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1. Introduction: Why SUSY?

1. Electromagnetism → Quantum ElectroDynamics:
U(1)em
Force carrier: photon, γ, massless, spin = 1~

Coupling to charged matter particles, such as e, u, d quarks.
Strength of the coupling αem(me) = 1/137.

2. Weak interactions → Quantum WeakDynamics:
SU(2)L⊗U(1)Y /U(1)em
Force carriers: W+, W−, Z bosons, massive, spin = 1~

Coupling to particles with weak charges.
Strength of the coupling αw(MZ) ≈ 1/30.
Observed weakness due to the massiveness of W± and Z:
MW ,MZ ∼ 100 GeV.

3. Strong interactions → Quantum ChromoDynamics:
SU(3)color
Force carriers: 8 massless gluons, ga, spin = 1~

Coupling to coloured particles, such as u, d quarks.
Strength of the coupling αs(MZ) ≈ 1/10.

4. Gravity → Quantum Gravity (?):
No known self-consistent quantum theory: Superstrings, large
groups (E6, etc.), extra dims. (?).
Force carrier: massless gravitons, with spin = 2~.
∼ 10−40 weaker than Electromagnetism.
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The Standard Model: SU(3)color⊗ SU(2)L⊗U(1)Y

log10(µ/GeV)

Important questions:

(i) What is the mechanism for giving masses toW±, Z bosons
and matter?

(ii) What guarantees stability of masses under quantum-
mechanical effects from MZ to MU ∼ 1016 GeV?
(The so-called Gauge-Hierarchy problem)
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(i) The Higgs mechanism

Φ

V (Φ)

〈Φ〉

Higgs potential V (Φ) of a scalar field Φ (spin = 0):

V (Φ) = −m2Φ†Φ + λ(Φ†Φ)2

is symmetric under SU(2)L⊗U(1)Y , but not the ground state

〈Φ〉 =

√
m2

2λ

(
0
1

)

which carries a weak charge, but no electric charge and colour.
W±, Z & matter feel the presence of 〈Φ〉, but not γ and ga

After Spontaneous Symmetry Breaking:

⇒ W±, Z bosons and matter become massive, but not γ and
ga, e.g. MW = gw〈Φ〉

⇒ Quantum excitations of Φ = 〈Φ〉 + H

(
0
1

)
,

H is the so-called Higgs boson; spin = 0.
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(ii) SUperSYmmetry introduces a new quantum dimension
⇒ doubling of the particle spectrum of the SM:

Matter particles, spin = 1/2 ⇒ SUSY-partners, spin = 0

e−, µ−, u, d, . . . , t ẽ, µ̃, ũ, d̃, . . . , t̃

Anti-Matter, spin = 1/2 ⇒ SUSY-partners, spin = 0

e+, µ+, ū, d̄, . . . , t̄ ẽ∗, µ̃∗, ũ∗, d̃∗, . . . , t̃∗

Force carriers, spin = 1 ⇒ SUSY-partners, spin = 1/2

γ, W+, W−, Z, g γ̃, w̃+, w̃−, z̃, g̃

Higgs bosons, spin = 0 ⇒ SUSY-partners, spin = 1/2

2 Higgs doublets: Φ1, Φ2 h̃0
1, h̃

+
1 , h̃0

2, h̃
+
2

No SUSY-partners observed yet

⇒ M̃ass − Mass = MSUSY
>∼ 100 GeV.
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Quantum fluctuations of the ground state:

Φ2

t

(−1)

+

t̃

(+1)

W±, Z

(+1)

+

w̃±, z̃

(−1)

. . .

=





0, if SUSY is exact: MSUSY = 0

(0.1 − 1) TeV3, if SUSY is softly broken,
with MSUSY = 1 TeV

Accurate unification of couplings !
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– Literature

Recommended Texts:

• J. Wess and J. Bagger, Supersymmetry and Supergravity,

(Princeton University Press, Princeton NJ, 1992); Chapters: 1–8.

• D. Bailin and A. Love, Supersymmetric Gauge Field Theory and

String Theory, (Institute of Physics Publishing, Bristol UK, 1994);

Chapters: 4–6.

· · ·

Useful references:

• S.P. Martin, A Supersymmetry Primer, hep-ph/9709356.

• H.J.W. Müller-Kirsten and A. Wiedemann, Supersymmetry:

An Introduction with Conceptual and Calculational Details,

(World Scientific, Singapore, 1987).

• H.E. Haber and G.L. Kane, Phys. Rep. 117 (1985) 75;

Appendices A–D.

• L.H. Ryder, Quantum Field Theory, (CUP, Cambridge UK, 1996)

Second Edition.

• S. Weinberg, Supersymmetry, (CUP, Cambridge UK, 2000).

• P.C. West, Introduction to Supersymmetry and Supergravity,

(World Scientific, Singapore, 1990).

· · ·

Prerequisites:

• H.F. Jones, Groups, Representations and Physics,

(IOP, Oxford UK, 1998) Second Edition; Chapters: 2,3,6–11.

• A. Pilaftsis, Lecture notes PC4702 on Symmetries in Physics,

http://pilaftsi.home.cern.ch/pilaftsi/; Chapters: 1–8.
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– The Coleman–Mandula Theorem

Assumptions:

(i) S-matrix is based on a local, relativistic, 4-dimensional
Quantum Field Theory.

(ii) There are finite number of particles with mass m less than
a given mass scale Λ.

(iii) Energy gap between vacuum and 1-particle states

(iv) Technical assumptions related to representation (rep) of
operators and IR problems.

Consequences:

Then, the most general Lie algebra of symmetries of the
S-matrix contains:

(i) the generators Pµ and Lµν of the Poincaré group;

(ii) possible scalar operators Bl, i.e. [Bl, Pµ] = [Bl, Lµν] = 0,
which satisfy independently a Lie algebra L:

[Bl, Bm] = ifklmBk ,

where fklm are the structure constants of the algebra L.
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– Supersymmetric transformations

Q|Boson〉 = |Fermion〉 , Q|Fermion〉 = |Boson〉

Haag–Lopuszanski–Sohnius extension of the Coleman–
Mandula theorem includes a graded Lie algebra, namely
includes anti-commutators as well:

{Qα, Q̄α̇} = 2 (σµ)αα̇ Pµ ,

{Qα, Qβ} = {Q̄α̇, Q̄β̇} = 0 ,

[Qα, Pµ] = [Q̄α̇, Pµ] = 0 .

Consequences:

• Equal number of (on-shell or off-shell) fermionic and
bosonic degrees of freedom (dof).

• Scalar supermultiplet Φ̂ ⊃ (φ , ξ , F ), where φ is a
complex scalar (2 dof), ξ is a 2-component complex
spinor (4 dof), and F is an auxiliary complex scalar (2 dof).

