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Abstract

THE UNIVERSITY OF MANCHESTER

ABSTRACT OF DISSERTATION submitted by Yu Wei for the Degree of

Master of Science and entitled Extracting the QCD dipole cross-section. Month and

Year of submission: September 2006.

By reviewing important experimental results and theoretical concepts leading

to parton saturation, we introduce the colour dipole model as the key object that

connects theories containing saturation dynamics with experiment. In particular,

the colour dipole model can be used to assess the presence of saturation in the

data. By summarizing the results of these assessments, we identify the important

question: “to what extent are saturation dynamics present in the data?” We propose

the extraction, or unfolding, of the dipole cross-section, without parameterization,

as an unbiased way to approach the answer to this question. Then, we identify that

an ill-posed linear Fredholm integral equation needs to be solved, in order to perform

the extraction. To apply numerical methods, the integral equation is discretized and

a parameterization of F2 structure function data is performed. The problem is then

successfully solved using Tikhonov regularization with a linear inequality constraint.
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Chapter 1

Theory and Background

1.1 Introduction

Figure 1.1: The strong rise of F2 with decreasing x. The HERA data are from the

1994 runs and the data for Q2 = 1.5GeV 2 and x > 10−3(triangles) are from fixed

target experiments. Figure taken from [1].

The advent of the HERA collider at DESY enabled the study of deep inelastic

scattering (DIS) at small values of Bjorken x (below 0.01), where the qq̄ sea and

10



CHAPTER 1. THEORY AND BACKGROUND 11

gluon dynamics are dominant. The main observed effect is a strong rise of the

proton structure function F2 in the limit x → 0, the rise becoming more rapid as Q2

increases (see figure 1.1). Interpreted with the linear evolution equations of Quantum

Chromodynamics, this reflects the increase of the parton densities (sea quarks and

gluons). However, as we will illustrate later, the parton rise is so strong that for

sufficiently small x the computed cross section would violate unitarity, indicating

that important physical effects are neglected in the approximation leading to the

linear evolution equations.

It has been found [2, 3] that this rise can be tamed by taking into account the

non-linear saturation dynamics which are present at high gluon density. That is,

while the cross-section for gluon splitting g → gg increases with decreasing x, the

cross-section of gluon self-absorption gg → g also increases, eventually the rise of

the gluon density will be tamed when these two processes balance each other. The

question asked by the physicists in the early 90s was “how can we assess whether

these non-linear dynamics exist in the data or not?”

Mueller [4,5] answered this question by showing that the gluon structure function

can be viewed as the interaction of a colour dipole with the target. This enables us

to connect the gluon density function with the dipole cross-section. Thus the taming

of the growth of the gluon density as x decreases can now be directly viewed as the

taming of the growth of the dipole cross-section. Based on this, phenomenological

dipole models [6–8] were constructed and used to assess the presence of saturation

in the data.

However, the results [9–12] of these assessments, using various dipole models,

are still indefinite as to the role of non-linear effects in the current data. Data from

some processes seem to prefer the dipole models containing saturation dynamics,

however data from other processes cannot distinguish between the dipole models

containing saturation dynamics and those which do not. In this project we propose

a new way to assess the presence of saturation in the current data, that is to extract

the dipole cross-section without parameterization.

This dissertation is divided into three parts. In part I, we are going to present an

overview of the theoretical background of this project. Starting by introducing the
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kinematics of DIS and the Quark Parton Model (QPM), by considering its higher

order corrections, we write down the DGLAP linear evolution equations that pre-

dict the strong rise of the gluon density xg(x, Q2) as x decreases. We also present

the prediction of a strong rise of the gluon density with decreasing x by the BFKL

equation. Following this, we will show that the strong rise can be tamed by incor-

porating saturation dynamics. To assess the presence of these nonlinear effects, we

introduce the colour dipole model that can be used to compare the theory containing

saturation dynamics with experiment. Following this, we will describe in detail the

DIS process in the colour dipole framework, and derive the γ∗P cross-section as a

function of dipole cross-section. We will present three recent colour dipole models

whose predictions are compared with the data to assess the presence of saturation

dynamics. We will summarise the results of theses assessments and motivate the ex-

traction of the dipole cross-section without parameterization as an unbiased way to

approach the important question “to what extent are saturation dynamics present

in the data?” Finally we will identify the problem (a linear fredholm integration

equation) we need to solve in order to perform this extraction.

In part II, we are going to discuss the preparations needed to solve this inte-

gration equation numerically. We will first discretize this integration equation, and

then parameterize the structure function data in order to ‘produce’ enough data to

perform the extraction.

In part III, we will first demonstrate a naive attempt to unfold the dipole

cross-section. By analyzing its results, using singular value decomposition methods

(SVD), we identify our problem as an ill-posed problem, which needs to be solved

by regularization. We then present four regularization schemes and a brief review of

four papers in the field of high energy physics concerning unfolding methods. From

this we conclude that the Tikhonov method, which incorporate a “smoothness” con-

straints on the extracted solution, is the most suitable regularization method for our

problem. Following this, we will discuss how accurately the regularized solution can

approximate the true solution, and how the regularization parameter effects this

accuracy. Following a discussion of two methods for choosing regularization param-

eters, we will extract the dipole cross-section using Tikhonov methods with several
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different choices of regularization parameter. By analyzing these results, we propose

to incorporate another constraint, which requires the extracted dipole cross-section

to be a monotonic function of increasing dipole size r. The dipole cross-section

is then successfully extracted with both constraints. Finally we outline the most

important future developments that can be made based on this research.

1.2 Deep Inelastic Scattering

Since Rutherford uncovered the structure of the atom using the scattering of α

particles off gold nuclei, scattering experiments have been and continue to be, one

of the most powerful tools for studying the fundamental structure of matter and the

theories that describe them. In this section, we are going to give a brief overview

of a particular type of scattering experiment, called deep inelastic scattering, which

ultimately aims to uncover the structure of the proton.

1.2.1 The kinematics of DIS

ke−

q

k
′ e−

X
P

P

Figure 1.2: Deep inelastic scattering e−(k) + proton(P ) → e−(k
′

) + X

The simplest Feynman diagram for the electron-proton DIS process is depicted

in Fig.1.2, which shows an electron with four momentum k scattering off a proton

with four momentum P and mass M , by exchanging a virtual photon γ∗ with four

momentum q. This process is characterized by the following kinematic variables:

- The virtuality of photon: Q2 = −q2 = −t = −(k − k
′

)2.
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- The Bjorken variable: x = Q2/2p · q.

- The centre of mass (c.o.m) energy squared: s = (P + k)2.

- The energy transferred between the lepton and proton systems: y = P · q/P · k.

- The recoil mass M2
X : W 2 = (P + q)2 = M2 + 1−x

x
Q2.

The word “deep” means high resolution, i.e. Q2 ≫ M2, and “inelastic ” means

M2
X 6= M2, i.e. x < 1. The cross-section of the above DIS process is given by [13]:

σep→eX =
∑

X

1

4ME

∫

dΦ
1

4

∑

spin

|M |2ep→eX (1.1)

where 1
4ME

is the flux factor,
∫

dΦ is the phase space factor, and |M |2ep→eX is the

transition amplitude. The spin averaged differential cross-section can be written

(neglecting Z◦ boson exchange) as:

d2σ

dxdQ2
=

4πα2

Q4

[

y2F1(x, Q2) + (
1 − y

x
− xy2M2

Q2
)F2(x, Q2)

]

(1.2)

where

y =
Q2

x(s − M2)

α is the electromagnetic coupling constant. F1 and F2 are the proton structure

functions which are predicted to depend on Lorentz invariants x and Q2 and contain

all hadronic information necessary to describe the DIS cross-section.

1.2.2 Bjorken Scaling and the Quark Parton Model (QPM)

In 1969, Bjorken predicted that the structure function will behave like F2(x, Q2) →
F̃2(x) as Q2 → ∞ [14], and this was subsequently observed to be at least approxi-

mately correct in experiments. Later, Feynman explained Bjorken scaling based on

his parton model [15]. The essence of the idea is that the photon scatters elastically

off a point-like constituent of the proton. Because the scattering centre is a point,

which has no dimensionful scale, then F2 cannot depend on dimensionful Q2. In

addition, the parton model gives an explicit model for the structure function:
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F2(x) =
∑

i

e2
i xfi(x) (1.3)

where the sum is over partons with charge ei and fi(x) is the number density of

electrically charged partons of type ‘i’ in the proton. Thus, deep inelastic scattering

can be viewed as a photon scattering incoherently off individual partons, as shown

in Fig.1.3. Identify the partons with quarks, the double differential cross-section can

be written as [16]

d2σ

dxdQ2
=

2πα2

xQ4
[1 + (1 − y)2]

∑

i

e2
i xqi(x) (1.4)

where distribution function qi(x), in the Bjorken frame [17, 18] (or infinite momen-

tum frame), is the probability that the struck quark i carries a fraction x of the

proton’s momentum, P . These discoveries formed the foundations of the Quark-

Parton Model (QPM). Under this framework, our kinematic variables Q2 and x

gain the following physical interpretations:

- The photon’s virtuality Q2 is now identified as the transverse resolution of the

photon or transverse size of measured partons. In the Bjorken frame, Q2 ∼ q2
T

ke− k
′ e−

XP

P

γ∗(q)

qi(xP + q)

qi(xP )

Figure 1.3: Deep inelastic scattering as the incoherent sum of point-like elastic

scattering of partons.
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(the transverse momentum of γ∗), and γ∗ is considered to be absorbed over a

transverse distance △x⊥ ∼ 1/Q.

- The Bjorken variable x is now identified as the longitudinal momentum fraction

of the struck parton.

We discuss these variables in the Bjorken frame, because it is in this frame that

deep inelastic scattering is most clearly visualized in a space-time picture, where the

virtual photon has zero energy.

1.3 Higher order corrections

Subsequent experimental data showed that Bjorken scaling is not exact. The failure

is particular dramatic at small x, as can be seen from Fig.1.1. To explain this effect,

higher order QCD corrections need to be considered. That is, we need to take into

account processes like q → qg and g → qq̄, which can contribute to DIS as shown in

Fig.1.4.

e− e− e− e− e− e− e− e−k k
′

X
P

pi q
′

k k kk
′

k
′

k
′

γ∗(q) γ∗(q) γ∗(q)

P
P P

pi

p
′

i

q
′

pi

p
′

i
pi

p
′

i

q
′

q
′

X
X X

p
′

i

γ∗(q)

(a) (b)
(c) (d)

Figure 1.4: The higher order real corrections to the DIS process, where (a) and

(b) represents the contribution from the q → qg process, (c) and (d) represents the

contribution from g → qq̄ process

We will briefly discuss the DGLAP equations below, following the approach

in [16]. To study these processes and identify the source of the scaling violation, we

define the fractional momentum of the parton to be pi = ξP and z = Q2/(2pi · q) =

x/ξ which is the analogue of Bjorken x.
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Now let us first consider the q → qg process. We notice that the γ∗-parton level

diagram for processes (a) and (b), is actually the QCD Compton process (QCDC):

γ∗q → gq as shown in Fig.1.5. Its hard scattering cross-section can be approximated

as:

σ̂QCDC ≃ σ̂0e
2
i

αs

2π

4

3

[1 + z2

1 − z

]

∫ p2
t (max)

0

dp2
t

p2
t

(1.5)

where

σ̂0 =
W 2 − m2

8π2αe

,

W is the γ∗p centre of mass energy, m is the proton mass. And

p2
t(max) =

Q2(1 − z)

4z

is the gluon transverse momentum in the parton centre of mass frame. We regularize

the p2
t (max) integral by introducing the cut-off energy, k2, at the lower limit, and it

gives

∫ p2
t (max)

k2

dp2
t

p2
t

= ln(
Q2

k2
) + ln(

1 − z

4z
). (1.6)

From this result, we identify the origin of scaling violations, i.e. gluon radiation

introduces non-zero pt and integrating over the dp2
t/p

2
t will introduce large logs,

ln(Q2/k2). We define the function

Pqq(z) =
4

3

[1 + z2

1 − z
] (1.7)

q

q
′

g

qi

gγ∗

q
′

p

q

qi

p
′

p

qi

γ∗

(a) (b)

qi

p
′

Figure 1.5: The QCD Compton process, (a)s-channel, (b)u-channel
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as the unregularized probability distribution for q → q(z)g(1− z) splitting (where z

is the fraction of the initial quark momentum carried by the final quark). Then the

cross-section for QCDC is given by:

σ̂QCDC(z) = σ̂0e
2
i

αs

2π

[

Pqq(z) ln
(Q2

k2

)

+ C(z)
]

(1.8)

where C(z) are the terms left over in addition to the leading αs ln(Q2/k2) term.

To include the contribution from the QCDC process in F2, we need to write the

γ∗P cross-section using the factorization theorem in QCD, which states that the

cross-section for DIS may be written as the convolution of two terms: a calculable

hard scattering cross-section and a non-perturbative parton density. Hence, the γ∗P

cross-section can be factorized as the convolution of parton distribution function

(pdf) qi(ξ), with γ∗-parton scattering cross-section σ̂:

σ(x, Q2) =
∑

i

∫ 1

0

dz

∫ 1

0

dξqi(ξ)δ(x− zξ)σ̂(x, z) (1.9)

Using the relation between structure functions and cross-sections for transverse and

longitudinal virtual photon scattering

σT =
4π2α

s
2F1

σL =
4π2α

s

[F2

x
− 2F1

]

(1.10)

the expression for F2 is obtained:

F2 =
s

4π2α
(σT + σL)x =

σ

σ0
x where σ0 =

4π2α

s
. (1.11)

The γ∗-parton level cross-section is given by

σ̂T + σ̂L = e2
i σ̂0δ(1 − z) + 0. (1.12)

Substitute (1.11) and (1.12) into (1.9), the structure function F2 in terms of the

convolution of pdf with γ∗-parton hard scattering cross-section σ̂ is obtained:
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F2(x, Q2) = x

∫ 1

0

dz

∫ 1

0

dξqi(ξ)δ(x− zξ)e2
i δ(1 − z). (1.13)

Now, to include the contribution from the QCDC process, its cross-section

σ̂QCDC(z) is added to the zeroth order γ∗-parton level process to give:

F2(x, Q2) = x

∫ 1

0

dz

∫ 1

0

dξqi(ξ)δ(x − zξ)[e2
i δ(1 − z) + σ̂QCDC(z)/σ̂0]

= e2
i

∫ 1

x

dξ

ξ
qi(ξ)

[

δ(1 − x

ξ
) +

αs

2π
Pqq

(x

ξ

)

ln
(Q2

k2
)
]

.

