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0. Literature

– Group Theory as the Calculus of Symmetries in Physics

1. Introduction to Group Theory

– Definition of a Group G
– The Discrete Groups Sn, Zn and Cn

– Cosets and Coset Decomposition
– Normal Subgroup H and Quotient Group G/H
– Morphisms between Groups

2. Group Representations (Reps)

– Definition of a Vector Space V
– Definition of a Group rep.
– Reducible and Irreducible reps (Irreps)
– Direct Products and Clebsch–Gordan Series

3. Continuous Groups

– SL(N,C); SO(N); SU(N); SO(N,M)
– Useful Matrix Relations in GL(N,C)
– Generators and Exponential rep of Groups
[ Examples: SO(2), U(1), SO(3), SU(2) ]

4. Lie Algebra and Lie Groups

– Generators of a Group as Basis Vectors of a Lie Algebra
– The Adjoint Representation
– Normalization of Generators and Casimir Operators

5. Tensors in SU(N)

– Preliminaries
– Young Tableaux
– Applications to Particle Physics

6. Lorentz and Poincaré Groups

– Lie Algebra and Generators of the Lorentz Group
– Lie Algebra and Generators of the Poincaré Group
– Single Particle States
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7. Lagrangians in Field Theory

– Variational Principle and Equation of Motion
– Lagrangians for the Klein-Gordon and Maxwell equations
– Lagrangian for the Dirac equation

8. Gauge Groups

– Global and Local Symmetries.
– Gauge Invariance of the QED Lagrangian
– Noether’s Theorem
– Yang–Mills Theories

9. The Geometry of Gauge Transformations (Trans)

– Parallel Transport and Covariant Derivative
– Topology of the Vacuum: the Bohm–Aharanov Effect

10. Supersymmetry (SUSY)

– Graded Lie Algebra
– Generators of the Super-Poincaré Group
– The Wess–Zumino Model
– Feynman rules
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• Literature

In order of relevance and difficulty:

1. H.F. Jones: Groups, Representations and Physics (IOP,
1998) Second Edition

2. L.H. Ryder, Quantum Field Theory (CUP, 1996) Second
Edition

3. T.-P. Cheng and L.-F. Li, Gauge Theory of Elementary
Particle Physics (OUP, 1984).

4. S. Pokorski, Gauge Field Theories (CUP, 2000) Second
Edition.

5. J. Wess and J. Bagger, Supersymmetry and Supergravity,
(Princeton University Press, 1992) Second Edition
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A list of related problems from H.F. Jones:

1. 2.5, 2.9, 2.12∗

2. 3.1, 3.3, 3.4, 3.6

3. 6.1, 6.2, 6.3

4. 9.1

5. 8.1, 8.3, 8.4, 8.5, 8.6, 8.7, 8.8∗, 8.9∗

6. 10.1, 10.2, 10.3

7. 10.4, 10.5, 10.6, 10.7, 10.8

8. 11.3, 11.5, 11.7, 11.8

Note that more problems as exercises are included in these
notes.
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1. Introduction to Group Theory

– Definition of a Group G

A group (G, ·) is a set of elements {a, b, c . . .} endowed with
a composition law · that has the following properties:

(i) Closure. ∀ a, b ∈ G, the element c = a · b ∈ G.

(ii) Associativity. ∀ a, b, c ∈ G, it holds a · (b · c) = (a · b) · c

(iii) The identity element e. ∃ e ∈ G: e · a = a, ∀ a ∈ G.

(iv) The inverse element a−1 of a. ∀ a ∈ G, ∃ a−1 ∈ G:
a · a−1 = a−1 · a = e.

If a · b = b · a, ∀ a, b ∈ G, the group G is called Abelian.

– The Discrete Groups Sn, Zn and Cn

Group G Multiplication Order Remarks

Sn: permutation Successive operation n! Non-Abelian
of n objects in general

Zn: integers Addition modn n Abelian
modulo n

Cn: cyclic group Unspecified · product n Cn
∼= Zn

{e, a, . . . an−1}
with an = 1
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– Cosets and Coset Decomposition

Coset. Let H = {h1, h2, . . . , hr} be a proper (i.e. H ̸= G
and H ̸= I = {e}) subgroup of G.
For a given g ∈ G, the sets

gH = {gh1, gh2, . . . , ghr} , Hg = {h1g, h2g, . . . , hrg}

are called the left and right cosets of H.

Lagrange’s Theorem. If g1H and g2H are two (left) cosets
of H, then either g1H = g2H or g1H ∩ g2H = ∅.

Coset Decomposition. If H is a proper subgroup of G, then
G can be decomposed into a sum of (left) cosets of H:

G = H ∪ g1H ∪ g2H · · · ∪ gν−1H ,

where g1,2,... ∈ G, g1 /∈ H; g2 /∈ H, g2 /∈ g1H, etc.

The number ν is called the index of H in G.

The set of all distinct cosets, {H, g1H, . . . , gν−1H}, is a
manifold, the coset space, and is denoted by G/H.
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– Normal Subgroup H and Quotient Group G/H

Conjugate to H. If H is a subgroup of G, then the set
H ′ = gHg−1 = {gh1g−1, gh2g−1, . . . , ghrg−1}, for a given
g ∈ G, is called g-conjugate to H or simply conjugate to H.

Normal Subgroup H of G. If H is a subgroup of G and
H = gHg−1 ∀ g ∈ G, then H is called a normal subgroup
of G.

Groups which contain no proper normal subgroups are termed
simple.

Groups which contain no proper normal Abelian subgroups
are called semi-simple.

Quotient Group G/H. Let G/H = {H, g1H, . . . , gν−1H}
be the set of all distinct cosets of a normal subgroup H of G,
with the multiplication law:

(giH) · (gjH) = (gi · gj)H ,

where giH, gjH ∈ G/H. Then, it can be shown that (G/H, ·)
is a group and is termed quotient group.

Note that G/H is not a subgroup of G. (Why?)
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– Morphisms between Groups

Group Homorphism. If (A, ·) and (B, ⋆) are two groups,
then group homorphism is a functional mapping f from the
set A into the set B, i.e. each element of a ∈ A is mapped
into a single element of b = f(a) ∈ B, such that the following
multiplication law is preserved:

f(a1 · a2) = f(a1) ⋆ f(a2) .

In general, f(A) ̸= B, i.e. f(A) ⊂ B.

Group Isomorphism. Consider a 1 : 1 mapping f of (A, ·)
onto (B, ⋆), such that each element of a ∈ A is mapped
into a single element of b = f(a) ∈ B, and conversely, each
element of b ∈ B is the image resulting from a single element
of a ∈ A. If this bijectiv 1 : 1 mapping f satisfies the
composition law:

f(a1 · a2) = f(a1) ⋆ f(a2) ,

it is said to define an isomorphism between the groups A and
B, and is denoted by A ∼= B.

A group homorphism of A into itself is called endomorphism.

A group isomorphism of A into itself is called automorphism.
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2. Group Representations (Reps)

– Definition of a Vector Space V

A vector space V over the field of complex numbers C is
a set of elements {vi}, endowed with two operations (+, ·),
satisfying the following properties:

(A0) Closure. u+ v ∈ V ∀u, v ∈ V .

(A1) Commutativity. u+ v = v + u ∀u, v ∈ V .

(A2) Associativity. u+(v+w) = (u+v)+w ∀u, v, w ∈ V

(A3) The identity (null) vector. ∃0 ∈ V , such that
v + 0 = v , ∀v ∈ V .

(A4) Existence of inverse. ∀v ∈ V , ∃ (−v) ∈ V , such that
v + (−v) = 0.

(B0) λ · u ∈ V ∀λ ∈ C, ∀u ∈ V .

(B1) λ · (u+ v) = λ · u+ λ · v.

(B2) (λ1 + λ2) · u = λ1 · u+ λ2 · u.

(B3) λ1 · (λ2 · u) = (λ1λ2) · u.

(B4) 1 · u = u.
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– Definition of a Group Rep.

Group Rep. A group representation T ,

T : g → T (g) ∈ GL (N,C) ∀g ∈ G ,

is a homomorphism of the elements g of a group (G, ·) into
the group GL(N,C) of non-singular linear tranformations of
a vector space V of dimension N , i.e. the set of N × N -
dimensional invertible matrices in C.
In addition, homomorphism implies that the group
multiplication is preserved:

T (g1 · g2) = T (g1)T (g2) .

· · ·
Two reps. T1 and T2 are equivalent if there exists an
isomorphism (1 : 1 correspondance) between T1 and T2.
Such an equivalence is denoted as T1

∼= T2, or T1 ∼ T2.

Two equivalent reps may be related by a similarity trans. S:
T1(g) = ST2(g)S−1 ∀g ∈ G and S independent of g.

· · ·
Character χ of a rep T of a group G is defined as the
set of all traces of the matrices T (g): χ = {χ(g)/χ(g) =∑

i[T (g)]ii ∧ g ∈ G}.

Corollary: Equivalent reps have the same character.
Conversely, if two reps have the same character, they are
equivalent.
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– Reducible and Irreducible Reps.

Reducible rep. A group rep. T (g) is said to be (completely)
reducible, if there exists a non-singular matrixM ∈ GL (N,C)
independent of the group elements, such that

M T (g)M−1 =

⎛

⎜⎜⎝

T1(g) 0 · · · 0
0 T2(g)

...
... . . . 0
0 · · · 0 Tr(g)

⎞

⎟⎟⎠ ∀g ∈ G.