• Vector supermultiplet V̂ a ⊃ (Aaµ , λ
a, Da), where Aaµ

are massless (gauge-fixed) non-Abelian gauge fields (3 dof
each), λa are the 2-component gauginos (4 dof each), and
Da are the auxiliary real fields (1 dof each).
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– Dirac and Majorana fermions

I. Dirac fermions in the chiral representation

LDirac = ΨD iγ
µ∂µΨD − mDΨDΨD ,

where

ΨD =

(
ξα
η̄α̇

)
, γµ =

(
0 (σµ)αβ̇

(σ̄µ)
α̇β 0

)

and ΨD = (ηα , ξ̄α̇), with σµ = (12, σ) and

σ̄µ = (12, −σ). Note that σ denote the Pauli matrices:

σ1 =

„
0 1

1 0

«
, σ2 =

„
0 −i
i 0

«
, σ3 =

„
1 0

0 −1

«
.

Our metric convention is ηµν = diag(1,−1,−1,−1).

Chirality projection operators:

PL,R =
1

2
(14 ± γ5) , γ5 =

(
δβα 0
0 −δα̇

β̇

)
,

or equivalently γ5 = iγ0γ1γ2γ3.

Chirality states:

PLΨD =

(
ξα
0

)
, PRΨD =

(
0
η̄α̇

)
.
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II. Lorentz transformation properties of the Weyl spinors

The Dirac spinor ψD consists of two Weyl spinors ξα and η̄α̇

that transform under the (1
2, 0) and (0, 1

2) reps of the Lorentz
group SO(1, 3) ' SL(2,C).

The Lorentz trans properties of the Weyl spinors are:

ξ′α = M β
α ξβ , η̄′α̇ = M † β̇

α̇ η̄β̇ ,

ξ′α = M−1 α
β ξβ , η̄′α̇ = M †−1 α̇

β̇
η̄β̇ .

with M ∈ SL(2,C).

Duality relations among 2-spinors:

(ξα)† = ξ̄α̇ , (ξα)
† = ξ̄α̇ , (η̄α̇)

† = ηα , (ηα)† = η̄α̇

Lowering and raising spinor indices:

ξα = εαβξ
β , ξα = εαβξβ , η̄α̇ = εα̇β̇η̄

β̇ , η̄α̇ = εα̇β̇η̄β̇ ,

with εαβ ≡ iσ2 =
„

0 1
−1 0

«
= −εαβ and εα̇β̇ ≡ iσ2 = −εα̇β̇.
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Lorentz–invariant spinor contractions:

ξη ≡ ξαηα = ξαεαβη
β =−ηβεαβξα = ηβεβαξ

α = ηβξβ = ηξ

Likewise, ξ̄η̄ ≡ (ηξ)† = ξ†αη
α† = ξ̄α̇η̄

α̇ = η̄α̇ξ̄
α̇ = η̄ξ̄.

Exercises:

(i) Show that

ξ̄σ̄µη ≡ ξ̄α̇(σ̄
µ)α̇βηβ = − ηα(σµ)αβ̇ξ̄

β̇ ≡ −ησµξ̄ .

(ii) Use (i) to verify that up to a total derivative ∝ ∂µ(η̄σ̄
µη),

we get

LDirac = ΨD iγ
µ∂µΨD − mDΨDΨD ,

= ξ̄ iσ̄µ∂µξ + η̄ iσ̄µ∂µη − mD (ξη + η̄ξ̄ ) .

(iii) Show that

MσµM
† = Λνµ σν and M †−1σ̄µM

−1 = Λνµ σ̄ν ,

where Λµν ∈ SO(1,3), i.e. x′µ = Λµνx
ν.

(iv) Use (iii) to show that LDirac is invariant under Lorentz
trans.
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III. Majorana fermions

Charge conjugation operator: C = −iγ2γ0 =

 
εαβ 0

0 εα̇β̇

!

Charge-conjugate of a 4-spinor Ψ =
„
ξα
η̄α̇

«
:

ΨC ≡ CΨ̄T =

(
εαβ 0

0 εα̇β̇

) (
ηβ

ξ̄β̇

)
=

(
ηα
ξ̄α̇

)

Definition of Majorana spinor:

ΨM ≡ ΨC
M =

(
ξα
ξ̄α̇

)
or ξ = η

Kinetic Lagrangian for a Majorana field:

LMajorana =
1

2
ΨM iγµ∂µΨM − 1

2
mMΨMΨM ,

= ξ̄ iσ̄µ∂µξ − 1

2
mM (ξξ + ξ̄ξ̄ )
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Glossary:

I. Dirac fermions

Ψ1PLΨ2 = η1ξ2 , Ψ1PRΨ2 = ξ̄1η̄2 ,

Ψ1γµPLΨ2 = ξ̄1σ̄µξ2 , Ψ1γµPRΨ2 = − η̄2σ̄µη1 .

II. Majorana fermions

Ψ1Ψ2 = Ψ2Ψ1 , Ψ1γ5Ψ2 = Ψ2γ5Ψ1 ,

Ψ1γµΨ2 = −Ψ2γµΨ1 , Ψ1γµγ5Ψ2 = Ψ2γµγ5Ψ1 .
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2. The simplest SUSY model: the WZ Model

– Non-interacting WZ model

Lkin = Lscalar + Lfermion

= (∂µφ†)(∂µφ) + ξ̄ iσ̄µ(∂µξ) ; φ =
1√
2

(φ1 + iφ2)

Consider φ→ φ+ δφ and φ† → φ† + δφ†, where

δφ = θξ and δφ† = (θξ)† = ξ̄θ̄ = θ̄ξ̄ ,

and θ is an infinitesimal anticommuting 2-spinor constant.

⇒ Lscalar → Lscalar + δLscalar ,

δLscalar = θ(∂µφ†)(∂µξ) + θ̄(∂µξ̄)(∂µφ)

Try ξα → ξα + δξα and ξ̄α̇ → ξ̄α̇ + δξ̄α̇, with

δξα = −i(σµθ̄)α∂µφ and δξ̄α̇ = i(θσµ)α̇∂µφ
†

⇒ Lfermion → Lfermion + δLfermion ,

δLfermion = − θσνσ̄µ(∂µξ)(∂νφ
†) + ξ̄σ̄µσν θ̄(∂µ∂νφ)

= θσνσ̄µξ(∂µ∂νφ
†) + ξ̄σ̄µσν θ̄(∂µ∂νφ)

− ∂µ [θσνσ̄µξ(∂νφ
†)]
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Write σνσ̄µ = 1
2 {σµσ̄ν + σνσ̄µ } − 1

2 [σµσ̄ν − σνσ̄µ ], and a
similar expression for σ̄µσν.

Since ∂µ∂ν = ∂ν∂µ, only the symmetric term in {· · ·} will
survive.

Using the result of the exercise below, we find

δLfermion = θξ(∂µ∂
µφ†) + ξ̄θ̄(∂µ∂

µφ)

= −θ(∂µξ)(∂µφ†) − θ̄(∂µξ̄)(∂
µφ)

+ ∂µ [θξ(∂µφ†) + ξ̄θ̄(∂µφ)]

⇒ δL = δLscalar + δLfermion = 0 !

