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A list of related problems from H.F. Jones: L e i G Shes Tl

1. 25,29, 2.12*
— Definition of a Group G

2.31,33,34,36 , .
A group (G,-) is a set of elements {a,b,c...} endowed with
3.6.1,62,63 a composition law - that has the following properties:
4. 9.1 :
(i) Closure. Ya,b € G, the elementc=a-b € G.
5. 8.1, 8.3, 8.4, 8.5, 8.6, 8.7, 8.8, 8.9*
(ii) Associativity. Ya,b,c € G, it holdsa-(b-c) = (a-b)-c
6. 10.1, 10.2, 10.3
7104 105 106 107 10.8 (iii) The identity element e. 3e € G: e-a=a, VaeG,
8. 11.3, 115, 11.7, 11.8 (iv) The inverse element a=! of a. Va € G, Ja~ ! € G:
a-at=a'la=e.
Note that more problems as exercises are included in these
notes. Ifa-b=0-a, Va,b € G, the group G is called Abelian.

— The Discrete Groups S5,,, Z,, and C,,

Group G Multiplication Order  Remarks

S, permutation  Successive operation n! Non-Abelian
of n objects in general

Zy: integers Addition mod n n Abelian
modulo n

C',: cyclic group  Unspecified - product n c, = Z,

{e,a,...a" '}

with a™ = 1




— Cosets and Coset Decomposition

Coset. Let H = {hy,hso,...,h,.} be a proper (i.e. H # G
and H # I = {e}) subgroup of G.
For a given g € G, the sets

gH ={gh1,ghs, ..., gh}, Hg={hig, hsg,... h.g}
are called the left and right cosets of H.

Lagrange’s Theorem. If g1 H and g2 H are two (left) cosets
of H, then either g1H = goH or gtH NgoH = @.

Coset Decomposition. If H is a proper subgroup of (G, then
GG can be decomposed into a sum of (left) cosets of H:

G =HUgHUgH- - Ug, 1H,

where g12. € G, g1 ¢ H; go ¢ H, g2 ¢ g1H, etc.
The number v is called the index of H in (.

The set of all distinct cosets, {H,g1H,...,g,—1H}, is a
manifold, the coset space, and is denoted by G/H.

— Normal Subgroup H and Quotient Group G/H

Conjugate to H. If H is a subgroup of GG, then the set
H' = gHg ' = {ghig™',ghag™",... ghrg~'}, for a given
g € G, is called g-conjugate to H or simply conjugate to H.

Normal Subgroup H of G. If H is a subgroup of G and

H =gHg ! Vg€ G, then H is called a normal subgroup
of G.

Groups which contain no proper normal subgroups are termed
simple.

Groups which contain no proper normal Abelian subgroups
are called semi-simple.

Quotient Group G/H. Let G/H = {H,p1H,...,g,_1H}
be the set of all distinct cosets of a normal subgroup H of G,
with the multiplication law:

(9:H) - (g;H) = (g9i-9;) H,

where g;H, g;H € G/H. Then, it can be shown that (G/H, -)
is a group and is termed quotient group.

Note that G/H is not a subgroup of G. (Why?)



— Morphisms between Groups

Group Homorphism. If (A,-) and (B,*) are two groups,
then group homorphism is a functional mapping f from the
set A into the set B, i.e. each element of a € A is mapped
into a single element of b = f(a) € B, such that the following
multiplication law is preserved:

fla1-az) = f(a1) * f(az).
In general, f(A) # B, i.e. f(A) C B.

Group Isomorphism. Consider a 1 : 1 mapping f of (A4,")
onto (B,x), such that each element of a € A is mapped
into a single element of b = f(a) € B, and conversely, each
element of b € B is the image resulting from a single element
of a € A. If this bijectiv 1 : 1 mapping f satisfies the
composition law:

flay-az) = f(a1) * f(az),

it is said to define an isomorphism between the groups A and
B, and is denoted by A = B.

A group homorphism of A into itself is called endomorphism.

A group isomorphism of A into itself is called automorphism.

2. Group Representations (Reps)

— Definition of a Vector Space V

A vector space V over the field of complex numbers C is
a set of elements {v;}, endowed with two operations (+,-),
satisfying the following properties:

(A0) Closure. u+v €V VYu, v €V.
(A1) Commutativity. u+v=v+u VYu, v €V.
(A2) Associativity. u+(v+w) = (u+v)+w VYu,v,w €V

(A3) The identity (null) vector. 30 €V, such that
v+0=v, VvelV.

(A4) Existence of inverse. Vv € V, 3(—v) € V, such that
v+ (—v)=0.

(BO) Axu €V VAeC,VuelV.
(BI) A-(u+v) = A-u+A-v.
(B2) (A1 +2X2)-u = Ap-u+ Ay u.
(B3) A1 (A2-u) = (MA9) - u.

(B4) 1-u=u.
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— Definition of a Group Rep.

Group Rep. A group representation T,
T: 9 — T(g) € GL(N,C) VgeG,

is a homomorphism of the elements g of a group (G,-) into
the group GL(N,C) of non-singular linear tranformations of
a vector space V' of dimension N, i.e. the set of N x N-
dimensional invertible matrices in C.

In addition, homomorphism implies that the group
multiplication is preserved:

T(g1-92) = T(g1)T(92)-

Two reps. 17 and 15 are equivalent if there exists an
isomorphism (1 : 1 correspondance) between T; and T5.
Such an equivalence is denoted as T = 15, or T ~ T5.

Two equivalent reps may be related by a similarity trans. S:
Ti(g) = STe(g)S~' Vg € G and S independent of g.

Character x of a rep T of a group G is defined as the
set of all traces of the matrices T'(g9): x = {x(9)/x(g9) =

>2T(9i N g€ Gl

Corollary:  Equivalent reps have the same character.
Conversely, if two reps have the same character, they are
equivalent.
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— Reducible and Irreducible Reps.

Reducible rep. A group rep. T'(g) is said to be (completely)
reducible, if there exists a non-singular matrix M € GL (N, C)
independent of the group elements, such that

Ig) 0 - 0
Mrgut = | 0 B o | wea
0 0 T.(g)

Ti(g9), T»(9), ., T.(g) divide T into reps. of lower
dimensions, i.e. dim (7) = >.._, dim (7;), and is denoted
by the direct sum:

T(9) = Ti(g) ® To(g) @ -~ @ To(g) = Y Tp).
@

Irreducible rep (Irrep). A group rep. T'(g) which cannot be
written as a direct sum of other reps. is called irreducible.

12



— Direct Products and Clebsch—Gordan Series

Direct Product of Groups. If (4, -) = ({a1, az,..., an}, )
and (B, *x) = ({b1, ba2,..., b}, x) are two groups with
composition laws - and %, respectively,

then a new direct-product group (G,®) = (AX B,®) can be
uniquely defined with elements g = a ® b. The multiplication
law ® in G is defined as

(a1 ®b1) © (a2 ®b2) = (a1-a2) @ (b1 % ba).

Remarks: (i) A and B are normal subgroups of G (Why?).

(i) A=G/B={a1 ® B,as ® B, ...,a, ® B},
B=G/A={A®b0,A®0by, ...,A®by,}.

Direct Product of lrreps. If D(® and D® are two irreps

of the group G, a direct product, denoted as D(@*?)(g,g5) =
D@ (gy) @ D®(gy), can be constructed as follows:

(D0 (g1g2)ijer = [D“(g1)ir [P (g2)]j1 -

Frequently, direct products of irreps are called tensor products.

