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1. Preliminaries

1. Electromagnetism → Quantum ElectroDynamics:
U(1)em
Force carrier: photon, γ, massless, spin = 1~

Coupling to charged matter particles, such as e, u, d quarks.
Strength of the coupling αem(me) = 1/137.

2. Weak interactions → Quantum WeakDynamics:
SU(2)L⊗U(1)Y /U(1)em
Force carriers: W+, W−, Z bosons, massive, spin = 1~

Coupling to particles with weak charges.
Strength of the coupling αw(MZ) ≈ 1/30.
Observed weakness due to the massiveness of W± and Z:
MW , MZ ∼ 100 GeV.

3. Strong interactions → Quantum ChromoDynamics:
SU(3)color
Force carriers: 8 massless gluons, ga, spin = 1~

Coupling to coloured particles, such as u, d quarks.
Strength of the coupling αs(MZ) ≈ 1/10.

4. Gravity → Quantum Gravity (?):
No known self-consistent quantum theory: Superstrings, large
groups (E6, etc.), extra dims. (?).
Force carrier: massless gravitons, with spin = 2~.
∼ 10−40 weaker than Electromagnetism.
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– Literature

Recommended Texts:

• R. D’Inverno, Introducing Einstein’s Relativity, Oxford University

Press

Chapters: 2,3,4,8 (SR); 5,6,9,10,12,13,14,15,16,20,22,23 (GR).

• J.B. Hartle, An Introduction to Einstein’s General Relativity,

Addison Wesley.

• D. McMahon, Relativity Demystified, McGraw Hill.

· · ·

Advanced Texts:

• S. Weinberg, Gravitation and Cosmology, Wiley.

• C.W. Misner, K.S. Thorne and J.A. Wheeler, Gravitation, Freeman

• R.M. Wald, General Relativity, University of Chicago Press

• L.H. Ryder, Quantum Field Theory, Cambridge University Press.
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– Principles of Special Relativity (SR)

Einstein’s postulates for SR:

(i) All laws of nature are the same for all inertial observers.

(ii) The speed of light c is the same in all inertial systems.

Lorentz transformations (LT): Space and time are not
absolute but related by LT

x2 = y

x1 = x

x3 = z

x0 = ct

O

β = v/c

x′2 = y′

x′1 = x′

x′3 = z′

x′0 = ct′

O′

ct′ = γ(ct − βx), x′ = γ(x − βct), y′ = y, z′ = z,

=⇒ c2t′2 − x′2 − y′2 − z′2 = c2t2 − x2 − y2 − z2

Physical consequences:
– Moving bodies are shorter by a factor γ = 1/

√
1 − β2

– Moving clocks run slower by a factor γ
– Newton’s mechanics gets modified: E = γmc2, p = mγv
– Maxwell’s equations are consistent with SR
– . . .
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– Covariant Formulation of Special Relativity

Rules for Lorentz algebra:

(i) Define the contravariant position 4-vector xµ:

xµ = (x0, x1, x2, x3) = (ct, x, y, z)

(ii) Find the covariant position 4-vector with the use of the
flat or Minkowski metric ηµν = diag(1, −1, −1, −1):

xµ = ηµνxν = (x0,−x1,−x2,−x3)

(iii) Lower and raise Lorentz indices with ηµν ≡ (η−1)µν = ηµν

and ηµν:

xµ = ηµνxν , xµ = ηµνxν

(iv) Sum or contract always covariant with contravariant
Lorentz indices:

xµηµνy
ν = xνyν = xµyµ

Exercise: Show that ηµν ηνλ = ηµ
λ = δµ

λ = 14.

(v) LT of the contravariant position 4-vector:

x′µ = Λµ
ν(β)xν ,
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where xµ = (ct, x, y, z), x′µ = (ct′, x′, y′, z′) are the
contravariant position 4-vectors in O and O′ frames, and

Λµ
ν =




γ −γβ 0 0
−γβ γ 0 0

0 0 1 0
0 0 0 1


 , for β ‖ ex .

Under a Lorentz trans, we have xµxµ = x′µ x′
µ or

xµ ηµνxν = xβΛµ
βηµνΛ

ν
αxα ⇒ ΛTηΛ = η ,

∴ Λµ
ν ∈ SO(1,3), with detΛ = 1.

LT of a proper contravariant 4-vector Aµ: A′µ = Λµ
νA

ν.

(vi) LT of a proper covariant 4-vector Bµ: B′
µ = (Λ−1)ν

µBν.

Exercises:

1. Show that x′
µ = ηµκΛκ

ληλν xν and

ηµκΛκ
ληλν = Λ ν

µ = (Λ−1)ν
µ .

2. Derive the useful relations:

Λµ
ν =

∂x′µ

∂xν
=

∂xν

∂x′
µ

, (Λ−1)ν
µ =

∂x′
µ

∂xν
=

∂xν

∂x′µ
.
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Displacement position 4-vector:

dxµ = (cdt , dx) , dxµ = ηµλ dxλ = (cdt , −dx) .

Lorentz invariant line element:

ds2 = dxκdxκ = c2dt2 − (dx)2

Proper time:

dτ =
1

c

√
dxνdxν =

dt

γ

Contravariant 4-velocity uµ and 4-momentum pµ:

uµ =
dxµ

dτ
= (cγ , γv) , pµ = muµ = (E/c , p)

Charge conservation in relativistic Electrodynamics:

∂ρ

dt
+ ∇ · J = 0 ⇒ ∂µJµ = 0; Jµ = (cρ,J)

The Lorentz gauge in relativistic Electrodynamics:

∂Φ

c2 dt
+ ∇ · A = 0 ⇒ ∂µAµ = 0; Aµ = (Φ/c,A)

Exercise: Show that ∂µ ≡ ∂
∂xµ =

(
∂

c∂t , ∇
)

transforms as
a proper covariant 4-vector: ∂′

µ = (Λ−1)ν
µ ∂ν.

9

– Einstein’s Lift Experiments and Gravitational Redshift

Einstein’s lift experiments revealed the following 2 principles:

Weak Equivalence Principle (WEP): The gravitational
field couples in the same universal way to all mass and
energy.

Strong Equivalence Principle (SEP): The laws of physics
are the same in an accelerated frame and in an uniform and
static gravitational field.

Consequences:

• Inertial and gravitational masses are equal. Eötvös
experiment in 1889 found agreement to 1 part in 105,
which improved a 100 years later to 1 part in 1013.

• Free-falling observers in a gravitional field do not
experience gravity locally.

Exercise∗∗∗: Does a free-falling electrically charged particle
radiate and why?
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The Doppler-shift Effect:

λ

λ0
= γ (1 + vr/c) ,

λ: wavelength observed
λ0: wavelength emitted in source’s rest frame
vr: radial component of the velocity v of a

point-like source moving away from the observer.

For vr = v = |v|, the Doppler-shift formula reduces to

λ

λ0
=

(
1 + v/c

1 − v/c

)1/2

= 1 + v/c + O(v2/c2)

Gravitational Redshift:

Photons falling freely in a gravitational field Φ(r) experience
a change of frequency ∆ν given by

∆ν

ν
= − 1

c2
∆Φ ,

where Φ(r) = −GM/r is the gravitational potential outside
of a spherical body of mass M .

∴ Photons climbing up a gravitational potential get
redshifted.
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Einstein’s Vision of General Relativity:

The following 3 points played an essential role in Einstein’s
formulation of GR:

(i) Spacetime is a 4-dimensional Riemannian manifold (to be
discussed in Section 2) endowed with a position-dependent
metric:

ds2 = gµν(x
ρ) dxµ dxν .

According to the Equivalence Principle, one can always
choose coordinates, such that the space is locally flat,
i.e. gµν = ηµν and the geodesics are straight lines.