T1(g), T2(g), . . . , Tr(g) divide T into reps. of lower
dimensions, i.e. dim (T ) =

∑r
i=1 dim (Ti), and is denoted

by the direct sum:

T (g) = T1(g) ⊕ T2(g) ⊕ · · · ⊕ Tr(g) =
∑

⊕
T(i) .

Irreducible rep (Irrep). A group rep. T (g) which cannot be
written as a direct sum of other reps. is called irreducible.
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– Direct Products and Clebsch–Gordan Series

Direct Product of Groups. If (A, ·) = ({a1, a2, . . . , an}, ·)
and (B, ⋆) = ({b1, b2, . . . , bm}, ⋆) are two groups with
composition laws · and ⋆, respectively,
then a new direct-product group (G,⊙) = (A×B,⊙) can be
uniquely defined with elements g = a⊗ b. The multiplication
law ⊙ in G is defined as

(a1 ⊗ b1)⊙ (a2 ⊗ b2) ≡ (a1 · a2)⊗ (b1 ⋆ b2) .

Remarks: (i) A and B are normal subgroups of G (Why?).

(ii) A ∼= G/B = {a1 ⊗B, a2 ⊗B, . . . , an ⊗B};
B ∼= G/A = {A⊗ b1, A⊗ b2, . . . , A⊗ bm}.

Direct Product of Irreps. If D(a) and D(b) are two irreps
of the group G, a direct product, denoted as D(a×b)(g1g2) ≡
D(a)(g1)⊗D(b)(g2), can be constructed as follows:

[D(a×b)(g1g2)]ij;kl = [D(a)(g1)]ik [D(b)(g2)]jl .

Frequently, direct products of irreps are called tensor products.

It can be shown that D(a×b) is an irrep of the (direct) product
group G×G.
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Clebsch–Gordan Series

If g1 = g2 = g, then the symmetry of the product group
G×G is reduced to its diagonal G, i.e. G×G → G.

In this case, D(a)(g)⊗D(b)(g) may not be an irrep and can
be further decomposed into a direct sum of irreps of G:

D(a)(g)⊗D(b)(g) =
∑

⊕
acD

(c)(g) .

Such a series decomposition is called a Clebsch–Gordan series,
and the coefficients ac are the so-called Clebsch–Gordan
coefficients.

Applications to reps of the continuous groups SO(2), SU(2)
and SU(N) will be discussed in the next lectures.
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3. Continuous Groups

– SL(N,C); SO(N); SU(N); SO(N,M)

Group Properties No. of indep. Remarks
parameters

GL(N,C) detM ̸= 0 2N2 General rep

SL(N,C) detM = 1 2(N2 − 1) SL(N,C)
⊂ GL(N,C)

O(N,R)
∑N

i=1(x
i)2 1

2N(N − 1) OT = O−1

=
∑N

i=1(x
′i)2

SO(N,R) as above + 1
2N(N − 1) as above

detO = 1

SU(N)
∑N

i=1 |x
i|2 N2 − 1 U† = U−1

=
∑N

i=1 |x
′i|2

detU = 1

SO(N,M)
∑N+M

i,j=1 xigijx
j ? ΛTgΛ = g

=
∑N+M

i,j=1 x′igijx
′j detΛ = 1

gij = diag (1, . . . , 1
︸ ︷︷ ︸
N−times

, −1, . . . ,−1)
︸ ︷︷ ︸

M−times
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– Useful Matrix Relations in GL(N,C)

Definitions:

(i) eM ≡
∞∑

n=0

Mn

n!
;

(ii) lnM ≡
∞∑

n=1

(−1)n+1 (M − 1)n

n

=

1∫

0

du (M − 1) [u(M − 1) + 1]−1 ,

where M ∈ GL(N,C), i.e. detM ̸= 0.

Basic properties: If [M1, M2] = 0 and M1,2 ∈ GL(N,C),
then the following relations hold:

(i) eM1 eM2 = eM1+M2 , (ii) ln(M1M2) = lnM1+lnM2 .

Useful identity:

ln(detM) = Tr (lnM) .

This identity can be proved more easily if M can be
diagonalized through a similarity trans: S−1MS = M̂ ,
where M̂ is a diagonal matrix, and noticing that lnM =
S ln M̂S−1. (Question: How?)
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– Generators and Exponential rep of Groups
[ Examples: SO(2), U(1), SO(3), SU(2) ]

SO(2): Transf. of a point P (x, y) under a rotation through
φ about z axis:

(
x′

y′

)
=

(
cosφ − sinφ
sinφ cosφ

)

︸ ︷︷ ︸
≡O(φ)

(
x
y

)
.

Note that OT (φ)O(φ) = 12 and hence x2 + y2 = x′2 + y′2,
i.e. O(φ) is an orthogonal matrix, with detO=1.

SO(2) is an Abelian group, since O(φ)O(φ′) = O(φ+ φ′) =
O(φ′)O(φ).

Taylor expansion of O(φ) about 12 = O(0):

O(δφ) =

(
1 0
0 1

)

︸ ︷︷ ︸
: 12

− i δφ

(
0 −i
i 0

)

︸ ︷︷ ︸
: σ2 = i

∂O(φ)
∂φ |φ=0

+ O[(δφ)2] ,

with σ2
2 = 12 and σ2 = σ†

2.

Exponential rep for finite φ:

O(φ) = lim
N→∞

[O(φ/N)]N = exp[−iφσ2] .

The Pauli matrix σ2 is the generator of the SO(2) group.
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U(1): The 2-dim rep of SO(2) in (V,R) can be reduced in
(V,C), by means of the trans:

M =

(
1√
2

1√
2

−i√
2

i√
2

)
, M−1 =

(
1√
2

i√
2

1√
2

−i√
2

)
,

i.e.

M−1O(φ)M =

(
eiφ 0
0 e−iφ

)
= D(1)(φ) ⊕ D(−1)(φ) .

Both reps, D(1)(φ) = eiφ and D(−1)(φ) = e−iφ, are faithful
irreps of U(1).

A general irrep of U(1) is

D(m)(φ) = eimφ ,

where m ∈ Z. (Question: What is the generator of U(1)?)

Direct products of U(1)’s:

D(m)(φ)⊗D(n)(φ) = D(m+n)(φ) .
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Spatial rotation of a wave-function:

Unitary operator of rotation of a wave-function:

ÛR(δφ)ψ(r, θ) = (1− iδφX̂)ψ(r, θ) = ψ(r, θ − δφ) ,

where

X̂ = −i
d

dθ
=

Ĵz
"

is the z-component angular momentum operator.
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SO(3): Group of proper rotations in 3-dim about a given
unit vector n = (nx, ny, nz) = (n1, n2, n3), with n2 = 1.

Rotations about x, y, z-axes:

R1(φ) =

⎛

⎝

1 0 0
0 cosφ − sinφ
0 sinφ cosφ

⎞

⎠ , R2(φ) =

⎛

⎝

cosφ 0 sinφ
0 1 0

− sinφ 0 cosφ

⎞

⎠ ,

R3(φ) =

⎛

⎝

cosφ − sinφ 0
sinφ cosφ 0
0 0 1

⎞

⎠ .

The generators Xi = i dRi(φ)
dφ

∣∣
φ=0

of SO(3) are

X1 =

⎛

⎝

0 0 0
0 0 −i
0 i 0

⎞

⎠ , X2 =

⎛

⎝

0 0 i
0 0 0
−i 0 0

⎞

⎠ ,

X3 =

⎛

⎝

0 −i 0
i 0 0
0 0 0

⎞

⎠ .

Equivalently, they can be represented as

(Xk)ij = −i εijk ; εijk =

⎧

⎪⎪⎨

⎪⎪⎩

1 for (i, j, k) = (1, 2, 3)
and even permutations,

−1 for odd permutations,
0 otherwise

where εijk is the Levi-Civita antisymmetric tensor.

General rep of the Group element of SO(3):

R(φ,n) = exp(−iφn ·X) ,

with X = (X1, X2, X3).
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Properties of the Generators of SO(3).

Commutation relations:

[Xi, Xj] ≡ XiXj −XjXi = iεijkXk .

(Need to use that (Xk)ij = −iεijk and
εijmεklm = δikδjl − δilδjk.)

Jacobi identity:

[X1, [X2, X3]] + [X3, [X1, X2]] + [X2, [X3, X1]] = 0 .

· · ·

Irreps of SO(3). These are specified by an integer j (the so-
called total angular momentum in QM) and are determined

by the (2j + 1)× (2j + 1)-dim rep of the generators X(j)
i :

[X(j)
3 ]m′m = ⟨jm′|X̂3|jm⟩ = m δmm′ ,

[X(j)
± ]m′m = ⟨jm′|X̂±|jm⟩ =

√
(j ∓m)(j ±m+ 1) δm′,m±1 ,

with X(j)
± = X(j)

1 ± iX(j)
2 and X̂i = L̂i/".

Exercise: Find the relation between X(1)
i and Xi.
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SU(2): Rotation of a complex 2-dim vector v = (v1, v2)
(with v1,2 ∈ C) through angle θ about n:

v′ = U(θ,n)v ; v∗ · v = v′∗ · v′ ,

with detU = 1 and

U(θ,n) = exp(−iθn · 12 σ) = cos 1
2θ − iσ · n sin 1

2θ ,

where n2 = 1 and σ = (σ1, σ2, σ3) are the Pauli matrices.

∴ Xi =
1
2σi are the generators of SU(2), with

σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
.