It can be shown that D(@*?) is an jrrep of the (direct) product
group G x G.

13

Clebsch—Gordan Series

If g1 = go = ¢, then the symmetry of the product group
G x G is reduced to its diagonal G, i.e. G x G — G.

In this case, D(*(g) ® D®(g) may not be an irrep and can
be further decomposed into a direct sum of irreps of G

D (g) @ D®(g) = a.D(g).
@

Such a series decomposition is called a Clebsch—Gordan series,
and the coefficients a. are the so-called Clebsch—Gordan
coefficients.

Applications to reps of the continuous groups SO(2), SU(2)
and SU(N) will be discussed in the next lectures.

14



3. Continuous Groups

— SL(N,C); SO(NV); SU(N); SO(N, M)

Group Properties No. of indep.  Remarks
parameters
GL(N,C) detM # 0 2N? General rep
SL(N,C)  detM = 1 2(N*—-1) SL(N,CQ)
C GL(N,C)
O(N, R) SN (22 IN(N-1) Oof'=0""
N i
= Zi:l(w/ )2
SO(N, R) as above + IN(N — 1) as above
detO =1
SU(N) SV 2 N? -1 Ut =u-!
N i
= Zz‘:1 | / |2
detU =
SO(N, M) Zf\]f:ﬂfl a:lgqu;j ? ATgA =g
va;ﬂl/[ x" gy’ detA =1
gi; = diag (1,...,1, —1, ,—1)
N —times M —times

15

— Useful Matrix Relations in GL(N, C)

Definitions:
o0 Mn
M

(1) € — Z W7
n=0
- M —1)"

InM = e
@ war = 3y
1
= /du(M—l) [w(M —1)+1]"",

0

where M € GL(N,C), i.e. det M # 0.

Basic properties: If [My, Ms] = 0 and M; 2 € GL(N,C),
then the following relations hold:

(i) eMeM2 = MitM2 (i) In(M; M) = In M;+In M, .

Useful identity:

In(det M) = Tr(InM).
This identity can be proved more easily if M can be
diagonalized through a similarity trans: STIMS = M,
where M is a diagonal matrix, and noticing that In M =

SIn MS~. (Question: How?)

16



— Generators and Exponential rep of Groups
[ Examples: SO(2), U(1), SO(3), SU(2) ]

SO(2): Transf. of a point P(x,y) under a rotation through
¢ about z axis:

'\ [ cos¢p —sing x
Yy’ _\Sin¢ cos ¢ I\ '

~~

(®)

Note that OT(¢)O(¢) = 15 and hence 2 + y* = 2/ + ',
i.e. O(¢) is an orthogonal matrix, with detO=1.

SO(2) is an Abelian group, since O(¢)O(¢’) = O(p + ¢') =
0(¢")0(¢).
Taylor expansion of O(¢) about 15 = O(0):

0(5¢):<(1) (1)>—i5</5 (? BZ> + 0[(69),

01 .00
2 fog =1 8((;5¢)|¢:0

with a% =15 and o9 = a;

Exponential rep for finite ¢:
0(6) = Jim [0(6/N)¥ = exp[-idor].

The Pauli matrix oy is the generator of the SO(2) group.

17

U(1): The 2-dim rep of SO(2) in (V,R) can be reduced in
(V,C), by means of the trans:

1 1 1
M= (E W) , M7= (ﬁ
V2 V2 V2
i
M~ rO(¢p) M = <60 €9i¢> = D(l)(¢) D D(—l)(¢).

SIS

Both reps, DM (¢) = €' and D=V (¢) = e, are faithful
irreps of U(1).

A general irrep of U(1) is
D(m)(¢) = m?,

where m € Z. (Question: What is the generator of U(1)7?)

Direct products of U(1)'s:

D™ (g) @ DM(g) = D" (g).

18



Spatial rotation of a wave-function:

Unitary operator of rotation of a wave-function:

SO(3): Group of proper rotations in 3-dim about a given

unit vector n = (ng, ny,n,) = (n1,n2,ng), with n? = 1.

Rotations about z, y, z-axes:

UR(5¢) ¢(T, 9) = (1 o 7’5¢X) @D(T, 0) = ’@D(Ta 0 — 5(b) ) 1 0 0 cos ¢ 0 sing
Ri(¢) = 0 cos¢ —sing , Ro(¢) = 0 1 0
0 sing cos ¢ —sing 0 cos¢
where d j cos¢ —sing 0
X — = = Z= R3(¢) = sing cos¢p O .
db h 0 0 1

is the z-component angular momentum operator.

19

dRi(¢)

The generators X; =1 g ’(b:

-
X3=<-

Equivalently, they can be represented as

1 for (4,4, k) = (1,2,3)

and even permutations,

(Xk)ij = —te€ijk; Eijk =

—1 for odd permutations,
0 otherwise

where g;;, is the Levi-Civita antisymmetric tensor.

General rep of the Group element of SO(3):

R(QS: Il) —

with X = (Xl,XQ, Xg)

exp(—z¢n ) X) )

20
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Properties of the Generators of SO(3).

Commutation relations:
[Xz', Xj] = Xin—Xin = Z'é“iijk.

(Need to use that (X});; = —ic;;x and
EijmEkim = 0ik0j1 — 0310 k.)

Jacobi identity:

(X1, [Xo, Xs]] + (X5, [Xy, Xol] +[Xa, [X5, Xi]] = 0.

Irreps of SO(3). These are specified by an integer j (the so-
called total angular momentum in QM) and are determined

by the (25 + 1) x (25 4+ 1)-dim rep of the generators XZ-(j):

X om = G| Xslim) = m S,

XD v = G| Xl jm) = /G Fm) G+ 4+ 1) G

with XY = X 1+ ix) and X, = L;/.

Exercise: Find the relation between Xi(l) and X;.

21

SU(2): Rotation of a complex 2-dim vector v = (v1,v2)
(with vy 2 € C) through angle 6 about n:

with det U = 1 and

U(9,n) = exp(—ifn-30) = cos3 — io-nsinzb,

where n? = 1 and o = (01, 02, 03) are the Pauli matrices.

. X,; = 10, are the generators of SU(2), with

0 1 0 —i 1 0
r=\10) 27\ o) = \o -1/

Properties: (i) Tro; = 0; (ii) oi0; = §;;12 + i €ijk Ok

Commutation relation: [X;, X/]
algebra as of SO(3).

= i¢€ijr X I.€. the same

Precise relation between SO(3) and SU(2):
Since R(0) and R(27) [with R(0) = R(27) = 13] map into
different elements U(0) = 12 and U(27) = —19, a faithful
1:1 mapping is

SO(3) = SU(2)/Z,,
where Z; = {13, —12} is a normal subgroup of SU(2).

22



4. Lie Algebra and Lie Groups

—Generators of a Group as Basis Vectors of a Lie Algebra

A Lie algebra L is defined by a set of a number d(G) of
generators T, closed under commutation:

[Taa Tb] — Ta'Tb - Tb'Ta — ifngca

where f¢, are the so-called structure constants of L.
In addition, the generators T,'s satisfy the Jacobi identity:

[TCH [Tba TCH + [T07 [Taa Tb]] + [Tba [T09 Ta“ = 0.

The set T, of generators define a basis of a d(G)-dimensional
vector space (V,C).

In the fundamental rep, T, are represented by d(F') x d(F)
matrices, where d(F') is the least number of dimensions
needed to generate the continuous group.

Ex: (i) SO(3): T, = X4; (i) SU(2): T, = 204; (iii) U(1): ?