(ii) The geodesics can be classified as null (ds2 = 0), time-like
(ds2 > 0) and space-like (ds2 < 0). Light rays follow
null geodesics, whereas free-falling massive particles move
along time-like geodesics.

(iii) Any form of energy and momentum curves spacetime.

Exercise: A lift makes a free-fall in a homogeneous
gravitational field. Use the SEP to derive the trajectory
of a photon emitted horizontally within the lift as viewed
from an observer on the ground.
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2. Manifolds, Metrics and Tensors

– Manifolds, Curves and Surfaces

Manifold: A continuous space of points which can be
described locally by n-dimensional Euclidean or Minkowskian
geometry.

The manifold may not be covered by a single coordinate
system, so a set of different overlapping coordinate systems
needs be introduced. The complete set of coordinate systems
is called Atlas.

Curves: A curve in an n-dimensional manifold or n-manifold
is a subset of points defined parametrically by the equations

xa = xa(λ); a = 1, 2, . . . , n,

where xa is the n-dimensional position vector and λ is an
arbitrary real parameter.

Surfaces: An m-dim hypersurface in an n-manifold (m < n)
is a subset of points defined parametrically by

xa = xa(λ1, λ2, . . . , λm) ,

where λ1,2,...,m are arbitrary real parameters.

Exercise: Write down the parametric equations that define a
circle and the surface of a sphere (without the poles) in a
3-dim Euclidean space.

13

– Coordinate Transformations and Tangent Vectors

Coordinate transformations: In a given point of a manifold,
a coordinate transformation from xµ → x′µ = x′µ(xν) is
defined by means of the contravariant displacement position
vectors dxµ and dx′µ:

dx′µ = Jµ
ν dxν , dxµ = (J−1)µ

ν dx′ν ,

where Jµ
ν and (J−1)µ

ν are in general position dependent.
They are given by

Jµ
ν =

∂x′µ

∂xν
, (J−1)µ

ν =
∂xµ

∂x′ν

Notice that Jµ
ν (J−1)ν

ρ = δµ
ρ.

Tangent Vectors: For a curve parameterized as xµ(u), the
tangent vector T µ is given by

T µ =
dxµ

du
.

T µ transforms as the infinitesimal displacement vector dxµ:

T ′µ = Jµ
ν T ν.

Exercise: Find the parametric representation of the curve
y = x2 in a 2-dimensional Euclidean space, such that x ≥ 1.
From this, compute the tangent vector on this curve.
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– Metric and Line Element

To measure distances on a manifold, we need to define a
metric gµν via the square of the line element ds:

ds2 = gµν dxµ dxν

Since the line element does not change its value under a
coordinate transformation, this implies that

g′αβ = (J−1)µ
α (J−1)ν

β gµν

is the metric in the transformed coordinate system. The
inverse of the metric gµν is denoted as gµν and is determined
by the relation: gµν gνρ = δµ

ρ .

A manifold endowed with a metric is called Riemannian
manifold.

The metric of a Riemannian manifold is in general position
dependent, i.e. gµν = gµν(x

ρ).

Exercise: Write down the metrics and line elements for plane
polar, spherical polar and cylindrical polar coordinates.
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– 4-Vectors and Tensors

A contravariant vector or simply vector Aµ is an array defined
at a given point xµ of the manifold which transforms, under a
coordinate transformation xµ → x′µ, like the tangent vector
T µ at the same point:

A′µ = Jµ
ν Aν , Aµ = (J−1)µ

ν A′ν

A co-vector Aµ transforms by the inverse of Jµ
ν:

A′
µ = (J−1)ν

µ Aν , Aµ = Jν
µ A′

ν .

Alternatively, a co-vector may be defined as Aµ = gµνA
ν.

Evidently, it is Aµ = gµν Aν.

Exercise: Show that a co-vector defined alternatively via
the metric gµν, Aµ = gµνA

ν has the proper transformation
properties.

Tensors: An

(
p
q

)
tensor transforms like

A
′µ1...µp

ν1...νq = Jµ1
α1

. . . J
µp
αp (J−1)β1

ν1
. . . (J−1)

βq
νq A

α1...αp

β1...βq

Exercise: Write down the transformation properties of an(
1
2

)
tensor.
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– Conformal Metrics

Inner product: The inner or scalar product between two
vectors is defined by

〈S, T 〉 = SµT µ = SµTµ = gµν Sµ T ν .

Note that the scalar product between 2 vectors is invariant
under coordinate transformations.

The modulus of a vector Sµ is defined as

||S|| =

{
(SµSµ)1/2 , for time-like vectors

(−SµSµ)1/2 , for space-like vectors
.

Relative angle between two vectors Sµ and T µ is given by

cos θ =

〈
S, T

〉

||S|| ||T || .

Conformal metrics: Coordinate transformations that
maintain the angle between 2 vectors are called conformal.
The correspoding metrics associated to those coordinate
transformations are called conformal metrics.

If gµν is given, a set of conformal metrics is obtained by

g̃µν = Ω(xρ) gµν ,

where Ω is an arbitrary non-vanishing function, i.e. Ω(xρ) 6= 0.
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3. Connection and Tensor Calculus

– Covariant Differentiation and Parallel Transport

Partial differentiation of a vector is not a proper tensor
(Why?):

∂′
µA′ν = (J−1)α

µ Jν
β ∂αAβ + (J−1)α

µ Aβ (∂αJν
β)

Define a vector (along with its basis vectors) as

A(x) = Aν(x) eν(x)

NB: A′µ = Jµ
αAα, e′µ = (J−1)β

µ eβ ⇒ A = A′.

Partial differentiaton of A:

∂µA = (∂µAν) eν + Aν (∂µeν)

Affine connection Γρ
µν:

∂µeν = Γρ
µν eρ

Substituting this into ∂µA gives

∂µA = eν

(
∂µAν + Γν

µβ Aβ
)

Covariant differentiation of a vector Aν:

∇µAν = ∂µAν + Γν
µβ Aβ

18



Covariant differentiation of a scalar function φ:

∇µφ = ∂µφ

Covariant differentiation of a co-vector Aν:

∇µAν = ∂µAν − Γα
µν Aα

Covariant differentiation of tensors:

∇ρA
µν = ∂ρA

µν + Γµ
ραAαν + Γν

ρβAµβ

∇ρAµν = ∂ρAµν − Γα
ρµAαν − Γβ

ρνAµβ

∇ρA
µ
ν = ∂ρA

µ
ν + Γµ

ραAα
ν − Γβ

ρνAµ
β

∇ρA
µ1...µp

ν1...νq = ∂ρA
µ1...µp

ν1...νq

+

p∑

r=1

Γµr
ραr

A
µ1...µr−1αrµr+1...µp

ν1...νq

−
q∑

r=1

Γβr
ρνr

A
µ1...µp

ν1...νr−1βrνr+1...νq

Exercise: Use the relations of the covariant differentiation for
the vector Aν and its co-vector Aν to show that ∇µ(AνAν) =
∂µ(AνAν).
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Parallel transport: Covariant (or tensorial) differentiation
of a vector Aµ may also be introduced by means of parallel
transport. This is an operation that allows to compare
a vector Aµ at 2 different nearby points of a manifold,
e.g. Aµ(xν) and Aµ(xν + δxν),

According to this operation, a vector Aµ is moved from xµ

to x′µ = xµ + δxµ by keeping its angle fixed with the local
basis vectors eν(x).