(1.14)

including only the leading αs ln(Q2/k2) term. As can be seen, F2 now depends on

the arbitrary cut-off energy k2. To remove this scale dependence, we introduce a

new scale µ2 such that µ2 ≫ k2. If µ2 is chosen to be the collinear factorization scale,

then the collinear singularities (soft non-perturbative physics) will be absorbed into

the parton density, by rewriting the normalized parton density qi(x, µ2) as

qi(x, µ2) = q0
i (x) +

αs

2π

∫ 1

x

dξ

ξ
q0
i (ξ)Pqq

(x

ξ

)

ln
(µ2

k2

)

. (1.15)

qi is now factorization scale dependent, and the structure function can be written

as

F2(x, Q2) = xe2
i

∫ 1

x

dξ

ξ
qi(ξ, µ

2)
[

δ(1 − x

ξ
) +

αs

2π
Pqq

(x

ξ

)

ln
(Q2

µ2

)

+
αs

2π
C
(x

ξ
)
]

. (1.16)

The renormalized parton density qi(x, µ2) is fundamentally non-perturbative and

cannot be predicted from first principles, but its evolution with ln µ2 can be calcu-

lated

∂qi(x, µ2)

∂ ln µ2
=

αs

2π

∫ 1

x

dξ

ξ
qi(ξ, µ

2)Pqq(x/ξ). (1.17)

As can be seen there is an apparent singularity in the unregularized splitting

function (1.7), as z → 1, which is associated with the emission of soft gluons.

This will be canceled by its virtual correction at O(αs) [19], and the singularity is

regularized by the ‘+ prescription’:



CHAPTER 1. THEORY AND BACKGROUND 20

1

1 − z
→ 1

(1 − z)+
where

∫ 1

0

dz
f(z)

1 − z)+
=

∫ 1

0

dz
f(z) − f(1)

1 − z
. (1.18)

From which, the regularized splitting function can be written as

Pqq(z) =
4

3

[

1 + z2

(1 − z)+

+
3

2
δ(1 − z)

]

. (1.19)

Similarly to above, the contribution to F2 from the diagrams (c) and (d) in

Fig.1.9 which underlies the processes g → qq̄ can also be calculated:

F g
2 (x, Q2) = x

∫ 1

x

dξ

ξ
e2

i g
0(ξ)

αs

2π
Pqg

(x

ξ

)

ln
(Q2

k2
) (1.20)

where

Pqg(z) =
1

2
[z2 + (1 − z)2] (1.21)

is the g → qq̄ splitting function. Taking into account this process (1.17) becomes

∂qi(x, µ2)

∂ ln µ2
=

αs

2π

∫ 1

x

dξ

ξ
[qi(ξ, µ

2)Pqq(x/ξ) + g(ξ, µ2)Pqg(x/ξ)]. (1.22)

By taking into account two further processes, q → g(z)q(1−z) and g → g(z)g(1−z)

corresponding to the (regularized) splitting functions Pgq and Pgg, which give rise

to the evolution of the gluon density function g(x, µ2), together with the virtual

correction in αs, the DGLAP linear evolution equations [20–22] are obtained:

∂q(x, Q2)

∂ ln Q2
=

αs(Q
2)

2π

∑

j

∫ 1

x

dξ

ξ
P(x/ξ, αs(Q

2))q(ξ, Q2) (1.23)

where q is vector q = q(qi, g), and P is a 2 × 2 matrix with the splitting function

Pqiqj
,Pqig in the first row and Pgqj

,Pgg in the second row. From the DGLAP equation,

the x and Q2 dependent structure function F2 is now generally predicted to be

F2(x, Q2)

x
=

∫ 1

x

dξ

ξ

[

∑

i

e2
i qi(ξ, Q

2) Cq

(

x

ξ
, αs

)

+ ē2g(ξ, q2) Cg

(

x

ξ
, αs

)

]

(1.24)
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where ē2 =
∑

i e
2
i and the sum is over all active quark flavors. Cq and Cg are called

the coefficient functions (they contain the partonic scattering cross section), and

they are “factorization scheme dependent” beyond lowest order. To the order we

compute here Cq = δ(1 − x/ξ) and Cg = 0.

1.3.1 Prediction of the gluon density from DGLAP linear

evolution

By keeping only the gluon splitting term Pqg and using the double leading log ap-

proximation (DLLA) where all terms ∼ [αs ln(Q2) ln(1/x)]n are summed, with a

non-singular input, DGLAP predicts the gluon density xg(x, Q2) at low x to be [23]:

xg(x, Q2) ∼ exp(
√

ln(1/x)) (1.25)

which corresponds to the rise of xg(x, Q2) as e
√

ln(1/x) as x decreases.

1.3.2 Prediction of σγ∗P from BFKL linear evolution equa-

tion

The BFKL equation, which provides an alternative to DGLAP for summing the

contributions of multiple gluon emissions at small x. BFKL sums gluon ladders,

taking into account all leading contributions [ᾱs ln(1/x)]n, with ᾱs = αsNc/π. At

lowest order it predicts the DIS cross-section to be [24]:

σ ∼ x−ω0

√

ln 1/x
(1.26)

where

ω0 = 4ᾱs ln 2. (1.27)

Like DGLAP, this result raises a serious problem with decreasing x, as the solution

features a rapid rise with x which will eventually violate the Froissart unitarity

bound: σ ≤ ln2 s.



CHAPTER 1. THEORY AND BACKGROUND 22

1.4 The role of non-linear effects

As already discussed at the beginning of the chapter, an important physical effect

was neglected in the approximation which led to the linear evolution equations:

the saturation dynamics is non-linear in nature. This should be important at the

high parton densities which occur at low Bjorken x. Moreover these effects could

tame the growth of gluon density from the g → gg splitting process, by taking into

account its inverse gg → g self-absorption process. Qualitatively, the gluon-gluon

recombination or self-absorption cross-section is of order αs(Q
2)/Q2 at a transverse

scale Q2. In the proton infinite momentum frame, xg(x, Q2) is the number of gluons

in the proton wave function which are localized within an area △x⊥ ∼ 1/Q in the

transverse plane. Therefore the saturation dynamics might be expected when the

total effective gluon-gluon recombination cross-section in the proton approaches the

size of the proton disk:

αs(Q
2)

Q2
xg(x, Q2) ∼ πR2. (1.28)

At this scale gluon fusion balances gluon splitting to create an equilibrium-like sys-

tem of partons with a definite value for the average transverse momentum, which

is called the “saturation scale” Qs(x). This x dependent scale will decrease as x

decreases.

Gribov, Levin and Ryskin (1983) [2] and later Mueller and Qiu (1986) [3] ex-

tended the low-x DLLA (Double Leading Logarithmic Approximation) by including

saturation dynamics in the equation which predicts the gluon density:

∂2xg(x, Q2)

∂ lnQ2∂ ln(1/x)
=

3αs

π
xg(x, Q2) − 81α2

s

16Q2R2
(xg(x, Q2))2 (1.29)

where the second term takes into account the nonlinear effect from gluon recombi-

nation which will damp the growth of xg at low x.

In the early 1990s, A. Mueller proved two important results [4, 5], which placed

the colour dipole model at centre stage for connecting theories containing saturation

dynamics with experiment. Firstly, he showed that the gluon structure function can

be viewed as the interaction of a colour dipole with the target, as shown in Fig.1.6.
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Specifically, the interaction cross-section (called the dipole cross-section), can be

written as [16]

σdipole(x, r2) =
8παs

3

∫

d2k

k4
Fg(x, k)(1 − eik.r) (1.30)

where k is transverse momenta of gluons and Fg(x, k) is the unintegrated gluon

density function. The gluon density function is given by [16]:

xg(x, Q2) =
1

π

∫ Q2

0

d2k

k2
Θ(Q2 − k2)Fg(x, k), (1.31)

As can be seen the dipole cross-section σ(x, r2) and the gluon density xg(x, Q2)

are bridged by the unintegrated gluon density Fg(x, k). Thus, the damping of the

growth of the gluon density function with decreasing x will be directly reflected as

the damping of the growth of the dipole cross-section.

Figure 1.6: Interaction of a colour dipole with the target, where G∗(Q2) is a gluon

probe, r⊥ is the size of the colour dipole, N is the target hadron and σN (r2
t ) is the

dipole cross-section. Figure taken from [25].

Figure 1.7: The BFKL evolution can be expressed as dipole evolution via gluon

emission, where ~x and ~y are the transverse position of the original dipole and ~z is

the transverse position of the emitted dipole. Figure taken from [26].
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Secondly, Mueller proved that BFKL evolution can be rewritten as a decay of one

dipole into two dipoles for large Nc, as shown in Fig.1.7. The amount of evolution

depends on the centre-of-mass energy or rapidity, Y = log(s/s0) of the system.

From this the deep inelastic scattering process can be considered as a classic dipole

branching process, plus the process of dipole-proton scattering, as shown in Fig.1.8.

Thus, the dipole cross-section satisfies the evolution equation [26]

∂σ(~x, ~y, Y )

∂Y
=

Ncαs

π

∫

d2~z

2π

(~x − ~y)2

(~x − ~z)2(~y − ~z)2
× [σ(~x, ~z, Y ) + σ(~y, ~z, Y ) − σ(~x, ~y, Y )]

(1.32)

where the first two terms express the process of original dipole branching into two

dipoles, one of which may then scatter off the proton, while the second term expresses

the fact that the original dipole is destroyed after emission. As can be seen, this

linear evolution equation results in an exponential growth of the dipole cross-section

with rapidity:

σ ≈ exp{[4(Ncαs/π)log2]Y } (1.33)

as is the case for gluon density xg(x, Q2) predicted by BFKL. As already stated

equation (1.32) ignores non-linear effects resulting from the fact that both newly

Figure 1.8: Deep inelastic scattering described as a dipole branching process and

the process of dipole-proton scattering. Where Ψ2 is the photon wave function and

P i
h(xi, Q

2) is the hadron wavefunction. Figure taken from [25].
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created dipoles can scatter off the proton. Taking this process into account and

assuming that the two dipoles scatter independently off the proton, our dipole cross-

section can now be rewritten as

∂σ(~x, ~y, Y )

∂Y
=

Ncαs

π

∫

d2~z

2π

(~x − ~y)2

(~x − ~z)2(~y − ~z)2
×

[σ(~x, ~z, Y ) + σ(~y, ~z, Y ) − σ(~x, ~y, Y ) − 1

2
σ(~x, ~z, Y )σ(~y, ~z, Y )]

(1.34)

where the non-linear term 1
2
σ(~x, ~z, Y )σ(~y, ~z, Y ) should tame the growth of the dipole

cross-section. This is the Balitsky-Kovchegov (BK) equation [27, 28].

Thus, based on the above important concepts, phenomenological colour dipole

models containing or not containing saturation dynamics, can be constructed to

assess the presence of saturation in the experimental data.

1.5 The general framework of the colour dipole

picture

Figure 1.9: The colour dipole model for γ∗ + p → γ∗ + p. Figure taken from [9].

Having discussed how non-linear effects can tame the growth of the gluon density

and how the damping of the growth of the gluon density can be transformed into

a damping of the growth of the dipole cross-section, we shall now describe the

process of deep inelastic scattering in the colour dipole framework and derive the

γ∗P reaction cross-section as a function of dipole cross-section. The damping of
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the growth of the dipole cross-section will then tame the growth of the γ∗P total

cross-section predicted by the DGLAP and BFKL equations.

The essential idea of the colour dipole model is that photon-hadron interactions

at high energies can be described by the following mechanism (illustrated in Figure

1.9): In the rest frame of the hadron, the incoming virtual photon undergoes a

fluctuation into virtual partonic or hadronic states a “long” time (∼ 1/(mx)) before

the interaction with the hadron, and these then scatter coherently from the proton

in a time which is short in comparison to ∼ 1/(mx).

In the following, the hadronic fluctuation of photon γ∗ → qq̄ is first discussed, and

then the dipole cross-section (σqq̄+P→X) is introduced using the Optical Theorem.

Finally, the total deep inelastic scattering cross-section (σγ∗+P→X) is written as a

function of the dipole cross-section.

1.5.1 The hadronic fluctuation of photon: γ∗ → qq̄

The hadronic and partonic states generated by fluctuations of a photon are assumed

to be dominated by colour singlet quark-antiquark pairs, which are characterized by

their transverse size r and the fraction z of the light-cone momentum of the pair

carried by the quark. Such states are called “colour dipoles” and are assumed to

be eigenstates of diffraction, that is, they scatter without change of r and z in the

diffractive limit. Before describing these states we shall first review the general

expansion of hadronic states.