Exercise: Show that

(σµ)αα̇(σ̄
ν)α̇β + (σν)αα̇(σ̄

µ)α̇β = 2ηµνδ βα ,

(σ̄µ)α̇β(σν)ββ̇ + (σ̄ν)α̇β(σµ)ββ̇ = 2ηµνδα̇
β̇
.
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But, we are not finished yet !

The difference of two successive SUSY trans. must be a
symmetry of the Lagrangian as well, i.e. the SUSY algebra
should close.

(δθ2δθ1 − δθ1δθ2)φ = −i(θ1σµθ̄2 − θ2σ
µθ̄1) ∂µφ

≡ iεµPµφ (with εµ∗ = εµ)

(δθ2δθ1 − δθ1δθ2)ξα = −i(σµθ̄1)αθ2∂µξ + i(σµθ̄2)αθ1∂µξ

Fierz
= −i(θ1σµθ̄2 − θ2σ

µθ̄1) ∂µξα

+ θ1αθ̄2iσ̄
µ∂µξ − θ2αθ̄1iσ̄

µ∂µξ

Only for on-shell fermions, iσ̄µ∂µξ = 0, the SUSY algebra
closes.

Exercise: Prove the Fierz identity:

χα (ξη) + ξα(ηχ) + ηα(χξ) = 0 ,

where χ, ξ and η are Weyl spinors.
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To close the SUSY algebra off-shell, we need an auxiliary
complex scalar F (without kinetic term) and add

LF = F †F

to Lscalar + Lfermion, with

δF = −iθ̄σ̄µ(∂µξ) , δF † = i(∂µξ̄)σ̄
µθ

δξα = −i(σµθ̄)α∂µφ+ θαF , δξ̄α̇ = i(θσµ)α̇∂µφ
† + θ̄α̇F

†

Dimensions of the fields: [φ] = 1, [ξ] = 3
2 , [F ] = 2, [θ] = −1

2.

Exercise: Prove (i) that the Lagrangian

Lkin = (∂µφ†)(∂µφ) + ξ̄ iσ̄µ(∂µξ) + F †F

is invariant under the off-shell SUSY trans:

δφ = θξ , δφ† = θ̄ξ̄

δξα = −i(σµθ̄)α∂µφ+ θαF , δξ̄α̇ = i(θσµ)α̇∂µφ
† + θ̄α̇F

†

δF = −iθ̄σ̄µ(∂µξ) , δF † = i(∂µξ̄)σ̄
µθ

and (ii) that the SUSY algebra closes off-shell:

(δθ2δθ1 − δθ1δθ2)X = −i(θ1σµθ̄2 − θ2σ
µθ̄1) ∂µX ,

with X = φ, φ†, ξ, ξ̄, F, F †.

20



– The Interacting WZ model

LWZ = Lkin + Lint

= (∂µφ†)(∂µφ) + ξ̄ iσ̄µ(∂µξ) + F †F

− 1

2
Wφφ ξξ + WφF − 1

2
W †
φφξ̄ξ̄ + F †W †

φ

where

W (φ) =
m

2
φφ +

h

6
φφφ

is the so-called superpotential, and

Wφ =
δW

δφ
= mφ +

h

2
φ2

Wφφ =
δ2W

δφδφ
= m + hφ

Exercise: Show that up to total derivatives,

Lint = − 1

2
Wφφ ξξ + WφF − 1

2
W †
φφξ̄ξ̄ + W †

φF
†

= − 1

2
(m+ hφ)ξξ − 1

2
(m+ hφ†)ξ̄ξ̄

+ (mφ+
h

2
φ2)F + (mφ† +

h

2
φ†2)F †

remains invariant under off-shell SUSY transformations.
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– Feynman rules

Equation of motions for the auxiliary fields F and F †:

F = −W †
φ , F † = −Wφ ,

Substituting the above into LWZ, we get

LWZ = (∂µφ†)(∂µφ) + ξ̄ iσ̄µ(∂µξ) − WφW
†
φ

− 1

2
(Wφφ ξξ + W †

φφξ̄ξ̄ )

and the real potential is

V = WφW
†
φ = m2φ†φ +

mh

2
(φ†φ2 + φ†2φ) +

h2

4
(φ†φ)2

Exercise: If Ψ =

(
ξ
ξ̄

)
is a Majorana 4-spinor, show that

the Ψ-dependent part of the WZ Lagrangian can be written
down as

LΨ =
1

2
Ψ iγµ∂µΨ − 1

2
mΨΨ

− h

2
φΨPLΨ − h

2
φ†ΨPRΨ
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Summary

The complete WZ Lagrangian is

LWZ = (∂µφ†)(∂µφ) − m2φ†φ +
1

2
Ψ iγµ∂µΨ − 1

2
mΨ Ψ

−mh

2
(φ†φ2 + φ†2φ) − h2

4
(φ†φ)2

− h

2
φΨPLΨ − h

2
φ†ΨPRΨ ,

where the F -field has been integrated out.
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Feynman rules:

φ, p
:

i
p2 −m2

Ψ, p
: i

6p−m

: −imh

: −ih2

: −ihPL

: −ihPR
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3. Non-renormalization Theorems in SUSY

– Absence of Tadpoles in the WZ Model
φ, k

φ

= (−imh)
∫

d4k
(2π)4

i
k2 −m2

+

Ψ, k

φ

= (−1) 1
2 (−ih)

∫
d4k

(2π)4
Tr
(
PL

i
6k −m

)

= 1
2 (+ih)

∫
d4k

(2π)4
iTr [PL(6k +m)]

k2 −m2

= (+imh)

∫
d4k

(2π)4
i

k2 −m2

The sum of the two tadpole graphs is exactly zero !

If SUSY is exact, the vanishing of tadpoles holds to all orders
of perturbation theory.
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– Non-renormalization of Self-energy and
Vertex interactions

φφ–selfenergy at zero external momentum: Πφφ(p
2 = 0)

φ, k

φ, k

+

φ, k

+

Ψ, k

Ψ, k

Πφφ(0) =

∫
d4k

(2π)4

{
(−imh)2i2
(k2 −m2)2

+
(−ih2) i

k2 −m2

+ (−1)
1

2
(−ih)2i2 Tr [PL(6k +m)PR(6k +m)]

(k2 −m2)2

}

= h2

∫
d4k

(2π)4

{
m2

(k2 −m2)2
+

1

k2 −m2

− k2

(k2 −m2)2

}
= 0

This result holds to all orders of perturbation theory.

Remark: For p2 6= 0, Πφφ(p
2) is non-zero and ultra-violet

(UV) divergent, due to the wave-function renormalization
of φ.
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Exercise: The proper one-loop vertex interaction φφφ

1. Draw all Feynman graphs that contribute to the irreducible
φφφ vertex Γφφφ.

2. Identify the proper spin-statistics and combinatorial factors
for the individual contributing graphs.

3. By choosing an appropriate routing for the loop
momentum, show that the one-particle irreducible three-
point correlation function Γφφφ vanishes identically in the
limit of zero-momentum for the external φ particles.