Properties: (i) Trσi = 0; (ii) σiσj = δij12 + i εijk σk.

Commutation relation: [Xi, Xj] = i εijkXk i.e. the same
algebra as of SO(3).

Precise relation between SO(3) and SU(2):

Since R(0) and R(2π) [with R(0) = R(2π) = 13] map into
different elements U(0) = 12 and U(2π) = −12, a faithful
1 : 1 mapping is

SO(3) ∼= SU(2)/Z2 ,

where Z2 = {12, −12} is a normal subgroup of SU(2).
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4. Lie Algebra and Lie Groups

–Generators of a Group as Basis Vectors of a Lie Algebra

A Lie algebra L is defined by a set of a number d(G) of
generators Ta closed under commutation:

[Ta, Tb] = Ta · Tb − Tb · Ta = if c
ab Tc ,

where f c
ab are the so-called structure constants of L.

In addition, the generators Ta’s satisfy the Jacobi identity:

[Ta, [Tb, Tc]] + [Tc, [Ta, Tb]] + [Tb, [Tc, Ta]] = 0 .

The set Ta of generators define a basis of a d(G)-dimensional
vector space (V,C).

In the fundamental rep, Ta are represented by d(F ) × d(F )
matrices, where d(F ) is the least number of dimensions
needed to generate the continuous group.

Ex: (i) SO(3): Ta = Xa; (ii) SU(2): Ta = 1
2σa; (iii) U(1): ?

Exponentiation of Ta generates the group elements of the
corresponding continuous Lie group:

G(θ,n) = exp[−iθn ·T] ,

with n2 = 1.
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– The Adjoint Representation

The Lie algebra commutator [Tc, ] (for fixed Tc) defines a
linear homomorphic mapping from L to L over C:

[Tc, λ1Ta + λ2Tb] = λ1[Tc, Ta] + λ2[Tc, Tb] ,

∀ Ta, Tb ⊂ L.

For every given Ta ∈ L, [Ta, ] may be represented in the
vector space L by the structure constants themselves:

[DA(Ta)]
c
b = if c

ab (= −if c
ba) .

Such a rep of Ta is called the adjoint representation, denoted
by A.

The Killing product form is defined as

gab ≡ (Ta, Tb)A ≡ Tr[DA(Ta)DA(Tb)] (≡ TrA(TaTb) ) .

gab = −fd
acf

c
bd is called the Cartan metric.

The Cartan metric gab can be used to lower the index of f c
ab:

fabc = fd
ab gdc .

Exercise: Show that fabc = −iTrA([Ta, Tb]Tc) , and that
fabc is totally antisymmetric under the permutation of a, b, c:
fabc = −fbac = fbca etc.
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General Remarks

• If all f c
ab’s are real for a Lie algebra L, then L is said to

be a real Lie algebra.

• If the Cartan metric gab is positive definite for a real L,
then L is an algebra for a compact group. In this case, gab
can be diagonalized and rescaled to unity, i.e. gab = 1ab.
[Ex: the real algebras of SU(N) and SO(N)].

• There is no adjoint representation for Abelian groups.
(Why ?)

• An ideal I is an invariant subalgebra of L, with
[T I

a , Tb] ⊂ I, ∀ T I
a ∈ I and ∀ Tb ∈ L,

or symbolically [I, L] ⊂ I.

• Ideals I generate normal subgroups of the continuous
group generated by L.

• Lie algebras that do not contain any proper ideals are
called simple (Ex: SO(2), SU(2), SU(3), SU(5), etc).

• Lie algebras that do not contain any proper Abelian ideals
are called semi-simple. (Question: What is the difference
between a simple and a semi-simple Lie algebra?)

• A semi-simple Lie algebra can be written as a direct sum
of simple Lie algebras: L = I ⊕ P .
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– Normalization of Generators and Casimir operators

The generators of a Lie group DR(Ta) of a given rep R are
normalized as

Tr [DR(Ta)DR(Tb)] = TR δab .

For example, in SU(N) [or SO(N)], TF = 1
2 for the

fundamental rep and TA = N for the adjoint reps.

Casimir operators T2
R of a Lie algebra of a rep R are matrix

reps that commute with all generators of L in rep R.

A construction of a Casimir operator T2
R in a given rep R of

SU(N) [or SO(N)] may be obtained by

(T2
R)ij = TA

d(G)∑

a,b=1

d(R)∑

k=1

[DR(Ta)]ik g
ab [DR(Tb)]kj = δij CR ,

where gab is the inverse Cartan metric satisfying: gab gbc = δac .

Exercises:

Show that (i) [T2
F , Ta] = 0;

(ii) TR d(G) = CR d(R);

(iii) CF = N2−1
2N and CA = N in SU(N).
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5. Tensors in SU(N)

– Preliminaries

Trans. of a complex vector ψi = (ψ1,ψ2, . . . ,ψn) in SU(N):

ψi → ψ′
i = Uijψj (= U j

i ψj) ,

where U †U = UU † = 1n and detU = 1.

Define the scalar product invariant under SU(N):

(ψ,φ) = ψ∗
i φi (= ψi φi) .

Hence, the trans. of the c.c. ψ∗
i is

ψ∗
i ≡ ψi → ψ′∗

i = U∗
ijψ

∗
j (or ψ′i = U i

jψ
j) ,

with U j
i = Uij, U i

j = U∗
ij and U i

k Uk
j = U i

kU
k

j = δij.
. . .

Higher-rank tensors are defined as those quantities that have
the same trans. law as the direct (diagonal) product of
vectors:

ψ
′i1i2...ip
j1j2...jq

= (U i1
k1
U i2

k2
. . . U

ip
kp
) (U l1

j1
U l2
j2

. . . U
lq
jq
)ψ

k1k2...kp
l1l2...lq

.

The rank of ψ
i1i2...ip
j1j2...jq

is p + q, with p contravariant and q
covariant indices.
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SU(N) trans. properties of the Kronecker delta δij and
Levi-Civita symbol εi1i2...in:

Invariance of δij under an SU(N) trans:

δ′ij = U i
kU

l
j δ

k
l = U i

kU
k

j = δij .

The Levi-Civita symbol εi1i2...in:

εi1i2...in =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

1 if (i1, . . . in) is an even
permutation of (1, . . . n)

−1 if (i1, . . . in) is an odd
permutation of (1, . . . n)

0 otherwise

Note that εi1i2...in is defined to be fully antisymmetric, such
that εji2...in ε

ii2...in = (n− 1)! δij.

Invariance of εi1i2...in (and εi1i2...in) under an SU(N) trans:

ε′i1i2...in = U j1
i1

U j2
i2

. . . U jn
in

εj1j2...jn

= detU︸ ︷︷ ︸
= 1

εi1i2...in = εi1i2...in .
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Reduction of higher-rank tensors:

Lower-rank tensors can be formed by appropriate use of δij
and εi1i2...in:

ψ
i2...ip
j2...jq

= δj1i1 ψ
i1i2...ip
j1j2...jq

,

ψi1 = εi1i2...inψi2...in ,

ψ = εi1i2...inψi1i2...in ,

ψi1j1 = εi1i2...in εj1j2...jn ψi2...inj2...jn .

Since the Levi-Civita tensor can be used to lower or raise
indices, we only need to study tensors with upper or lower
indices.

Exercise: Show that ψ is an SU(N)-invariant scalar.
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– Young Tableaux

Higher-rank SU(N) tensors do not generally define bases
of irreps. To decompose them into irreps, we exploit the
following property which is at the heart of Young Tableaux.

An illustrative example. Consider the 2nd rank tensor ψij,
with the trans. property:

ψ′
ij = U k

i U l
j ψkl .

Permutation of i ↔ j (denoted by P12) does not change the
trans. law of ψij:

P12ψ
′
ij = ψ′

ji = U k
j U l

i ψkl = U l
j U k

i ψlk

= U l
j U k

i P12ψkl .

Hence, P12 can be used to construct the following irreps:

Sij =
1

2
(1 + P12)ψij =

1

2
(ψij + ψji ) ,

Aij =
1

2
(1− P12)ψij =

1

2
(ψij − ψji) ,

with P12Sij = Sij and P12Aij = −Aij, since there is no
mixing between Sij and Aij under an SU(N) trans:

S′
ij = U k

i U l
j Skl , A′

ij = U k
i U l

j Akl .
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Introduction to Young Tableaux

A complex (covariant) vector (or state) ψi in SU(N) is
represented by a ✷:

ψi ≡ i

The operation of symmetrization and antisymmetrization is
represented as

ψ(ij) ≡ i j ψ[ij] ≡ i
j

with ψ(ij) =
1
2 (1 + P12)ψij = Sij = Sji and

ψ[ij] =
1
2 (1− P12)ψij = Aij = −Aji.

By analogy, for ψijk we have

i j k
ψ(ijk)

i
j
k

ψ[ijk]

i j
k

ψ[(ij);k]

where ψ(ijk) is fully symmetric in i, j, k,
ψ[ijk] is fully anti-symmetric in i, j, k and
ψ[(ij);k] = (1− P13) (1 + P12)ψijk.

Exercise: Express ψ(ijk) and ψ[(ij);k] in terms of ψijk.
(Ans: ψ[(ij);k] = ψijk + ψjik − ψkji − ψjki.)
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Rules for constructing a legal Young Tableau

• A typical Young tableau for an (n-rank) tensor with n
indices looks like:

• Each row of a Young tableau must contain no more boxes
than the row above. This implies e.g. that

is not a valid diagram.