The change of the vector caused by parallel transport over a
small interval δxν is given by

δ̄Aµ = −Γµ
νλ δxν Aλ

The difference of the vector at x′µ, Aµ(x′), with the Aµ(x)
after parallel transportation from xµ to x′µ = xµ + δxµ,
Aµ(x)+δ̄Aµ, can be used to define a covariant differentiation:

DAµ = Aµ(x′) − (Aµ(x) + δ̄Aµ)

= (∂νAµ + Γµ
νλ Aλ) δxν

= (∇νAµ) δxν

Exercise: Show that ∇µ eν = 0.
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Absolute derivative: Consider a curve parameterized by
xµ = xµ(u) and a vector Aµ acting on this, i.e. Aµ(u) =
Aµ[xν(u)]. As above, one may show that the derivative
dAµ/du is not a proper vector. Instead, the proper absolute
derivative DAµ/Du may be found by means of covariant
differentiation:

DAµ

Du
=

dxν

du
∇νA

µ =
dxν

du

(
∂νAµ + Γµ

νβ Aβ
)

=
dAµ

du
+ Γµ

νβ T ν Aβ ,

where T ν = dxν/du is the tangent vector on the curve
xν = xν(u) (see p. 14).

Exercise: A simple 2-dimensional example
e2

e1

F(t)

θ(t)

Show that the absolute time derivative is given by

DtFi(t) = ∂tFi(t) + (ω × F(t))i ,

with ω = θ̇(t), as known from Classical Mechanics between
rotating and fixed frames. What is the affine connection?
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– Affine Connection and Torsion

Affine connection Γ′ρ
µν may be defined via a covariant

differentiation (see p. 18) or parallel transport. Under a
coord. trans., it is

Γ′ρ
µν = Jρ

γ(J−1)α
µ(J−1)β

ν Γγ
αβ + Jρ

γ(J−1)α
µ∂α(J−1)γ

ν

Alternatively, a connection that transforms as above is called
affine connection.

Torsion T ρ
µν:

T ρ
µν ≡ 1

2

(
Γρ

µν − Γρ
νµ

)
= Γρ

[µν] .

Exercise: Show that torsion is a proper

(
1
2

)
tensor.

Suppose that T ρ
µν vanishes in a particular coordinate frame.

What is its value in another frame related to the former one
by a coord. trans. Jµ

ν?
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– Affine Geodesics

An affine geodesic is defined as a special or privileged curve
xµ = xµ(u) along which the tangent vector T µ = dxµ/du is
parallelly transported into itself. On this privileged curve, the
tangent vector obeys the affine geodesic equation:

DT µ

Du
= λ(u) T µ .

Other equivalent forms of the affine geodesic equation are

dT µ

du
+ Γµ

αβ T α T β = λ(u)T µ ,

T ν ∇νT
µ = λ(u)T µ ,

d2xµ

du2
+ Γµ

αβ

dxα

du

dxβ

du
= λ(u)

dxµ

du
.

The geodesic is called to be affinely parameterized if λ = 0.

Exercises:

(i) Find the affine geodesics for the plane polar coordinates
(r, φ), knowing that the only non-zero elements of the

affine connection are: Γr
φφ = −r and Γφ

rφ = Γφ
φr =

r−1.

(ii) Show that the inner product TµAµ of a parallelly
transported vector Aµ, for which T ν∇νAµ = 0, is
preserved along a geodesic affinely parameterized.
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– Metric Geodesics

A metric geodesic represents paths of extremal (shortest or
longest) distance between 2 points on a Riemannian manifold.

This is equivalent to extremize the action between two points:

S =

∫ sB(uB)

sA(uA)

ds =

∫ uB

uA

du

(
gµν

dxµ

du

dxν

du

)1/2

.

The problem reduces to extremize the Lagrangian

L =
ds

du
=

(
gµν

dxµ

du

dxν

du

)1/2

,

using the Euler–Lagrange equations:

d

du

(
∂L

∂(dxµ/du)

)
− ∂L

∂xµ
= 0 .

For dL/du = 0, we find the affinely parameterized metric
geodesic equation

d2xµ

du2
+

{
µ

α β

}
dxα

du

dxβ

du
= 0 ,

where u is the affine parameter of the geodesic and

{
µ

α β

}
=

1

2
gµν (−∂νgαβ + ∂αgνβ + ∂βgαν)

is the metric connection.
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Equivalence between Affine and Metric Connections

If ∇αgµν = 0 and the curved space is torsion-free, T µ
αβ = 0,

the following equivalence relation holds true:

Γµ
αβ =

{
µ

α β

}
, with Γµ

αβ = Γµ
βα .

Because of the above equivalence relation between the
two connections, one frequently uses the common name:
Christoffel connection or Christoffel symbol.

Classification of Geodesics

For affinely parameterized geodesics, e.g. with u = τ = s/c,
the following classification holds:

gµν
dxµ

du

dxν

du
= const. =





0 null geodesics
+1 time-like geodesics
−1 space-like geodesics

Exercises:

(i) Prove the equivalence between the affine and metric
connections, if ∇αgµν = 0 and T µ

αβ = 0.

(ii) Locally Inertial Coordinates: show that by making the
coordinate transformation x′µ = x̄µ + 1

2 Γµ
αβ x̄αx̄β, where

x̄µ = xµ − xµ
∗ , one can set the transformed Christoffel

connection to zero, i.e. Γ′µ
αβ = 0, at a given point xµ = xµ

∗ .
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– Isometries and Killing’s Equation

Isometry is a special coordinate transformation x → x′ that
leaves the metric gµν form-invariant, i.e. g′µν(x

′) = gµν(x
′).

The invariance of the line element ds2 under an isometry
implies:

ds2(x′) = ds2(x) ⇒ gµν(x) =
∂x′α

∂xµ

∂x′β

∂xν
gαβ(x′) .

If x′µ = xµ + εξµ(x) is an infinitesimal isometry, then ξµ(x)
obeys Killing’s equation:

∇µ ξν + ∇νξµ = 0 ,

provided that ∇ρ gµν = 0.

The vector ξµ(x) is called the Killing vector and is associated
with the symmetry of the manifold. It can be used, along with
the tangent vector Tµ of a geodesic, to form the conserved
quantity: Tµ ξµ.

Exercises:

(i) Prove the Killing equation stated above.

(ii) Show that if ξµ is an isometry, the quantity T µ ξµ is
constant along an affinely parameterized geodesic:

T ν ∇ν(T µξµ) = 0 .
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– Methods of Computing Christoffel Symbols

Given the line element ds2 = gµνdxµdxν, there are 2 methods
of evaluating the Christoffel symbols Γµ

αβ:

A. Direct Computation (the hard way). Knowing the
coordinate dependence of the metric gµν = gµν(x

ρ), one may
use the formula derived on p. 24:

Γµ
αβ =

1

2
gµν (−∂νgαβ + ∂αgνβ + ∂βgαν) .

In 4 dimensions, one has to evaluate 40 components of the
Christoffel symbol. (Question: How many components needs
one to evaluate in n dimensions?)

B. Extremization Method (the smart way). Since geodesics
are obtained by extremizing the action: S =

∫
ds =

∫
Ldu,

where L = ds/du =
(
gµν

dxµ

du
dxν

du

)1/2

, one may use the Euler–

Lagrange equations for L or even for Leff = L2 (Why?):

d

du

(
∂Leff

∂(dxµ/du)

)
− ∂Leff

∂xµ
= 0

and compare the resulting equations with the affinely
parameterized geodesic equations:

d2xµ

du2
+ Γµ

αβ

dxα

du

dxβ

du
= 0 .
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Simple 2-dimensional example: Compute the Christoffel
symbols, using method B of the line element:

ds2 =
1

t2
(dt2 − dx2)

Solution: First find Leff = L2 = ds2/du2:

Leff = L2 =
ṫ2 − ẋ2

t2
,

where ṫ = dt/du, ẋ = dx/du and u is an affine parameter.

Then, derive the Euler–Lagrange equations for t and x. Start
with calculating

∂Leff

∂ṫ
=

2ṫ

t2
,

∂Leff

∂ẋ
= −2ẋ

t2
,

∂Leff

∂t
= − 2(ṫ2 − ẋ2)

t3
.