4. Which other one-particle irreducible higher-point
correlation functions do you expect to vanish in the zero-
momentum limit for the external particles?
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– Soft-SUSY Breaking

SUSY is not an exact symmetry of nature. For example,
no scalar electron was ever observed or produced at colliders
with a mass equal to that of the ordinary electron.

However, while breaking SUSY, we should not destroy all
good quantum-mechanical properties as described by the
non-renormalization theorems. Therefore, we should break
SUSY softly, namely by adding to the Lagrangian terms of
dimension less than 4, such as

Lsoft = m2
S φ

†φ +

(
Bmm

2
φφ +

hAh
6

φφφ + h.c.

)

The remarkable feature of Lsoft is that it does guarantee
the absence of quadratic UV divergences at all orders of
perturbation theory.

How is Lsoft generated?

Several different mechanisms for generating SUSY breaking
within string and supergravity models: [e.g., see textbook by
S. Weinberg]

(i) Gravity-mediated SUSY breaking
(ii) Gauge-mediated SUSY breaking
(iii) Anomaly-mediated SUSY breaking
(iv) ...
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Problem:

Consider the WZ model, in which SUSY is softly broken by
the mass operator −m2

S φ
†φ.

1. What is the squared mass m2
φ of the φ-particle in this soft-

SUSY broken WZ model? How much does mφ now differ
from the corresponding mass of the Majorana field Ψ?

2. Show that the φφ self-energy Πφφ(0) in this extended WZ
model not only does not vanish, but it is even infinite.
(Hint: To evaluate the loop integral, you may use the

substitution:
∫ +∞
−∞ d4k → π2

∫ 0

−∞ k2dk2.)

3. Absence of UV quadratic divergences:
Consider an UV cut-off regulator Λ2, i.e. replace the
integration limit −∞ with −Λ2 in the above loop integral,
to show that Πφφ(0) can only diverge as lnΛ2 as Λ2 → ∞,
while all quadratic UV terms ∝ Λ2 cancel out.

4. Technical solution to the gauge hierarchy problem:
If Λ = MPlanck = 1016 TeV represents a natural UV cut-
off scale, calculate approximatively the maximally allowed
value for mS by requiring that |Πφφ(0)| is smaller than
m2. For your calculations, you may assume m = mtop

and h = 1.
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4. Superfield Formulation of SUSY

Superfield formulation of SUSY is based on the superspace:

xµ , θα , θ̄α̇,

where θα , θ̄α̇ are x-independent 2-component spinors.

– Generators of the Super-Poincaré Group

The generators super-Poincaré algebra are Pµ , Jµν ∈ L0

and the spinors Qα , Q̄α̇ ∈ L1. They satisfy the following
Z2-graded Lie algebra:

(i) [Pµ , Pν] = 0 ,

(ii) [Pµ, Jρσ] = i (ηµρPσ − ηµσPρ) ,

(iii) [Jµν, Jρσ] = −i (ηµρJνσ − ηµσJνρ + ηνσJµρ − ηνρJµσ) ,

(iv) {Qα, Qβ} = {Q̄α̇, Q̄β̇} = 0 ,

(v) {Qα, Q̄β̇} = 2(σ
µ
)αβ̇Pµ ,

(vi) [Qα, Pµ] = 0 ,

(vii) [Jµν , Qα] = −i(σµν) β
α Qβ ,

(viii) [Jµν , Q̄α̇] = −i(σ̄µν) β̇
α̇ Q̄β̇ ,

where (σµν) βα = 1
4 [ (σµ)αα̇(σ̄

ν)α̇β − (σν)αα̇(σ̄
µ)α̇β ] and

(σ̄µν)α̇
β̇

= 1
4 [ (σ̄µ)α̇β(σν)ββ̇ − (σ̄ν)α̇β(σµ)ββ̇ ].
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Remarks:

• The commutation relations (i)–(iii) guarantee the Lorentz
invariance (covariance) of the QFT.

• The anti-commutation relations (iv) and (v) have to
do with the structure of the SUSY vacuum and their
consequences will be discussed in Chapter 6.

• The commutation relations (vi)–(viii) imply that all
members of a supermultiplet have the same mass and
the number of fermionic and bosonic dof are equal. The
latter will be made explicit in our construction of chiral
and vector superfields.

· · ·

Exercises:

(i) Verify that the differential operators:

Pµ = i∂µ , Jµν = xµPν − xνPµ + iθα(σµν)
β
α ∂β − iθ̄α̇(σ̄µν)

α̇
β̇∂̄

β̇ ,

Qα = ∂α + i(σµ)αβ̇ θ̄
β̇ ∂µ , Q̄α̇ = ∂̄α̇ + iθβ (σµ)βα̇ ∂µ ,

satisfy the super-Poincaré algebra, where ∂α ≡ ∂
∂θα, ∂̄α̇ ≡ ∂

∂θ̄α̇
,

∂α ≡ ∂
∂θα

= −εαβ ∂β and ∂̄α̇ ≡ ∂
∂θ̄α̇

= −εα̇β̇ ∂β̇ .

(ii) Prove the Z2-graded Jacobi identity:

[Jµν , {Qα , Q̄β̇}] + {Qα , [Qβ̇ , Jµν]} + {Q̄β̇ , [Qα , Jµν]} = 0 .
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– Chiral Superfields

Complex scalar field in superspace (≡ scalar superfield):

Φ(x, θ, θ̄) = φ(x) + θξ(x) + θ̄χ̄(x) + θ2f(x)

+ θ̄2g(x) + θσµθ̄ Vµ(x) + θ2θ̄λ̄(x)

+ θ̄2θη(x) + θ2θ̄2d(x) .

Note that Φ(x, θ, θ̄) contains 4 complex scalars (8 dof),
4 complex Weyl spinors (16 dof) and one Lorentz vector
(4 dof), implying that the bosonic and fermionic dofs are not
equal.

Hence, without further constraints, Φ(x, θ, θ̄) cannot be an
irreducible representation (irrep) of SUSY.

· · ·

Exercise: Prove the following identities:

(i) θα θβ =
1

2
εαβ θ

2 ,

(ii) θ̄α̇ θ̄β̇ = −1

2
εα̇β̇ θ̄

2 ,

(iii) (θσµθ̄) (θσνθ̄) =
1

2
ηµν θ2 θ̄2 .
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Guesswork:

To eliminate the many ‘unbalanced’ components in Φ(x, θ, θ̄),
we first try to impose the constraint:

∂̄α̇Φ(x, θ, θ̄) = 0 .

The above leaves intact the two scalars, φ(x) and f(x)
(4 bosonic dof), and the Weyl spinor ξ(x) (4 fermionic dof).
It looks a perfect guess!

But, this constraint is not maintained by a general super-
Poincaré trans:

∂̄α̇ [ei(a
µPµ + ωµνJµν + ζQ+ ζ̄Q̄) Φ(x, θ, θ̄)] 6= 0 .