In the light-cone quantization, a hadronic state |Ψ〉 can be expanded in the form

|Ψ〉 =
∑

n

Ψn |n〉 (1.35)

where Ψn are the light-cone wavefunctions of the hadronic state and each colour sin-

glet partonic state |n〉 is characterized by the transverse momenta ~k⊥i and helicities

λi of the partons, together with their longitudinal momenta k+
i . As the diffractive

eigenstates are those where the partons have fixed impact parameters, it will be

convenient to proceed our discussion in a mixed configuration-momentum space de-

scription, where the transverse momenta ~k⊥i are transformed into their conjugate
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transverse position vectors ~bi and the light-cone energies k+
i are transformed into

the fractional light-cone energies xi:

~k⊥i ∼ ~bi k+
i ∼ xi (1.36)

where

xi =
k+

i

P+
P+ =

∑

i

k+
i

∑

i

xi = 1 (1.37)

and

P⊥ =
∑

i

~k⊥i (1.38)

where P+ is the light-cone energy and P⊥ is the transverse momentum of the hadron

state. Thus, the expansion (1.35) can be written as

|Ψ〉 =
∑

i

Ψ(xi,~bi, λi) |xi,~bi, λi〉 . (1.39)

Thus, the strongly interacting fluctuations of the photon can be decomposed into

a superposition of the Fock states in the quark-gluon basis:

|γ∗〉H =
∑

Ψqq̄ |qq̄〉 +
∑

Ψqq̄g |qq̄g〉 + Higher Fock States. (1.40)

As discussed previously, the qq̄ states dominate in the diffractive process. Denoting

the transverse positions of the quark and antiquark by vectors~b1 and ~b2 respectively,

the new impact vector ~b can be defined as

~b = (~b1 +~b2)/2, b = |~b| (1.41)

and the relative transverse position vector

~r = ~b1 −~b2, r = |~r| (1.42)

is introduced, where r is the size or transverse size of the dipole. From equations

(1.39), (1.41) and (1.42), the expansion (1.40) becomes



CHAPTER 1. THEORY AND BACKGROUND 28

|γ∗, λ〉H =
∑

hh̄

∫

dzd2~r Ψγ,λ

h,h̄
(~r, z) |z,~bi, h, h̄〉 + Higher Fock States (1.43)

where λ is the photon helicity and h, h̄ are the helicities of the quark and antiquark

respectively.

1.5.2 The dipole cross-section σqq̄+P→X

Using the Optical Theorem, the dipole cross-section, which is the total cross-section

for scattering a dipole of size r from a proton (qq̄ + P → X), is expressed in terms

of the imaginary part of the forward elastic scattering (qq̄+P → qq̄+P ) amplitude:

σdipole(s, r, z) =
Im A(s, ~r, z, ~P⊥)(s, t = 0)

s

=
Im
∫

d2~bei ~P⊥ ·~b 〈z,~bi, h, h̄|T̂ |z,~bi, h, h̄〉 |P⊥=0

s

(1.44)

where A is the amplitude for elastically scattering a dipole from the proton, ~P⊥ is

the transverse momentum of the outgoing proton, s is the center of mass energy

and t is the energy transferred to the proton. Because, in the diffractive limit, the

dipole states are eigenstates of the scattering operator:

T̂ |z,~bi, h, h̄〉 = τ(~b, s; z, ~r) |z,~bi, h, h̄〉 , (1.45)

the dipole cross section can be written as

σdipole(s, r, z) =

∫

d2~b
Im τ(~b, s; z, ~r)

s
. (1.46)

1.5.3 The reaction cross-section σγ∗+P→X

Again, using the Optical Theorem, the γ∗P reaction cross-section (γ∗ + P → X) is

expressed in terms of the imaginary part of the forward elastic scattering (γ∗ +P →
γ∗ + P ) amplitude:

σL,T = s−1Im 〈γ∗, λ|T̂ |γ∗, λ〉 (s, t = 0). (1.47)
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Inserting the dipole states (1.43) and using expression (1.46) (for convenience we

denote σdipole as simply σ) gives the γ∗P cross-section:

σγ∗p→X
L,T =

∫

dzd2~r|ΨL,T
γ (r, z)|2σ(s, r, z). (1.48)

Because the reaction cross-section σL,T (γ∗P → X)is connected with the F2 structure

function by

F2(x, Q2) =
Q2

4π2αem
(σL + σT ), (1.49)

F2 can be expressed directly in terms of dipole cross-section σ:

F2(x, Q2) =
4π2αem

Q2

∫

dzd2~r
[

|ΨL
γ (r, z)|2 + |ΨT

γ (r, z)|2
]

σ(s, r, z). (1.50)

1.5.4 The Photon wavefunction

For small r, the light-cone photon wavefunctions are given by the tree level QED

expressions [26]:

|ΨL
γ (r, z)|2 =

6

π2
αem

nf
∑

f=1

e2
fQ

2z2(1 − z)2K2
0(ǫr) (1.51)

|ΨT
γ (r, z)|2 =

3

2π2
αem

nf
∑

f=1

e2
f{[z2 + (1 − z)2]ǫ2K2

1(ǫr) + m2
fK

2
0 (ǫr)} (1.52)

where

ǫ =
√

z(1 − z)Q2 + m2
f (1.53)

and the sum is over all nf quark flavors f and K0(x) and K1(x) = −∂xK0(x) are

modified Bessel functions [29] with the asymptotic behaviors:

K0(x) ≈ (
π

2x
)1/2e−x ≈ K1(x), x → ∞, (1.54)

K0(x) ≈ − log x K1(x) ≈ x−1, x → 0. (1.55)
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The following qualitative features are immediately observed from the above ex-

pressions:

1. At large Q2 and fixed z, it can be seen from (1.54), that the wavefunctions

decrease exponentially with increasing r, i.e.

Ψ(r, z) ∼ exp{−rQ[z(1 − z)]
1
2}

provided Q2z(1 − z) ≫ m2
f . Thus, only small dipoles can contribute unless z

is close to its end-point values 0 or 1. As can be seen from equations (1.51)

and (1.52)

- |ΨL
γ (r, z)| is suppressed as z → 0 or 1.

- |ΨT
γ (r, z)| is not suppressed as z → 0 or 1.

This is why longitudinal photon process are more inherently perturbative.

2. For small Q2, particularly when Q2 = 0 and ǫ = mf , the wavefunctions fall off

as

Ψ(r, z) ∼ exp(−mf r).

Hence, large dipoles (r ≈ m−1
f ) with light quarks can typically contribute.

However, when r > 1 fm, strong forces between quarks start to play an impor-

tant role, leading to confinement. In this region, it is perhaps more appropriate

to use the Generalized Vector Dominance (GVD) models [30].

1.6 The color dipole models

Different phenomenological colour dipole models are characterized by different forms

for the dipole cross-sections. In the following, we will first predict the behavior of the

dipole cross-section for small dipoles using perturbative QCD. This, together with

the observation from above that large dipoles tend to have soft hadronic behavior,

forms the general guidance for constructing dipole models. Then, we will discuss

three particular colour dipole models.
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Properties of the dipole cross-section for small dipoles

At low Bjorken x, the Pqq term in the DGLAP evolution equation derived in section

1.3 is negligible in comparison to the gluon splitting term Pqg, thus the evolution of

F2(x, Q2) can be approximated to be:

∂F2(x, Q2)

∂ ln Q2
≈
∑

q

e2
q

αs

2π

∫ 1

x

dzG(x/z, Q2)Pqg(z) (1.56)

where eq is the electric charge of a quark q (in units of the electron charge) and

G(x, Q2) is the gluon momentum density. Substituting the prediction of F2(x, Q2)

from (1.50), the DGLAP prediction of the dipole cross-section is given by [26]:

σ(s, r) ≈ π2αs

3
r2G(x, A2/r2) (1.57)

where the constant A ≈ 3 is obtained from numerical studies. From this result, we

observe that the dipole cross-section behaves roughly like σ(s, r) → r2 as r → 0.

Thus, at small separations the qq̄ pair appears to have a much reduced cross-section

with partons inside proton. This behavior of the dipole cross-section is called “color

transparency”.

1.6.1 Golec-Biernat-Wüsthoff model

The GW dipole model [7, 31, 32] has the following parametrization form for the

dipole cross-section:

σ = σ0

{

1 − exp

[

− r

2R0(x)

]}

(1.58)

with

R0(x) =
1

Q0

(

xmod

x0

)λ/2

xmod = x
(

1 +
4m2

f

Q2

)

(1.59)

where mf is the quark mass with mf = 0.14 GeV for the light quarks (u,d,s) and

mf = 1.5 GeV for the charm quark, Q0 = 1 GeV. Using a purely perturbative photon

wavefunction, the 3 free parameters x0, σ0 and λ are determined by fitting to F2

structure function data, to be σ0 = 29.12mb, λ = 0.277 and x0 = 0.41 × 10−4. As
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can be seen from (1.58), σ → r2 when r → 0, implying this model does incorporate

“colour transparency”.

Qualitatively, saturation is realized from the scaling of the qq̄ transverse sepa-

ration r in the dipole cross-section by the saturation radius R0(x). Thus, at fixed

r, while r < R0(x), σ will rise rapidly as x decreases until R0(x) becomes smaller

than r (caused by the decreasing of x), whereupon σ will tend to have a much softer

dependence on x.

1.6.2 The CGC model

The CGC model from Iancu, Itakura and Munier [8] aims to embody the theory of

Colour Glass Condensate [33, 34]. The model has the following form:

σ = 2πR2N0

(

rQs

2

)2[γs+ log(2/rQs)
kλ log(1/x)

]

for rQs ≤ 2 (1.60)

= 2πR2{1 − exp[−a log2(brQs)]} for rQs > 2 (1.61)

where the saturation scale is Qs ≡ (x0/x)λ/2 GeV. The coefficients a and b are

uniquely determined by ensuring continuity of the cross-section and its first deriva-

tive at rQs = 2. For rQs < 2 the solution matches that of the leading order BFKL

equation and fixes γs to be 0.63 and k to be 9.9. The coefficient N0 is strongly

correlated to the definition of the saturation scale and it was found that the quality

of fit to F2 data is only weakly dependent upon N0. Thus, for a fixed value of N0,

the parameters: x0, λ and R need to be fixed by a fit to the data.

1.6.3 FS04 Model

This model [10, 35] was based on the hypothesis of two pomerons, which had been

explored in [36]. The cross-section has the form

σ(s, r) = σsoft(s, r) + σhard(s, r) (1.62)

which takes into account the contribution from both ‘soft’ and ‘hard’ pomerons.

The FS04 model actually contains two sub models: the ‘FS04 Regge model’ which
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does not contain the idea of saturation and ‘FS04 saturation model’ which does.

The dipole cross-section has the following form:

σ = AHr2x−λH
m for r < r0 (1.63)

= ASx−λS
m for r > r1 (1.64)

where

xm =
Q2

Q2 + W 2

(

1 +
4m2

Q2

)

. (1.65)

m is the quark mass, which is taken to be fixed at 1.4 GeV for charm quark dipoles

and is a parameter to be fitted for light quark dipoles. AH , AS, λS, λH and r1 are

also parameters to be fitted. The dipole cross-section σ in the intermediate region

r0 ≤ r ≤ r1 is determined by interpolating linearly between the two forms of (1.63)

and (1.64). The difference between FS04 Regge model and FS04 saturation model

comes from the mechanism by which the boundary parameter r0 is determined. If

r0 is a constant, then the parametrization contains no saturation, which is the case

of FS04 Regge model. Alternatively, in the FS04 saturation model r0, is determined

by requiring that the hard component of the cross section is some fixed fraction of

the soft component:

σ(s, r0)/σ(s, r1) = f (1.66)

where f is fixed and r0 is a parameter to be fitted. Thus, as x decreases, r0 will

decrease. At a fixed value of r, the rise of the dipole cross-section will begin to be

be damped as soon as r0 becomes smaller than r. This will give rise to saturation

effects. The predictions of the CGC, GW and FS04 Regge models are shown in

Fig.1.10.

From the above discussion, the characteristics of saturation embodied in colour

dipole models can be summarized as follows: The strong rise with energy of the

dipole cross-section, which holds for small dipoles, pertains only for r < rs(x),

where rs(x) is the saturation radius that decreases monotonically as x decreases.
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1.7 Confront the data

As we have discussed, being able to assess the presence of saturation dynamics

in experimental data is the key to verifying that the incorporation of saturation

dynamics into the theories is the right direction to take for reconciling QCD theory

with experiment. Moreover, it is also important to test the validity of the color

dipole models. Thus, the predictions of the above dipole models are compared with

data and the results are summarized below.

Forshaw and Shaw et al [10–12] have compared the predictions from the various

colour dipole models with the data from deep inelastic scattering (DIS), deeply

virtual Compton scattering (DVCS) and diffractive deep inelastic scattering (DDIS)

processes. They found that the colour dipole models are indeed able to explain the

data very well. However, the results on the presence of saturation effects in the data

are inconclusive. The F2 data suggest the presence of saturation dynamics, while

the data from DVCS and DDIS processes are unable to distinguish between models

which include or exclude saturation.

The key question is: can we, without any parameterization, extract the dipole

cross-section from the data and assess directly the extent to which saturation is

Figure 1.10: The GW model dipole cross-section (left) and the CGC dipole cross-

section (right) is shown at Q2 = 2 GeV 2 (dotted line) and Q2 = 20 GeV 2 (dashed

line). The Q2-independent FS04 Regge model dipole cross-section (solid line) at the

same energy is shown on both graphs. Figure taken from [26].
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present in the data?

The second part of this thesis is devoted to analyzing the nature of this problem,

exploring the methods for extracting the dipole cross-section and identifying the

best way of performing this task.