From the Euler–Lagrange equations for t and x, we get

ẗ − ṫ2

t
− ẋ2

t
= 0 , ẍ − 2

t
ẋ ṫ = 0 .

We may then read off: Γt
tt = −1/t, Γt

xx = −1/t, Γx
xt =

Γx
tx = −1/t, whilst all other components vanish.

Exercise∗: Use method A to compute the Christoffel symbols.
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Direct calculation of geodesics: Calulate the geodesics in
the previous 2-dimensional example.

One may use the equivalent forms of the Lagrangian:

L =
1

t

[
1 −

(
dx

dt

)2
]1/2

or
1

t

[(
dt

dx

)2

− 1

]1/2

.

Let us use the first form for L. Since L does not depend
on x, there is a first integral associated to this, given by

∂L

∂x′
= A = const.,

with x′ = dx/dt. Hence, we find that

∂L

∂x′
=

x′

t(1 − x′2)1/2
= A ⇒ dx

dt
= ± At

(1 + A2t2)1/2
.

The solution of this differential equation is given by

(Ax + B)2 = 1 + A2t2 ,

where A,B are constants. The geodesics are hyperbolae
(Why?).

Exercise: Find one Killing vector for the above 2-dimensional
example.
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4. Curvature

– Riemann Tensor

Covariant derivatives acting on a scalar commute (Why?):

[∇µ ,∇ν] φ = (∇µ ∇ν − ∇ν ∇µ)φ = 0 .

Instead, covariant derivatives acting on a vector Aρ do not

commute. Their commutator is given by the Ricci identity:

[∇µ ,∇ν]Aρ = Rρ
αµν Aα , [∇µ ,∇ν]Aρ = Rα

ρνµ Aα ,

where Rρ
αµν is the Riemann tensor:

Rρ
αµν = ∂µΓρ

αν − ∂νΓρ
αµ + Γρ

µβ Γβ
αν − Γρ

νβ Γβ
αµ .

A locally inertial frame (LIF) at a given fixed point xµ
∗ of

the space is defined by the conditions:

gµν(x∗) = ηµν ,
∂gµν(x)

∂xρ

∣∣∣∣
x=x∗

= 0 ,

where ηµν is the metric of the flat Minkowski space.

Exercise: Show by an explicit calculation that the Ricci
identity stated above holds true.
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Symmetries of the Riemann tensor

The Riemann tensor in a LIF at a given point xµ
∗ takes on

the simple form:

Rαβµν = gαρ Rρ
βµν

=
1

2
( ∂µ∂β gαν + ∂ν∂α gβµ − ∂µ∂α gβν − ∂ν∂β gαµ ) |x=x∗

.

By inspection, we find the symmetry relations

Rαβµν = −Rβαµν = −Rαβνµ = Rµναβ

and
Rαβµν + Rανβµ + Rαµνβ = 0 .

Since the above symmetry relations have a tensorial covariant
form, they are true in all frames, i.e. not necessarily only in
LIF’s.

The above notion of tensorial covariance of equations or
relations is also known as general covariance in General
Relativity.

Theorem: Rαβµν = 0 ⇐⇒ the space is flat.

Exercise∗∗: Show that in n-dimensions the above symmetries
of the Riemann tensor reduce the number of its components
from n4 to

1

12
n2 (n2 − 1) .
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– Ricci Tensor and Ricci Scalar

The Ricci tensor is defined in terms of the Riemann tensor
as

Rµν = Rρ
µρν = gαβ Rαµβν .

Likewise, the Ricci scalar may be defined in terms of the
Ricci tensor as follows:

R = gµν Rµν .

Both the Ricci tensor and Ricci scalar are essential building
blocks of the Einstein equation (see next section).

Exercises:

(i) Prove the symmetry relation for the Ricci tensor:

Rµν = Rνµ .

(ii) The line element of the unit 2-sphere is given by

ds2 = dθ2 + sin2 θ dφ2 .

Given that the only non-zero independent component of
the Riemann tensor is Rθ

φθφ = sin2 θ, show that the
components of the Ricci tensor are given by

Rθθ = 1 , Rφφ = sin2 θ , Rθφ = 0

and that the Ricci scalar R is equal to 2.
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– Riemann Tensor from Parallel Transport

Consider the round trip A → B → C → D → A:

A B

CD

∆xµ

δxµ

Making a Taylor series expansion up to second order in δx
and ∆x, we have

AB = (1 + ∆xµ∇µ +
1

2
∆xµ∆xν ∇µ∇ν)AA,0 ,

AC = (1 + δxµ∇µ +
1

2
δxµδxν ∇µ∇ν)AB ,

AD = (1 − ∆xµ∇µ +
1

2
∆xµ∆xν ∇µ∇ν)AC ,

AA,1 = (1 − δxµ∇µ +
1

2
δxµδxν ∇µ∇ν)AD .

Upon completion of the round trip, we find

Aρ
A,1 = (1 + δxµ∆xν [∇µ , ∇ν])Aρ

A,0

⇒ ∆Aρ =
1

2
Rρ

αµν Aα∆Sµν ,

where ∆Sµν = δxµ∆xν − δxν∆xµ represents the small area
enclosed by the path.
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– Bianchi Identities

Making a similar round trip along the edges of a cube this
time (e.g. see textbook by L.H. Ryder, p. 120), one obtains
the so-called Bianchi identity:

∑

ρ,α,β
cyclic

∇ρRαβµν = ∇ρRαβµν + ∇αRβρµν + ∇βRραµν = 0

With the help of this, one can show the contracted Bianchi
identity:

∇µ

(
Rµν − 1

2
gµν R

)
= 0 .

Exercises:

(i)∗ Show the validity of the Bianchi identity in a LIF.

(ii) Use the Bianchi identity to show its contracted version.
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– Geodesic Deviation

Consider two infinitesimally adjacent geodesics affinely
parameterized (e.g. by the proper time):

xµ = xµ(τ) , yµ = xµ(τ) + δxµ(τ) ,

where δxµ(τ) is the deviation vector connecting the two
adjacent geodesics at the same proper time τ .

It can be shown that in a curved spacetime, the acceleration of
the deviation vector with respect to observer’s proper time τ ,
given by D2δxµ/dτ2, is related to the Riemann tensor by the
equation of the geodesic deviation:

D2 δxµ

Dτ2
= Rµ

αβρ T α T β δxρ ,

where T α = dxα/dτ is the tangent vector of the geodesic.

Exercises:

(i) Show that the relative distance δxi between 2 free-falling
particles within a weak gravity field Φ is given by the
Newtonian geodesic deviation equation

d2δxi

dt2
= (∂i∂j Φ) δxj .

(ii)∗∗ Prove the geodesic deviation equation.
[Hint: A proof of this equation may be found in the
textbook by D. McMahon, p. 131–136.]
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5. Einstein’s Equation

– Energy-Momentum Tensor

The energy-momentum tensor T µν includes all possible
forms of energy that can curve spacetime.

Specifically, if pµ is the total 4-momentum of an energy
or matter distribution, the element T µν represents the flux
of the µ-component of the 4-momentum going through a
hypersurface of spacetime for which the ν-component of xν

is kept fixed.

Example: T 00 = T tt represents the energy flow p0 crossing
an hypersurface of constant time (x0 = t). An hypersurface
of constant time is the volume. Hence, T 00 is the energy
density. Likewise, the time-space components T ti represent
the energy flux (Why?).

T µν has the following structure:

T µν =




T tt : energy density T ti : energy flux

T it : momentum density T ij : stress tensor


 .

Exercise: Show that T ti = T it and T ij = T ji, and hence
T µν = T νµ.
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Conservation Equations

These are derived by the relation

∇ν T µν = 0 .

In a LIF, this simplifies to the SR result:

∂ν T µν = 0 .