Exponentiation of T, generates the group elements of the
corresponding continuous Lie group:

G(0,n) = exp[—ifn - T] ,

with n? = 1.

23

— The Adjoint Representation

The Lie algebra commutator [T,, | (for fixed T.) defines a
linear homomorphic mapping from L to L over C:

(Te, MTo+ Ty = M[Te,T.] + Xo[Te, Th,

Y T,, T, C L.

For every given T, € L, [T,, ] may be represented in the
vector space L by the structure constants themselves:

[D.A(Ta)]cb = ifap (: —iftfa)-

Such a rep of T}, is called the adjoint representation, denoted

by A.

The Killing product form is defined as

Gab = (Ta,To)a = Tr[DA(To)Da(Ty)] (= Tra(T,Ty)).

Jar = — 3., is called the Cartan metric.

The Cartan metric g4, can be used to lower the index of f¢;:

fabc - fgbgdc-

Exercise: Show that fup. = —iTra([Ts, Tp] Te), and that

fape 1s totally antisymmetric under the permutation of a, b, c:
fabC - _fba,c — fbca etC

24



General Remarks

o If all f;'s are real for a Lie algebra L, then L is said to
be a real Lie algebra.

e If the Cartan metric g, is positive definite for a real L,
then L is an algebra for a compact group. In this case, gqp
can be diagonalized and rescaled to unity, i.e. gup = 1asp.

[Ex: the real algebras of SU(NN) and SO(N)].

e There is no adjoint representation for Abelian groups.
(Why ?)

e An ideal I is an invariant subalgebra of L, with
TH, Ty cI,VT!elandVT,€L,
or symbolically [I, L] C I.

e Ideals I generate normal subgroups of the continuous
group generated by L.

e Lie algebras that do not contain any proper ideals are
called simple (Ex: SO(2), SU(2), SU(3), SU(5), etc).

e Lie algebras that do not contain any proper Abelian ideals
are called semi-simple. (Question: What is the difference

between a simple and a semi-simple Lie algebra?)

e A semi-simple Lie algebra can be written as a direct sum
of simple Lie algebras: L =1® P.

25

— Normalization of Generators and Casimir operators

The generators of a Lie group Dr(T,) of a given rep R are
normalized as

Tr [DR(TG) DR(Tb)] = TR 5ab .

For example, in SU(N) [or SO(N)], Tr = 5 for the

fundamental rep and T4 = N for the adjoint reps.

Casimir operators T% of a Lie algebra of a rep R are matrix
reps that commute with all generators of L in rep R.

A construction of a Casimir operator T% in a given rep R of
SU(N) [or SO(NN)] may be obtained by

d(G) d(R)

(T =Ta Y Y [Dr(To)lik " [Dr(Ty)]k; = 615 Cr,
a,b=1 k=1

where g?° is the inverse Cartan metric satisfying: ¢®° gy = 0.

Exercises:
Show that (i) [T%, T,] = 0;
(i) Trd(G) = Crd(R);

(iii) Cr = 2<L and C4 = N in SU(N).

26



5. Tensors in SU(N)

— Preliminaries

Trans. of a complex vector 1; = (V1,%a,...,%y,) in SU(N):
Y = Y= Uty (= U74),

where UTU = UUT =1,, and det U = 1.

Define the scalar product invariant under SU(N):
(W, ¢) = ¥igi (=" i) .
Hence, the trans. of the c.c. ¥ is
U= o = Uy (or 9 = Ued),

with U;? = U, U, = U, and U, /U = U UF = 6.

Higher-rank tensors are defined as those quantities that have
the same trans. law as the direct (diagonal) product of
vectors:

kikg...kp

/ilig...ip
(G lilg...lg

J1j2---Jq

7 ) 1 l l l
= (URUR... UL (UrU2. U,y

The rank of %E?‘Z is p 4+ ¢, with p contravariant and ¢

covariant indices.

27

SU(N ) trans. properties of the Kronecker delta &’ and
Levi-Civita symbol g'1%2:+in :

Invariance of & under an SU(N ) trans:

T __ 771 Il ¢k ) k _ 5t
i =ULU e = ULUS = o

The Levi-Civita symbol g/172-n:

(1 if (iy,...4,) is an even
permutation of (1,...n)

ghtizin — 0 1 if (iy,...1,) is an odd

permutation of (1,...n)

\ 0 otherwise

Note that &;,4,...4,, is defined to be fully antisymmetric, such
that 4,4, "2 = (n — 1)! (5;.

Invariance of ;,4,..i, (and €1%2-n) under an SU(N ) trans:

in

/ _ Jiyr J2 n ~
€irigoin = Uip U™ - U™ €514 g

detU €ijiy..in = Eigig...in -
=1

28



Reduction of higher-rank tensors:

Lower-rank tensors can be formed by appropriate use of 5;
and gilig...in:

wiZ...'L‘p — 5]1 ZlZ2...lp
J2---Jq 11 7 J1J2---Jq
1 2129...1 ) )
w - € nwlg...ln)
_ 2129...1 o )
¢ - € nwzllg...zn )
11J1 11%2...9n ~J1J2---J L
(0 = ¢ "E " Vig...injo.jn -

Since the Levi-Civita tensor can be used to lower or raise
indices, we only need to study tensors with upper or lower
indices.

Exercise: Show that v is an SU(N )-invariant scalar.
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— Young Tableaux

Higher-rank SU(IV) tensors do not generally define bases
of irreps. To decompose them into irreps, we exploit the
following property which is at the heart of Young Tableaux.

An illustrative example. Consider the 2nd rank tensor 1;;,
with the trans. property:

ng = UikUjl Vi -

Permutation of i <» j (denoted by P;2) does not change the
trans. law of 1);;:

PIngj = ¢;@ - Uijil¢kl = Uleik¢lk
= U,;'U;* Piatpyy .

Hence, P;5 can be used to construct the following irreps:

1 1
Sij = 5(1+P12)¢z‘j = 5(%’;’ + Vi),
1 1
Aij = 5(1 — Pio)hij = 5(@%‘ — ¥ji)
with Pleij = Oij and P12Aij = _Aijv since there is no

mixing between S;; and A;; under an SU(N) trans:

30



Introduction to Young Tableaux Rules for constructing a legal Young Tableau

A complex (covariant) vector (or state) ; in SU(N) is

represented by a O: e A typical Young tableau for an (n-rank) tensor with n

indices looks like:

The operation of symmetrization and antisymmetrization is
represented as -

Viij) = bpij] = e Each row of a Young tal.)le_au n_1ust contain no more boxes
than the row above. This implies e.g. that

with 15y = 5 (1 + Pi2) ¢y = Si; = Sj; and
Uij) = 5 (1 = Pra) iy = Ayj = —Aji. |

By analogy, for 1,5 we have

is not a valid diagram.

7 171 e There should be no column with more than N boxes for
D) k| SU(N). In this respect, a column with exactly N boxes
Wligh] Wi(ig)ik can be crossed out. For example, in SU(3) we have:
where ;1) Is fully symmetric in ¢, j, k, H : | |
Yrijk) is fully anti-symmetric in 4, j, k and I : - O
Pleagye) = (1 — Pig) (14 Pr2) iji. H H

Exercise: Express ¥;;x) and 9y )k in terms of ;.
(Ans: Yiiiyn) = Yige + Vjie — Yrji — Vjki-)
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How to find the dimension of a Young Tableau rep

Steps to be followed:

(a) Write down the ratio of two copies of the tableau:

(b)

(c)

(d)

Numerator: Start with the number N for SU(NV) in the top left box.
Each time you meet a box, increase the previous number by +1 when
moving to the right in a row and decrease it by —1 when going down
in a column:

N_|N+1|N+2]
N—1| N
N—2|N-1
N-3

Denominator. In each box, write the number of boxes being to its
right 4+ the number being below of it and add +1 for itself:

6 | 4 | 1]
4 | 2
3] 1
1

The dimension d of the rep is the ratio of the products of the entries
in the numerator versus that in the denominator:

d = [N(N+1)(N+2)(N—-—1)N(N —2)(N —1)(N — 3)]
/[6x4x4x2x3].