1.8 Identify the problem

All the physical information needed for extracting, or unfolding, the dipole cross-

section σ from the structure function F2 is contained in equation (1.50), with the

photon light-cone wavefunction |ΨL,T
γ (r, z)|2 well determined. More precisely, be-

cause |ΨL,T
γ (r, z)|2 depends explicitly on Q2, as observed in expressions (1.51) and

(1.52), the dipole cross-section is assumed to be independent of z, thus the equation

(1.50) can be written as

F2(Q
2, x) =

4π2αem

Q2

∫

dzd2~r
[

|ΨL
γ (r, z)|2 + |ΨT

γ (r, z)|2
]

σ(r, x). (1.67)

If we we substitute d2r = 2πrdr and define

G(Q2, r) =

∫ 1

0

dz
8π3αem

Q2
r
[

|ΨL
γ (r, z)|2 + |ΨT

γ (r, z)|2
]

(1.68)

then

F2(x, Q2) =

∫

d~r G(Q2, r) σ(r, x). (1.69)

Notice that because the integration kernel G(Q2, r) doesn’t depend on x, x can be

considered as an external variable. Hence, the integration equation can at some

value of x be written as:

F2(Q
2) =

∫

d~r G(Q2, r) σ(r). (1.70)

We identify this equation as a special class of mathematical equation called a linear

Fredholm integral equation of the first kind with the general form:
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g(y) =

∫

dy K(x, y) f(y). (1.71)

Thus, by performing the above simplification, our physical problem of unfolding σ

from F2 has been transformed into a well-defined mathematical problem.
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The Preparation

According to [37] and [38], to solve the linear Fredholm integral equation numerically,

it needs to be discretized i.e. the integration (1.70) needs to be approximated by

matrix multiplication. At some particular value of Bjorken x we write:

F2(Q
2) =

∫

dr G(Q2, r) σ(r) ∼ b = A × x

where A is a matrix, b and x (this is different from Bjorken x) are column vectors.

The accuracy of this approximation depends on the number of intervals the inte-

gration range has been divided into, which subsequently depends on the number

of columns of the matrix A. However, to be able to solve the matrix equation,

the number of rows need to be larger than the number of columns (the number of

equations need to be more than the number of variables). Thus, how accurately the

integration can be approximated in our case is ultimately determined by the number

of rows in vector b, i.e. how many data points are available.

The structure function F2 is usually measured at a quite limited number (typi-

cally less than 10) of Q2 values for each value of Bjorken x. However to approximate

the integration accurately, hundreds of data points will be needed for each value of

x. To be able to “provide” these data, a parameterization is done for structure

function data in the range of 0.045 ≤ Q2 ≤ 45 GeV 2.

In section 2.1 the discretization of the integration equation (1.70) will be dis-

cussed and then the parameterization of the F2 structure function will be presented

37
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in section 2.2.

2.1 Discretization of the integration equation

The integration equation (1.70) is discretized using the quadrature method [39].

In this method, a quadrature rule with integration nodes (abscissas) t1, . . . , tn and

corresponding weights ω1, . . . , ωn is used to approximate an integral as

∫ 1

0

φ(t)dt ≈
n
∑

j=1

ωjφ(tj). (2.1)

To apply this method to our equation:

F2(Q
2) =

∫

dr G(Q2, r) σ(r)

the range of integration from r1 to rn is divided into n integration nodes with

logarithmic spacing between them, i.e.

ri = exp[ln r1 + r0 × (i − 1)] where r0 = (ln rn − ln r1)/(n − 1) (2.2)

where ri is the ith integration node. The range of variable Q2 is also divided into n

nodes from Q2
1 to Q2

n with logarithmic spacing between them, i.e.

Q2
i = exp[ln Q2

1 + Q2
0 × (i − 1)] where Q2

0 = [ln Q2
n − ln Q2

1]/(n − 1). (2.3)

The integration weight ωi is the spacing between the rth
i and rth

i+1 integration nodes:

ωi = dri→i+1 = ri+1 − ri = exp[ln r1 + r0 × i] − exp[ln r1 + r0 × (i − 1)]. (2.4)

Thus using the quadrature method, our integration equation becomes

F2(Q
2
i ) =

n−1
∑

j=1

G(Q2
i , rj)ωj · σ(rj). (2.5)

This equation can now be written in matrix form:
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b = Ax (2.6)

where

(A)ij = G(Q2
i , rj)ωj (2.7)

x = (σ(r1), σ(r2), . . . , σ(rn)) (2.8)

b = (F2(Q
2
1), F2(Q

2
2), . . . , F2(Q

2
n)) (2.9)

2.1.1 Computing matrix A

The n × n matrix A in equation (2.6) is

(A)ij = G(Q2
i , rj) =

∫ 1

0

dz
8π3αem

Q2
i

rj|Ψ(Q2
i , rj)|2

=

∫ 1

0

dz
8π3αem

Q2
i

rj{|ΨL
γ (rj, z)|2 + |ΨT

γ (rj , z)|2} (2.10)

with

|ΨL
γ (r, z)|2 =

6

π2
αem

nf
∑

f=1

e2
fQ

2z2(1 − z)2K2
0 (ǫr)

|ΨT
γ (r, z)|2 =

3

2π2
αem

nf
∑

f=1

e2
f{[z2 + (1 − z)2]ǫ2K2

1 (ǫr) + m2
fK

2
0(ǫr)}

(A)ij was computed using Matlab [40], with the following choice of parameters:

- r1 = 10−6, rn = 200 in natural units, with n = 1000.

- Q2
1 = 0.28 GeV 2, Q2

n = 45 GeV 2, with n = 1000.

- The quark electric charges ef are 2/3 for up and charm quark, −1/3 for down

and strange quark.

- The quark masses mf are summed over for u,d,s,c quarks with mf = 0.14 GeV

for the light quarks (u,d,s), and mf = 1.4 GeV for the charm quark.
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To show that the discretization is successful, the matrix equation (2.6) was used to

predict the structure function F2, using the FS04 saturation model [10] at Q2 = 4.5,

8.5, 22 and 45 GeV 2 respectively. The result is shown in Fig.2.1.
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Figure 2.1: Comparison of the structure function (red curves) calculated using the

matrix equation (2.6) and the FS04 saturation model, with structure function data

from Zeus [41]. The data does not have x error bars, they are the artifacts from

Matlab’s plotting function.

2.2 Parameterization of structure function data

Our first goal is to find a parametrization for the structure function data, so that its

value and associated error can be predicted at any required values of x and Q2 within

the desired range. This is achieved by minimizing the χ2 of the parameterization

with respect to a set of parameters being fitted. The χ2 is defined as

χ2(α) =

n
∑

i=1,j=1

(F D
2 (xi, Q

2
j) − F P

2 (α, xi, Q
2
j ))

2

e2
ij

(2.11)
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where F D
2 (xi, Q

2
j ) is the structure function data, e2

ij is its corresponding error. α

is the vector of free parameters being fitted and F P
2 (α, xi, Q

2
j) is the parameterized

function that predicts the value of structure function. F P
2 (α, xi, Q

2
j ) was rather

arbitrarily chosen to have the following form:

F P
2 (α, xi, Q

2
j) =

(

Q2

Q2 + µ2

)γ

·xλ0+λ1 lnQ2+λ2 ln2 Q2 · (1 − x)β1 lnQ2+β2 ln2 Q2

· (1 + a x0.2 + b x0.4 + c x0.6 + d x0.8)

(2.12)

where γ, µ, λ0, λ1, λ2, β1, β2, a, b, c, d are the free parameters to be fitted.

The minimization is carried out using the program ‘Minuit’ [42] from the CERN

program library [43]. In the following, we will briefly discuss how Minuit determines

the desired free parameters.

Minuit works such that, by feeding it the structure function data and χ2 as a

function of the free parameters, it minimizes χ2 by varying these free parameters

according to the instructed method. When the minimization process has converged,

it returns the values of the variable parameters at the minimum of χ2, and their

estimated errors.

There are four minimization methods available in Minuit, corresponding to four

different minimizers. The one called ‘Migrad’, which is recommended by the authors

of Minuit and capable of providing reliable information about parameter errors is

used. The other three minimizers are, according to the authors, either “kept in the

program mainly for sentimental reasons” or “[give] no reliable information about

parameter errors”.

The (one standard deviation) parameter errors in Migrad are defined as the

change needed in a parameter to change the χ2 value by one, while keeping all other

N − 1 parameters fixed. They are computed by calculating the error matrix (or

covariance matrix) [44], which is the inverse of the matrix of second derivatives of

the χ2 function (2.11), and then multiplied by one if one standard deviation error is

required, and multiplied by two, if two standard deviation error is required etc. The

square roots of the diagonal elements of this matrix are the calculated parameter

errors, therefore they take into account all the parameter correlations
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Parameters Value Error Parameters Value Error

γ 2.873 × 10−1 1.761 × 10−2 β1 −1.533 3.039 × 10−1

µ 2.334 3.191 × 10−1 a −7.124 3.523 × 10−2

λ0 5.043 × 10−2 1.872 × 10−3 b 3.391 × 101 1.239 × 10−1

λ1 4.029 × 10−2 8.484 × 10−4 c −7.997 × 101 3.560 × 10−1

λ2 −2.647 × 10−4 1.881 × 10−4 d 7.521 × 101 8.488 × 10−1

β1 1.287 × 101 1.287

Table 2.1: The variable parameters obtained at the minimum of the χ2 value.

The minimization technique currently implemented in Migrad is a stable varia-

tion of the Davidon-Fletcher-Powell variable-metric algorithm [45]. It uses its cur-

rent estimate of the covariance matrix to determine the current search direction,

thus the algorithm converges to the correct error matrix as it converges to the func-

tion minimum. A good approximation to the gradient vector at the current best

point is also needed.

The F2 structure function data from Zeus [41] with Q2 from 0.045 GeV 2 to

45 GeV 2 and 180 data points are used in the parameterization. The minimization

process is found to converge, with χ2 ≈ 0.625 per experimental point. The obtained

parameter values with errors are shown in table 2.1.

The prediction of F2(x, Q2) from this parameterization is compared with Zeus

F2 data in Fig.2.2.

2.2.1 Computing the ‘pseudodata’ using the parameteriza-

tion

The vector b in (2.6) corresponding to our pesudodata F2(Q
2) is subsequently com-

puted using the parameterization F P
2 (α, x, Q2). For the remainder of this thesis we

work at only one value of x = 0.0004 and focus upon the unfolding procedure at

that x. Of course future work would also consider unfolding at any x. We consider

Q2 in the range 0.28 GeV 2 < Q2 < 45 GeV 2 (with log spacing).
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Figure 2.2: The parameterization of the structure function data, the black curves

are the predicted structure function F2. The blue curves are their error bands. The

numbers on the graph are the values of Q2. Again the x error bars here are the

artifacts from Matlab’s plotting function.
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The Unfolding

3.1 Understanding the nature of the problem

After the above preparation, matrix A which ‘contains’ the photon light-cone wave-

function, and vector b, which ‘contains’ the pesudodata F2(Q
2) are generated. Now

our problem of solving the integral equation (1.70) had been converted to a problem

of solving the matrix equation (2.6):

b = Ax.

The most immediate method for solving this equation is by inverting the matrix

A, however this leads to a meaningless solution, as will be demonstrated in section

3.1.1. By analyzing the problems of this direct inversion method using a powerful

tool in numerical linear algebra called the singular value decomposition in section

3.1.2, the origins of these problems are identified. Finally, the general strategies for

treating these problems are discussed.

The units of all the variables discussed below are natural units.

3.1.1 The problem with direct unfolding by inverting A

As mentioned above x can naively be computed by inverting the matrix A, i.e.:

x = A−1b. (3.1)

44
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The result is shown in Fig.3.1 and Fig.3.2. To compare, the GW [32] dipole model
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Figure 3.1: The dipole cross-section σ obtained from directly inverting the matrix

A, as a function of dipole size r.
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Figure 3.2: The absolute value of obtained dipole cross-section with y-axis in loga-

rithmic scale as a function of dipole size r.

is shown in Fig.3.3. As can be seen, the details of the dipole cross-section curve
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are dominated by its behavior at r ≈ 200 with amplitude ≈ ±8 × 1033. Thus,

Fig.3.2 with y-axis in logarithmic scale is presented. As can be seen, the value of

the extracted dipole cross section (denoted σ) oscillates wildly over two orders of

magnitude up to r ≈ 20, and then raised dramatically when r approaches the cut-

off value. The extracted dipole cross-section from this method is distinctly different

from the GW model and the solution is apparently meaningless.

To gain insight about the above behavior, the condition number [46] of matrix

A which measures the solution’s sensitivity to perturbations, is computed:

cond(A) ≡ ||A||2 ||A′||2=
s1

sn
(3.2)

where A′ is the pseudoinverse of A, s1 and sn are the largest and smallest singular

values of A (their meaning will be explained in the following sections). In our case,

cond(A) = 2.565 × 1043, this shows the matrix A is apparently ill-conditioned, and

the solution will be extremely sensitive to perturbations. This means that a very

small perturbation in the structure function data b can cause very large variation in

the extracted dipole cross-section x. With such sensitivity to perturbations the solu-
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Figure 3.3: The dipole cross-section from the GW model at Bjorken x = 0.0004, as

function of dipole size r.
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tion obtained above can be completely dominated by errors from the measurements

of b.

To understand the origin of this large condition number, and how this give rise to

the oscillatory and large norm characteristic of our solution, the problem is analyzed

using the singular value decomposition (SVD) method.

3.1.2 The origin of the problem

The SVD [47] of a n × n matrix A is defined as

A = UΣV T =

n
∑

i=1

uisiv
T
i (3.3)

where

UT U = V T V = In

and In is the identity matrix. ui and vi are the column vectors of the n × n or-

thogonal matrices U and V . uisiv
T
i is a matrix generated by the outer product of

a column vector ui and row vector vT
i . Thus, matrix A is decomposed as a sum of

n matrices. The diagonal matrix Σ has nonnegative diagonal elements appearing in

nonincreasing order such that:

s1 ≥ s2 ≥ · · · ≥ sn ≥ 0.

The elements si are called the singular values of A while the vectors ui and vi are

called the left and right singular vectors of A respectively. Geometrically, the SVD

of A provides two sets of orthonormal basis vectors (i.e. the columns of U and V )

such that the matrix A becomes diagonal when transformed into these two bases.