Demanding that the validity of the constraint ∂̄α̇Φ = 0 holds
for an infinitesimal SUSY trans is equivalent to requiring that

[ ∂̄α̇, a
µPµ + ωµνJµν + ζQ + ζ̄Q̄ ] ∝ 0 or ∂̄α̇ , (?)

which is not satisfied, because

[ ∂̄α̇, ζQ ] = − i(ζσµ)α̇ ∂µ 6∝ ∂̄α̇ .
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A better choice would be to have a sort of “covariant
derivative” D̄α̇ with respect to (w.r.t.) supertranslations:

[ D̄α̇, ζQ ] = [ D̄α̇, ζ̄Q̄ ] = 0 ,

and likewise for ∂α → Dα.

With little a bit of effort, we find that

Dα = ∂α − i(σµ)αβ̇ θ̄
β̇ ∂µ , D̄α̇ = ∂̄α̇ − iθβ (σµ)βα̇ ∂µ

have the desired properties.

· · ·

Exercises:

(i) Show that

{Dα, Qβ} = {Dα, Q̄β̇} = {D̄α̇, Qβ} = {D̄α̇, Q̄β̇} = 0 .

(ii) Show that Dα and D̄α̇ do satisfy the general (?) condition
on page 33.
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Chiral Superfield. This is a scalar superfield that satisfies
the constraint:

D̄α̇Φ(x, θ, θ̄) = 0 (chiral)

or DαΦ(x, θ, θ̄) = 0 (anti-chiral).

For example, any superfield Φ(y, θ), with

yµ = xµ − iθσµθ̄ ,

but otherwise independent of θ̄, satisfies D̄α̇Φ = 0.

Field expansion of Φ(y, θ) for the case D̄α̇Φ = 0:

Φ(y, θ) = φ(y) +
√

2 θξ(y) + θ2F (y) ,

where the inserted
√

2 is just a convention.

Φ(y, θ) contains the (complex) scalar φ (2 bosonic dofs), the
(complex) auxiliary scalar F (2 bosonic dofs) and the complex
Weyl spinor ξ (4 dofs):

2 + 2 bosonic dofs = 4 fermionic dofs,

as it should be for an off-shell chiral supermultiplet.

Exercise: Verify that D̄α̇Φ(y, θ) = 0 , by proving first that
D̄α̇ θβ = 0 and D̄α̇ y

µ = 0 .
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Field components of the chiral superfield:

φ(x) = Φ(y, θ)|θ,θ̄=0 ,

ξα(x) =
1√
2
DαΦ(y, θ)|θ,θ̄=0 ,

F (x) =
1

4
D2 Φ(y, θ)|θ,θ̄=0 .

With the help of the relations:

Qα |θ,θ̄=0 = Dα + 2i(σµθ̄)α ∂µ |θ,θ̄=0 ,

Q̄α̇ |θ,θ̄=0 = D̄α̇ + 2i(θσµ)α̇ ∂µ |θ,θ̄=0 ,

we can now find the SUSY trans of the component fields.

For example, the scalar component φ(x) transforms as

δζφ = (ζQ + ζ̄Q̄)Φ |θ,θ̄=0 = (ζD + ζ̄D̄︸︷︷︸
=0; D̄Φ=0

) Φ |θ,θ̄=0

=
√

2 ζξ .

This is identical to the SUSY trans we found on page 17
using component fields only, after replacing

√
2 ζ → θ.
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Exercises:

(i) Prove the following identities:

∂α θ
2 = 2θα , ∂̄α̇ θ̄

2 = − 2 θ̄α̇ ,
(∂α ∂α) θ

2 = 4 , (∂α̇ ∂
α̇) θ̄2 = 4 .

(ii) Use the field-component projections on page 36 and the
relations of (i) above to show that

δζξα =
√

2 ζαF − i
√

2 (σµζ̄)α ∂µφ ,

δζF = i
√

2 ∂µ(ξσ
µζ̄) = −i

√
2 ∂µ(ζ̄σ̄

µξ) .

Observe that with
√

2 ζ → θ, the SUSY trans of the
component fields become identical to those given in the
exercise on page 20.

Remark: The above exercise tells us that the F component
of a chiral superfield transforms into a total derivative under
a SUSY trans.
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– The WZ Model in terms of Superfields

An action S =
∫
d4xL is invariant under a global (or local)

trans if the Lagrangian L remains invariant up to a total
derivative, e.g.

L SUSY→ L′ = L + ∂µZ
µ ,

for an arbitrary function Zµ that vanishes at x→ ±∞.

Since the F -component of a chiral superfield Φ(y, θ)
transforms into a total derivative under SUSY, it can be
used to build up SUSY invariant actions:

∫
d4x Φ(y, θ) |θ2 =

1

4

∫
d4x D2Φ(y, θ) |θ,θ̄=0 .

However, this term by itself gives only a linear term in F that
on-shell vanishes.

We now notice that the product of two or more chiral
superfields is also chiral:

D̄α̇Φ2 = (D̄α̇Φ) Φ + Φ (D̄α̇Φ) = 0 ,

because D̄α̇ is a linear differential operator and D̄α̇Φ = 0.

Exercise: Show that if Φ(y, θ) is a chiral superfield obeying
D̄α̇Φ = 0, then Φ†(y†, θ̄) is anti-chiral: DαΦ† = 0.
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A more general form of a SUSY invariant action can be
constructed by means of a chiral polynomial W (Φ) in Φ:

W (Φ) = tFΦ +
1

2
m2Φ2 +

1

6
hΦ3 + · · ·

W (Φ) is also called superpotential and is related to the one
discussed on page 21.

With the help of the chiral superpotentialW and its hermitean
conjugate antichiral one W †, we can write down the SUSY-
invariant action

SW =

∫
d4x (W |θ2 + W † |θ̄2 )

=
1

4

∫
d4x (D2W + D̄2W † ) |θ,θ̄=0 .

However, SW does not contain kinetic terms.

· · ·

Exercise: Expand the chiral superfield Φ(y, θ) in terms of xµ,
θ and θ̄:

Φ(y, θ) = φ(x) − i(θσµθ̄) ∂µφ(x) − 1

4
θ2θ̄2 ∂µ∂

µφ(x)

+
√

2 θξ +
i√
2
θ2 (∂µξ σ

µθ̄) + θ2F (x) .
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Kinetic terms for chiral superfields:

It can be shown that, up to a total derivative, the θ2θ̄2–
component d(x) of an unconstrained superfield Φ(x, θ, θ̄),
remains invariant under a SUSY trans.

This implies that the θ2θ̄2–component of the manifestly real
superfield Φ†Φ is SUSY invariant.

Hence, the SUSY-invariant kinetic action is

Skin =

∫
d4xΦ†Φ |θ2θ̄2 =

1

16

∫
d4xD2D̄2 Φ†Φ |θ,θ̄=0 ,

because D2D̄2θ̄2θ2 = 16.
· · ·

Exercises:

(i) Show that up to a total derivative, the θ2θ̄2–component
d(x) of a general Φ is invariant under SUSY trans:

δζd =
i

2
∂µ ( ξσµζ̄ + ζσµλ̄ ) ,

where ξ and λ̄ are Weyl spinors defined on page 32.