33

Rules for Clebsch-Gordan series

The direct product of reps can be decomposed as a Clebsch-
Gordan series (or direct sum) of irreps. This reduction can
be performed systematically by means of Young Tableaux,
following the rules below:

(a)

(b)

(d)

Write down the two tableaux 77 and T5 and label successive
rows of T5 with indices a, b, c, .. .:

alal

X
|(‘3®‘Q
o>

Attach boxes a, b, ¢ ...from 15 to T3 in all possible
ways one at a time. The resulting diagram should be
a legal Young tableau with no two a's or b's being
in the same column (because of cancellation due to
antisymmetrization).

At any given box position, there should be no more b's
than a's to the right and above of it. Likewise, there
should be no more c¢'s than b's etc. For example, the
alb]

tableau

is not legal.

Two generated tableaux with the same shape are different
if the labels are distributed differently.
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An example in SU(3)

| o [afal =( [a] + + |) x E

|| ] || a ||

a|
= ( [afa] + a] + [a] + ) x [b]

|| a | a
a | “a
= alal + [_lafa] + al + [_af+[ a]+1
b alb a b

S X8 =27T010010 8 @8 a1

Exercise: Find the Clebsch—Gordan decomposition of the
product 8 x 10 in SU(3), represented by Young tableaux as

| < L1 1]

(Ans: 8 x 10 = 8 ® 10 @ 27 @ 35)
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— Applications to Particle Physics
The SU(3) quark symmetry

Define the quark-basis states

u . u
¢ = | d|, ¢ = | d
S S

Then, ¢; =3 and ¢' = ¢ = 3.
Clebsch—Gordan series: 3®3 =8 ® 1:

‘ 1
6’ = (aa’ = 30 ad") + —5J qrq"”
In terms of Young—Tableaux:

D><H=_|+ﬁ

The singlet state is ; = \/—qlq = \/— (uti + dd + s5).

The remaining 8 components represent the pseudoscalar octet
P! = (qi¢ — %06] ard®):

%ﬂ'o%—%ng T K+
Pj — T —% 770_—|— %7}8 K
K_ KO _%778
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Baryons as three-quark states:
Clebsch—Gordan series: 3®3®3 = 10068@8d1

Define g;j1 = ¢iq;qx, then

Tijk = qijk) + di@j)k] T diGisk] + k] -

For example, the baryon-octet may be represented by

1 0 1 +
TEZ —|176A8 1 % 1 P
B = qup = > —a: Ao
= =0 —2 A
= = 7

Exercise: Find the Clebsch—Gordan decomposition
for 3 ® 3 ® 3, using Young—Tableaux.
What is the quark wave-function of p and n?
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Particle assignment in an SU(5) unified theory

The particle content of the SM = SU(3).®SU(2),® U(1)y
consists of three generations of quarks and leptons.

One generation of quarks and leptons in the SM contains 15
dynamical degrees of freedom:

ur,g,b vr ) )
L T7g7 T?g?

dr,g7b ) ( l > ) uR s dR 3 ZR .
L L

In SU(5), the SM fermions are assigned as follows:

Jr
d9
5 = db ,
e
and
0 ab  —wd undr
—a® 0 at w9 dI
10 = (T 7 L B VU
—u" —ud —ub 0

e
—d" —d9 —d* —e 0

Exercise: Given that 5 is the complex conjugate rep ¥ = 1)°
of the SU(5) in the fundamental rep, find the tensor rep for
the 10-plet representing the remaining fermions of the SM.
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6. Lorentz and Poincaré Groups

Lorentz trans:

where zt = (ct,x,y,z), x'* = (ct',;2',y,2") are the
contravariant position 4-vectors, and

v =B 0 0

w | 8 v 00
AF, = 0 0 1 0 for B | e, .

0 0 0 1

Given the metric g, = diag(1,—1,—1,—1), the covariant
4-vector is defined as z,, = g, ¥ = (ct, —x, —y, —2).

Under a Lorentz trans, we have z#z, = z'# a;’# or
H vo_ BAM vo.Q T _
at g’ = A9, A2 = Agh=g,
so A* € SO(1,3), with det A = 1.

39

— Lie Algebra and Generators of the Lorentz Group

Generators and Lie Algebra of SO(1,3)

Generators of rotations Ji 2 3:

0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 i
Sio= 00 0 —i|”72=lo 0o o o]
0 0 i 0 0 —i 0 0
0 0 0 0
0 0 —i 0
T3 = 0 i 0 O
0 0 0 0
Generators of boosts K1 3 3:
0 —i 0 0 0 0 —i 0
i 0 0 0 0 0 0 0
K= o o o o 2= i 0o o o
0 0 0 0 0O 0 0 0
0 0 0 —i
0 0 0 0
K3 = 0 0 0 O
—i 0 0 0

Commutation relations of the Lie algebra SO(1,3):

iy Ji] = ieijr i,

i, K] = ieijn Ky,

K, Kj| = —iginJi
40



SO(1,3)c = SU(2) x SU(2) [or SO(1,3)r ~ SL(2,C)]

Define
X* = %(JiiK),
then
(X" X = deipn X
X, X571 = dep Xy,
(X5, X1 = 0.

Hence, SO(1,3) algebra splits into two SU(2) ones:
SO(1,3): = SU(2) x SU(2),

where SO(1,3)c is the rep from a complexified SO(1,3)
algebra. However, there is an 1:1 correspondence of the
reps between SO(1,3)c and SO(1,3)g. In fact, we have the
homomorphism

SO(1,3), ~ SL(2,C),

which is more difficult to use for classification of reps.
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Classification of basis-states reps in SO(1,3)

We enumerate basis-state reps in SO(1,3) by (ji1,j2), using
the relation of SO(1,3) with SU(2); x SU(2)s, where j; 5 are
the total spin numbers with respect to SU(2); 2. The total
degrees of freedom are (251 + 1)(2j2 + 1). In detail, we have

(0,0): This is a total spin zero rep, with dim one. (0, 0) represents

a scalar field ¢(x) satisfying the Klein-Gordon equation:
(O +m?)¢(z) =0, where O = 9#9,,.

(3,0): This a 2-dim rep, the so-called left-handed Weyl rep,
e.g. neutrinos. It is denoted with a 2-dim complex vector
&, usually called the left-handed Weyl spinor. Under a
Lorentz trans, &, transforms as
&, =M ¢,
where M, € SL(2,C).
(0,3): This is the corresponding 2-dim rep of the right-handed

Weyl spinor and is denoted as 74, which transforms under

Lorentz trans as .
M = M4 7,

/8 9
where M Bd € SL(2,C).
): This is the defining 4-dim rep, describing a spin 1 particle

with 4 components. One can use the matrix rep: A*(0,,)qa
or simply A*, e.g. A¥ = (®/c, A) in electromagnetism.

42



— Lie Algebra and Generators of the Poincaré Group

The Poincaré trans consist of Lorentz trans plus space-time
translations:
2t = A 2V + at,

where a* is a constant 4-vector.