For µ = 0, one finds the continuity equation for energy
conservation:

∂T tt

∂t
+

∂T it

∂xi
=

∂ε

∂t
+ ∇ · π = 0 ,

where ε = T tt and πi = T it are the energy and momentum
densities, respectively.

Exercise: Show that for the spatial components µ = i, one
obtains the analog of Newton’s 2nd law:

∂π

∂t
= φ ,

where φi = −∂T ij/∂xj is the exerted force on an energy-
matter distribution per unit volume.

37

Perfect fluid is a fluid with no viscosity and heat conduction.
Its energy-momentum tensor in SR or in a LIF is given by

T µν = (ρ + P )uµuν − P ηµν ,

where ρ and P are the energy density and the pressure of the
fluid, respectively, and uµ = γ(1 , v) is the 4-velocity.

Generalization to the curved spacetime:

T µν = (ρ + P )uµuν − P gµν .

Exercises:

(i) Show that for a perfect fluid at rest in a LIF, its energy-
momentum tensor reads: T µν = diag (ρ, P, P, P ).

(ii) Use the conservation equation for the energy-momentum
tensor to show that for a non-relativistic pressureless
perfect fluid (P = 0) in a LIF, the continuity equation
for the energy conservation is given by

∂ρ

∂t
+ ∇ · (ρv) = 0 .

(iii)∗ Given that Tµν = FµρF
ρ
ν + 1

4 gµν FαβFαβ is the energy-
momentum tensor of the electromagnetic field, calculate
the components T 00 and T 0i in a LIF and discuss their
physical meaning.
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– Einstein’s Equation

Intuitive approach to deriving Einstein’s equation:

Newtonian Gravity General Relativity

What mass Produces a field Φ causing Curves spacetime

does a force on other mass m

F = −m∇Φ ds2 = gµν(x) dxµdxν

Motion of Newton’s 2nd law Geodesic equation

a particle d2xi

dt2 = −δij ∂Φ
∂xj

d2xµ

dτ2 = −Γµ
νλ

dxν

dτ
dxλ

dτ

Field Poisson’s equation Einstein’s equation

equation ∇2Φ = 4πGρm Gµν = 8πGTµν

Einstein’s equation is given by

Gµν ≡ Rµν − 1

2
gµν R = 8πG Tµν .

Both the left and right side of this equation satisfy the
conservation conditions (Why?):

∇µ Gµν = 0 , ∇µ Tµν = 0 .

Exercise: What else can be added to Einstein’s equation in
agreement with the conservation conditions stated above?
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– Newtonian Limit

The geodesic of a non-relativistic (NR) particle with
dxi/dx0 ≪ 1 (or dxi/dτ ≪ dx0/dτ) is

d2xµ

dτ2
+ Γµ

00

(
dx0

dτ

)2

+ O(dxi/dτ) = 0 .

Consider the weak gravitational field approximation for gµν:

gµν(x) = ηµν + hµν(x) ,

where hµν(x) ≪ 1 and independent of time, i.e. ∂0hµν = 0.

To leading order in hµν, Γµ
00 is given by (see p. 24)

Γµ
00 = − 1

2
ηµν ∂νh00 .

Since Γ0
00 = 0, the geodesic equation implies for the time

component µ = 0 that d2t/dτ2 = 0 ⇒ dt/dτ = const.
Eliminating τ in favour of t in the geodesics for the spatial
components, one obtains

d2x

dt2
= − 1

2
(∇h00) .

Comparing this with Newton’s 2nd law, we find h00 = 2Φ
and

g00 = 1 + 2Φ .
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Alternative form of Einstein’s equation:

Rµν = 8πG

(
Tµν − 1

2
gµνT

)
,

where T = gµνTµν.

The above alternative form is useful to obtain Poisson’s
equation in the Newtonian limit of Einstein’s equation. Given
that p ≪ ρ in the NR limit, the energy-momentum tensor
simplifies to Tµν = diag (ρm , 0 , 0 , 0), where ρm is the
rest mass density.

Exercises:

(i) Contract the Einstein equation with gµν to obtain the
relation:

R = −8πGT .

Substitute R into Einstein’s equation to find its alternative
form.

(ii) Calculate the component of the Ricci tensor R00 in the
approximation of a stationary weak gravitational field to
find that

R00 =
1

2
∇2h00 + O(h2

µν) .

Use then the alternative form of Einstein’s equation,
together with the fact that h00 = 2Φ, to derive Poisson’s
equation in the Newtownian limit: ∇2Φ = 4πGρm .
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– Gravitational Radiation

Linearized gravity:

gµν(x) = ηµν + hµν(x) , gµν(x) = ηµν − hµν(x) .

Weak field approximation: hµν ≪ 1, gµν gνλ = δµ
λ + O(h2).

Coord. trans. xµ → x′µ = xµ + ǫµ(x), with ǫµ ≪ 1:

Jµ
ν = δµ

ν + ∂νǫµ , (J−1)µ
ν = δµ

ν − ∂νǫµ + O(ǫ2) .

Metric changes under coord. trans.:

ηµν + h′
µν = ηµν + (hµν − ∂µǫν − ∂νǫµ) + O (ǫ2)

General covariance: Einstein’s equation does not change its
form under coord. trans.: hµν → h′

µν = hµν − ∂µǫν − ∂νǫµ

Coord. trans. are also called gauge transformations.

Lorentz gauge: ∂µh̄µν = 0, where h̄µν = hµν − 1
2ηµνh and

h = ηαβhαβ.

Gravity wave equations from linearized gravity∗:

∂2hµν = −16πG

(
Tµν − 1

2
gµνT

)
, ∂2h̄µν = −16πGTµν .

Exercise: Given hµν, find ǫµ, such that h′
µν obeys the

condition of the Lorentz gauge.
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Linearized Gravity and Electromagnetism

Linearized Gravity Electromagnetism

Field equation Einstein’s equation with Maxwell’s equations

gµν = ηµν + hµν

Basic potentials Linearized metric 4-vector potential

hµν(x) Aµ = (Φ , A)

Sources Energy-momentum tensor 4-vector current

T µν Jµ = (ρ , J)

Lorentz gauge ∂µh̄µν = 0 ∂µAµ = 0

h̄µν = hµν − 1
2 ηµνh

Wave equation ∂2 h̄µν = −16πGTµν ∂2 Aν = µ0 Jν

with source∗

Solution∗ h̄ij = 4G
R

d3x′ [T
ij
]ret

|x − x
′
|

A =
µ0
4π

R

d3x′ [J]ret
|x − x

′
|

Large r, long- h̄ij =
2G [Ï

ij
]ret

r A =
µ0
4π

[ḋ]ret
r

wavelength

approximation∗ Iij =
R

d3x ρm xixj d =
R

d3x ρ x

Time-averaged P = G
5 〈

...
I ij

...
I

ij
〉 P =

µ0
6π 〈d̈2〉

radiated power∗

For further reading, see J.B. Hartle, Sections 16 and 23.
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6. Schwarzschild Solution

– Spherically Symmetric Vacuum Solution to
Einstein’s Equation

Einstein’s equation in vacuum (T µν = 0) simplifies to
(Why?):

Rµν = 0 .

We seek a spherically symmetric solution to this equation
through the line element:

ds2 = eν(r,t) dt2 − eλ(r,t) dr2 − r2
(
dθ2 + sin2 θ dφ2

)
.