It is related to the eigenvalue decomposition of AT A and AAT in such way that:

AT A = V Σ2V T and AAT = UΣ2UT . (3.4)

Now we are able to write down the explicit expression for the pseudoinverse of A as
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A′ =
A
∑

i=1

vis
−1
i uT

i .

To analyze our problem, the matrix A was decomposed using SVD and the

singular values si as a function of a index i are plotted in Fig.3.4. The right singular

vectors vi at various value of index i are plotted in Fig.3.5. The following properties
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Figure 3.4: The singular value decreases to zero as i increases

of the results are observed:

- The singular values si decay rapidly to zero as i increases.

- The right singular vectors vi tend to be more oscillatory as the index i increases,

thus as si decreases. (This characteristic is possessed by the right singular

vector ui as well)

We identify problems with the above properties as a special class of problem in

mathematics called a discrete ill-posed problem. Some of the most important litera-

ture for treating this problem are [48], [49] and [46]. To interpret these results using

SVD, we notice that following relations can derived from Eq.(3.3):
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Figure 3.5: The frequency of oscillation of the singular vectors increases as index i

increases.
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Avi = siui, ||Avi||2 = si (3.5)

AT ui = sivi, ||ATui||2 = si (3.6)

where i = 1, . . . , n, and ||Avi||2 denotes the two-norm of the vector Avi. The two-

norm of a vector x is defined as:

|| x||2 =

(

n
∑

i=1

|xi|2
)

1
2

=
√

x∗x. (3.7)

It can be seen from these relations that very small singular values si, as observed

in Fig.3.4, imply that there exists certain linear combinations of the columns of A,

characterized by the elements of the right singular vector vi, such that ||Avi||2 = si

is very close to zero. The same holds for ui and rows of A. Thus the fact that many

small singular values (≤ 10−15) are observed for our matrix A implies many columns

of A are almost linearly dependent (actually they are, in a numerical sense [48]).

Thus our problem is underdetermined, and the solution is not unique. Actually it

is more appropriate to state that it is the linear dependencies in columns of A that

are manifested as the existence of many small singular values when subject to SVD.

The effect of small singular values, si, and the origin of extreme sensitivity

to perturbations

We have noticed that as si decreases, the singular vectors ui and vi shown in Fig.3.5

become more and more oscillatory. Consider a mapping Ay of an arbitrary vector

y. Using SVD

y =

n
∑

i=1

(vT
i y)vi Ay =

n
∑

i=1

si(v
T
i y)ui. (3.8)

The first equation shows the vector y is expressed in the basis of vi. As discussed

above, when i increases, the singular value si decreases and the elements of the

singular vector vi have more and more frequent sign changes. Thus, from the second

equation, we observe the projection of y onto the higher frequency components are

more damped in Ay, due to multiplication of smaller si, than the lower-frequency
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components. The inverse problem of computing y from Ay = c, has the opposite

effect, i.e. it amplifies the high-frequency oscillations in c. Specifically, in our

problem, the direct unfolding by inversion can be written as

x = A−1b = V Σ†UT b

=
n
∑

i=1

vis
−1
i uT

i b

=

n
∑

i=1

uT
i b

si
vi. (3.9)

Hence, it is the division by the small singular values si that amplifies the high-

frequency components of b. Consequently, a tiny error in b can be amplified dramat-

ically by these divisions of small singular values. Thus it is the linear dependencies

in the columns of A that are manifested as small singular values, ultimately causing

extreme sensitivity to perturbations.

To summarise, multiplication by a matrix A in an ill posed problem generally

has a “smoothing” effect, and the inverse generally has a“sharpening” effect.

The origin of the oscillatory and large norm characteristic of our solution

In the ideal case, the coefficient
uT

i b

si
in our solution (3.9) should decay gradually to

zero, as a physical dipole cross-section should not be oscillatory, i.e. the coefficient

uT
i b

si
for high frequency components should be small. In fact, the dipole cross-section

is assumed to be a monotonic function of the dipole size r. Therefore, as the singular

values si decay gradually to zero, we would expect that the Fourier coefficient |uT
i b|

decays to zero faster than the singular value si. However as shown in Fig.3.6, it

levels off at about i ' 100. This is because b 6= bexact but b = bexact + e, where

e is the perturbation which takes into account the errors from the measurement

of the F2 structure function, the discretization process, and the rounding errors of

computation. Thus |UT
i b| is actually

uT
i b = uT

i bexact + uT
i e (3.10)
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the first term uT
i bexact characterizes the physical solution and should decay gradually

to zero faster than the singular value si, however the random error in the second

term will not. Consequently the Fourier coefficient uT
i b will decay until the second

term uT
i e becomes dominant compared to uT

i bexact.

Therefore, if we assume the perturbation e is unbiased and uncorrelated1, then

its covariance matrix is given by

σ2
0In

where σ0 is the standard deviation of the error. The expected value of ||e||2 satisfies

ε(||e||22) = nσ2
0 [48]. The expected value of the Fourier coefficient of e can be written

as

ε(||uT
i e||2) = σ0, i = 1, . . . , n. (3.11)

Thus the coefficient |uT
i b| levels off at ≈ σ0. Assuming this happens at i = ib,

then |uT
i b| will be completely dominated by |uT

i e| for i > ib. The error level, σ0,

1This will not strictly be the case for F2, but that doesn’t matter as we are only making a

qualitative argument here
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Figure 3.6: The coefficient UT
i b decreases as i increases. However, it settles at about

10−6 after i ' 100
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also determines how much information about the underlying behavior (bexact) can be

extracted from the given behavior of b. Mathematically, only those SVD components

of the solution for which the error in |uT
i b| does not dominate can be recovered, i.e.

the components of |uT
i b| for i ≤ ib.

3.1.3 Key strategies for solving the problem

To summarize, the main difficulty faced in our problem is that the underdetermined

nature of A, manifest as the existence of many small singular values of matrix A,

caused our solution x to be extremely sensitive to perturbations in b. An important

consequence is that the matrix equation b = Ax should not be solved exactly, as

the solution x will be dominated by the errors in b. Furthermore, to remove the

underdetermined nature and stabilize the solution, appropriate extra information

about the desired solution has to be incorporated into the system. This is the

essence of regularization. Thus, instead of solving

b = Ax

exactly, we solve this equation in a least squares sense

b ∼= Ax.

This is equivalent to minimizing the two-norm of the vector Ax − b defined as

||Ax − b||2

which is sometimes called the residual norm of the solution. To regularize this

problem, in addition to solving

min {||Ax − b||2} (3.12)

we also want to constraint the behavior of x (e.g. smoothness, size). If we denote

the regularized solution as xreg and define Ξ(xreg) = ||Axreg − b||2, there are four

general schemes for regularization [48]:
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- Minimize Ξ(xreg) subject to the constraint that xreg belongs to a specific sub-

set, xreg ∈ Sxreg . e.g. Minimize Ξ(xreg), subject to xreg ≥ 0.

- Minimize Ξ(xreg) subject to the constraint that a measure, ω(xreg), of the

“size” of xreg is less than some specified upper bound δ, i.e. ω(xreg) ≤ δ.

- Minimize ω(xreg) subject to the constraint Ξ(xreg) ≤ α.

- Minimize a linear combination of Ξ2(xreg) and ω2(xreg):

min{Ξ2(xreg) + λ2ω2(xreg)} (3.13)

where α, δ and λ are regularization parameters, and the function ω is often referred

to as the ‘discrete smoothing norm’. The last scheme is called Tikhonov regulariza-

tion, when the ω(xreg) has the explicit form:

ω(xreg) = ||L x||2 (3.14)

this often measures the smoothness of the solution, the matrix L will be defined

shortly. The requirement that the regularized solution be smooth can be translated

into the requirement that the total squared derivative (of some order) be small. For

example, the total squared first derivative can be calculated as

D1 =
n−1
∑

i=1

(xi − xi+1)
2 (3.15)

and in the case of second derivative:

D2 =
n−1
∑

i=2

[(xi+1 − xi) − (xi − xi−1)]
2. (3.16)

Thus the matrix L is typically a matrix approximation of the derivative operator of

x, e.g. a 2nd derivative operator can be approximated by the following matrix:
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L =





























−1 + ξ 1 0 0 . . .

1 −2 + ξ 1 0 0 . . .

0 1 −2 + ξ 1 0 0 . . .
...

...
...

...
. . .

. . .
. . .

. . . 1 −2 + ξ 1

. . . 1 −1 + ξ





























where L is a banded matrix with full rank. To avoid degeneracy (i.e. every column

and every row sums up to zero) and enable inversion of L, a number ξ, is added to

every diagonal component. ξ is chosen such that it is large enough to enable the

inversion, but small enough so that L should be a good approximation of the second

derivative operator. Its value is chosen to be 0.0001 as recommended in [50]. Matrix

L can also be an identity matrix In, in which case, ||L x||2 measures the two-norm

or the “size” of x.

From the above discussion, we observe that the fourth scheme, the Tikhonov

regularization, is the most suitable scheme for our problem. Because the dipole

cross-section is indeed a smooth function with respect to varying dipole size r, thus

a smoothness constraint incorporated on the regularized solution using Tikhonov

method will be an appropriate physical constraint.

3.2 Regularization methods

In the following, Tikhonov regularization will be discussed in detail, and a brief

survey of unfolding methods used in high energy physics will be presented in section

3.2.2

3.2.1 Tikhonov Regularization

Tikhonov regularization [51] as briefly discussed above is a type of direct (as op-

posed to iterative) regularization method. The key idea is to impose a smoothness

constraint on the desired solution in the form of the discrete smoothing norm ||Lx||2,
in order to damp the oscillatory behavior of the solution. It has the general form:
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min{||Ax − b||22 + λ2||Lx||2} (3.17)

where λ is the regularization parameter that controls how important is the smooth-

ness of the regularized solution xreg, relative to satisfying the least squares equation

Ax ∼= b. How to choose λ is a very important issue that is going to be discussed in

later sections.

To solve (3.17) numerically, it needs to be first transformed into the standard

form.

Transformation to standard form

If the matrix L in the discrete smoothing norm ω(x) = ||Lx||2 is the identity matrix

In, then the regularization problem is said to be in standard form. The transforma-

tion is done by first writing the Tikhonov regularization in the following form:

min







∣

∣

∣

∣

∣

∣

∣

∣





A

λL



x −





b

0





∣

∣

∣

∣

∣

∣

∣

∣

2

2







hence

min







∣

∣

∣

∣

∣

∣

∣

∣





AL−1

λ



Lx −





b

0





∣

∣

∣

∣

∣

∣

∣

∣

2

2







finally

min







∣

∣

∣

∣

∣

∣

∣

∣





Â

λ



 x̂ −





b

0





∣

∣

∣

∣

∣

∣

∣

∣

2

2







where

x = L−1x̂ A = ÂL (3.18)

thus Tikhonov regularization in standard form is obtained:

min{||Âx̂ − b||22 + λ2||x̂||22} (3.19)
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From the above, our problem has been transformed into the problem of solving for

x̂, which is the vector of second derivative of x. Thus our problem will be divided

into two steps, first find the regularized the solution x̂ and then transform it back

to x.

Solving Tikhonov regularization using SVD of A

If we apply SVD to Â, the matrix equation Âx̂ = b becomes

USV T x̂ = b

SV T x̂ = UT b. (3.20)

Hence minimizing the residual norm

||Âx̂ − b||22

is equivalent to minimizing the norm

||SV T x̂ − UT b||22.

Thus Tikhonov regularization can be written as:

min{||SV T x̂ − UT b||22 + λ2||x̂||22}. (3.21)

Writing the square of 2-norms in the form of an inner product gives

min{(SV T x̂ − UT b)T (SV T x̂ − UT b) + λ2x̂T x̂}. (3.22)

The x̂ in the second term can be written in the column basis vi of V as

x̂ =

n
∑

i=1

(vT
i x̂)vi (3.23)

and because S is a diagonal matrix, (3.22) becomes

min{
n
∑

i=1

(siv
T
i x̂ − uT

i b)2 + λ2[(vT
i x̂)vi]

2}. (3.24)
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Expanding the first and second terms gives

min{
n
∑

i=1

s2
i (u

T
i b)2 + s2

i (v
T
i x̂)2 − 2si(v

T
i x̂)(uT

i b) + λ2(vT
i x̂)2(vT

i vi)}. (3.25)

Notice that vT
i vi = 1 as V is an orthogonal matrix. To find the solution x̂ that

minimizes the function in the bracket, we set the first derivative of the function

with respect to vT
i x equal to 0 which gives

n
∑

i=1

2s2
i (v

T
i x̂) − 2si(u

T
i b) + 2λ2(vT

i x̂) = 0. (3.26)

Combining the vT
i x̂ terms gives

n
∑

i=1

(vT
i x̂)(s2

i + λ2) =

n
∑

i=1

si(u
T
i b) (3.27)

hence
n
∑

i=1

vT
i x̂ =

n
∑

i=1

si

s2
i + λ2

uT
i b. (3.28)

Finally

x̂ =

n
∑

i=1

si

s2
i + λ2

uT
i b vi

=
n
∑

i=1

s2
i

s2
i + λ2

uT
i b

si

vi

=

n
∑

i=1

fi
uT

i b

si
vi (3.29)

where

xreg = L−1x̂ (3.30)

is the solution to Tikhonov regularization. The fi are called the filter factors and

will be discussed shortly. The regularized solution can also be written in matrix

form:

xreg = L−1V ΘΣ†UT b (3.31)

where Θ is a n × n diagonal matrix: Θ = F = diag(fi).
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Filter factors

0 100 200 300 400 500 600 700 800 900 1000
10

−20

10
−15

10
−10

10
−5

10
0

10
5

index i

uT i
 a

nd
 s

i

Figure 3.7: The Fourier coefficients |UT
i b| (red solid curve) and the singular values

si (blue solid curve) as a function of index i. The y-axis is in logarithmic scale

From the above, the regularized solution can be explicitly written as

xreg = L−1x̂ = L−1
n
∑

i=1

fi
uT

i b

si

. (3.32)

The Fourier coefficients |uT
i b| and the singular values si in the solution of x̂, are

plotted in Fig.3.7, which shows the characteristics of an ill-posed problem. The

coefficients |uT
i b| of the solution are completely dominated by errors after a certain

index i > ib, as discussed in section 3.1.2. Thus the regularization of a discrete ill-

posed problem is actually a matter of filtering out or damping the erroneous SVD

components and extract the significant ones. Notice that the filter factors satisfy

fi =
s2

i

s2
i + λ2

{

fi ≈ 1 for λ < si

fi ≪ 1 for λ > si

(3.33)

which is just designed to effectively filter, or damp, the SVD components for which

si < λ.
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3.2.2 A survey of unfolding methods used in high energy

physics

The following four unfolding papers [50, 52–54], in the field of high energy physics

are studied, the result will be summarized below.