The generator of translations in a differential-operator rep is

0 0
pho— or = i — L
0 Zaxu Z(cat ’ )
with P, =i8, = i(-3;, V), because

e Pugh — gt 4 gt (Why?)

An analogous differential-operator rep of the 6-generators of
Lorentz trans is given by the generalized angular momentum
operators:

L, = z=,P, — x,P,,

with the identification

1
Ji = §5ijk;ij7 K; = Lo;.

Exercise: Show that J; = Ze;xLj, and K; = Ly, satisfy
the SO(1,3) algebra.
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The Lie Algebra of the Poincaré Group:

The commutation relations defining the Poincaré Lie algebra
are

[P,lMPV] = 0,
[P,ua Lpo] i (gupPJ _ g,uoPp> 9

[L,uw Lpo] = —1 (gupLuo— - guaLup + gyaLup - gupL,u,o) .

In terms of J and K, the commutation relations read:

[P07 J’L] — Oa
(P, J;] = ieijk P,

[P()) Kl] — ZPZ7

[PZ', KJ] = ’LP()(SU

Exercise: Prove all commutation relations that appear on this

page.
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— Single Particle States

The Poincaré group has two Casimir operators: P? = P'P,
and W2 = WHW,,, where

1 v o
W/,L — _igluypaLpP )

with €9123 = 1, is the so-called Pauli-Lubanski vector.
Classification of massive particle states

A single massive particle state |a) can be characterized by its
mass and its total spin s, where s is defined in the rest of
mass system of the particle:

P?la) = m?|a), W?|a) = —m2J*|a) = —m?s(s+1)|a)

In addition, we use the 3-momentum P and the helicity
H = J - P operators to classify massive particle states:

Bula;im,s;p,A) = pula;m, s;p,A),
Ha;m, s;p,A) = Alpl[a;m, s;p, A) .
Note that a massive particle state has (2s + 1) polarizations

or helicities, also called degrees of freedom,
le. A\=—s,—s+1,...,s—1,s.

Examples: for an electron, it is A = :i:%, and for a massive

spin-1 boson (e.g. the Z-boson), we have A = —1,0, 1.
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Classification of massless particle states

Massless particle states, for which P%ja) = 0 (m = 0),

are characterized only by their 4-momentum p,, and helicity
A=P-J.

Alternatively, in addition to the operator P,, one may use the
Pauli-Lubanski operator W,

Wyla;pu, \) = Appla;pu, A) .

If the theory involves parity, then a massless state has only
two degrees of freedom (polarizations): +A\.

Examples of the above are the photon and the neutrinos of
the Standard Model.

Exercises:

(i) Show that P? and W? are true Casimir operators,
i.e. [P?, P,|=[P? L, ]=0,and likewise for W?;

(i) In particle's rest frame where p,, = (m,0,0,0), show that
Wo =0, W; = sme;jx L% = mJ; and W? = —m?J?;

(iii) Show that [J-P,P| =0, [P,,W,] =0, and W,P* = 0;

(iv) Calculate the commutation relation [W,, W, ].
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7. Lagrangians in Field Theory

— Variational Principle and Equation of Motion
Classical Lagrangian Dynamics

The Lagrangian for an n-particle system is

where q; 2., are the the generalized coordinates describing

the n particles, and ¢, ., are the respective time
derivatives.

T and V denote the total kinetic and potential energies.

The action S of the n-particle system is given by

Slat)] = / “dt Lig.d)

ty

Note that S is a functional of ¢;(t).
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Hamilton’s principle

Hamilton’s principle states that the actual motion of the
system is determined by the stationary behaviour of §
under small variations dq;(t) of the ith particle’'s generalized
coordinate ¢;(t), with dg;(t1) = dq;(t2) =0, i.e.

t2 oL oL
6S = / dt (5i—+5'i—,>

t2 oL d aL>
= dt 6¢; — ——— ) =0

The Euler-Lagrange equation of motion for the ith particle is

d OL oL

49 9y,
dt 9¢; dq;

Exercise: Show that the Euler—Lagrange equations of motion
for a particle system described by a Lagrangian of the form

L(q;, 4;, g;) are

d? OL d OL oL

et =0

dt? 3(]Z dt 3qz (9ql~

[Hint: Consider only variations with d¢;(t1,2) = d¢;(t1,2) = 0.]
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Lagrangian Field Theory

In Quantum Field Theory (QFT), a (scalar) particle is
described by a field ¢(x), whose Lagrangian has the functional
form:

L = /d% L(p(x),0.9(x)),

where L is the so-called Lagrangian density, often termed
Lagrangian in QFT.

In QFT, the action S is given by

“+oo
Slo(x)] = / dh L(6(x),0,6(x))

— 00

with xglziloo o(x) =0.
By analogy, the Euler—Lagrange equations can be obtained
by determining the stationary points of S, under variations

¢(z) = ¢(x) + 69(x):

o _ ok _,

% 50,8 " 99

Exercise: Derive the above Euler—Lagrange equation for a
scalar particle by extremizing S[¢(z)], i.e. 5 =0.
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— Lagrangians for the Klein-Gordon and Maxwell eqs

Lagrangian for the Klein—Gordon equation

1

(0u0) (0"9) — Sm*¢?,

-
KG 9

DO | =

where ¢(z) is a real scalar field describing one dynamical
degree of freedom.

The Euler—Lagrange equation of motion is the Klein—Gordon
equation

(0,0" + m2) d(z) = 0.

Lagrangian for the Maxwell equations
1 pv AM
ﬁME = —ZFMVF - J’u 5

where F},, = 0, A, — 0, A, is the field strength tensor, and
J,, is the 4-vector current satisfying charge conservation:
O J* = 0.

A,, describes a spin-1 particle, e.g. a photon, with 2 physical
degrees of freedom.

Exercise: Use the Euler-Lagrange equations for Lyg to

show that 0,F" = J”, as is expected in relativistic
electrodynamics (with pg =¢9 =c=1).
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— Lagrangian for the Dirac equation

ED - /(L(?’/Y’ualﬁ - m>w7

and ¥(z) = (n%(x), 4(x)), with o# = (15, o) and 7# =
(12, —0')

The &, and 7% are 2-dim complex vectors (also called Weyl
spinors) whose components anti-commute: §1& = —&2€1,
Nt = =i, L7 = —1°6) etc.

The Euler-Lagrange equation of £p with respect to v is the
Dirac equation:

T2 = 0= (90, — m)v = 0,

The 4-component Dirac spinor ¢(x) that satisfies the Dirac
equation describes 4 dynamical degrees of freedom.

Exercises:

(i) Derive the Euler—Lagrange equation with respect to the
Dirac field ¥ (x);

(ii) Show that up to a total derivative term, Lp is Hermitian,
ie. Lp = LL + 9mj,, with j, = iy, .
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Lorentz trans properties of the Weyl and Dirac spinors

The Dirac spinor 1 is the direct sum of two Weyl spinors &
and 7 with Lorentz trans properties:

5(/1 - Ma5557 7_7(/1 - MTﬂaﬁB7

e —lagf 6 _ gri-la op

§¢ = M4z "¢, 1n M0t
with M € SL(2,C).
Duality relations among 2-spinors:
(ga)T — gdv (fa)T — go'm (ﬁd)T = Mo, (UQ)T - ﬁd
Lowering and raising spinor indices:
504 = 60‘6567 é‘a p— €a’B§6, 770'5 — gdﬂ-ﬁ137 ﬁd — 8d6f}6’

0 1
-1 0

Lorentz-invariant spinor contractions:

with 2P = igy = ( ) = —e4 and £0B = gy = —Eap
&N = €0 = E%apn® =-—1eapé® = nPepat® = nPts = nt

Likewise, £ = (€)1 = €107 = £4n% = 74€% = €.