The non-zero components of Rµν are (with ′ ≡ ∂
∂r and ˙≡ ∂

∂t)

Rtt =
1

2
e
−λ

»

ν
′′
+

1

2
ν
′ `

ν
′
− λ

′´
+

2ν ′

r

–

+ e
−ν

»

λ̇
“

ν̇ − λ̇
”

−
1

2
λ̈

–

,

Rtr =
λ̇

2r
,

Rrr =
1

2
e
−ν

»

λ̈ −
1

2
λ̇
“

ν̇ − λ̇
”

–

−
1

2
e
−λ

»

ν
′′

+
1

2
ν
′ `

ν
′
− λ

′´
−

2λ′

r

–

,

Rθθ = 1 − e
−λ

»

1 +
1

2
r
`

ν
′
− λ

′´
–

,

Rφφ = sin2 θ Rθθ .
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Rtr = 0 ⇒ λ = λ(r) ,

Rtt + Rrr = 0 ⇒ ν′ + λ′ = 0 ⇒ ν + λ = f(t) .

Since f(t) can be set to zero by a time coord. trans.:
dt′ = ef(t)/2dt, we find that

ν(r) = −λ(r) .

Rθθ = 0 ⇒ (r eν)
′

= 1 ⇒ eν = 1 +
C

r
.

In the Newtonian limit,

g00 ≈ 1 + 2Φ = 1 − 2GM

r
⇒ C = − 2GM .

Hence, the vacuum solution to the Einstein equation exterior
to an object of mass M is given by the line element of the
Schwarzschild metric

ds2 =

(
1 − 2GM

r

)
dt2 −

(
1 − 2GM

r

)−1

dr2

− r2
(
dθ2 + sin2 θ dφ2

)
.

Exercise: Find 2 Killing vectors related to the Schwarzschild
metric.
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– Birkhoff’s Theorem

A spherically symmetric vacuum solution exterior to a mass
distribution must be static and the metric must have the form
of the Schwarzschild solution.

Properties of the Schwarzschild metric:

• It is spherically symmetric.

• It is static. The metric is invariant under reflections:
t → −t and translations t → t + const.

• It is asymptotically flat. It goes over to Minkowski metric
as r → ∞.

• gtt and grr flip sign at r = rs = 2GM , which is called the
Schwardschild radius or the event horizon.

Exercises:

(i) Which conditions on the Ricci tensor imply that a
spherically symmetric vacuum solution outside of a mass
distribution has to be static?

(ii) Can a pulsating spherical star emit gravitational waves and
why?
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– Gravitational Redshift

Consider different radial slices r = const of the Schwarzschild
metric: ds2 = gtt(r) dt2.

The frequency of light ν is inversely proportional to the proper
clock time at this location:

ν ∝ 1

∆τ(r)
=

c

∆s(r)
,

where ∆τ(r) =
√

gtt(r)∆t and ∆t = const.

At two different radial locations r1 = const and r2 = const,
the two light frequencies are related by

ν1

ν2
=

∆τ(r2)

∆τ(r1)
=

√
gtt(r2)

gtt(r1)
.

Exercise: Show that for a weak gravitational field Φ(r), the
ratio of frequencies is approximately given by

ν1

ν2
= 1 − Φ(r1) + Φ(r2) .

Compare this result with the one derived on p. 11.
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– Dynamics in the Schwarzschild Spacetime

Consider the effective Lagrangian for the Schwarzschild metric

Leff =
(
1 − rs

r

)
ṫ2 −

(
1 − rs

r

)−1

ṙ2 − r2
(
θ̇2 + sin2 θ φ̇2

)
,

where ˙≡ d
dτ and rs ≡ 2GM .

There are 3 first integrals that result from Leff:

∂Leff

∂t
= 0 ⇒ ∂Leff

∂ṫ
= 2

(
1 − rs

r

) dt

dτ
= 2 ε ,

∂Leff

∂φ
= 0 ⇒ ∂Leff

∂φ̇
= 2 r2 sin2 θ

dφ

dτ
= 2 ℓ ,

Leff = const. = K =





0 null geodesics
+1 time-like geodesics
−1 space-like geodesics

,

where ε and ℓ are constants of integration related to the
conserved energy and angular momentum per unit rest mass,
respectively.

For θ = const = π/2, all first integrals are related through

K =
(
1 − rs

r

)−1
[

ε2 −
(

dr

dτ

)2
]

− ℓ2

r2
.

Exercise: Find the geodesics and Christoffel symbols for the
Schwarzschild spacetime.
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– Particle and Photon Orbits

After rearranging the last eqn. on p. 48, we find (for r ≥ rs)

1

2

(
dr

dτ

)2

=
ε2 − K

2︸ ︷︷ ︸
= E

−
[

ℓ2

2r2

(
1 − rs

r

)
− Krs

2r

]

︸ ︷︷ ︸
= Veff

.

I. Particle orbits K = 1:

Veff =
ℓ2

2r2

(
1 − rs

r

)
− rs

2r
=

ℓ2

2r2

(
1 − 2GM

r

)
− GM

r

(a) ℓ <
√

3rs. No stable circular orbit exists. Particle crushes
into origin if E < 0. Particle escapes (from r = rs) if
E > 0.

(b)
√

3rs < ℓ < 2rs. Veff(r) has a maximum rmax and
a minimum rmin, with rmax < rmin. There is a stable

circular orbit at rmin and an unstable circular one at rmax.
Particle crushes into the origin if E < 0, while it escapes
if E > 0.

(c) ℓ > 2rs. If E > Vmax, particle escapes from r = rs.
For E < Vmax, particle coming from r = ∞ gets repelled
back. Most astonishingly, a particle from r = ∞, with
E > Vmax, will plunge into the center.
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II. Photon orbits K = 0:

Veff =
ℓ2

2r2

(
1 − rs

r

)
=

ℓ2

2r2

(
1 − 2GM

r

)
.

Veff has the maximum value

Vmax =
2 ℓ2

27 r2
s

,

at r = 3
2 rs.

If E < Vmax, a photon from r = ∞ gets repelled. In this
case, a photon running out from r = rs will fall back to the
center. If E > Vmax, a photon coming from r = ∞ will
plunge into the origin [compare this with I(c)]. Finally, for
E = Vmax, the photon has a circular unstable orbit.

Exercises:

(i) Find rmin and rmax, as well as Vmin and Vmax, for the
cases I(b) and I(c) of particle orbits.

(ii)∗∗ Calculate the radial plunge orbit r = r(t) for the case I(c).

[Hint. The result may be found in the textbook by J.B.
Hartle, on p. 199.]
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– Light Deflection

The shape of bound orbits: Dividing dφ/dτ = ℓ/r2 given
on p. 48 by dr/dτ on p. 49, one finds the familiar result from
Classical Mechanics:

dφ

dr
= ± 1

r2

ℓ√
2 [E − Veff(r) ]1/2

.

Note that this equation holds for light and test masses alike.

For light rays coming in from infinity with an impact
parameter d = ℓ/

√
2E and going out to infinity, the total

deflection angle is twice the angle swept out from the turning
point r = rmin to r = ∞:

∆φ = 2

∫ ∞

rmin

dr

r2

[
1

d2
− 1

r2

(
1 − rs

r

) ]−1/2

.

Upon introducing the dimensionless parameter w = d/r, the
∆φ may be cast into the form (Why?):

∆φ = 2

wmax∫

0

dw
(
1 − rs

d
w

)−1/2
[ (

1 − rs

d
w

)−1

− w2

]−1/2

.

Exercise: Show that the impact parameter of light rays
coming from infinity is given by d = ℓ/

√
2E.
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To leading order in rs/d ≪ 1, ∆φ is given by (Why?)

∆φ = 2

wmax∫

0

dw
1 + (rs

2d)w

[1 + (rs
d ) w − w2]1/2

≈ π + 2
rs

d

Hence, the predicted deflection angle δφdefl of light rays is

δφdefl = ∆φ − π ≈ 2 rs

d
(for rs/d ≪ 1) ,

where d is the impact parameter and rs = 2GM is the
Schwarzschild radius of a spherical object of mass M .

Exercises:

(i) Compute the maximal value of rs/d for our Sun. What is
the minimum value of d?

