
1 EXAMPLES SHEET 3: SOLUTIONS

1. From the notes we have (i.e. take the Friedmann equation in the form
Ω−1 = K/(aH)2 and differentiate w.r.t. time, then use the Raychaudhuri
equation for ä/a)

Ω−1 − 1 =
Ω0 − 1

Ω0
a1+3w

which reduces to the required answer with w = 1/3. The extrapolation
back to the Planck epoch follows upon realising that a2 ∝ t in the radiation
era and putting teq ∼ 1012 s.

2. (a) See lecture notes, i.e. use H = da
dφ φ̇/a together with the equation

H/φ̇ = −8πG(V/V ′), which arises from the slow roll equations.
(b) The comoving wavelength is smaller than the comoving horizon size
at teq (which is around 16(Ωmh

2)−1 Mpc from Q6 of sheet 1) so it crossed
the horizon in the radiation era when a ∝ η ∝

√
t and hence we can write

a

aeq
=

η

ηeq
=

1 h−1

16(Ωmh2)−1
=

√
tH
teq

.

Putting teq = 3.15 × 1010 (Ωmh
2)−2 s, Ωm = 0.3 and h = 0.7 gives

tH = 3× 108 s. You can get the same answer by thinking in terms of the
physical wavelength, i.e.

λ(tH) =
a(tH)

a0
λ(t0) =

a(tH)

aeq

aeq
a0
λ(t0) = 2tH .

The final equality uses the fact that the particle horizon during the radia-
tion era is equal to 2t. Re-arranging, and remembering that the comoving
wavelength is equal to the physical wavelength at the present epoch, gives

tH =
1

2

(
tH
teq

)1/2
1 h−1 Mpc

1 + zeq
=⇒ tH =

(1 h−1 Mpc)2

4teq(1 + zeq)2

which gives the same answer as before after substituting zeq = 23980(Ωmh
2)

and 1 Mpc = 1.0× 1014 s.
(c) Re-heating (i.e. end of inflation) occurs at

tR =

(
90m2

pl

32π3g

)1/2
1

T 2R
= 2× 10−35 s.

The number of e-foldings is (using the result in part (b) for tH)

eN =

(
tH
tR

)1/2
=⇒ N =

1

2
log

(
tH
tR

)
≈ 50
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(d) Using the result of part (a) gives

N =
8π

m2
pl

∫ φ

φe n d

dφ′
φ′

4
= π

φ2 − φ2end
m2
pl

.

Hence, using the result of part (c) and assuming φend � φ50:

50 ≈ π
(
φ50
m2
pl

)2
=⇒ φ50 ≈ 4mpl.

3. Differentiating the Friedmann gives 2HḢ = (8πG/3)(V̇+φ̇φ̈) = −8πGHφ̇
2

where we used the equation of motion ( φ̈+ 3Hφ̇+ V ′ = 0) to substitute
for φ̈. Assuming that a ∝ tp is a solution we shall attempt to derive
the corresponding potential. We have H = p/t and Ḣ = −p/t2. Hence
φ̇ = −(p/4πG)1/2/t (want minus sign since field rolls down the potential)
and φ̈ = +(p/4πG)1/2/t2. The form of the potential suggests that we
evaluate

V ′

V
=

−φ̈− 3Hφ̇

3H2/(8πG)− φ̇2/2
=

√
16π

p

1

mpl
=⇒ V (φ) = exp

(∫ φ

dφ

√
16π

p

1

mpl

)
.

The flatness problem can be solved if ä > 0 which implies that p > 1.

4. Use H2 = (8πG/3)V and 3Hφ̇+ V ′ = 0 to establish that

φ̇ = −
(
nλ

24π

)1/2
m
3−n/2
pl φn/2−1

which integrates to the required solutions for n = 4 and n 6= 4. To get the
evolution of the scale factor use da/dφ = aH/φ̇ and H/φ̇ = −8πGV/V ′

from the slow roll equations.Inflation ends when φ̇
2

= V which leads to
φend = nmpl/

√
24π. To get the expansion factor use the equation for the

scale factor, i.e.

aend
astart

= exp

(
−n

6
+

4π

n

(n
λ

)2/n)
To get TR we simply need

π2

30
gT 4R = V (φend) =

λ

4

(
4mpl√

24π

)4
=⇒ TR ≈

(
λ

30

)1/4
mpl

π
≈ 4×10−5mpl.

And to get tR we can solve

φend = φstart exp

(
−
(

10−14

6π

)1/2
mpltR

)
=⇒ tR ≈ 4× 108 m−1pl .
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5. (a) Field rolls down the potential with fluctuations δφ ∼ H in the scalar
field due to the Gibbons-Hawking effect. When the field reaches φend
reheating takes place but since the precise value of φ is uncertain this will
occur at different times in different regions with δt = δφ/φ̇. The scalar
power spectrum is therefore

P
1/2
S =

δρ

ρ
∼ δa

a
∼ Hδt ∼ H2

φ̇
.

(b) Using the previous result:

H2

φ̇
∼ 1

m3
pl

V 3/2

V ′
∼
√
λ

m3
pl
φ3 ∼ 10−5

which gives the required result upon putting φ = φ60 = 4mpl (do not
worry about factors of 4).

(c) For modes that are just exiting the Hubble radius

k = Ha ∝ exp
(
−φ2π/m2

pl

)
∴ log k−1 ∼ φ2/m2

pl

and from part (b) we know that P 1/2S ∼ (φ/mpl)
3 therefore P 1/2S ∼

(log k−1)3/2 (we have treated H as a constant, which you should confirm
is the case).

6. After re-scaling
E(α) = αD−2IK + αDIV

where

IK =
1

2

∫
dDx |∇Φ|2 and IV =

∫
dDx V (Φ).

So we see that it is possible to reduce the energy to arbitarily small values
by reducing α and this is inconsistent with there being stable finite-energy
solution with α = 1. Note that for D = 2, this argument only works if
IV 6= 0. The preceding argument means that there can be no monopoles
or textures in this theory, even though they are allowed on topological
grounds. This is an illustration of the fact that the topological condition
for the existence of defects is a necessary but not suffi cient condition for
their existence. Adding a term

I4 =
1

2

∫
dDx |∇Φ|4 and putting IV = 0

leads to a total energy

E(α) = αIK + α−1I4

for D = 3. There is a tension between the two terms now and stable
solution exist for which dE/dα = 0, i.e. α2 = I4/IK .
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7. Use the Euler-Lagrange equations, i.e.

∂L

∂(∂µφ)
= ∂µφ and

∂L

∂φ
= −2λη3 sin(φ/η)

and the result follows since

∂µ
∂L

∂(∂µφ)
=
∂L

∂φ
.

In one-dimension, the equation of motion for time-independent solutions
is

d2φ

dx2
= 2λη3 sin(φ/η).

The given solution satisfies φ(+∞) = απ/2 and so α = 4η. To prove it is
a solution you will need to show that

d2φ

dx2
= −2ηβ2

sinh(βx)

cosh2(βx)

and

sin(φ/η) = 2 sin(φ/2η) cos(φ/2η)

= 2
2 tan(φ/4η)

1 + tan2(φ/4η)

1− tan2(φ/4η)

1 + tan2(φ/4η)

=
4eβx

1 + e2βx
1− e2βx
1 + e2βx

= −2
sinh(βx)

cosh2(βx)
.

Note we used the fact that eβx = tan(φ/4η). It follows that β = η
√

2λ.
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