(ii) Calculate the θ2θ̄2–component of Φ†Φ to find that up to
total derivatives,

Φ†Φ |θ2θ̄2 = (∂µφ†)(∂µφ) + ξ̄ iσ̄µ(∂µξ) + F †F = Lkin ,

where Lkin is WZ kinetic Lagrangian given on page 20.
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Summary:

The total SUSY-invariant action Stot for one chiral superfield
Φ(y, θ) is

Stot = Skin + SW

=

∫
d4x (Φ†Φ |θ2θ̄2 + W |θ2 + W † |θ̄2 )

=

∫
d4x (

1

16
D2D̄2 Φ†Φ +

1

4
D2W +

1

4
D̄2W † ) |θ,θ̄=0,

with W (Φ) = tFΦ + 1
2m

2Φ2 + 1
6 hΦ3 + · · ·

· · ·

Exercises:

(i) Verify that

W (Φ) |θ2 = WφF − 1

2
Wφφ ξξ ,

where Wφ = δW (Φ)
δΦ |Φ=φ and Wφφ = δ2W (Φ)

δΦδΦ |Φ=φ.
Convince yourself that the above result is consistent with
the one presented for the WZ model on page 21.

(ii) Write down the renormalizable SUSY-invariant action of
a model with two complex chiral multiplets Φ1 and Φ2,
and calculate the real potential, after integrating out the
corresponding auxiliary fields.
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– Integration in Superspace

In addition to differentiation (e.g. ∂βθ
α = δαβ ; {∂α, ∂β} = 0),

we may introduce the concept of integration over Grassman
variables.

For one Grassman variable θ, integration over θ is defined as

∫
dθ θ = 1 ,

∫
dθ 1 = 0 .

For the Grassman-valued function f(x, θ) = f0(x) + f1(x)θ,
integrating over θ yields

∫
dθ f(x, θ) = f1(x) =

∂f(x, θ)

∂θ
.

∴ Integration is equivalent to Differentiation in superspace.

The superspace δ-function is defined by

δ(θ) = θ ,

which satisfies the known property:

∫
dθ f(x, θ) δ(θ) = f(x, 0) = f0(x) .

Remark: The integral
∫
dθ is invariant under constant shifts

of θ:
∫
dθ f(x, θ + ζ) =

∫
dθ f(x, θ).
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The above concepts of integration may be extended to the
superspace of N = 1 SUSY (xµ, θα, θ̄α̇), by using the defining
properties:

∫
d2θ θ2 =

∫
d2θ̄ θ̄2 =

∫
d4θ θ2 θ̄2 = 1 ,

with d4θ ≡ d2θ d2θ̄.

· · ·

Exercises:

(i) Check that the following definitions of the integration
measures are consistent with the defining properties stated
above:

d2θ ≡ − 1

4
εαβ dθ

α dθβ , d2θ̄ ≡ − 1

4
εα̇β̇ dθ̄α̇ dθ̄β̇ .

(ii) Show that δ(θ) = θ2 and δ(θ̄) = θ̄2 are the properly
defined δ-functions in (θα, θ̄α̇)–space.

(iii) Show that the total SUSY-invariant action can be written
down as:

Stot =

∫
d4x d4θ [ Φ†Φ + W (Φ) δ(θ̄) + W †(Φ†) δ(θ) ] .
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5. Supersymmetric Gauge Theories (SGTs)

– Vector Superfields

These are real superfields: V (x, θ, θ̄) = V †(x, θ, θ̄), where

V (x, θ, θ̄) = C + θχ + θ̄χ̄ + θσµθ̄Aµ

+
1

2
θ2 (M + iN) +

1

2
θ̄2 (M − iN)

+ θ̄2 θ (λ− i

2
σµ∂µχ̄ ) + θ2 θ̄ ( λ̄− i

2
σ̄µ∂µχ )

+
1

2
θ2 θ̄2 (D − 1

2
∂µ∂

µC ) .

8 bosonic dofs: C,D,M,N, Vµ;
8 fermionic dofs: χ, λ.
But, not all of them are physical dofs, and some of them can
be ‘gauged away’.

Local superfield redefinition (also called SUSY-guage trans):

V → V ′ = V + i (Λ − Λ†) (Abelian case),

where the gauge parameter Λ(y, θ) (Λ†(y†, θ̄)) is a chiral
(anti-chiral) superfield: D̄α̇Λ = 0 (DαΛ

† = 0).

Exercise: Starting from the general expression for V , perform
a SUSY-gauge trans to show that the fields χ, C, M, N and
one-component of the gauge field Aµ can be ‘gauged away’.
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The Wess–Zumino Gauge

The choice of SUSY-gauge fixing that eliminates χ, C, M, N
and one-component of the gauge field Aµ is called the Wess–
Zumino (WZ) gauge. In the WZ gauge, vector superfield V
reads:

VWZ(x, θ, θ̄) = θσµθ̄Aµ + θ̄2 θλ + θ2 θ̄λ̄ +
1

2
θ2 θ̄2D .

The WZ gauge breaks SUSY explicitly, but still allows the
usual gauge trans (see exercise below).

Off-shell, VWZ consists of the following field components:
the gauge-fixed vector field Aµ (3 dofs, [Aµ] = 1),
the auxiliary field D (1 dof, [D] = 2),
and the Weyl spinor λ (4 dofs, [λ] = 3/2).

On-shell, Aµ and λ have 2 dofs each.

Exercises:

(i) Verify that the special SUSY-gauge trans (Abelian case):
VWZ → V ′

WZ = VWZ + i
2[Λ(y) − Λ(y†)] , reproduces the

usual gauge trans: Aµ(x) → A′
µ(x) = Aµ(x) + ∂µΛ(x) ,

where yµ = xµ − i(θσµθ̄) and Λ(x) = Λ∗(x).

(ii) Calculate the higher powers of VWZ to obtain that

V 2
WZ =

1

2
θ2θ̄2AµA

µ , V n≥3
WZ = 0 .
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Non-Abelian SUSY gauge transformations:

In non-Abelian theories, the vector superfield is defined in the
adjoint rep:

V (x, θ, θ̄) = V a(x, θ, θ̄) T a ,

where T a are the generators of the gauge group, obeying the
commutation relations (or the Lie algebra):

[T a , T b ] = i fabc T c ,

where fabc are the so-called structure constants of the group.

The generators in the fundamental rep are normalized, such
that Tr (T aT b) = 1

2δ
ab.

Examples: T aSU(2) = 1
2 σ

a (a = 1, 2, 3) and T aSU(3) = 1
2 λ

a

(a = 1, . . . , 8), where σa and λa are the Pauli and Gell-Mann
matrices, respectively. (Question: How many generators does
an SU(N) group have?).

The important object for constructing actions is e2gV , where
g is the gauge coupling of the gauge group, e.g. SU(N).