• There should be no column with more than N boxes for
SU(N). In this respect, a column with exactly N boxes
can be crossed out. For example, in SU(3) we have:

= 1 =

(Why?)
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How to find the dimension of a Young Tableau rep

Steps to be followed:

(a) Write down the ratio of two copies of the tableau:

(b) Numerator: Start with the number N for SU(N) in the top left box.
Each time you meet a box, increase the previous number by +1 when
moving to the right in a row and decrease it by −1 when going down
in a column:

N N+1 N+2

N−1 N
N−2 N−1

N−3

(c) Denominator: In each box, write the number of boxes being to its
right + the number being below of it and add +1 for itself:

6 4 1
4 2
3 1
1

(d) The dimension d of the rep is the ratio of the products of the entries
in the numerator versus that in the denominator:

d = [N(N + 1)(N + 2)(N − 1)N(N − 2)(N − 1)(N − 3)]

/ [6 × 4 × 4 × 2 × 3] .
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Rules for Clebsch-Gordan series

The direct product of reps can be decomposed as a Clebsch-
Gordan series (or direct sum) of irreps. This reduction can
be performed systematically by means of Young Tableaux,
following the rules below:

(a) Write down the two tableaux T1 and T2 and label successive
rows of T2 with indices a, b, c, . . .:

×
a a a
b b
c

(b) Attach boxes a, b, c . . . from T2 to T1 in all possible
ways one at a time. The resulting diagram should be
a legal Young tableau with no two a’s or b’s being
in the same column (because of cancellation due to
antisymmetrization).

(c) At any given box position, there should be no more b’s
than a’s to the right and above of it. Likewise, there
should be no more c’s than b’s etc. For example, the

tableau a b is not legal.

(d) Two generated tableaux with the same shape are different
if the labels are distributed differently.
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An example in SU(3)

× a a
b

=
(

a +
a

+

a

)
× a

b

=
(

a a + a
a

+ a

a

+
a

a

)
× b

= a a
b

+ a a + a
a b

+ a
a

+ a
b

+1

8 × 8 = 27 ⊕ 10 ⊕ 10 ⊕ 8 ⊕ 8 ⊕ 1

Exercise: Find the Clebsch–Gordan decomposition of the
product 8× 10 in SU(3), represented by Young tableaux as

×

(Ans: 8× 10 = 8⊕ 10⊕ 27⊕ 35)
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– Applications to Particle Physics

The SU(3) quark symmetry

Define the quark-basis states

qi =

⎛

⎝
u
d
s

⎞

⎠ , qi =

⎛

⎝
ū
d̄
s̄

⎞

⎠ .

Then, qi ≡ 3 and qi ≡ q̄i ≡ 3̄.

Clebsch–Gordan series: 3⊗ 3̄ = 8⊕ 1:

qiq
j = (qiq

j −
1

3
δji qkq

k) +
1

3
δji qkq

k .

In terms of Young–Tableaux:

× = +

The singlet state is η1 =
1√
3
qiqi =

1√
3
(uū+ dd̄+ ss̄).

The remaining 8 components represent the pseudoscalar octet
P j
i = (qiqj − 1

3 δ
j
i qkq

k):

P i
j =

⎛

⎜⎝

1√
2
π0 + 1√

6
η8 π+ K+

π− − 1√
2
π0 + 1√

6
η8 K0

K− K̄0 − 2√
6
η8

⎞

⎟⎠ .
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Baryons as three-quark states:

Clebsch–Gordan series: 3⊗ 3⊗ 3 = 10⊕ 8⊕ 8⊕ 1

Define qijk = qiqjqk, then

qijk = q(ijk) + q[(ij);k] + q[(ji);k] + q[ijk] .

For example, the baryon-octet may be represented by

B = q[(ij);k] =

⎛

⎜
⎝

1√
2
Σ0 + 1√

6
Λ8 Σ+ p

Σ− − 1√
2
Σ0 + 1√

6
Λ n

Ξ− Ξ0 − 2√
6
Λ

⎞

⎟
⎠ .

Exercise: Find the Clebsch–Gordan decomposition
for 3⊗ 3⊗ 3, using Young–Tableaux.
What is the quark wave-function of p and n?
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Particle assignment in an SU(5) unified theory

The particle content of the SM = SU(3)c⊗SU(2)L⊗ U(1)Y
consists of three generations of quarks and leptons.

One generation of quarks and leptons in the SM contains 15
dynamical degrees of freedom:

(
ur,g,b
L

dr,g,bL

)
,

(
νL
lL

)
, ur,g,b

R , dr,g,bR , lR .

In SU(5), the SM fermions are assigned as follows:

5̄ =

⎛

⎜⎜⎜⎜⎝

d̄r

d̄g

d̄b

e
−ν

⎞

⎟⎟⎟⎟⎠

L

,

and

10 =

⎛

⎜⎜⎜⎜⎝

0 ūb −ūg ur dr

−ūb 0 ūr ug dg

ūg −ūr 0 ub db

−ur −ug −ub 0 ē
−dr −dg −db −ē 0

⎞

⎟⎟⎟⎟⎠

L

Exercise: Given that 5̄ is the complex conjugate rep ψ∗
i = ψi

of the SU(5) in the fundamental rep, find the tensor rep for
the 10-plet representing the remaining fermions of the SM.
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6. Lorentz and Poincaré Groups

Lorentz trans:

x2 = y

x1 = x

x3 = z

x0 = ct

O

β = v/c

x′2 = y′

x′1 = x′

x′3 = z′

x′0 = ct′

O′

x′µ = Λµ
ν(β)x

ν ,

where xµ = (ct, x, y, z), x′µ = (ct′, x′, y′, z′) are the
contravariant position 4-vectors, and

Λµ
ν =

⎛

⎜⎜⎝

γ −γβ 0 0
−γβ γ 0 0
0 0 1 0
0 0 0 1

⎞

⎟⎟⎠ , for β ∥ ex .

Given the metric gµν = diag (1,−1,−1,−1), the covariant
4-vector is defined as xµ = gµν xν = (ct,−x,−y,−z).

Under a Lorentz trans, we have xµxµ = x′µ x′
µ or

xµ gµνx
ν = xβΛµ

βgµνΛ
ν
αx

α ⇒ ΛTgΛ = g ,

so Λµ
ν ∈ SO(1,3), with detΛ = 1.
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– Lie Algebra and Generators of the Lorentz Group

Generators and Lie Algebra of SO(1,3)

Generators of rotations J1,2,3:

J1 =

⎛

⎜
⎜
⎝

0 0 0 0
0 0 0 0
0 0 0 −i
0 0 i 0

⎞

⎟
⎟
⎠

, J2 =

⎛

⎜
⎜
⎝

0 0 0 0
0 0 0 i
0 0 0 0
0 −i 0 0

⎞

⎟
⎟
⎠

,

J3 =

⎛

⎜
⎜
⎝

0 0 0 0
0 0 −i 0
0 i 0 0
0 0 0 0

⎞

⎟
⎟
⎠

.

Generators of boosts K1,2,3:

K1 =

⎛

⎜
⎜
⎝

0 −i 0 0
−i 0 0 0
0 0 0 0
0 0 0 0

⎞

⎟
⎟
⎠

, K2 =

⎛

⎜
⎜
⎝

0 0 −i 0
0 0 0 0
−i 0 0 0
0 0 0 0

⎞

⎟
⎟
⎠

,

K3 =

⎛

⎜
⎜
⎝

0 0 0 −i
0 0 0 0
0 0 0 0
−i 0 0 0

⎞

⎟
⎟
⎠

.

Commutation relations of the Lie algebra SO(1,3):

[Ji, Jj] = i εijk Jk ,

[Ji, Kj] = i εijkKk ,

[Ki, Kj] = −i εijk Jk

40



SO(1,3)C ∼= SU(2) × SU(2) [or SO(1,3)R ∼ SL(2,C)]

Define

X± =
1

2
(J± iK) ,

then

[X+
i , X+

j ] = i εijkX
+
k ,

[X−
i , X−

j ] = i εijkX
−
k ,

[X+
i , X−

j ] = 0 .

Hence, SO(1,3) algebra splits into two SU(2) ones:

SO(1, 3)
C
∼= SU(2)× SU(2) ,

where SO(1,3)C is the rep from a complexified SO(1,3)
algebra. However, there is an 1:1 correspondence of the
reps between SO(1,3)C and SO(1,3)R. In fact, we have the
homomorphism

SO(1, 3)
R

∼ SL(2,C) ,

which is more difficult to use for classification of reps.
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Classification of basis-states reps in SO(1,3)

We enumerate basis-state reps in SO(1,3) by (j1, j2), using
the relation of SO(1,3) with SU(2)1× SU(2)2, where j1,2 are
the total spin numbers with respect to SU(2)1,2. The total
degrees of freedom are (2j1 + 1)(2j2 + 1). In detail, we have

(0,0): This is a total spin zero rep, with dim one. (0, 0) represents
a scalar field φ(x) satisfying the Klein-Gordon equation:
(✷+m2)φ(x) = 0, where ✷ = ∂µ∂µ.

(12, 0): This a 2-dim rep, the so-called left-handed Weyl rep,
e.g. neutrinos. It is denoted with a 2-dim complex vector
ξα, usually called the left-handed Weyl spinor. Under a
Lorentz trans, ξα transforms as

ξ′α = M β
α ξβ ,

where M β
α ∈ SL(2,C).