In the discussion of the first two papers, the problem to be solved has the identical

form to our problem:

y = Ax

where y is the measured distribution in the experiment, A represents the detector’s

response matrix and x is the true distribution which we want to extract.

Höcker and Kartvelishvili [50], took the following form of the expression to be

minimized:

(Ax − b)T (Ax − b) + τ · (Cx)T Cx (3.34)

which is very similar to our expression (3.22). Here, the matrix C is the second

derivative matrix (3.1.3). The term (Cx)T Cx, measures the squared sum of the

second derivative quantifying the smoothness of the extracted true distribution.

The solution is given by

xτ = C−1
n
∑

i=1

s2
i

s2
i + τ

uT
i b

si

vi (3.35)

which has exactly the same form as (3.29), except that in our case x̂ was converted

to x in a later step by multiplying L−1. They proposed to choose the regularization

parameter as τ = sib , that is, the singular value at which the coefficient |uT
i b| becomes

dominated by error. This will effectively damp the singular components for which

i > ib. As can be see, the method used in this paper is Tikhonov regularization with

exactly the same form as we derived ealier.

In Blobel’s approach [53], the expression

F (x) = −log L(x, y, A) + τ ·CB(x) (3.36)

is minimized. Here τ is the regularization parameter, −log L(x, y, A) is the negative

logarithm of the total likelihood function with respect to the elements xj of vector
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x. If the measured data y obeys the Poisson distribution, −log L(x, y, A) takes the

following form:

−log L(x, y, A) =
n
∑

i=1

(ŷi − y · ln ŷi) (3.37)

where

ŷi =

m
∑

j=1

aijxj . (3.38)

ŷ is the vector of expected value of the measured distribution and aij is the matrix

element of A. The function CB(x) measures the smoothness of the vector x and is

the sum of the squared second derivative of x, which has the following form

CB(x) = xT CBx. (3.39)

Together with equation (3.34), we identify that matrix CB is actually the matrix

CT C where C is the matrix (3.1.3). The solution to (3.36) is given by

(xj)reg =

(

1

1 + τ ·Sj

)

(xj)unreg (3.40)

where Sj is the eigenvalue of the transformed2 matrix C, Sj has the characteristic

that it decays gradually to zero as j increases, like the singular values. (xj)unreg is

the solution without regularization, i.e. the solution obtained by purely minimizing

the negative logarithm of the total likelihood function. The factors between the

regularized and unregularized solutions are called ‘fixing factors’ and they act like

filter factors. The regularization parameter is chosen as follows:

ndf =
m
∑

j=1

(

1

1 + τ ·Sjj

)

(3.41)

is the sum of all fixing factors called the ‘effective degrees of freedom’. Blobel

argues ndf should be equal to, or larger than, the number of significant terms, by

which he means the terms that are not dominated by errors, i.e. ndf ≥ ib. Thus the

contribution from terms with large errors will be damped by the fixing factors. Thus,

again Tikhonov’s method is used, where −log L(x, y, A) is similar to our residual

2please see [53] for details of the transformations
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norm ||Ax − b||2, and CB(x) = xT CBx represents exactly our discrete smoothing

norm.

In Cowan’s paper [54], the problem to be solved, takes the following form:

ν = Rµ

where ν is the measured distribution in the experiment, R represents the detector’s

response matrix and µ is the true distribution. The expression to be minimized is

Φ(µ) = α ln L(µ) + S(µ) (3.42)

where α is the regularization parameter, L is the log likelihood function as discussed

previously, and S(µ) which measures the smoothness of the vector µ, is the sum of

the squared second derivative of µ, this is similar to the function CB(x) in Blobel’s

paper. Cowan presented two methods for choosing the regularization parameter,

one of them based on the estimation of the mean squared error averaged over the

elements of the measured data, the other based on the calculation of the bias of

the maximum likelihood estimator. As can be seen Cowan also used the Tikhonov’s

method. Furthermore, an iterative method proposed by D.Agostini [55] was also

discussed in Cowan’s paper.

In Barlow’s paper [52], Tikhonov regularization is once again advocated. How-

ever, there is no advice on choosing the regularization parameter. Rather, another

iterative method, the maximum Entropy method, is discussed in detail. This method

is also discussed in [56]. An algorithm for implementing this method is available

at [57].

As can be seen, all four papers have promoted Tikhonov regularization, however

they each advocate different strategies for choosing the regularization parameter.

3.3 How regularization affects the solution

From the above brief review, we observe that Tikhonov regularization is a very

popular method, and in section 3.2.1, we have derived its regularized solution, and
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discussed the properties of filter factors. In the following, we will derive the error of

the regularized solution and subsequently present its covariance matrix. After that,

the most important graphical tool for analyzing regularization: the L-curve, will be

discussed.

3.3.1 The Resolution matrix

The resolution matrix is an important tool, that characterizes the error from regu-

larization. To derive it, we define the matrix of regularized inverse, A#, and use it

to write the regularized solution as:

xreg = A#b. (3.43)

Thus from (3.31), the matrix A# can be written as

A# = L−1V FΣ†UT . (3.44)

Now the n × n resolution matrix ν can be defined as

ν = A#A = L−1V FV T L. (3.45)

Thus ν is symmetric. It quantifies the smoothing of the exact solution by the

particular regularization method in the following way If

b = bexact + e = Axexact + e (3.46)

then

xreg = A#b = νxexact + A#e (3.47)

thus

xexact − xreg = (In − ν)xexact − A#e (3.48)

where the term νxexact in (3.47) is the regularized or “smoothed” version of the exact

solution xexact, while the second term A#e is the contribution from the perturbation

in b to xreg. Thus (In − ν)xexact is the pure regularization error in xreg, which

is characterized by the deviation of ν from In. In essence, ν describes how well
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the exact solution xexact, in the noise-free case, is approximated by the regularized

solution A#bexact.

Hansen [58] studied the upper bound of the pure regularization error of Tikhonov

regularization. He proved mathematically that, for problems (e.g. our dipole cross-

section) whose Fourier coefficient |uT
i b|, in the absence of perturbation error, decay

faster than the singular values si, there exist an appropriate regularization param-

eter λ, whose corresponding solution is guaranteed to have approximately the same

properties as the exact solution.

The covariance matrix of the solution

In the statistical framework [59], if CCT (C = σ0Im)) is the covariance matrix

for measurements, then the covariance matrix for xreg is given by Cov(xreg) =

A#CCT (A#)T [48]:

Cov(xreg) = σ2
0L

−1V F 2(Σ†)2V T L. (3.49)

This expression shows that the error in the regularized solution depends explicitly

on filter factors in a way that more damping, or filtering (small fi), corresponds to

decreasing of the error in the regularized solution.

3.3.2 L-curve analysis

The most important graphical tool for analysis of regularization of discrete ill-posed

problems is the so-called L-curve which is a plot of the discrete smoothing norm

ω(xreg), i.e. ||Lxreg||2 of the regularized solution versus the corresponding residual

norm ||Axreg − b||2 for all valid regularization parameters (e.g. λ).

A typical L-curve is plotted on a log-log scale in Fig.3.8. As can be seen there is a

distinct corner separating the vertical and horizontal parts, the residual norm ||Ax−
b|| and the smoothing norm ||Lx|| are monotonic functions of the regularization

parameter λ, such that as λ increases, ||Ax − b|| always increases and ||Lx|| always

decreases. Thus, the L-curve displays the ‘trade off’ between minimizing these two

quantities. This demonstrates the questions at the heart of regularization, i.e. how
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much regularization does our problem need? And ultimately, how accurately can a

regularized solution approximate the exact solution? The first question concerning

how to choose the regularization parameter λ will be discussed in detail in section 3.4.

Here we will present a qualitative analysis of the second question: How accurately

xreg approximates the exact solution. This can be quantified by using (3.47) and

(3.48). We obtain:

xexact − xreg = (xexact − A#bexact) − A#e (3.50)

=

n
∑

i=1

(1 − fi)
uT

i bexact

si
vi −

n
∑

i=1

fi
uT

i e

si
vi (3.51)

=

n
∑

i=1

(

1 − s2
i

s2
i + λ2

)

uT
i bexact

si
vi −

n
∑

i=1

s2
i

s2
i + λ2

uT
i e

si
vi. (3.52)

As can be seen, the regularization parameter λ is the key factor affecting the accuracy

of the regularized solution. Qualitatively, in the limiting case when λ is very small,

which corresponds to very little regularization, filter factors fi ≈ 1 for most SVD

components, and the error xexact−xreg is dominated by the perturbation error A#e.

This situation is called ‘undersmooth’, and normally corresponds to the part of the

Figure 3.8: A typical L-curve in log-log scale
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L-curve to the left of the corner. When λ is very large, which corresponds to a large

amount of regularization and fi ≪ 1 for most SVD components, in which case the

error xexact − xreg is dominated by the regularization error xexact − A#bexact. This

is called ‘oversmooth’, and corresponds to the part of the L-curve to the right of

the corner. The L-curve method for choosing the regularization parameter will be

discussed further in section 3.4.3.

3.4 Regularization parameters

As discussed above, choosing the most appropriate regularization parameter λ is

crucial for obtaining an accurate regularized solution. From a mathematical point

of view, different methods of choosing the regularization parameter λ can be ana-

lyzed by studying how fast the regularized solutions converge to the “true” solution

as the error in the measurement b tends to zero, the methods that produce faster

convergence being desired. This approach will not be presented here, however we

refer the reader to the literature [60]. Alternatively, we will present two practical

approaches, one called the discrepancy principle, which chooses λ based on the esti-

mation of the error norm ||e||2 and the other based on the L-curve analysis presented

in the previous section. Before we start discussing these parameter choice methods,

we want to demonstrate the characteristic of the solution for various regularization

parameters λ.

3.4.1 The regularization parameter dependence of the solu-

tion

To show how the extracted dipole cross-section and its predicted structure function

change with regularization parameter we present two figures, each showing the ex-

tracted dipole cross-section with a particular range of regularization parameter λ.

We also show their corresponding two tables with the specific values of λ and the

χ2 per degrees of freedom for their predicted F2 structure function. Note that for

small enough values of λ the χ2 per point can be very small. This is mainly because
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λ χ2/dof λ χ2/dof λ χ2/dof

2 × 10−5 1.459 × 10−7 3.2 × 10−4 3.912 × 10−6 5.12 × 10−3 1.28 × 10−4

4 × 10−5 3.174 × 10−7 6.4 × 10−4 9.324 × 10−6 1.024 × 10−2 3.36 × 10−4

8 × 10−5 7.265 × 10−7 1.28 × 10−3 2.119 × 10−5 2.048 × 10−2 8.403 × 10−4

1.6 × 10−4 1.733 × 10−6 2.56 × 10−3 5.255 × 10−5 4.096 × 10−2 1.953 × 10−3

Table 3.1: The value of regularization parameter λ and the corresponding χ2 per

degree of freedom for Fig.3.9.

the data are not real data but pseudo-data. A more realistic and important devel-

opment of this analysis would be to move the central value of the pseudo-data by a

random amount in a manner consistent with the known error. This would not only

stop the χ2 from becoming too small, it would also provide an important test of the

robustness of our unfolding. In the next few sections we will discuss suggested ways

to fix λ.
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Figure 3.9: The extracted dipole cross-section for “relatively small” values of reg-

ularization parameters λ, their specific value is shown in table 3.1. The maximum

value of the dipole cross-section decreases as λ increases.
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Figure 3.10: The extracted dipole cross-section for “relatively large” values of reg-

ularization parameters λ, their specific value is shown in table 3.2. The maximum

value of the dipole cross-section decreases as λ increases.

λ χ2/dof λ χ2/dof λ χ2/dof

2 × 10−2 8.168 × 10−4 3.2 × 10−1 1.831 × 10−2 5.12 5.609 × 10−1

4 × 10−2 1.895 × 10−3 6.4 × 10−1 3.683 × 10−2 1.024 × 101 1.927

8 × 10−2 4.489 × 10−3 1.28 7.980 × 10−2 2.048 × 101 5.228

1.6 × 10−1 8.978 × 10−3 2.56 2.066 × 10−1 4.096 × 101 9.236

Table 3.2: The value of regularization parameter λ and the corresponding χ2 per

degree of freedom for Fig.3.10
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3.4.2 The discrepancy principle

As discussed in section 3.3.2, the residual norm ||Ax − b|| and the smoothing norm

||Lx|| are monotonic functions of the regularization parameter λ. Thus we can fix λ

by fixing these residual norms, and this is the idea behind the discrepancy principle.