A general non-Abelian SUSY gauge-trans is defined by

e2gV → e2gV
′

= e−2igΛ†
e2gV e2igΛ ,

where Λ(y, θ) = Λa(y, θ)T a is a chiral superfield, D̄α̇Λ
a = 0.
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– Gauge sector of SGTs

The proper supersymmetric field strengths are

Wα = W a
α T

a = − 1

8g
D̄2 ( e−2gV Dα e

2gV ) ,

W̄α̇ = W̄ a
α̇ T

a =
1

8g
D̄2 ( e2gV Dα e

−2gV ) .

These objects are chiral, i.e. D̄α̇Wα = Dα W̄α̇ = 0, because
D3 = D̄3 = 0.

Most importantly, Wα and W̄α̇ transform gauge-covariantly:

Wα → e−2igΛWα e
2igΛ , W̄α̇ → e−2igΛ†

W̄α̇ e
2igΛ†

,

Proof:

Using the chiral properties of Λ and Λ†, D̄α̇Λ = 0 and
DαΛ

† = 0, we have

Wα → − 1

8g
D̄2 [ e−2igΛ

︸ ︷︷ ︸
=e−2igΛ[ D̄2

e−2gV e2igΛ
†
Dα︸ ︷︷ ︸

=Dα e2igΛ
†

(e−2igΛ†
e2gV e2igΛ ) ]

= − 1

8g
e−2igΛ D̄2 [ e−2gV Dα(e

2gV e2igΛ ) ]

= e−2igΛWα e
2igΛ − 1

8g
e−2igΛ D̄2Dα︸ ︷︷ ︸

D̄α̇ {D̄α̇,Dα}

e2igΛ .
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We now use the fact that {D̄α̇, Dα} = − 2(σµ)αα̇Pµ and
[ D̄α̇, Pµ ] = 0:

Wα → e−2igΛWα e
2igΛ − 1

8g
e−2igΛ D̄α̇ {D̄α̇, Dα}e2igΛ

= e−2igΛWα e
2igΛ +

1

8g
e−2igΛ (σµ) α̇α Pµ D̄α̇ e

2igΛ
︸ ︷︷ ︸

= 0

,

q.e.d.

· · ·

Exercises:

(i) Verify that {D̄α̇, Dα} = − 2(σµ)αα̇ Pµ.

(ii) Calculate in the WZ gauge the spinor chiral superfield Wα

and W̄ α̇ to obtain that

Wα(y) = λα(y) + θαD(y) − i (σµνθ)αFµν(y)

+ i θ2 (σµDµλ̄(y))α ,

W̄ α̇(y†) = λ̄α̇(y†) + θ̄α̇D(y†) + i (σ̄µν θ̄)α̇Fµν(y
†)

+ i θ̄2 (σ̄µDµλ(y†))α̇ ,

where

Dµλ = ∂µλ + i g [Aµ , λ] , Dµλ̄ = ∂µλ̄ + i g [Aµ , λ̄] ,

Fµν = ∂µAν − ∂νAµ + i g [Aµ , Aν] .
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Supersymmetric gauge kinetic action:

The chiral and anti-chiral nature of the Field strengths: Wα

and W̄α̇, their spinor character and renormalizability leads to
the following gauge-invariant action:

Sgauge =

∫
d4x

1

2
[ Tr (WαWα)|θ2 + Tr (W̄α̇W̄

α̇)|θ̄2 ]

=

∫
d4x d4θ

1

2
[Tr (WαWα) δ(θ̄) + Tr (W̄α̇W̄

α̇) δ(θ) ] .

For the U(1) case, replace: 1
2Tr (WαWα) → 1

4W
αWα .

· · ·

Exercises:

(i) Calculate Sgauge to find that

Sgauge = −1

4
F aµνF

aµν + λ̄aiσ̄µDab
µ λ

b +
1

2
DaDa ,

where
F aµν = ∂µA

a
ν − ∂νA

a
µ − gfabcAbµA

c
ν

is the SU(N) strength field tensor, and

Dab
µ = ∂µδ

ab + gfabcAcµ

is the covariant derivative in the adjoint rep. of SU(N).
In the U(1) case, fabc = 0 and a, b = 1.
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(ii) Show that Lgauge is invariant under the gauge trans:

δΛA
a
µ = ∂µΛ

a + gfabcAcµΛ
b ,

δΛλ
a = gfabcλbΛc , δΛD

a = gfabcDbΛc ,

where Λa(x) are infinitesimal gauge parameters.

(iii) Show that Lgauge is invariant under the SUSY trans:

δζA
a
µ = − ζ̄σ̄µλ

a − λ̄aσ̄µζ ,

δζλ
a
α = − i (σµνζ)αF

a
µν + ζαD

a ,

δζλ̄
a
α̇ = − i (ζ̄σµν)α̇F

a
µν + ζ̄α̇D

a ,

δζD
a = − i

(
ζ̄σ̄µDab

µ λ
b − Dab

µ λ̄
bσ̄µζ

)
,

where ζα and ζ̄α̇ are infinitesimal x-independent
Grassmann parameters.
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– Gauge Interactions to Matter in SGTs

SUSY gauge trans of chiral and antichiral superfields:

Φ(y, θ) → Φ′(y, θ) = e−2igΛ(y,θ) Φ(y, θ) ,

Φ†(y†, θ̄) → Φ′†(y†, θ̄) = Φ†(y†, θ̄) e2igΛ
†(y†,θ̄) ,

with D̄α̇Λ(y, θ) = 0.

Hence, the Φ-kinetic term is not gauge invariant:

Tr (Φ†Φ) → Tr (Φ†e2igΛ
†
e−2igΛ Φ) 6= Tr (Φ†Φ) ,

where the trace is taken over the group space in the
fundamental rep of Φ: Φ = (Φ1,Φ2, . . . ,ΦN) for SU(N).

Including the SUSY gauge connection, e2gV , we can write
the following gauge invariant term:

Tr (Φ† e2gV Φ) → Tr (Φ†e2igΛ
†
e−2igΛ†

e2gV e2igΛ e−2igΛ Φ)

= Tr (Φ† e2gV Φ) .

The corresponding SUSY gauge invariant action is

SΦ
kin =

∫
d4xTr (Φ† e2gV Φ)|θ2θ̄2 =

∫
d4x d4θTr (Φ† e2gV Φ) .
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The Φ-kinetic term in the WZ gauge:

Straightforward calculation of LΦ
kin = Tr (Φ† e2gV Φ)|θ2θ̄2

in the WZ gauge leads to a result that is equivalent to
performing the following two additions in the ungauged WZ
Lagrangian Lkin presented on page 40.

The two additions:

(i) Couple V̂ a ⊃ (Aaµ , λ
a, Da) to Φ̂ ⊃ (φ , ξ , F ) in a

gauge- and SUSY- invariant way:

LbV bΦint = g(φ†T aφ)Da −
√

2 g [ (φ†T aξ)λa + λ̄a(ξ̄T aφ) ] .