(ii)∗ Use look-up tables or otherwise to verify the result for the
above integral for ∆φ to leading order in rs/d.

(iii) Estimate that the deflection angle of distant light rays
grazing the limb of the Sun is δφ⊙ ≈ 1.75′′, where 1′′ =
(π/648 000) rads.
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– Perihelion Precession

The angle of a complete revolution is given by

∆φ = 2ℓ

rmax∫

rmin

dr

r2

[
2E − ℓ2

r2

(
1 − rs

r

)
+

rs

r

]−1/2

,

where rmin and rmax are the two turning points of the elliptic
orbit.

Using the fact that E = (ε2 − 1)/2 and changing the
integration variable to u = 1/r, we may rewrite ∆φ as

∆φ = 2

∫ umax

umin

du (1 − rsu)−1/2

×
[

ε2

ℓ2
(1 − rsu)−1 − 1

ℓ2
− u2

]−1/2

.

The above integral may be approximately computed in powers
of rs/ℓ to give

∆φ = 2π +
3π r2

s

2 ℓ2
.

Hence, the precession of the perihelion is given by

δφprec = ∆φ − 2π =
3π r2

s

2 ℓ2
=

6π G2M2

ℓ2
.
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Exercise∗: Steps for the computation of δφprec:

(i) Expand in powers of rs/ℓ the integrand in the integral for
∆φ to obtain

∆φ =

 

1 +
ε2r2

s

2ℓ2

!

2

umax
Z

umin

du

"

ε2

ℓ2
(1 + rsu) −

1

ℓ2
− u

2

#−1/2

+ rs

umax
Z

umin

du u

"

ε2

ℓ2
(1 + rsu) −

1

ℓ2
− u

2

#−1/2

,

where umin,max are the roots of the quadratic equation in
u contained in [· · · ]−1/2.

(ii) Use look-up tables to calculate the 2 integrals. In
particular, you should find that the first integral is equal
to π, while the second one is (π/2) (umin + umax) =
πε2rs/(2ℓ

2).

(iii) Put all these intermediate results together and use the
fact that ε2 ≈ 1 for a NR planetary motion to deduce ∆φ
given on the previous page, and so δφprec.
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– Black Holes

Consider the t-r part of the Schwarzschild metric

ds2 =
(
1 − rs

r

)
dt2 −

(
1 − rs

r

)−1

dr2 ,

where dθ = dφ = 0. The metric has a singularity at r =
rs = 2GM , i.e. grr → ∞ as r → rs. However, invariants
under coordinate transformations, such as R, RµνR

µν and
Rµναβ Rµναβ, do not display such a singularity. The invariant

Rµναβ Rµναβ =
6r2

s

r6

is regular at r = rs. Such a singularity depends on the choice
of the coordinate system and is called axis singularity. It
can be removed by changing to another coordinate system.

The Schwarzschild metric contains a true (non-removable)
singularity as r → 0 (Why?)

To remove the axis singularity, we introduce the so-called
tortoise coordinate

r∗ = r + rs ln

(
r

rs
− 1

)
.

Exercise: Show that null geodesics are described by the
curves: t = ± r∗ + const. What is the physical meaning of
the ± sign?
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Eddington–Finkelstein coordinates:

u = t − r∗ , v = t + r∗ .

In terms of u and v, the Schwarzschild metric takes on the
simpler form

ds2 =
(
1 − rs

r

)
du dv − r2

(
dθ2 + sin2 θ dφ2

)
.

Evidently, the metric is not singular at r = rs.

The curves u = const. represent outgoing null geodesics,
while v = const. represent ingoing null geodesics (Why?).

At r = rs, there is an one-way membrane called the event
horizon, where future-directed time-like and light-like curves
(or particles) can cross from r > rs to r < rs, but the reverse
is not possible (Why?).

Light cones tip over by 90◦ when going from r > rs to
r < rs. For r < rs, future light cones point to the origin
r = 0 (Why?).

The fate of stars: A star of mass M may have one of the
following end phases:

M <
∼ 1.4 M⊙ ⇒ white dwarf

1.4M⊙
<
∼ M <

∼ 5 M⊙ ⇒ neutron star

M >
∼ 5 M⊙ ⇒ creation of a black hole

is possible
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7. Friedmann–Robertson–Walker Universe

– Expansion, Isotropy and Homogeneity

Astronomical observations of densities of galaxies,
background radiation and vacuum energy suggest that our
Universe is uniformly expanding in all directions.

The Friedmann–Robertson–Walker (FRW) cosmological
model is based on the cosmological principle that on large
scales our Universe is homogeneous and isotropic.

At each epoch, a homogeneous universe is the same from
place to place, and an isotropic one is the same in one
direction as in any other.

Schur’s theorem (without proof): Globally isotropic n-
dimensional spaces (n > 2) are manifolds of constant
curvature k. The Riemann tensor for an isotropic space
is given by

Rµναβ = k ( gµα gνβ − gµβ gνα ) ,

where k is constant on every point of the manifold.

Exercise: Show that the Riemann tensor stated above for
an isotropic space satisfies all the symmetry relations derived
on p. 31. Is a term proportional to εµναβ allowed by the
symmetry relations?

57

– FRW Metric

The FRW metric incorporates the cosmological principle of
isotropy and homogeneity. The line element of the FRW
metric has the general form

ds2 = dt2 − a2(t) dσ2 ,

where dσ2 is the line element of a 3-dim. space of constant
curvature and a(t) is a scale factor that implements the
evolution in time of the 3-dim. space.

If ȧ ≡ da/dt > 0, the FRW metric describes an expanding
universe. The rate of expansion of our Universe is determined
by the Hubble parameter H, which is defined as

H =
ȧ

a
.

The present value of H is H0 = 73 +4
−3 (km/s)/Mpc.

The line element of the FRW metric takes on the following
explicit form:

ds2 = dt2 − a2(t)

[
dr2

1 − kr2
+ r2 (dθ2 + sin2 θ dφ2 )

]
,

where k = +1, 0 , −1 (in arbitrary G−1 units) are the
curvatures for a closed, flat and open universe, respectively.

Exercise: Find all Killing vectors associated with the FRW
metric.
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Other forms of the FRW metric:

Substituting r = sinχ , χ , sinhχ for k = +1, 0 , −1,
respectively, into the FRW metric, we find the alternative
form

ds2 = dt2 − a2(t)

2

4 dχ2 +

8

<

:

sin2 χ

χ2

sinh2 χ

9

=

;

(dθ2 + sin2 θ dφ2 )

3

5 .

The spatial part of the metric describes a closed 3-sphere for
k = +1, flat space for k = 0 and an open 3-hyperbola for
k = −1 (Why?).

Introducing a new time coordinate η, the so-called conformal
time, given by

a(t) dη = dt ⇒ η =

∫ t

0

dt′

a(t′)
,

the FRW metric can be brought into the form:

ds2 = a2(t)

[
dη2 − dr2

1 − kr2
− r2 (dθ2 + sin2 θ dφ2 )

]
.

The FRW metric then becomes conformal to that of the
Minkowski spacetime for k = 0 (Why?).

Exercise∗∗: Derive the explicit spatial form dσ2 of the FRW
metric given on the previous page, by modifying appropriately
the ansatz for the Schwarzschild metric and using Schur’s
theorem.
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– Friedmann and Raychaudhuri Equations

For the FRW spacetime, the elements of the Ricci tensor Rµν

are (with · ≡ d
dt)

R00 = − 3ä

a
,

R0i = Ri0 = 0 ,

Rij = −
(

2k

a2
+

ä

a
+

2ȧ2

a2

)
gij ,

where gij = − a2(t) diag
[
(1 − kr2)−1, r2, r2 sin2 θ

]
are the

spatial components of the FRW metric (Question: What
is g00?).