In 1966, Morozov [61] proposed that when a good estimate of ||e||2 is available, and

the relation Axexact = bexact is exact, then the regularization parameter λ can be

chosen such that the residual norm is equal to an upper bound δe for ||e||2:

||Axλ − b||2 = δe where ||e||2 ≤ δe. (3.53)

However, studies [62] and [63], show that this method often leads an oversmooth

solution. To counter this, a compensated discrepancy principle [64] is introduced,

which compensates for the fact that although σ0

√
n (where n is number of entries)

is a valid estimate for ||e||2 neither σ0

√
n nor ||e||2 may be a valid estimate of the

residual norm ||Axλ − b||. It takes the following form:

||Axreg − b|| = (||e||22 − σ2
0Trace(AA#))

1
2

= (σ2
0m − σ2

0trace(AA#))
1
2

(3.54)

A# is defined in equation (3.44).

3.4.3 The L-curve method

As discussed in section 3.3.2, the regularization parameter λ controls the relative

contribution to xreg from the measurement error and the regularization error. The

key idea behind the L-curve method is that a regularization parameter should be

chosen so that the errors from these two sources are well balanced. Hansen [65] found

that this optimal regularization parameter is not far from the the regularization

parameter that corresponds to the L-curve’s corner. Thus a good approximation to

the optimal regularization parameter can be obtained by computing the corner of

the L-curve. Mathematically, it is defined as the point on the curve [48]:
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(ζ(λ), µ(λ)) = (log||Axreg − b||, log ω(xreg)) (3.55)

that has maximum curvature, where the curvature k is defined as

k(λ) =
ζ ′µ′′ − ζ ′′µ′

[(ζ ′)2 + (µ′)2)]
3
2

. (3.56)

Thus the regularization λ is chosen to maximize the curvature of the L-curve.

In addition to the methods discussed above, there are other important methods

such as the ‘generalized cross-validation method’ [66], and the ‘quasi-optimality

criterion’ [67], due to limited time we do not discuss these here.

From these discussions, we can see that one advantage of Tikhonov regularization

is that many other regularization schemes can be realized by choosing the regulariza-

tion parameter with different philosophies. For example, the second regularization

scheme is equivalent to choose the largest λ such that ||Lx||2 ≤ δ, and the third

scheme can be realized as choosing the smallest λ, such that Ξ(xreg) ≤ α.

3.4.4 Choosing λ: Blobel’s method
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Figure 3.11: The Fourier coefficient |uT
i b| is plotted against the index i
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Blobel [53], proposed a method for choosing λ based on a good estimation of

the number of significant terms. He explicitly used the plot of |uT
i b| against index

i as his guidance. It is stated that “it is clearly seen on the plot, as the value of i

where the behavior di (|uT
i b|) changes from exponentially falling to a constant”. To

be able to observe this behavior clearly, figure 3.7 is plotted for index i from 1 to

50 in Fig.3.11. As can be seen, the Fourier coefficient stops falling exponentially for

i > 13, which corresponds to following value of λ

λ = s13 ≈ 8.375 × 10−6.

The result computed by matlab based on this estimation is shown in Fig.3.12. As can

be seen, the solution still possess a large norm and oscillating characteristic, which

corresponds to a typical undersmooth solution, and implies that the regularization

parameter is too small.
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Figure 3.12: The extracted dipole cross-section (red curve) based on Blobel’s pa-

rameter choice method at Bjorken x = 0.0004.
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3.4.5 Choosing λ: The discrepancy principle

Based on the estimation of the error norm ||e||2 = 1.863, the regularization param-

eter is chosen to satisfy equation (3.53):

||Axλ − b||2 = δe where ||e||2 ≤ δe.

This equation is identical to a least squares problem with a quadratic constraint.

Algorithms available for solving this are [57, 68, 69]. The matlab function ’discrep’

in [57] is used, which computes the regularization parameter λ using the singular

value decomposed matrices U , Σ and V of A together with the value of error norm

||e||2 and structure function data F2 in vector b. λ is computed to be

λ ≈ 22.41.

The extracted dipole cross-section is computed using Matlab and is shown in Fig.3.13,

also shown is the GW dipole model which has a χ2/dof of ≈ 1.5. As can be seen the
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Figure 3.13: The extracted dipole cross-section (red solid curve) based on the dis-

crepancy principle at Bjorken x = 0.0004. The GW model (black solid curve), is

shown for comparison at the same Bjorken x.
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solution still possess oscillatory behavior, but with much smaller frequency and has

much smaller norm than the result obtained from Blobel’s method. However, there

are significant negative components in the solution.
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Figure 3.14: The extracted dipole cross-section (red solid curve) based on the com-

pensated discrepancy principle at Bjorken x = 0.0004. The GW model (black solid

curve), is shown for comparison at the same Bjorken x.

Using the compensated discrepancy principle where the regularization parameter

is chosen to satisfy equation (3.54):

||Axreg − b|| = (||e||22 − σ2
0trace(AA#))

1
2

the regularization parameter is computed using matlab function ‘discrep’ in [57] to

be

λ ≈ 10.074.

The result of regularization based on this estimation is shown in Fig.3.14. As can

be seen, the solution is a lot more stable than previous solutions, with only mild

oscillatory behavior, and the smallest negative components of all obtained solutions.
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3.4.6 Choosing λ: The L-curve method

The regularization parameter that minimizes the curvature of the L-curve can be

computed using the matlab function ‘lcorner’ in [57], which computes the regular-

ization parameter λ using the singular value decomposed matrices U , Σ and V of

A together with the structure function data F2 in b. However, Fig.3.15 illustrates

that the point of maximum curvature is not clearly defined for our problem and we

therefore do not use the L-curve method. Vogel has done a comprehensive analysis

on the possible cause of failure for L-curve method in [70].

3.4.7 Choosing λ: The physical choice

As can be seen, all the solutions obtained above, regardless of parameter choice

methods, yield negative components in the solution, this is partly due to the oscil-

latory nature of the solution. Based on the fact that the dipole cross-section must

be positive, a method can be devised for choosing the regularization parameter λ
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Figure 3.15: The L-curve is plotted on a log-log scale, formally the corner of this

L-curve is at the intersection of the two red lines, and the numbers on the curve are

the values of the regularization parameters λ.
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such that it minimizes the sum of the negative components in the solution:

min =
l
∑

j=1

−xj where xj < 0 (3.57)

A vector of 100, 000 entries was computed with each entry containing the sum of

the negative components of x corresponding to λ = 0.001, 0.002, . . . , 99.999, 100

respectively. We only computed the λ > 0.001 and λ < 100, because for λ < 10.1,

the sum of negative components was observed to increase as λ becomes smaller,

and for λ > 10.1, the sum of negative components was observed to increase as λ

becomes larger. The regularization parameter λ which corresponds to smallest sum

of negative component is then obtained to be

λ = 10.1.

The extracted dipole cross-section corresponding to such a choice of parameter is

shown in Fig.3.16. As can be seen the solution is similar to that obtained from the

compensated discrepancy principle.
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Figure 3.16: The extracted dipole cross-section (red solid curve) based on the phys-

ical constraint for choosing λ, at the Bjorken x = 0.0004. The GW model (black

solid curve), is shown for comparison at the same Bjorken x.



CHAPTER 3. THE UNFOLDING 76

3.4.8 Discussion

As can be seen from the above, the solutions are dramatically different for different

regularization parameters λ, and solutions obtained from the compensated discrep-

ancy principle and the physical choice are closest to a physical dipole cross-section.

There are clearly two undesirable features in our regularized solutions. Firstly,

all solutions obtained, regardless of parameter choice method, have negative compo-

nents whereas the physical dipole cross-section should be strictly positive. Secondly,

the solution usually possesses a mild oscillatory pattern, whereas the physical dipole

cross section should probably be a monotonic function with increasing dipole size r.

Moreover, it is likely that the first problem of negativity of the solution is caused by

its oscillatory behavior. Thus to extract the dipole cross-section more accurately, we

propose to incorporate another constraint on the solution, namely that the extracted

dipole cross-section should be a monotonic function of dipole size r. Consequently,

our problem now becomes to solve

min{||Ax − b||22 + λ2||Lx||2} (3.58)

subject to

Gx ≥ 0 (3.59)

where the (n − 1)× n matrix G, is the matrix approximation to the first derivative

operator:

G =





























−1 + ξ 1 0 0 . . .

0 −1 + ξ 1 0 . . .

0 0 −1 + ξ 1 . . .
...

...
...

...
. . .

. . . −1 + ξ 1 0

. . . −1 + ξ 1





























G is a banded matrix with full row rank. And the number ξ (with typical value

ξ ≈ 0.0001) is added to the diagonal elements, for the same reason as in the case of L.

We identify this problem as belonging to a special class of problems in mathematics
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called solving (regularized) least squares problems with linear inequality constraints.

Two of the most important literatures for treating this problem are [71] and [72].

3.5 Incorporating the “monotonicity” constraint

3.5.1 Method

We have surveyed the methods [73–76] for solving our new problem, and found

that [74] only considered the case where the matrix A in equation (3.58) is of full

rank. The algorithm described in [73] is not completely general in the sense that it

assumed the matrix G in equation (3.59) to have full rank. The method described

in [76] though is a general iterative method that can be applied to situations where

A and G are both rank-deficient, however it requires a prior input of a “guess” of the

extracted dipole cross-section. Thus, we choose to use the method by Haskell and

Hanson [75], which specializes in solving ill-conditioned problems (where A and G

can be rank deficient), and which does not require any prior input of the solution. It

solves the linear least squares problem with both equality and inequality constraints

(LSEI) of the following form:

Ex = f, (3.60)

Ãx ∼= b̃, (3.61)

Gx ≥ h. (3.62)

In our case, E = 0, f = 0, as the linear equality constraint is not needed. Equation

(3.61) contains our regularized linear least squares system, with

Ã =





A

λL



 , b̃ =





b

0



 (3.63)

and equation (3.62) corresponds to our equation (3.59), where h = 0 and G is the

matrix described in the last section. It is by this equation that the extracted dipole

cross-section is constrained to increase monotonically as the dipole size, r, increases.

Thus our problem takes the following form:
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Ãx ∼= b̃, (3.64)

Gx ≥ h. (3.65)

The idea behind Haskell and Hanson’s method is that the LSEI problem can be

transformed into another class of problem called the ‘Non-Negativity constrained

Linear least Squares problem with Equality constraints (NNLSE)’ of the following

form:

Ex = f, (3.66)

Ax ∼= b, (3.67)

xi ≥ 0, i = l + 1, . . . , n, 0 ≤ l ≤ n. (3.68)

Hanson and Haskell illustrated three different approaches to this transformation in

their paper. Here one of the methods, which uses slack variables, is illustrated. An

n dimensional vector, w, of nonnegative variables is introduced into the inequality

constraints of (3.62), so that they become equality constraints, Gx−w = h, because

requiring

Gx > h

is equivalent to requiring

Gx − w = h for wi ≥ 0, i = 1, . . . , n.

Thus our problem can now be written as

Ãx ∼= b̃, (3.69)

Gx − w = 0, (3.70)

w ≥ 0. (3.71)

Subsequently this problem can be transformed into the problem of NNLSE:
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Ēx̄ = f̄ , (3.72)

Āx̄ ∼= b̃, (3.73)

w ≥ 0 (3.74)

with the following choices of matrices

Ē ≡ [G : −I], (3.75)

f̄ ≡ [0], (3.76)

Ā ≡ [Ã : 0], (3.77)

x̄ ≡





x

w



 . (3.78)

In [G : −I] and [Ã : 0], the symbol “:” means to augment the two matrices hori-

zontally. I is an (n − 1) × n identity matrix3, Ã is given by equation (3.63). The

problem NNLSE can now be treated by solving the differentially weighted least

squares problem [77]:

min{||Ēx̄ − f̄ ||22 + ǫ||Āx̄ − b̃||22} subject to x̄ ≥ 0. (3.79)

The least squares equations are each weighted by a small parameter ǫ, relative to

the equality constraint.

3.5.2 Result

Firstly, the regularization parameter λ in Ā from Ã needs to be chosen (see Eq.(3.63)).

According to Eldén [78], it is more difficult to choose the regularization parameter

λ when there is a linear inequality constraint, as the mapping of b into x is now

nonlinear. For simplicity, we followed Hanson and Phillips’ approach [79], i.e. we

choose the regularization parameter λ without the linear inequality constraint first,

3All entries of the last column are set to equal to zero
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and then use this λ for the linear constraint case. Thus, we use the regularization

parameter

λ ≈ 10.074

obtained in last section from the compensated discrepancy method. A more sophis-

ticated review for choosing the regularization parameter in the presence of a linear

inequality constraint is available in [80].

The equation (3.79) is solved using the Fortran subroutine DWNNLS [81] (also

available from the Slactec program library [82]), written by Haskell and Hanson,

which computes the solution x̄, using Ā, Ē, f̄ and b̃. It chooses the parameter ǫ to

be

ǫ =

√

10−4η

γ
(3.80)

where γ is

γ =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣





Ē

Ā





∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

|| · || is the subordinate matrix norm of l∞ vector norm [47]. The subordinate matrix

norm of l∞ vector norm for a n × n matrix P is defined as:

||P || = max

1 ≤ i ≤ n,

1 ≤ j ≤ n

(Aij) (3.81)

and η is the machine relative arithmetic precision of the computer performing the

minimization.

The extracted dipole cross-section with both “smoothness” and “monotonicity”

constraints is shown in Fig.3.17. As can be seen, the extracted dipole cross-section

is now strictly positive, and “almost” monotonic (though it can’t be seen clearly

from the graph, the value of dipole cross-section drops from 54.941 to 54.885 as the

dipole size r increases from about 40 to 200). The resulting prediction for the F2

structure function is shown in Fig.3.18.
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Figure 3.17: The extracted dipole cross-section (red solid curve) at Bjorken x =

0.0004, with “smoothness” and “monotonicity” constraint. The GW model (black

solid curve), is shown for comparison at the same Bjorken x.
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Figure 3.18: The predicted F2 structure function from the extracted dipole cross

section (red solid curve) and the F2 pseudodata (blue solid curve) with error (green

solid curve). The prediction from the GW model is also shown (black solid curve).
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To show how the extracted dipole cross-section and its predicted structure func-

tion change with regularization parameter in the linearly constrained case, we again

present a plot of extracted dipole cross-section with a range of regularization pa-

rameter λ. We also show its corresponding table with the specific values of λ and

the χ2 per degrees of freedom for their predicted F2 structure function.