Exercise: Given that Mo, M1 = A, 0, and M=, M~ =
A”M o,, show that Lp is invariant under Lorentz trans.
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8. Gauge Groups

— Global and Local Symmetries
Symmetries in Classical Physics and Quantum Mechanics:

Translational invariance in time Energy conservation

t—t + ao — % =0

Translational invariance in space Momentum conservatio
r—r-+a = % =0

Rotational invariance Angular momentum conservation
r— Rr = % =0

Quantum Mechanics
[H,0] =0

Degeneracy of energy states
= 42 =i[H,0]=0

Quantum Field Theory Noether's Theorem
¢(x) = ¢(x) +dp(x) = 7
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Global and Local Symmetries in QFT

Consider the Lagrangian (density) for a complex scalar:
L = (0"9)" (0u9) — m*¢"¢ + ANo™0)” .
L is invariant under a U(1) rotation of the field ¢:

ox) — ¢'(x) = e’ o(x),
where 6 does not depend on =z = z*.

A transformation in which the fields are rotated about z-
independent angles is called a global transformation. If the
angles of rotation depend on x, the transformation is called
a local or a gauge transformation.

A general infinitesimal global or local trans of fields ¢; under
the action of a Lie group reads:

pi(r) — ¢i(x) = ¢i(x) + ddi(x),

where 6¢i(x) = —i0%=x) (T*)] ¢j(z), and T are the
generators of the Lie Group. Note that the angles or group
parameters 6% are x-independent for a global trans.

If a Lagrangian L is invariant under a global or local trans, it
is said that £ has a global or local (gauge) symmetry.

Exercise: Show that the above Lagrangian for a complex

scalar is not invariant under a U(1) gauge trans.
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— Gauge Invariance of the QED Lagrangian

Consider first the Lagrangian for a Dirac field v:
Lp = ¢ (iv"0, — m)i.

Lp is invariant under the U(1) global trans:

Y(z) = ¥'(x) = (),

but it is not invariant under a U(1) gauge trans, when
0 = 0(z). Instead, we find the residual term

5Ly = — (0u(x)) 7"

To cancel this term, we introduce a vector field A" in the
theory, the so-called photon, and add to L the extra term:

Ly = Lp — eAMszy“@b.
We demand that A,, transforms under a local U(1) as
, 1
A, — A, = A, — gﬁuﬁ(x).

Ly is invariant under a U(1) gauge trans of i) and A*.

55

QED Lagrangian with an electron-photon interaction

The complete Lagrangian of Quantum Electrodynamics
(QED) that includes the interaction of the photon with the
electron is

1 = .
EQED — _ZFMVFMV+¢(Za_m_6A)¢7
where we used the convention: ¢ = y,a".

Exercises:
(i) Show that Lqgp is gauge invariant under a U(1) trans.

(ii) Derive the equation of motions with respect to photon
and electron fields.

(iii) How should the Lagrangian describing a complex scalar

field ¢(x),
L = (849)" (0,0) — m® ™,

be extended so as to become gauge symmetric under a U(1)
local trans?
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— Noether’'s Theorem

Noether’s Theorem. If a Lagrangian £ is symmetric under a
global transformation of the fields, then there is a conserved
current J#(x) and a conserved charge Q = [d?z J%x),
associated with this symmetry, such that

d@
@LJ“ = 0 and E = 0.

Proof-

Consider a Lagrangian L£(¢;, 0,,¢;) to be invariant under the
infinitesimal global trans:

S = i0°(T)] ¢y,
where T'® are the generators of some group G.

Hence, the change of L is vanishing, i.e.

oL oL
0L = — 0¢; — 0,(00;) = 0.
0p; bi t (0. :) u(004)

This last equation can be rewritten as

oL oL oL
“Zaﬂlaw—m‘s@]*[@‘%w—m o = 0.
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With the aid of the equations of motions for ¢;, the last
equation implies that

oL oL oL
On [awn 5@'] - [a" 00,00 06 ) 0=

The conserved current (or currents) is

oL 05¢; O

JoH = =
8((%(;51-) ol a@u@)

i((T)] 6.
The corresponding conserved charges are

Q(t) = / B J ().
Indeed, it is easy to check that

dfi = /d3x 80Ja’0(a:) = —/d?’ZEV'Ja(I)

= —/ds-J“ — 0,

because surface terms vanish at infinity.

Exercises: Find the conserved currents and charges for

(i) QED;

(ii) the gauge-invariant Lagrangian with a complex scalar ¢.
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— Yang—Miills Theory

The Lagrangian of a Yang—Mills (non-Abelian) SU(NN) theory

IS 1
EYM = —ZFSVFG"UJV,

where
F}, = 0,A% — 9,A% — g fabe AZ A

and f¢ are the structure constants of the SU(V) Lie algebra.

It can be shown that Ly is invariant under the infinitesimal
SU(N) local trans:

a 1 a abc nb pc
GAL = =00 — [0

Examples of SU(V) theories are the SU(2), group of the SM
and Quantum Chromodynamics (QCD) based on the SU(3).

group.

The gauge (vector) fields of the SU(2), are the W° and W=
bosons responsible for the weak force.

The gauge vector bosons of the SU(3). group are the gluons
mediating the strong force between quarks.

Gauge bosons of Yang—Mills theories self-interact!

Exercise: Show that Ly is invariant under SU(N) gauge
trans.
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Interaction between quarks ¢; and gluons A7, in SU(3).

If ¢; = (Greds Gereen, Qblue) are the 3 colours of the quark,
their interaction with the 8 gluons Aj is described by the
Lagrangian:

Lie = @i @07 — m& — g A4(TH] ;.

Exercise: Show that Ly is invariant under the SU(3) gauge
transformation:

1 -na (ray J
SAL = = 00" — feAs, bq = i0° (T")] g5,

where T = 1 \® are the generators of SU(3) and A" are the
Gell-Mann matrices:

123 00 1
REEI (JO 8>, A (0 0 0|,
1 0 0
0 0 —i 0 0 O
A\ = (0 0 0), A\ = (o o 1|,
i 0 0 0 1 0
] 0 0 0 . Ve ? 0
N= [0 0 —i |, A\ = 0 2= 0
0 i O 0 0 —%
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9. The Geometry of Gauge Transformations

— Parallel Transport and Covariant Derivative

Simple Example:

N

Time-dependent vector written in terms of ¢-dependent unit
vectors:

v(t) = vi(t) ei(t) (with i =1,2).

The true time derivative of v(t) is

d . v(t+6t) — ()
Ev(t) - 51t1£I>10 ot '

To calculate this, we need to refer all unit vectors to t + dt:

ei(t) = ei(t+(5t) — Ot 8te7;(t) .
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Then, we have

1
V(M) = = {ut+0t) — (vi(t) — otv,(t) [e; - Drey])}

X e;(t + ot)
= [Owi(t) + (ei - Orej) v;(t)] ei(t).

We can now define the covariant derivative to act only on
the components of v(t) as:

Dwi(t) = wilt) + (e:- Ohe;)v;(t),
= 8tvi(t) + 963@' Uj(t),

with the obvious property £v(t) = e;(t)D;v;(t). The second
term is induced by the change of the coordinate axes, namely
after performing a parallel transport of our coordinate system
ey 2(t) from t to t + dt.