(0, 12): This is the corresponding 2-dim rep of the right-handed
Weyl spinor and is denoted as η̄α̇, which transforms under
Lorentz trans as

η̄′α̇ = M† β̇
α̇ η̄β̇ ,

where M† β̇
α̇ ∈ SL(2,C).

(12,
1
2): This is the defining 4-dim rep, describing a spin 1 particle

with 4 components. One can use the matrix rep: Aµ(σµ)αα̇
or simply Aµ, e.g. Aµ = (Φ/c, A) in electromagnetism.
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– Lie Algebra and Generators of the Poincaré Group

The Poincaré trans consist of Lorentz trans plus space-time
translations:

x′µ = Λµ
ν x

ν + aµ ,

where aµ is a constant 4-vector.

The generator of translations in a differential-operator rep is

Pµ = i∂µ = i
∂

∂xµ
= i (

∂

c∂t
, −∇ ) ,

with Pµ = i∂µ = i( ∂c∂t , ∇), because

e−iaνPνxµ = xµ + aµ . (Why?)

An analogous differential-operator rep of the 6-generators of
Lorentz trans is given by the generalized angular momentum
operators:

Lµν = xµPν − xνPµ ,

with the identification

Ji =
1

2
εijkLjk , Ki = L0i .

Exercise: Show that Ji = 1
2 εijkLjk and Ki = L0i satisfy

the SO(1,3) algebra.
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The Lie Algebra of the Poincaré Group:

The commutation relations defining the Poincaré Lie algebra
are

[Pµ , Pν] = 0 ,

[Pµ, Lρσ] = i (gµρPσ − gµσPρ) ,

[Lµν, Lρσ] = −i (gµρLνσ − gµσLνρ + gνσLµρ − gνρLµσ) .

In terms of J and K, the commutation relations read:

[P0 , Ji] = 0 ,

[Pi , Jj] = i εijk Pk ,

[P0 , Ki] = i Pi ,

[Pi , Kj] = i P0 δij .

Exercise: Prove all commutation relations that appear on this
page.
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– Single Particle States

The Poincaré group has two Casimir operators: P 2 = PµPµ

and W 2 = WµWµ, where

Wµ = −
1

2
εµνρσ L

νρP σ ,

with ε0123 = 1, is the so-called Pauli–Lubanski vector.

Classification of massive particle states

A single massive particle state |a⟩ can be characterized by its
mass and its total spin s, where s is defined in the rest of
mass system of the particle:

P 2 |a⟩ = m2 |a⟩ , W 2 |a⟩ = −m2J2 |a⟩ = −m2s(s+1)|a⟩ .

In addition, we use the 3-momentum P and the helicity
H = J ·P operators to classify massive particle states:

Pµ |a;m, s;p,λ⟩ = pµ |a;m, s;p,λ⟩ ,

H |a;m, s;p,λ⟩ = λ|p| |a;m, s;p,λ⟩ .

Note that a massive particle state has (2s+ 1) polarizations
or helicities, also called degrees of freedom,
i.e. λ = −s,−s+ 1, . . . , s− 1, s.

Examples: for an electron, it is λ = ±1
2, and for a massive

spin-1 boson (e.g. the Z-boson), we have λ = −1, 0, 1.
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Classification of massless particle states

Massless particle states, for which P 2|a⟩ = 0 (m = 0),
are characterized only by their 4-momentum pµ and helicity
λ = P · J.

Alternatively, in addition to the operator Pµ, one may use the
Pauli–Lubanski operator Wµ:

Wµ|a; pµ,λ⟩ = λ pµ |a; pµ,λ⟩ .

If the theory involves parity, then a massless state has only
two degrees of freedom (polarizations): ±λ.

Examples of the above are the photon and the neutrinos of
the Standard Model.

· · ·

Exercises:

(i) Show that P 2 and W 2 are true Casimir operators,
i.e. [P 2, Pµ ] = [P 2, Lρσ ] = 0 , and likewise for W 2;

(ii) In particle’s rest frame where pµ = (m, 0, 0, 0), show that
W0 = 0, Wi =

1
2mεijk L

jk = mJi and W 2 = −m2J2;

(iii) Show that [J ·P,P] = 0, [Pµ,Wν] = 0, and WµPµ = 0;

(iv) Calculate the commutation relation [Wµ,Wν].
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7. Lagrangians in Field Theory

– Variational Principle and Equation of Motion

Classical Lagrangian Dynamics

The Lagrangian for an n-particle system is

L(qi, q̇i) = T − V ,

where q1,2,...,n are the the generalized coordinates describing
the n particles, and q̇1,2,...,n are the respective time
derivatives.

T and V denote the total kinetic and potential energies.

The action S of the n-particle system is given by

S[qi(t)] =

∫ t2

t1

dtL(qi, q̇i) .

Note that S is a functional of qi(t).
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Hamilton’s principle

Hamilton’s principle states that the actual motion of the
system is determined by the stationary behaviour of S
under small variations δqi(t) of the ith particle’s generalized
coordinate qi(t), with δqi(t1) = δqi(t2) = 0, i.e.

δS =

∫ t2

t1

dt

(
δqi

∂L

∂qi
+ δq̇i

∂L

∂q̇i

)

=

∫ t2

t1

dt δqi

(
∂L

∂qi
−

d

dt

∂L

∂q̇i

)
= 0 .

The Euler–Lagrange equation of motion for the ith particle is

∴
d

dt

∂L

∂q̇i
−

∂L

∂qi
= 0 .

· · ·

Exercise: Show that the Euler–Lagrange equations of motion
for a particle system described by a Lagrangian of the form
L(qi, q̇i, q̈i) are

d2

dt2
∂L

∂q̈i
−

d

dt

∂L

∂q̇i
+

∂L

∂qi
= 0 .

[Hint: Consider only variations with δqi(t1,2) = δq̇i(t1,2) = 0.]
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Lagrangian Field Theory

In Quantum Field Theory (QFT), a (scalar) particle is
described by a field φ(x), whose Lagrangian has the functional
form:

L =

∫
d3x L(φ(x) , ∂µφ(x)) ,

where L is the so-called Lagrangian density, often termed
Lagrangian in QFT.

In QFT, the action S is given by

S[φ(x)] =

∫ +∞

−∞
d4x L(φ(x) , ∂µφ(x)) ,

with lim
x→±∞

φ(x) = 0.

By analogy, the Euler–Lagrange equations can be obtained
by determining the stationary points of S, under variations
φ(x) → φ(x) + δφ(x):

∂µ
∂L

∂(∂µφ)
−

∂L
∂φ

= 0 .

· · ·

Exercise: Derive the above Euler–Lagrange equation for a
scalar particle by extremizing S[φ(x)], i.e. δS = 0 .
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– Lagrangians for the Klein-Gordon and Maxwell eqs

Lagrangian for the Klein–Gordon equation

LKG =
1

2
(∂µφ) (∂

µφ) −
1

2
m2 φ2 ,

where φ(x) is a real scalar field describing one dynamical
degree of freedom.

The Euler–Lagrange equation of motion is the Klein–Gordon
equation

(∂µ∂
µ + m2)φ(x) = 0 .

· · ·

Lagrangian for the Maxwell equations

LME = −
1

4
Fµν F

µν − JµA
µ ,

where Fµν = ∂µAν − ∂νAµ is the field strength tensor, and
Jµ is the 4-vector current satisfying charge conservation:
∂µJµ = 0.

Aµ describes a spin-1 particle, e.g. a photon, with 2 physical
degrees of freedom.

Exercise: Use the Euler-Lagrange equations for LME to
show that ∂µFµν = Jν , as is expected in relativistic
electrodynamics (with µ0 = ε0 = c = 1).
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– Lagrangian for the Dirac equation

LD = ψ̄ (i γµ∂µ − m)ψ ,

where

ψ(x) =

(
ξβ(x)

η̄β̇(x)

)
, γµ =

(
0 (σµ)αβ̇

(σ̄µ)α̇β 0

)

and ψ̄(x) ≡ (ηα(x), ξ̄α̇(x) ), with σµ = (12, σ) and σ̄µ =
(12, −σ).

The ξα and η̄α̇ are 2-dim complex vectors (also called Weyl
spinors) whose components anti-commute: ξ1ξ2 = −ξ2ξ1,
η̄1̇η̄2̇ = −η̄2̇η̄1̇, ξ1η̄2̇ = −η̄2̇ξ1 etc.

The Euler–Lagrange equation of LD with respect to ψ̄ is the
Dirac equation:

∂LD

∂ψ̄
= 0 ⇒ (i γµ∂µ − m)ψ = 0 .

The 4-component Dirac spinor ψ(x) that satisfies the Dirac
equation describes 4 dynamical degrees of freedom.

Exercises:
(i) Derive the Euler–Lagrange equation with respect to the
Dirac field ψ(x);
(ii) Show that up to a total derivative term, LD is Hermitian,
i.e. LD = L†

D + ∂µjµ, with jµ = ψ̄ iγµψ.
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Lorentz trans properties of the Weyl and Dirac spinors

The Dirac spinor ψ is the direct sum of two Weyl spinors ξ
and η̄ with Lorentz trans properties:

ξ′α = M β
α ξβ , η̄′α̇ = M† β̇

α̇ η̄β̇ ,

ξ′α = M−1 α
β ξβ , η̄′α̇ = M†−1 α̇

β̇
η̄β̇ .

with M ∈ SL(2,C).

