrals:

σ2
R ≈

∫ keqR

0

dy

4π2
A

y3

(Rkeq)4
W (y)2 +

∫ 1

keqR

dy

4π2
A

1

y
W (y)2·

For keqR < 1, the second term dominates (except very close to keqR = 1)
and so we can fix A given the window function and σ8 = 0.8. For keqR ≫ 1
it is the first term that matters, i.e.

σ2
R ≈ 1

(Rkeq)4

∫ keqR

0

dy

4π2
Ay3W (y)2 ∼ A.

So a measurement of σ8 allows us to predict σR for R ≫ k−1
eq .

If the dark matter is hot, we know that free-streaming suppresses power
on small scales, i.e. P (k) ∼ 0 for k > kFS where k−1

FS ∼ (1 − 10) Mpc.

5. We know P = ρr/3 and ρ = ρm + ρr. We also know that

dρ

da
= − (ρm + 4

3ρr)

a
.

Thus
dP

dρ
=

dP

da

da

dρ
=

− 4
9

ρr

a

− (ρm+ 4
3
ρr)

a

and hence

c2
s =

1

3

(

1 +
3

4

ρm

ρr

)

−1

.

At teq, c2
s = 1

3

(

1 + 3
4

)

−1
= 4

21 .

6. We know that the modes grow until they cross the horizon at ηH = 2π/k
and that they stop growing at ηΛ. In the intervening period they experi-
ence a Mezaros growth. Thus

δm(η0) =

(

ηH

ηi

)2 2
3 + aΛ

aeq

2
3 + aH

aeq

δm(ηi)

and so

T (k) =

(

ηH

ηi

)2 2
3 + aΛ

aeq

2
3 + aH

aeq

.

We need to compute the various terms. For a matter-radiation universe
we can use the Friedmann equation (a′ =

√
ωma + ωr with ωi = ΩiH

2
0 ) to

derive that

a =
√

ωrη +
1

4
ωmη2 and

η =
2

ωm

[

(ωr + ωma)1/2 − ω1/2
r

]

.
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Since aeq = ωr/ωm this gives

ηeq = 2(
√

2 − 1)
ω

1/2
r

ωm

∴

a

aeq
= 2(

√
2 − 1)

η

ηeq
+ (3 − 2

√
2)

(

η

ηeq

)2

·

Substituting in gives

T (k) =

(

2

3
+

aΛ

aeq

) (

ηeq

ηi

)2
(ηH/ηeq)

2

2
3 + 2(

√
2 − 1) ηH

ηeq
+ (3 − 2

√
2)

(

ηH

ηeq

)2

=

(

2

3
+

aΛ

aeq

) (

ηeq

ηi

)2

(3 − 2
√

2)−1

[

2

3

1

(3 − 2
√

2)

(

ηeq

ηH

)2

+
2(
√

2 − 1)

(3 − 2
√

2)

ηH

ηeq
+ 1

]

−1

which is of the required form upon writing ηeq/ηH = k/keq.

7. Differentiate the first equation to get

k2H ′′ = −2ωr

[

θ′r
a2

− 2a′

a3
θr

]

= −2ωr

a2

1

4
k2δr −

2a′

a
k2H ′

=⇒ k2

(

H ′′ +
2a′

a
H ′

)

= − ωr

2a2
k2δr.

8. Data give mνe
=

√
2.5 × 10−3eV = 0.05 eV. From the notes we know

that
Ωνh2 ≈ mνe

94 eV
≈ 5.3 × 10−4.

The electron-neutrino becomes non-relativistic when T ≈ m = 0.05 eV.
Using a ∝ 1/T gives

a0

aNR
=

TNR

T0
=

0.05 eV

2.728 K

=
0.05 eV

2.728 K
1.16 × 104 (K/eV)

= 210.

To get the horizon size use

dH(tNR) =
3

2
tNR =

3

2
t0

(

aNR

a0

)3/2

.
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