Proper comparison of two vectors v;(t 4+ 6t) and v;(t) can
only be made in the same coordinate system by means of
parallel transport. Differentiation is properly defined through
the covariant derivative.

Exercise: Show that the covariant derivative satisfies the
relation

Dyi(t) = Owi(t) + (w xv(t));,
with w = 6(t), which is known from Classical Mechanics
between rotating and fixed frames in 3 dimensions.
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Differentiation in curved space

The notion of the covariant derivative generalizes to curved
space as well. By analogy, the infinitesimal difference between
the 4-vectors V#(z'*) and V(x*) is given by

DV# = dV* + §V*,

where dV* is the difference of the 2 vectors in the same
coordinate system and dV'* is due to parallel transport of the
vector from x* to x’#* = x* + dxH.

In the framework of General Relativity, we have
DVF = (0\V* + I'\V") da?,

where F’jA is the so-called affine connection or the Christoffel
symbol.
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Covariant derivative in the Gauge-Group Space

Consider the difference of a fermionic isovector field v at
xt + dz* and x* in an SU(N) gauge theory:

Dy = dip + 01,

where

o = igT* A} dat 1
and the field A7 takes care of the change of the SU(NV) axes
from point to point in Minkowski space.

The covariant derivative of ¥(z#) is
Dy = (8, + igT®A%) ),

which is obtained from pure geometric considerations.

In analogy to General Relativity, the gauge field Aj;T“ is
sometimes called the connection.

Exercise: Show that under a local SU(N) rotation of the
isovector 1 field: 1 — ¢ = Ut (with U € SU(N)), its
covariant derivative transforms as

Dy — Dl = UDyy,

with

Al =UAU" + —(9,U)U".

()
g
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A round trip in the SU(/N) Gauge-Group Space Parallels between Gauge Theory and General Relativity

D < C In General Relativity, a corresponding round trip of a vector
V*# in a curved space gives rise to
Y Lot
" 1
A" Age B AV = D Rp\VPASTA,

Keeping terms up to second order in dx and Ax, we have
where AS°? represents the area enclosed by the path and

1 B ; —Chri :
vp = (1 + AzhD, + §A$MASUV D.D,)¥ao, R, is the Riemann—Christoffel curvature tensor:
]_ K K
wc = (1 + (5$MDM + §5$'u5$y DMD,/) wB, Rgg)\ = aAFZg T 8UFZ)\ + Fparg)\ - FpAFlfia :
1
= (1 — Az"D, + = AztAx" DD, ,
¥p ( 2 wDv) Yo Analogies:
1 v
ar = (1 = 6a"D, + §5$M5x DyuDy)¢p . Gauge Theory General Relativity
H Gauge trans. Co-ordinate trans.
ence, Gauge field A7, T Affine connection, I'}
Field strength F'* Curvature tensor RY
— iz v poA
Yan (1+02"Az” D> Dul) a0, Bianchi identity: Bianchi identity:
and a1 # a0 2z Dol =0 2y Do By =0

Exercise: Show that
1
Q[Dp" D, = FSVT“

is the SU(V) Field-strength tensor.
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— Topology of the Vacuum: the Bohm—Aharanov Effect

The Bohm—-Aharanov Effect:
| 1

e maaa
.........

x: displacement of fringes

Prae
.-

Vector potential A and B field (with B = V x A) in
cylindrical polars:

B
Inside: A, = A, =0, A¢:7r,
B,=By=0, B,=B,

BR?

2r

Outside: A, =A,=0, A,=
B

where R is the radius of the solenoid.

Although the electrons move in regions with E = B = 0, the

B field of the solenoid induces a phase difference d¢15 of the

electrons on the screen causing a displacement of the fringes:
e e

5¢12=¢1—¢2:— Adr:—/Bds

hJo_q h

In regions with E =B =0, it is A # 0, so the vacuum has

a topological structure! It is not simply connected due to the

presence of the solenoid.
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Basic Concepts in Topology

Let a(s) and b(s) be two paths in a topological space Y both
starting from the point P (a(0) = b(0) = P) and ending at a
possibly different point @ (a(1l) = b(1) = Q). If there exists
a continuous function L(t,s) such that L(0,s) = a(s) and
L(1,s) = b(s), then the paths a and b are called homotopic
which is denoted by a ~ b.

If P = (@), the path is said to be closed.

The inverse of a path a is written as a~! and is defined by

a"1(s) = a(l —s). It corresponds to the same path traversed
in the opposite direction.

The product path ¢ = ab is defined by

c(s) = a(2s), for 0 <
= b(2s—1), for3 <

o
—~
»
~—

|

If @ ~ b, then ab~! is homotopic to the null path: ab=! ~ 1.

Exercises:

(i) Consider the mappings S' — U(1): fn(0) = e'(n0+a)
with a € R and n € Z), and show that they all are homotopic
( y p
to those with a = 0.

(i) Given that f,,(0) % f..(0) for n # m, explain then why
L(t,0) = e'M?(=1)+m0t is not an allowed homotopy function

relating f,, to fi..
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Homotopy Classes, Groups and the Winding Number

All paths related to maps X — Y of two topological spaces
X, Y can be divided into homotopy classes.

Homotopy Class. All paths that are homotopic to a given
path a(s) define a set, called the homotopy class and denoted
by [a]. For example, [f,] are distinct homotopy classes for
different n.

Winding Number. Each homotopy class may be
characterized by an integer, the winding number n (also called
the Pontryargin index). For the case f(): S — U(1), the
winding number is determined by

Homotopy Group. The set of all homotopy classes related
to maps X — Y forms a group, under the multiplication law

la] [b] = |ab],

the so-called homotopy group mx(Y).

Exercises:
(i) Prove that the homotopy group satisfies the axioms of a

group.
(i) Show that for ST — U(1), m1[U(1)]

112

Z.
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The Bohm—-Aharanov Effect Revisited

In regions with E =B =0, A, is a pure gauge: A, = 0,X
(Why?).

The configuration space X of the Bohm—Aharanov effect is
the plane R? with a hole in it, due to the solenoid. This is
topologically equivalent (= homeomorphic) to R x S*. The
space X can be conveniently described by polar coords (7, ¢),
with r # 0.

It can be shown that x(r, ¢) = const. X ¢, which is a function
in the group space of U(1), i.e. Y =U(1).

Since functions mapping S! onto R are all deformable to a
constant, the non-trivial part of x is given by the map:

St — U1).

Because 71 [U(1)] = Z, the electron paths cannot be deformed
to a null path with a constant x, implying A, = 0 everywhere
and the absence of the Bohm—Aharanov effect.

Since m[SU(2)] = 1, there is no Bohm—Aharanov effect
from an SU(2) ‘solenoid’!

Exercises:

(i) Show that x(r,¢) = 5 BR?¢ is a possible solution for

E = B = 0, where B is the magnetic field and R the radius
of the solenoid.

(ii) Verify that 8¢5 = £ [ x(27) — x(0)].
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10. Supersymmetry (SUSY)

— Graded Lie Algebra

Definition. A Z-graded Lie algebra is defined on a vector
space L which is the direct sum of two subspaces Lg and
Ly: L = Ly@® Lq. The generators that span the space L are
endowed with a multiplications law:

o: LxL— L.

VTO ¢ Ly, TW € Ly, the generators satisfy the following
properties:

() 713" = —(~1)2 ;"o = (11, T3”) € L,
(i) T@oT™ = —(=1)9091 TW o) = {7O) T} ¢ L,
(i) TM oV = —(—1)ATMor® = 7V, 7] € L,

where go = g(Lo) = 0 and g1 = g(L1) = 1 are the degrees
of the graduation of the Z,-graded Lie algebra.