Duality relations among 2-spinors:

(ξα)† = ξ̄α̇ , (ξα)
† = ξ̄α̇ , (η̄α̇)

† = ηα , (ηα)† = η̄α̇

Lowering and raising spinor indices:

ξα = εαβξ
β , ξα = εαβξβ , η̄α̇ = εα̇β̇η̄

β̇ , η̄α̇ = εα̇β̇η̄β̇ ,

with εαβ ≡ iσ2 =
(

0 1
−1 0

)

= −εαβ and εα̇β̇ ≡ iσ2 = −εα̇β̇.

Lorentz-invariant spinor contractions:

ξη ≡ ξαηα = ξαεαβη
β =−ηβεαβξα = ηβεβαξ

α = ηβξβ = ηξ

Likewise, ξ̄η̄ ≡ (ηξ)† = ξ†αη
α† = ξ̄α̇η̄α̇ = η̄α̇ξ̄α̇ = η̄ξ̄.

Exercise: Given that MσµM† = Λνµ σν and M†−1σ̄µM−1 =
Λνµ σ̄ν, show that LD is invariant under Lorentz trans.
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8. Gauge Groups

– Global and Local Symmetries

Symmetries in Classical Physics and Quantum Mechanics:

Translational invariance in time Energy conservation
t → t+ a0 ⇒ dE

dt = 0

Translational invariance in space Momentum conservation
r → r+ a ⇒ dp

dt = 0

Rotational invariance Angular momentum conservation
r → R r ⇒ dJ

dt = 0

Quantum Mechanics Degeneracy of energy states

[H,O] = 0 ⇒ dO
dt = i[H,O] = 0

Quantum Field Theory Noether’s Theorem

φ(x) → φ(x) + δφ(x) ⇒ ?
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Global and Local Symmetries in QFT

Consider the Lagrangian (density) for a complex scalar:

L = (∂µφ)∗ (∂µφ) − m2 φ∗φ + λ(φ∗φ)2 .

L is invariant under a U(1) rotation of the field φ:

φ(x) → φ′(x) = eiθ φ(x) ,

where θ does not depend on x ≡ xµ.

A transformation in which the fields are rotated about x-
independent angles is called a global transformation. If the
angles of rotation depend on x, the transformation is called
a local or a gauge transformation.

A general infinitesimal global or local trans of fields φi under
the action of a Lie group reads:

φi(x) → φ′i(x) = φi(x) + δφi(x) ,

where δφi(x) = −i θa(x) (T a) ji φj(x) , and T a are the
generators of the Lie Group. Note that the angles or group
parameters θa are x-independent for a global trans.

If a Lagrangian L is invariant under a global or local trans, it
is said that L has a global or local (gauge) symmetry.

Exercise: Show that the above Lagrangian for a complex
scalar is not invariant under a U(1) gauge trans.
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– Gauge Invariance of the QED Lagrangian

Consider first the Lagrangian for a Dirac field ψ:

LD = ψ̄ (iγµ∂µ − m)ψ .

LD is invariant under the U(1) global trans:

ψ(x) → ψ′(x) = eiθ ψ(x) ,

but it is not invariant under a U(1) gauge trans, when
θ = θ(x). Instead, we find the residual term

δLD = − (∂µθ(x)) ψ̄γ
µψ .

To cancel this term, we introduce a vector field Aµ in the
theory, the so-called photon, and add to LD the extra term:

Lψ = LD − eAµ ψ̄γ
µψ .

We demand that Aµ transforms under a local U(1) as

Aµ → A′
µ = Aµ −

1

e
∂µθ(x) .

Lψ is invariant under a U(1) gauge trans of ψ and Aµ.
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QED Lagrangian with an electron-photon interaction

The complete Lagrangian of Quantum Electrodynamics
(QED) that includes the interaction of the photon with the
electron is

LQED = −
1

4
Fµν F

µν + ψ̄ (i ̸∂ − m − e A̸)ψ ,

where we used the convention: ̸a ≡ γµaµ.

Exercises:

(i) Show that LQED is gauge invariant under a U(1) trans.

(ii) Derive the equation of motions with respect to photon
and electron fields.

(iii) How should the Lagrangian describing a complex scalar
field φ(x),

L = (∂µφ)∗ (∂µφ) − m2 φ∗φ ,

be extended so as to become gauge symmetric under a U(1)
local trans?
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– Noether’s Theorem

Noether’s Theorem. If a Lagrangian L is symmetric under a
global transformation of the fields, then there is a conserved
current Jµ(x) and a conserved charge Q =

∫
d3xJ0(x),

associated with this symmetry, such that

∂µJ
µ = 0 and

dQ

dt
= 0 .

Proof:

Consider a Lagrangian L(φi, ∂µφi) to be invariant under the
infinitesimal global trans:

δφi = i θa(T a) ji φj ,

where T a are the generators of some group G.

Hence, the change of L is vanishing, i.e.

δL =
∂L
∂φi

δφi +
∂L

∂(∂µφi)
∂µ(δφi) = 0 .

This last equation can be rewritten as

δL = ∂µ

[
∂L

∂(∂µφi)
δφi

]
+

[
∂L
∂φi

− ∂µ
∂L

∂(∂µφi)

]
δφi = 0 .
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With the aid of the equations of motions for φi, the last
equation implies that

∂µ

[
∂L

∂(∂µφi)
δφi

]
=

[
∂µ

∂L
∂(∂µφi)

−
∂L
∂φi

]
δφi = 0 .

The conserved current (or currents) is

Ja, µ =
∂L

∂(∂µφi)

∂δφi
∂θa

=
∂L

∂(∂µφi)
i (T a) ji φj .

The corresponding conserved charges are

Qa(t) =

∫
d3xJa, 0(x) .

Indeed, it is easy to check that

dQa

dt
=

∫
d3x ∂0 J

a, 0(x) = −
∫

d3x ∇ · Ja(x)

= −
∫

ds · Ja → 0 ,

because surface terms vanish at infinity.

Exercises: Find the conserved currents and charges for
(i) QED;
(ii) the gauge-invariant Lagrangian with a complex scalar φ.
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– Yang–Mills Theory

The Lagrangian of a Yang–Mills (non-Abelian) SU(N) theory
is

LYM = −
1

4
F a
µν F

a,µν ,

where

F a
µν = ∂µA

a
ν − ∂νA

a
µ − g fabcAb

µA
c
ν ,

and fabc are the structure constants of the SU(N) Lie algebra.

It can be shown that LYM is invariant under the infinitesimal
SU(N) local trans:

δAa
µ = −

1

g
∂µθ

a − fabc θbAc
µ .

Examples of SU(N) theories are the SU(2)L group of the SM
and Quantum Chromodynamics (QCD) based on the SU(3)c
group.

The gauge (vector) fields of the SU(2)L are the W 0 and W±

bosons responsible for the weak force.

The gauge vector bosons of the SU(3)c group are the gluons
mediating the strong force between quarks.

Gauge bosons of Yang–Mills theories self-interact!

Exercise: Show that LYM is invariant under SU(N) gauge
trans.
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Interaction between quarks qi and gluons Aa
µ in SU(3)c

If qi = (qred, qgreen, qblue) are the 3 colours of the quark,
their interaction with the 8 gluons Aa

µ is described by the
Lagrangian:

Lint = q̄i [ i ̸∂ δji − m δji − g A̸a(T a) ji ] qj .

Exercise: Show that Lint is invariant under the SU(3) gauge
transformation:

δAa
µ = −

1

g
∂µθ

a − fabc θbAc
µ , δqi = iθa (T a) ji qj ,

where T a = 1
2 λ

a are the generators of SU(3) and λa are the
Gell-Mann matrices:

λ1,2,3 =

(
σ1,2,3 0
0 0

)

, λ4 =

⎛

⎝

0 0 1
0 0 0
1 0 0

⎞

⎠ ,

λ5 =

⎛

⎝

0 0 −i
0 0 0
i 0 0

⎞

⎠ , λ6 =

⎛

⎝

0 0 0
0 0 1
0 1 0

⎞

⎠ ,

λ7 =

⎛

⎝

0 0 0
0 0 −i
0 i 0

⎞

⎠ , λ8 =

⎛

⎜
⎝

1√
3

0 0

0 1√
3

0

0 0 − 2√
3

⎞

⎟
⎠ .
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9. The Geometry of Gauge Transformations

– Parallel Transport and Covariant Derivative

Simple Example:

e2

e1

v(t)

θ(t)

Time-dependent vector written in terms of t-dependent unit
vectors:

v(t) = vi(t) ei(t) (with i = 1, 2).

The true time derivative of v(t) is

d

dt
v(t) = lim

δt→0

v(t+ δt) − v(t)

δt
.

To calculate this, we need to refer all unit vectors to t+ δt:

ei(t) = ei(t+ δt) − δt ∂tei(t) .
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Then, we have

d

dt
v(t) =

1

δt
{ vi(t+ δt) − (vi(t) − δt vj(t) [ei · ∂tej])}

× ei(t+ δt)

= [ ∂tvi(t) + (ei · ∂tej) vj(t) ] ei(t) .

We can now define the covariant derivative to act only on
the components of v(t) as:

Dtvi(t) = ∂tvi(t) + (ei · ∂tej)vj(t) ,

= ∂tvi(t) + θ̇ ε3ij vj(t) ,

with the obvious property d
dtv(t) = ei(t)Dtvi(t). The second

term is induced by the change of the coordinate axes, namely
after performing a parallel transport of our coordinate system
e1,2(t) from t to t+ δt.