Consider the alternative form of Einstein’s eqn (see p. 41),

Rµν = 8πG

(
Tµν − 1

2
gµνT

)
,

where T = T λ
λ.

According to Weyl’s postulate, our Universe may well be
described by a perfect fluid. In this case, the RHS of the
above equation becomes (Why?)

Tµν − 1

2
gµνT = (ρ + P ) uµuν − 1

2
gµν (ρ − P ) .
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For a locally comoving frame with uµ = (1, 0, 0, 0), the
Einstein eqn for R00 gives the Raychaudhuri equation:

ä

a
= − 4πG

3
(ρ + 3P ) .

Einstein’s eqn for Rij leads to the Friedmann equation:

H2 =
ȧ2

a2
=

8πG

3
ρ − k

a2
.

From the conservation equation ∇ν T µν = 0 (with µ = 0),
the following energy conservation equation can be derived:

∂ρ

∂t
= − 3H (ρ + P ) .

Raychaudhuri’s, Friedmann’s and energy conservation eqs are
not all independent of each other (Why?).

Exercises:

(i) Use Einstein’s eqn in its alternative form to prove
Raychaudhuri’s and Friedmann’s equations stated above.

(ii) Given that Γt
tt = 0, Γr

tr = Γθ
tθ = Γφ

tφ = ȧ/a = H,
derive the energy conservation equation given above.

(iii) Show that the energy conservation equation is equivalent
to the 1st law of thermodynamics for a perfect fluid:
d(ρV ) + PdV = 0, where V is the 3-volume.
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– Matter-, Radiation-, and Vacuum Energy- Dominated
Universes

A matter-dominated universe is pressureless, i.e. P = 0.
Hence, the energy conservation equation becomes

∂ρ

∂t
= − 3H ρ ⇒ ρ =

ρ0

a3
,

where ρ0 is the initial energy density.

The equation of state for radiation is ρ = 3P , as derived
from the energy-momentum tensor of electromagnetism (see
exercise on p. 38). For a radiation-dominated universe , we
obtain (Why?)

∂ρ

∂t
= − 4H ρ ⇒ ρ =

ρ0

a4
.

The equation of state for vacuum energy is ρ = −P . For
a vacuum energy-dominated universe, the energy density
remains constant, i.e. ρ = ρ0 = const (Why?).

The present energy density ρc for a flat FRW model (k = 0)
is called the critical density and is given by

ρc =
3H2

0

8π G
= 10.54 h2 keV/cm3,

where H0 = 100 h (km/s)/Mpc, with h = 0.73 +0.04
−0.03 , is

today’s Hubble’s constant value.
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The present matter, radiation and vacuum energy densities
normalized to ρc are defined as

Ωm =
ρm(t0)

ρc
, Ωr =

ρr(t0)

ρc
, Ωv =

ρv(t0)

ρc
.

This definition may be extended to a normalized curvature
density given by

Ωk = − k

H2
0a2

0

,

where the standard convention is that a0 = a(t0) = 1.

With the above definitions, the Friedmann equation evaluated
at the present epoch becomes (Why?)

Ωm + Ωr + Ωv + Ωk = 1 .

Exercises:

(i) Show that the total energy density of our Universe is given
by

ρ(a) = ρc

(
Ωm

a3
+

Ωr

a4
+ Ωv

)
.

(ii) Derive the alternative form of Friedmann’s equation:

(
H

H0

)2

=
Ωm

a3
+

Ωr

a4
+ Ωv +

Ωk

a2
.
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Time Evolution of the FRW Universe:

The time evolution of the scale factor a(t) is determined by
the alternative form of Friedmann’s equation (Why?):

ȧ = H0

√
Ωm

a
+

Ωr

a2
+ Ωv a2 + Ωk .

The age of a FRW universe may also be determined by
this equation:

t0 =

a0=1∫

0

da

ȧ
=

1

H0

1∫

0

da√
Ωm
a + Ωr

a2 + Ωv a2 + Ωk

.

Exercises:

(i) Show that the time dependences of a(t) are given by

a(t) ∝ t2/3 , t1/2 , exp (H0Ω
1/2
v t) , t ,

for a matter-, radiation-, vacuum energy- and curvature-
dominated (with k = −1) FRW universe, respectively.

(ii) Calculate the age of a flat matter-dominated universe to
find that

t0 =
2

3 H0
.
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Closed, Flat and Open FRW Universes:

Consider a matter-dominated FRW universe with non-zero
curvature (i.e. set Ωr = Ωv = 0). To evaluate the time
evolution of such a universe, we use the conformal time

η =

∫ t

0

dt

a
=

∫ a

0

da

a ȧ
=

1

H0

∫ a

0

da√
Ωm a + Ωk a2

,

with the constraint Ωk + Ωm = 1 (Why?).

Using look-up integral tables, or otherwise, we find

• for Ωk > 0 (k = −1):

a(η) =
Ωm

2(1 − Ωm)

[
cosh

(√
1 − Ωm H0 η

)
− 1

]

This is the solution for an ever expanding universe.

• for Ωk < 0 (k = +1):

a(η) =
Ωm

2(Ωm − 1)

[
1 − cos

(√
Ωm − 1 H0 η

) ]
.

This represents an oscillating universe. The period of
oscillation is given by the conformal time

η = 2πH−1
0 (Ωm − 1)−1/2 .

65

– Cosmological Redschift

For sufficiently small distances, Hubble’s law relates the
distance d of a galaxy from us to its velocity v:

v = H0 d .

The velocity v can be measured via the Doppler-shift effect:
v = ∆λ/λ. A more accurate determination may be obtained
via the phenomenon of the cosmological redshift.

Suppose an observer from a galaxy of a comoving distance R
emits at time te a series of light pulses of period δte, which
are observed on earth at time t0 with a period δt0. Because
all pulses travel the same R, it then holds

R =

t0∫

te

dt

a(t)
=

t0+δt0∫

te+δte

dt

a(t)
⇒ δt0

a(t0)
=

δte
a(te)

.

Since it is νe,0 = 1/(δte,0) for the emitted and
observed frequencies of light, the following formula for the
cosmological redshift is obtained:

νe

ν0
=

λ0

λe
=

a(t0)

a(te)
= 1 + z ,

where astronomers call z the cosmological redshift or simply
redshift. The most distant quasar has a redshift z = 6.6.
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– Cosmological Distance Measures

In addition to the cosmological redshift, the geometry of an
expanding FRW universe affects other observables used to
measure cosmological distances as well, such as the observed
energy flux of light.

The energy flux f of photons received on earth from a remote
source of luminosity L is given by

f =
L

4πd2
eff

1

(1 + z)2
,

where deff is an effective distance between source and
observer, which is defined such that the area of the sphere is
4πd2

eff . This is not our true distance from the source, unless
space is flat (Why?).

In the above formula for f , the first factor L/(4πd2
eff) is the

naive geometric law of flux reduction by the inverse distance
squared.

The second factor 1/(1 + z)2 is the result of 2 facts:

(i) the photons arrive with lower energy E0 than the one
emitted Ee, i.e. E0 = Ee/(1 + z).

(ii) the photons are received less frequently compared to the
source’s emission time, because δt0 = (1 + z) δte.
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– The Flatness Problem

Prediction for a radiation-dominated FRW universe:

|Ω0 − 1|
|Ωr − 1| =

t0
tr

=
1017 sec

10−43 sec
= 1060

Degree of tuning required: 1 part in 1060!

Solution to the Flatness Problem through Inflation:

|Ωr − 1|
|Ωi − 1| ≈ a2

i

a2
r

≈ e−2H(tr−ti) <
∼ 10−60

=⇒ Ne ≈ H(tr − ti) >
∼ 60

One needs a sufficient long period of inflation of ∼ 60 e-folds.

Other problems solved by inflation: horizon and homogeneity
problems, dilution of unwanted relics and defects etc.
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