In addition, all generators of L satisfy the Zs-graded Jacobi
identity:

(—1)9:9% 7@ o (T(j) o T(k)) + (—1)9k9i T o (T(i) o T(j))
+ (_1)93'91' 7 o (T(k) o T(Z’)) = 0,

where 7,5,k =0, 1.
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Z-graded Lie algebra. The generalization of a Zs-graded
Lie algebra L to Zy can be defined analogously. Let L be
the direct sum of N subalgebras L;:

L =o' L.

Then, the multiplication law o among the generators of L
can be defined by

TOoTl) = —(=1)99% T o T® € L\ ) moan -

The Zn-graded Jacobi identity is defined analogously with
that of Zj, where g;; = 0,1,...,N — 1 is the degree of
graduation of L; ;.

Exercise*** Find the (anti)-commutation relations and the

structure constants of the Zo-graded Lie algebra of SU(2).
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— Generators of the Super-Poincaré Group

The generators super-Poincaré algebra are P,, L,, € Lo

and the spinors Q. , Qs € Li. They satisfy the following
relations:

(i) [P., P] = 0,

(i) [Pus Loo]l = i (gupPo — guoabp) ,

(iit) [Lyuw, Lpo]l = —i(9gupLve — GuoLvp + GuoLpp — GupLiypo) -
(iv) {Qa, Qs} = {Qa: Qp} = 0,

(V) {Qa: Q) = 2(0"),5Pu

(Vi) [Qa, P = 0,

(viD) (L, Qo] = —i(ow)) Qs
(i) (L, Qal = —i(@u)d Qg

Exercise:* Prove the Zs-graded Jacobi identity:

[LAW7 {Qa ’ Qg}] + {Qa ’ [Qﬁ ; L,ul/]} + {Qﬁv [Qa 5 L,uu]} =0.
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Consequences of the Super-Poincaré Symmetry

e Equal number of fermions and bosons.

e Scalar supermultiplet d o (¢, &, F), where ¢ is a
complex scalar (2), £ is a 2-component complex spinor (4),
and F'is an auxiliary complex scalar (2).

e Vector supermultiplet Ve o (A%, A%, D?), where Aj
are massless non-Abelian gauge fields (3), A® are the 2-

component gauginos (4), and D® are the auxiliary real
fields (1).

The simplest model that realizes SUperSYmmetry (SUSY)
is the Wess—Zumino model. Counting on-shell degrees of

freedom (dof), the Wess-Zumino model contains one complex
scalar ¢ (2 dofs) and one Weyl spinor £ (2 dofs):

bosonic dofs = fermionic dofs
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— The Wess—Zumino Model

Non-interacting WZ model

Ekin — Escalar + Efermion

= (0"6)(0,0) + Eic"(0,6); 6=

V2

Consider ¢ — ¢ + ¢ and ¢f — ¢ 4 6T, with

(P1 +i¢2)

0¢ =0¢ and 5" = (0¢)" = £0 = 0¢,
and 6 infinitesimal anticommuting 2-spinor constant.

= Escalar — Escalar + 5£scalara
0Lscalar = 9(3”¢T)(({9ﬂf) + §<3Mg) (6M¢>

Tl’y fa - fa + 5€o¢ and go'z - go'z + 550'4: with
00 = —i(0"0)00,¢ and &4 = i(0") 50,0

= Efermion — Efermion + 5£fermion7

5£fermion = _90V5M(8N£)(8V¢T) + Ea-uo-yé(aﬂal/¢)

= 0076"£(0,0,0") + £6"50(0,0,9)
— 0, [0075"E(D,07)]
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Exercise: Show that

ohgV + oVt B =2¢"8 P {GHoV +avot Y, = 254
07 07 /3 /8

Noticing that 0,0, = 0,0, and using the results of the above
exercise, we get

5£fermion = 95(6H8M¢T) + 5§(8M8M¢)
= —0(0,6)(0"¢") — 0(,8)(0"9)
+ 0, [0¢(8"01) + £0(8"9)]

= 0L = 5£sca1ar + 5£fermion = 0!
But, we are not finished yet ! The difference of two successive

SUSY transfs. must be a symmetry of the Lagrangian as well,
i.e. SUSY algebra should close.

(592591 — 591592)(b == —i(010“§2 - (920"“51) 8H¢
= ie'P,p (with €' =€)
(592591 - 591592)€a = _i(auél)oﬁ?auf + i(au%)aelauf

Fiérz —i(@la“@ — 920’“0_1) 8,@“04
+91a§2i5“3u§ — anéliauauf

Only for on-shell fermions, i6#90,§ = 0, the SUSY algebra
closes.
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To close SUSY algebra off-shell, we need an auxiliary complex
scalar F' (without kinetic term) and add

Ly = F'F
to Lscalar + Leermion, With
6F = —if05"(0,£),  OFT =4i(0,£)5"0
0o = —i(0"0)00ud + 0o F , 64 = i(00")50,0" + 04 F1
Exercise: Prove (i) that the Lagrangian
Lign = (0"0")(0u0) + £ic"(0,8) + F'F
is invariant under the off-shell SUSY transfs:

0p = 6¢, It = 6¢
00 = —i(0"0)00up + 0o F , 084 = i(00") 50,07 + 04 FT
OF = —i05"(0,8), SF' =i(0,€)5"0
and (i) that the SUSY algebra closes off-shell:
((592(591 - (591(592)X = —i(910“§2 - 920’“51) BMX,
Wlth X = ¢7 ¢T7 g? 57 F? FT

7’

The interacting WZ model

£WZ - ‘Ckin + Eint
= (9"¢")(0.9) + £io"(0,8) + F'F
1 _
—5Wop €& + Wy F — §W(Z¢££ + WF!

where L
m
W(p) = §¢¢ + 6¢¢¢

is the so-called superpotential, and

W ho,
W¢ = E—mqb—i-igb
W
W¢¢ = 5¢6¢—m+h¢

Exercise: Show that up to total derivatives,
! Lot zz f ot
1 1 __
= 5 (m+he)eg = 3 (m+heh)g
ho2 to b2y o
+ (me + §¢ JF + (mo! + 505 JF

remains invariant under off-shell SUSY transformations.
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— Feynman rules

Equation of motions for the auxiliary fields F' and F:

— _ it T — _

F=-W,, F' = —Wy,

Substituting the above into Lz, we get
Lwz = (0"61)(0u0) + £ia"(9,8) — WiW,

1 __

—§(W¢¢§§ + W) ,E€)

and the real potential is

2
Vo= Wi, = mite + L (662 + 61%g) + L (g10)2

3
§

the W-dependent part of the WZ Lagrangian can be written
down as

Exercise: If U = is a Majorana 4-spinor, show that

1— 1 —
h — h —
—50UPLY — §¢T\11PR\11,
where P p = (14 75)/2 and 75 = diag (12, — 12).

79

Summary

The complete WZ Lagrangian is
i 2415 1 1y L
Lywy = (0"¢")(0,0) — m“¢'¢ + 5@17“8,)? — ém\II\IJ
mh h?
—T(¢T¢2+¢T2¢) - Z(¢T¢)2
—g¢§Pqu — g(b@PR\p,

where the F-field has been integrated out.
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Feynman rules:

¢7p 1
- = — - S B
p2—m2
v .
P ;
® > d . ﬂ_m
Y —imh
*s
s\\ ,¥,
¢x\ : _7/h2
-, *x

SUSY is such an elegant symmetry that it would be a pity if
nature made no use of it!
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