Proper comparison of two vectors vi(t + δt) and vi(t) can
only be made in the same coordinate system by means of
parallel transport. Differentiation is properly defined through
the covariant derivative.

Exercise: Show that the covariant derivative satisfies the
relation

Dtvi(t) = ∂tvi(t) + (ω × v(t))i ,

with ω = θ̇(t), which is known from Classical Mechanics
between rotating and fixed frames in 3 dimensions.
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Differentiation in curved space

The notion of the covariant derivative generalizes to curved
space as well. By analogy, the infinitesimal difference between
the 4-vectors V µ(x′µ) and V (xµ) is given by

DV µ = dV µ + δV µ ,

where dV µ is the difference of the 2 vectors in the same
coordinate system and δV µ is due to parallel transport of the
vector from xµ to x′µ = xµ + δxµ.

In the framework of General Relativity, we have

DV µ = (∂λV
µ + Γµ

νλV
ν) dxλ ,

where Γµ
νλ is the so-called affine connection or the Christoffel

symbol.
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Covariant derivative in the Gauge-Group Space

Consider the difference of a fermionic isovector field ψ at
xµ + δxµ and xµ in an SU(N) gauge theory:

Dψ = dψ + δψ ,

where
δψ = ig T aAa

µ dx
µψ

and the field Aa
µ takes care of the change of the SU(N) axes

from point to point in Minkowski space.

The covariant derivative of ψ(xµ) is

Dµψ = (∂µ + ig T aAa
µ)ψ ,

which is obtained from pure geometric considerations.

In analogy to General Relativity, the gauge field Aa
µ T

a is
sometimes called the connection.

Exercise: Show that under a local SU(N) rotation of the
isovector ψ field: ψ → ψ′ = Uψ (with U ∈ SU(N)), its
covariant derivative transforms as

Dµψ → D′
µψ

′ = U Dµψ ,

with

A′
µ = U AµU

† +
i

g
(∂µU)U † .
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A round trip in the SU(N) Gauge-Group Space

A B

CD

∆xµ

δxµ

Keeping terms up to second order in δx and ∆x, we have

ψB = (1 + ∆xµDµ +
1

2
∆xµ∆xνDµDν)ψA,0 ,

ψC = (1 + δxµDµ +
1

2
δxµδxνDµDν)ψB ,

ψD = (1 − ∆xµDµ +
1

2
∆xµ∆xνDµDν)ψC ,

ψA,1 = (1 − δxµDµ +
1

2
δxµδxνDµDν)ψD .

Hence,

ψA,1 = (1 + δxµ∆xν [Dµ , Dν])ψA,0 ,

and ψA,1 ̸= ψA,0.

Exercise: Show that

i

g
[Dµ , Dν] = F a

µν T
a

is the SU(N) Field-strength tensor.
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Parallels between Gauge Theory and General Relativity

In General Relativity, a corresponding round trip of a vector
V µ in a curved space gives rise to

∆V µ =
1

2
Rµ
ρσλ V

ρ∆Sσλ ,

where ∆Sσλ represents the area enclosed by the path and
Rµ
ρσλ is the Riemann–Christoffel curvature tensor:

Rµ
ρσλ = ∂λΓ

µ
ρσ − ∂σΓ

µ
ρλ + ΓκρσΓ

µ
κλ − ΓκρλΓ

µ
κσ .

Analogies:

Gauge Theory General Relativity

Gauge trans. Co-ordinate trans.
Gauge field Aa

µ T
a Affine connection, Γκλν

Field strength Fµν Curvature tensor Rµ
ρσλ

Bianchi identity: Bianchi identity:∑
ρ,µ,ν
cyclic

DρFµν = 0
∑

ρ,µ,ν
cyclic

DρRκλµν = 0
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– Topology of the Vacuum: the Bohm–Aharanov Effect

The Bohm–Aharanov Effect:

B

d
x: displacement of fringes

2

1

e− source

Vector potential A and B field (with B = ∇ × A) in
cylindrical polars:

Inside: Ar = Az = 0, Aφ =
Br

2
,

Br = Bφ = 0 , Bz = B ,

Outside: Ar = Az = 0, Aφ =
BR2

2r
,

B = 0 ,

where R is the radius of the solenoid.

Although the electrons move in regions with E = B = 0, the
B field of the solenoid induces a phase difference δφ12 of the
electrons on the screen causing a displacement of the fringes:

δφ12 = φ1 − φ2 =
e

"

∮

2−1
A · dr =

e

"

∫
B · ds .

In regions with E = B = 0, it is A ̸= 0, so the vacuum has
a topological structure! It is not simply connected due to the
presence of the solenoid.
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Basic Concepts in Topology

Let a(s) and b(s) be two paths in a topological space Y both
starting from the point P (a(0) = b(0) = P ) and ending at a
possibly different point Q (a(1) = b(1) = Q). If there exists
a continuous function L(t, s) such that L(0, s) = a(s) and
L(1, s) = b(s), then the paths a and b are called homotopic
which is denoted by a ∼ b.

If P ≡ Q, the path is said to be closed.

The inverse of a path a is written as a−1 and is defined by
a−1(s) = a(1−s). It corresponds to the same path traversed
in the opposite direction.

The product path c = ab is defined by

c(s) = a(2s) , for 0 ≤ s ≤ 1
2 ,

c(s) = b(2s− 1) , for 1
2 ≤ s ≤ 1 .

If a ∼ b, then ab−1 is homotopic to the null path: ab−1 ∼ 1.

Exercises:

(i) Consider the mappings S1 → U(1): fn(θ) = ei(nθ+a)

(with a ∈ R and n ∈ Z), and show that they all are homotopic
to those with a = 0.

(ii) Given that fn(θ) ̸∼ fm(θ) for n ̸= m, explain then why
L(t, θ) = ei[nθ(1−t)+mθt] is not an allowed homotopy function
relating fn to fm.
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Homotopy Classes, Groups and the Winding Number

All paths related to maps X → Y of two topological spaces
X, Y can be divided into homotopy classes.

Homotopy Class. All paths that are homotopic to a given
path a(s) define a set, called the homotopy class and denoted
by [a]. For example, [fn] are distinct homotopy classes for
different n.

Winding Number. Each homotopy class may be
characterized by an integer, the winding number n (also called
the Pontryargin index). For the case f(θ) : S1 → U(1), the
winding number is determined by

n =
1

2πi

2π∫

0

dθ

(
d ln f(θ)

dθ

)
.

Homotopy Group. The set of all homotopy classes related
to maps X → Y forms a group, under the multiplication law

[a] [b] = [ab] ,

the so-called homotopy group πX(Y ).

Exercises:
(i) Prove that the homotopy group satisfies the axioms of a
group.

(ii) Show that for S1 → U(1), π1[U(1)] ∼= Z.
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The Bohm–Aharanov Effect Revisited

In regions with E = B = 0, Aµ is a pure gauge: Aµ = ∂µχ
(Why?).

The configuration space X of the Bohm–Aharanov effect is
the plane R2 with a hole in it, due to the solenoid. This is
topologically equivalent (≡ homeomorphic) to R × S1. The
space X can be conveniently described by polar coords (r,φ),
with r ̸= 0.

It can be shown that χ(r,φ) = const.×φ, which is a function
in the group space of U(1), i.e. Y = U(1).

Since functions mapping S1 onto R are all deformable to a
constant, the non-trivial part of χ is given by the map:

S1 → U(1) .

Because π1[U(1)] = Z, the electron paths cannot be deformed
to a null path with a constant χ, implying Aµ = 0 everywhere
and the absence of the Bohm–Aharanov effect.

Since π1[SU(2)] = 1, there is no Bohm–Aharanov effect
from an SU(2) ‘solenoid’ !

Exercises:
(i) Show that χ(r,φ) = 1

2 BR2 φ is a possible solution for
E = B = 0, where B is the magnetic field and R the radius
of the solenoid.

(ii) Verify that δφ12 =
e
"
[χ(2π)− χ(0) ].
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10. Supersymmetry (SUSY)

– Graded Lie Algebra

Definition. A Z2-graded Lie algebra is defined on a vector
space L which is the direct sum of two subspaces L0 and
L1: L = L0 ⊕ L1. The generators that span the space L are
endowed with a multiplications law:

◦ : L× L → L .

∀ T (0) ∈ L0, T (1) ∈ L1, the generators satisfy the following
properties:

(i) T (0)
1 ◦T (0)

2 = −(−1)g
2
0 T (0)

2 ◦T (0)
1 = [T (0)

1 , T (0)
2 ] ∈ L0 ,

(ii) T (0)◦T (1) = −(−1)g0g1 T (1)◦T (0) = {T (0), T (1)} ∈ L1 ,

(iii) T (1)
1 ◦T (1)

2 = −(−1)g
2
1 T (1)

2 ◦T (1)
1 = [T (1)

1 , T (1)
2 ] ∈ L0 ,

where g0 = g(L0) = 0 and g1 = g(L1) = 1 are the degrees
of the graduation of the Z2-graded Lie algebra.

In addition, all generators of L satisfy the Z2-graded Jacobi
identity:

(−1)gigk T (i) ◦ (T (j) ◦ T (k)) + (−1)gkgj T (k) ◦ (T (i) ◦ T (j))

+ (−1)gjgi T (j) ◦ (T (k) ◦ T (i)) = 0 ,

where i, j, k = 0, 1.
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ZN-graded Lie algebra. The generalization of a Z2-graded
Lie algebra L to ZN can be defined analogously. Let L be
the direct sum of N subalgebras Li:

L = ⊕N−1
i=0 Li .