Note that the χ2 values we quote ought not to be taken too seriously sine they

related to the pseudo-data rather than the real data and we have not been partic-

ularly careful to use the pseudo-data only in the regions where there is also actual

data. Of course this is not a problem for this thesis, since its main purpose is to

establish the feasibility of unfolding a dipole cross-section. Future work is needed

to make an unfolding with reliable errors.
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Figure 3.19: The extracted dipole cross-section with both ‘monotonicity’ and

‘smoothness’ constraint for a range of regularization parameters λ. The maximum

value of the dipole cross-section decreases as λ increases.

3.5.3 Discussion

By imposing the “smoothness” and “monotonicity” constraints, we have successfully

extracted a physical dipole cross-section and its prediction of the structure function
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λ χ2/dof λ χ2/dof λ χ2/dof

2 0.14 16 3.252 128 48.34

4 0.373 32 9.871 256 76.7

8 1.172 64 24.68 512 113.4

Table 3.3: The value of regularization parameter λ and their corresponding χ2 per

degree of freedom for Fig.3.19

F2 agrees with the data.

Possible developments of of this project include studying the choice of the reg-

ularization parameter with a linear inequality constraint more accurately, e.g. by

studying the methods available in [80]. Also, the algorithm could be further studied

to determine a covariance matrix of the solution. An alternative iterative algorithm

LSSOL [76] which is strongly recommended by Bjöck [71] might also be applied to

our problem.

The immediate next step is to go on to study the whole F2 data set and extract

the dipole cross-section at different values of x. Our ultimate goal is to assess

if the extracted dipole cross-section σ(r, x) requires saturation as claimed in the

studies [10–12].



Chapter 4

Conclusion

In the first part of this thesis, we reviewed the important experimental results and

theoretical concepts that lead to parton saturation at low Bjorken x. We showed how

the dipole cross-section can be an important tool for describing the deep inelastic

scattering process and studying saturation effects at low x. Then, we briefly reviewed

three recent dipole models, and summarized the results of the comparison of their

predictions with data. Subsequently, we identified the nature of the difficulty in

answering the question: to what extent are saturation dynamics presented in the

data? We discussed the possible extraction of the dipole cross-section without a

prior parameterization as an unbiased way to answer this question. Subsequently,

we identified the integration equation that needs to be solved, or unfolded, in order

to perform this task.

In the second part, we discussed the discretization of this integration equation,

and produced a parameterization of the structure function data, in order to “pro-

duce” enough ‘pseudo’ data, to perform the unfolding.

In the third part, we firstly illustrated a failed attempt of direct unfolding, by

analyzing the results using singular value decomposition (SVD) we identified our

problem as a discrete ill-posed problem. Subsequently, we discussed the general

strategies for solving this problem. Moreover, four papers in high energy physics

discussing unfolding are reviewed and Tikhonov regularization is identified as the

the most appropriate method for solving our problem. We also studied the effect of

84
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regularization and discussed the question: how accurate can a regularized solution

approximate the exact solution. We concluded that the key is to choose the most

appropriate regularization parameter λ. Finally, we unfolded the dipole cross-section

by requiring that it is both “smooth” and “monotonic” with respect to varying dipole

size r. The result shows. A physical dipole cross-section was successfully extracted

and its prediction agrees with data.

We summarize here the most important steps for future work. Firstly, as the

regularization parameter λ holds the key to the accuracy of the extracted dipole

cross-section, it is crucial to study thoroughly all parameter choice methods avail-

able, in order to choose the best method or devise an appropriate method for our

problem. Also how to choose the regularization parameter in the case of linear in-

equality constraints needs to be attacked. Secondly, the Haskell and Hanson [75]

algorithm could be improved, so that the “monotonicity” constraint can be more

strictly incorporated. Finally, to compute the error of the regularized solution ac-

curately, the error from discretization and rounding errors needs to be included.

Moreover the Haskell and Hanson [75] algorithm could be further modified to com-

pute the covariance matrix of the regularized solution taking into account all the

above errors.

Once the dipole cross-section is accurately unfolded, we will be able to directly as-

sess the extent to which the saturation characteristics are presented in our extracted

dipole cross-section, and subsequently be able to make a more definite statement

about the extent to which the saturation dynamics are present in the data. The same

method can also be applied to unfold the dipole cross-section using the diffractive

deep inelastic scattering data [83–85].



References

[1] H. Abramowicz and A. Caldwell, Rev. Mod. Phys. 71, 1275 (1999), hep-

ex/9903037.

[2] L. V. Gribov, E. M. Levin, and M. G. Ryskin, Phys. Rept. 100, 1 (1983).

[3] A. H. Mueller and J.-w. Qiu, Nucl. Phys. B268, 427 (1986).

[4] A. H. Mueller, Nucl. Phys. B335, 115 (1990).

[5] A. H. Mueller, Nucl. Phys. B415, 373 (1994).

[6] J. R. Forshaw, G. Kerley, and G. Shaw, Phys. Rev. D60, 074012 (1999), hep-

ph/9903341.

[7] K. Golec-Biernat and M. Wusthoff, Phys. Rev. D59, 014017 (1999), hep-

ph/9807513.

[8] E. Iancu, K. Itakura, and S. Munier, Phys. Lett. B590, 199 (2004), hep-

ph/0310338.

[9] J. R. Forshaw and G. Shaw, JHEP 12, 052 (2004), hep-ph/0411337.

[10] J. R. Forshaw and G. Shaw, JHEP 12, 052 (2004), hep-ph/0411337.

[11] J. R. Forshaw and G. Shaw, Nucl. Phys. Proc. Suppl. 146, 206 (2005).

[12] J. R. Forshaw, R. Sandapen, and G. Shaw, (2006), hep-ph/0608161.

[13] T. Feldmann, DIS: Theoretical introduction, at Workshop on DIS,

Graduiertenkolleg Basel, 2004.

86



REFERENCES 87

[14] J. D. Bjorken, Phys. Rev. 179, 1547 (1969).

[15] R. P. Feynman, Phys. Rev. Lett. 23, 1415 (1969).

[16] R. Devenish and A. Cooper-Sarkar, Deep Inelastic Scattering (Oxford Univer-

sity Press, Oxford, New York, 2004).

[17] A. Harindranath, (1996), hep-ph/9612244.

[18] R. Venugopalan, (1998), nucl-th/9808023.

[19] J. Silva, “QCD Corrections to the Process e+e− → qq”, Master’s thesis, School

of Physics and Astronomy, University of Manchester, Manchester, UK, 2006.

[20] V. N. Gribov and L. N. Lipatov, Sov. J. Nucl. Phys. 15, 438 (1972).

[21] G. Altarelli and G. Parisi, Nucl. Phys. B126, 298 (1977).

[22] Y. L. Dokshitzer, Sov. Phys. JETP 46, 641 (1977).

[23] R. D. Ball and S. Forte, Phys. Lett. B335, 77 (1994), hep-ph/9405320.

[24] J. R. Forshaw and D. A. Ross, Quantum Chromodynamics and the Pomeron

(Cambridge University Press, Cambridge, UK, 1997).

[25] E. Levin, (2001), hep-ph/0105205.

[26] J. R. Forshaw and G. Shaw, (Cambridge University Press, Cambridge, UK,

2007), chap. Diffraction and Colour Dipoles.

[27] Y. V. Kovchegov, Phys. Rev. D60, 034008 (1999), hep-ph/9901281.

[28] I. Balitsky, Nucl. Phys. B463, 99 (1996), hep-ph/9509348.

[29] M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions (Dover,

New York, 1970).

[30] A. Donnachie and G. ShawGeneralized Vector Dominace in Electromagnetic

Interactions of Hadrons Vol. 2 (Plenum Press, 1978).



REFERENCES 88

[31] K. Golec-Biernat and M. Wusthoff, Phys. Rev. D60, 114023 (1999), hep-

ph/9903358.

[32] K. Golec-Biernat, Acta Phys. Polon. B33, 2771 (2002), hep-ph/0207188.

[33] E. Iancu, A. Leonidov, and L. McLerran, (2002), hep-ph/0202270.

[34] L. D. McLerran, Lect. Notes Phys. 583, 291 (2002), hep-ph/0104285.

[35] J. R. Forshaw, G. Kerley, and G. Shaw, Phys. Rev. D60, 074012 (1999), hep-

ph/9903341.

[36] A. Donnachie and P. V. Landshoff, Phys. Lett. B437, 408 (1998), hep-

ph/9806344.

[37] M. G. Wing and J. D. Zahrt, A Primer on integral equations of the first kind:

The problem of deconvolution and unfolding (Port City, Baltimore, Maryland,

1991).

[38] C. W. Groetsch, Inverse Problems in the Mathematical Sciences (Vieweg-Sohn,

Wiesbaden, 1993).

[39] L. Delves and J. L. Mohamed, Computational Methods for Integral Equations

(Cambridge University Press, Cambridge, UK, 1985).

[40] Matlab 7.1 (service pack 3), The MathWorks Inc, 1984-2005.

[41] ZEUS, S. Chekanov et al., Eur. Phys. J. C21, 443 (2001), hep-ex/0105090.

[42] F.James, Minuit: Function minimizaiton and error analysis, Version.94.1.

CERN, Geneva, Swizerland, 1998.

[43] Cern program library, http://cernlib.web.cern.ch/cernlib/.

[44] W. Eadie and D. D. etc., Statistical Methods in Experimental Physics, 1st ed.

(Elsevier Noth-Holland, New York, 1977).



REFERENCES 89

[45] J. J. More, Derivation and theory for the davidon-fletcher-powell and broyden-

fletcher-goldfarb-shanno methods, in Bulletin of the Operations Research Soci-

ety of America, 1975.

[46] L. N. Trefethen and D. Bau, Numerical Linear Algebra (Siam, Philadephia,

1997).

[47] G. H. Golub and C. F. V. Loan, Matrix Computations, 3rd ed. (The Johns

Hopkins University Press, Baltimore, 1996).

[48] P. C. Hansen, Rank-Deficient and Discrete Ill-Posed Problems (Siam, Philadel-

phia, 1997).

[49] A. Bukhgeim, Introduction to the Theory of Inverse Problems (VSP BV,

Netherlands, 2000).

[50] A. Hocker and V. Kartvelishvili, Nucl. Instrum. Meth. A372, 469 (1996), hep-

ph/9509307.

[51] A. Tikhonov, Sov.Math 5, 1034 (1963).

[52] R. Barlow, SLUO lectures on statistics and numerical methods in hep, lecture

9: Unfolding, http://www.hep.man.ac.uk/u/roger/.

[53] V. Blobel, (2002), hep-ex/0208022.

[54] G. Cowan, Prepared for Conference on Advanced Statistical Techniques in

Particle Physics, Durham, England, 18-22 Mar 2002.

[55] G. D’Agostini, Nucl. Instrum. Meth. A362, 487 (1995).

[56] R. Narayan and R. Nityananda, Ann. Rev. Astron. Astrophys. 24, 127 (1986).

[57] P. C. Hansen, Regularization tools: A matlab package for analysis and solution

of discrete ill-posed problems, Numer. Algorithms, 1992.

[58] P. C. Hansen, BIT 30, 658 (1990).

[59] D. Marquardt, Technometrics 12, 591 (1970).



REFERENCES 90

[60] H. Engl, M. Hanke, and A. Neubauer, Regularization of Inverse Problems

(Dordrecht, Netherlands, 1996).

[61] V. Morozov, Soviet Math. 7, 414 (1966).

[62] B. Hofmann, Regularization for Applied Inverse and Ill-Posed Problems (Teu-

ber, Germany, 1986).

[63] G. Wahba, Spline models for observational data, in CBMS-NSF Regional

Conferences Series in Applied Mathematics Vol. 59, Philadelphia, 1990, SIAM.

[64] A. Davies and M. Hassan, Optimality in the regularization of ill-posed inverse

problems (Academic Press, London, UK, 1987), .

[65] P. Hansen, SIAM review 34, 561 (1992).

[66] M. H. G.H. Golub and G. Wahba, Technometrics 21, 215 (1979).

[67] M. Hanke and T. Raus, SIAM J. Sci. Comput. 17, 956 (1996).

[68] T. Chan and J. O. etc., BIT 32, 481 (1992).

[69] V. Morozov, Methods for Solving Incorrectly Posed Problems (Springer-Verlag,

New York, 1984).

[70] C. R. Vogel, Inverse Problems 12, 535 (1996).

[71] A. Björck, Numcerical Methods for Least Squares Problems (SIAM, Philadel-

phia, 1996).

[72] C. L. Lawson and R. J. Hanson, Solving Least Squares Problems, 2nd ed.

(SIAM, Philadelphia, 1995).

[73] R. Mifflin, Mathematical Programming 16, 141 (1979).

[74] K. Schittkowski and J. Stoer, Numerische Mathematick 31, 431 (1979).

[75] K. H. Haskell and R. J. Hanson, Mathematical Programming 21, 98 (1981).



REFERENCES 91

[76] P. Gill and S. etc., User’s guide for lssol(version 1.0): a fortran package for

constrained linear least-squares and convex quadratic programming, Report

SOL, Standford University, CA, USA, 1986.

[77] C. L. Lawson and R. J. Hanson, Solving Least Squares Problems, 1st ed. (SIAM,

Philadelphia, 1974).

[78] A. Björck and L. Eldén, Dept. of Mathematis, Linköping University Report
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