Then, the multiplication law ◦ among the generators of L
can be defined by

T (i) ◦ T (j) = −(−1)gigj T (j) ◦ T (i) ∈ L(i+j) modN .

The ZN-graded Jacobi identity is defined analogously with
that of Z2, where gi,j = 0, 1, . . . , N − 1 is the degree of
graduation of Li,j.

· · ·

Exercise:⋆⋆⋆ Find the (anti)-commutation relations and the
structure constants of the Z2-graded Lie algebra of SU(2).
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– Generators of the Super-Poincaré Group

The generators super-Poincaré algebra are Pµ , Lµν ∈ L0

and the spinors Qα , Q̄α̇ ∈ L1. They satisfy the following
relations:

(i) [Pµ , Pν] = 0 ,

(ii) [Pµ, Lρσ] = i (gµρPσ − gµσPρ) ,

(iii) [Lµν, Lρσ] = −i (gµρLνσ − gµσLνρ + gνσLµρ − gνρLµσ) .

(iv) {Qα, Qβ} = {Q̄α̇, Q̄β̇} = 0 ,

(v) {Qα, Q̄β̇} = 2(σµ)αβ̇Pµ ,

(vi) [Qα, Pµ] = 0 ,

(vii) [Lµν , Qα] = −i(σµν)
β
α Qβ ,

(viii) [Lµν , Q̄α̇] = −i(σ̄µν)
β̇
α̇ Q̄β̇ ,

where (σµν) βα = 1
4 [ (σ

µ)αα̇(σ̄ν)α̇β − (σν)αα̇(σ̄µ)α̇β ] and

(σ̄µν)α̇
β̇
= 1

4 [ (σ̄
µ)α̇β(σν)ββ̇ − (σ̄ν)α̇β(σµ)ββ̇ ].

· · ·

Exercise:⋆ Prove the Z2-graded Jacobi identity:

[Lµν , {Qα , Q̄β̇}] + {Qα , [Qβ̇ , Lµν]}+ {Q̄β̇ , [Qα , Lµν]} = 0 .

73

Consequences of the Super-Poincaré Symmetry

• Equal number of fermions and bosons.

• Scalar supermultiplet Φ̂ ⊃ (φ , ξ , F ), where φ is a
complex scalar (2), ξ is a 2-component complex spinor (4),
and F is an auxiliary complex scalar (2).

• Vector supermultiplet V̂ a ⊃ (Aa
µ , λa, Da), where Aa

µ

are massless non-Abelian gauge fields (3), λa are the 2-
component gauginos (4), and Da are the auxiliary real
fields (1).

The simplest model that realizes SUperSYmmetry (SUSY)
is the Wess–Zumino model. Counting on-shell degrees of
freedom (dof), the Wess-Zumino model contains one complex
scalar φ (2 dofs) and one Weyl spinor ξ (2 dofs):

bosonic dofs = fermionic dofs
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– The Wess–Zumino Model

Non-interacting WZ model

Lkin = Lscalar + Lfermion

= (∂µφ†)(∂µφ) + ξ̄ iσ̄µ(∂µξ) ; φ =
1√
2
(φ1 + iφ2)

Consider φ→ φ+ δφ and φ† → φ† + δφ†, with

δφ = θξ and δφ† = (θξ)† = ξ̄θ̄ = θ̄ξ̄ ,

and θ infinitesimal anticommuting 2-spinor constant.

⇒ Lscalar → Lscalar + δLscalar ,

δLscalar = θ(∂µφ†)(∂µξ) + θ̄(∂µξ̄)(∂µφ)

Try ξα → ξα + δξα and ξ̄α̇ → ξ̄α̇ + δξ̄α̇, with

δξα = −i(σµθ̄)α∂µφ and δξ̄α̇ = i(θσµ)α̇∂µφ
†

⇒ Lfermion → Lfermion + δLfermion ,

δLfermion = − θσνσ̄µ(∂µξ)(∂νφ
†) + ξ̄σ̄µσν θ̄(∂µ∂νφ)

= θσνσ̄µξ(∂µ∂νφ
†) + ξ̄σ̄µσν θ̄(∂µ∂νφ)

− ∂µ [θσ
νσ̄µξ(∂νφ

†)]
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Exercise: Show that

{σµσ̄ν + σνσ̄µ} β
α = 2gµνδ βα , {σ̄µσν+ σ̄νσµ}α̇

β̇
= 2gµνδα̇

β̇

Noticing that ∂µ∂ν = ∂ν∂µ and using the results of the above
exercise, we get

δLfermion = θξ(∂µ∂
µφ†) + ξ̄θ̄(∂µ∂

µφ)

= −θ(∂µξ)(∂µφ†) − θ̄(∂µξ̄)(∂
µφ)

+ ∂µ [θξ(∂
µφ†) + ξ̄θ̄(∂µφ)]

⇒ δL = δLscalar + δLfermion = 0 !

But, we are not finished yet ! The difference of two successive
SUSY transfs. must be a symmetry of the Lagrangian as well,
i.e. SUSY algebra should close.

(δθ2δθ1 − δθ1δθ2)φ = −i(θ1σ
µθ̄2 − θ2σ

µθ̄1) ∂µφ

≡ iϵµPµφ (with ϵµ∗ = ϵµ)

(δθ2δθ1 − δθ1δθ2)ξα = −i(σµθ̄1)αθ2∂µξ + i(σµθ̄2)αθ1∂µξ

Fierz
= −i(θ1σ

µθ̄2 − θ2σ
µθ̄1) ∂µξα

+ θ1αθ̄2iσ̄
µ∂µξ − θ2αθ̄1iσ̄

µ∂µξ

Only for on-shell fermions, iσ̄µ∂µξ = 0, the SUSY algebra
closes.
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To close SUSY algebra off-shell, we need an auxiliary complex
scalar F (without kinetic term) and add

LF = F †F

to Lscalar + Lfermion, with

δF = −iθ̄σ̄µ(∂µξ) , δF † = i(∂µξ̄)σ̄
µθ

δξα = −i(σµθ̄)α∂µφ+ θαF , δξ̄α̇ = i(θσµ)α̇∂µφ
† + θ̄α̇F

†

Exercise: Prove (i) that the Lagrangian

Lkin = (∂µφ†)(∂µφ) + ξ̄ iσ̄µ(∂µξ) + F †F

is invariant under the off-shell SUSY transfs:

δφ = θξ , δφ† = θ̄ξ̄

δξα = −i(σµθ̄)α∂µφ+ θαF , δξ̄α̇ = i(θσµ)α̇∂µφ
† + θ̄α̇F

†

δF = −iθ̄σ̄µ(∂µξ) , δF † = i(∂µξ̄)σ̄
µθ

and (ii) that the SUSY algebra closes off-shell:

(δθ2δθ1 − δθ1δθ2)X = −i(θ1σ
µθ̄2 − θ2σ

µθ̄1) ∂µX ,

with X = φ, φ†, ξ, ξ̄, F, F †.
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The interacting WZ model

LWZ = Lkin + Lint

= (∂µφ†)(∂µφ) + ξ̄ iσ̄µ(∂µξ) + F †F

−
1

2
Wφφ ξξ + WφF −

1

2
W †
φφξ̄ξ̄ + W †

φF
†

where

W (φ) =
m

2
φφ +

h

6
φφφ

is the so-called superpotential, and

Wφ =
δW

δφ
= mφ +

h

2
φ2

Wφφ =
δ2W

δφ δφ
= m + hφ

Exercise: Show that up to total derivatives,

Lint = −
1

2
Wφφ ξξ + WφF −

1

2
W †
φφξ̄ξ̄ + W †

φF
†

= −
1

2
(m+ hφ)ξξ −

1

2
(m+ hφ†)ξ̄ξ̄

+(mφ+
h

2
φ2)F + (mφ† +

h

2
φ†2)F †

remains invariant under off-shell SUSY transformations.
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– Feynman rules

Equation of motions for the auxiliary fields F and F †:

F = −W †
φ , F † = −Wφ ,

Substituting the above into LWZ, we get

LWZ = (∂µφ†)(∂µφ) + ξ̄ iσ̄µ(∂µξ) − W †
φWφ

−
1

2
(Wφφ ξξ + W †

φφξ̄ξ̄ )

and the real potential is

V = W †
φWφ = m2φ†φ +

mh

2
(φ†φ2 + φ†2φ) +

h2

4
(φ†φ)2

Exercise: If Ψ =

(
ξ
ξ̄

)
is a Majorana 4-spinor, show that

the Ψ-dependent part of the WZ Lagrangian can be written
down as

LΨ =
1

2
Ψ iγµ∂µΨ −

1

2
mΨΨ

−
h

2
φΨPLΨ −

h

2
φ†ΨPRΨ ,

where PL,R = (14 ± γ5)/2 and γ5 = diag (12 , −12).
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Summary

The complete WZ Lagrangian is

LWZ = (∂µφ†)(∂µφ) − m2φ†φ +
1

2
Ψ iγµ∂µΨ −

1

2
mΨΨ

−
mh

2
(φ†φ2 + φ†2φ) −

h2

4
(φ†φ)2

−
h

2
φΨPLΨ −

h

2
φ†ΨPRΨ ,

where the F -field has been integrated out.
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Feynman rules:

φ, p
: i

p2 −m2

Ψ, p
: i

̸p−m

: −imh

: −ih2

: −ihPL

: −ihPR

SUSY is such an elegant symmetry that it would be a pity if
nature made no use of it!
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