(ii) Change ordinary derivatives ∂µ to covariant derivatives:

∂µ → Dµ ≡ ∂µ + igAaµT
a ,

in the Lagrangian with the scalar multiplets, i.e. make the
substitutions in the WZ Lagrangian:

∂µξ → Dµξ = ∂µξ + igAaµT
aξ

∂µφ → Dµφ = ∂µφ + igAaµT
aφ

∂µφ
† → (Dµφ)† = ∂µφ

† − igAaµφ
†T a
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The general SGT Lagrangian with matter fields:

SSGT =

∫
d4x d4θ [

1

2
Tr (WαWα) δ(θ̄) +

1

2
Tr (W̄α̇W̄

α̇) δ(θ)

+ Tr (Φ† e2gV Φ) + W (Φ) δ(θ̄) + W †(Φ†) δ(θ) ] ,

where W (Φ) is the superpotential allowed by the gauge
symmetries of the theory.

In summary, after integrating over the θ-space, we get

LSGT = −1

4
F aµνF

aµν + λ̄aiσ̄µDab
µ λ

b +
1

2
DaDa

+ (Dµφ)†(Dµφ) + ξ̄ iσ̄µ(Dµξ) + F †F

+ g(φ†T aφ)Da −
√

2 g [ (φ†T aξ)λa + λ̄a(ξ̄T aφ) ]

− 1

2
Wφφ ξξ + WφF − 1

2
W †
φφξ̄ξ̄ + F †W †

φ .

The auxiliary fields F and Da in LSGT can be eliminated by
using the equations of motion:

F = −W †
φ , Da = −g(φ†T aφ) .

The complete real potential V of a SGT then becomes

V = F †F +
1

2
DaDa = WφW

†
φ +

1

2
g2(φ†T aφ)2 ≥ 0

Note that the potential V is determined by other interactions
in the theory! (More discussion on V in Chapter 6).
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Exercises:

(i) Show that LSGT is invariant under the gauge covariant
SUSY trans:

δζA
a
µ = − ζ̄σ̄µλ

a − λ̄aσ̄µζ ,

δζλ
a
α = − i (σµνζ)αF

a
µν + ζαD

a ,

δζλ̄
a
α̇ = − i (ζ̄σµν)α̇F

a
µν + ζ̄α̇D

a ,

δζD
a = − i

(
ζ̄σ̄µDab

µ λ
b − Dab

µ λ̄
bσ̄µζ

)
,

δζφ =
√

2 ζξ ,

δζξα = −i(σµζ̄)αDµφ +
√

2 ζαF ,

δζξ̄α̇ = i(ζσµ)α̇ (Dµφ)† +
√

2 ζ̄α̇F
† ,

δζF = −i
√

2 ζ̄σ̄µ(Dµξ) + 2g (T aφ)ζ̄λ̄a .

(ii) Show that the above SUSY algebra closes off-shell for
gauge covariant objects:

[ δζ1 , δζ2 ] X = −2i (ζ1σ
µζ̄2 − ζ2σ

µζ̄1) Dµ ·X ,

where X = φ, ξ, F, F aµν, λ
a, Da and arbitrary covariant

derivatives of X. The action of Dµ on X, Dµ · X,
depends on the rep of X.
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– Feynman rules

All Feynman rules for SGT can directly be read off from
LSGT.

Aaµ, p
: iδab

p2 + iε

[
−ηµν + (1 − ξ)

pµpν
p2

]

λa, p
: iδab

6p + iε

Aaµ
λb

λc
: −gfabc γµ

φ

φ

φ

φ

: ig2 T aij T
a
kl + · · ·

Aaµ
ξ

ξ

: ig T a γµPL

φ λa

ξ

: − i
√

2 g T a
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6. Spontaneous Breaking Mechanisms of SUSY

– Spontaneous SUSY Breaking

If the vacuum |0〉 respects SUSY, it fullfils the conditions:

Qα|0〉 = Q̄α̇|0〉 = 0 .

In global SUSY, the Hamiltonian is related to the generators
Qα and Q̄α̇:

H = P 0 =
1

4

(
Q̄1̇Q1 + Q1Q̄1̇ + Q̄2̇Q2 + Q2Q̄2̇

)
.

The vacuum energy can be formally computed as

〈0|H|0〉 =
1

4

“
||Q1|0〉||2 + ||Q̄1̇|0〉||

2
+ ||Q2|0〉||2 + ||Q̄2̇|0〉||

2
”
.

From this, we deduce that 〈0|H|0〉 ≥ 0.

If SUSY is exact, then 〈0|H|0〉 = 0, implying a vanishing
cosmological constant!

But, nature is not fully supersymmetric, and SUSY must
be broken either spontaneously or explicitly.

∴ If 〈0|H|0〉 > 0, then SUSY breaks spontaneously.

Exercise: Starting from the anti-commutation relation (v) on
page 30, prove the above relation between H and the SUSY
generators Qα and Q̄α̇.
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– O’Raifeartaigh Models

In Section 4, we have seen that the real scalar potential is

V = F †
i Fi +

1

2
DaDa = WφiW

†
φi

+
1

2
g2(φ†iT

aφi)
2 ≥ 0 .

Since 〈0|H|0〉 = 〈0|V |0〉 in the absence of non-perturbative
effects, then 〈0|V |0〉 > 0 will signify spontaneous breaking of
SUSY.

φ

V

O

(a)

The vacuum preserves SUSY

φ

V

O

(b)

The vacuum breaks SUSY spontaneously

If there is no solution Fi = 0 and Da = 0 for any values of
the scalar fields φi, then SUSY is broken spontaneously.

Models that break SUSY through Fi 6= 0 are called
O’Raifeartaigh models.

D-breaking of SUSY can be achieved only if the theory
contains U(1) factors by means of the Fayet-Iliopoulos term.
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Minimal O’Raifeartaigh Model

Such a model requires at least 3 chiral superfields, Φ1, Φ2

and Φ3, and a superpotential of the form:

W (Φ1,Φ2,Φ3) = −µ2 Φ1 + mΦ2Φ3 +
1

2
λΦ1Φ

2
3 .

This model has a new type of U(1)R symmetry:

Φ1 → eiϕΦ1 , Φ2 → eiϕΦ2 , Φ3 → Φ3 ; W → eiϕW .

The overall phase of W can be absorbed into δ(θ̄) that
always multiplies W in the action (see page 53). This can be
achieved by redefining θα → ei

ϕ
2 θα and θ̄α̇ → e−i

ϕ
2 θ̄α̇.

A symmetry under which the superpotential remains invariant
up to an overall phase is called R-symmetry.

Furthermore, the model has the following discrete symmetry:

Φ1 → Φ1 , Φ2 → −Φ2 , Φ3 → −Φ3 .

The real scalar potential V of the model is given by

V = |F1|2 + |F2|2 + |F3|2 ,

where

F1 = µ2 − 1

2
λφ∗2

3 , F2 = −mφ∗
3 , F3 = −mφ∗

2 − λφ∗
1 φ

∗
3 .
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Problem:

Consider the minimal O’Raifeartaigh model with 3 chiral
superfields mentioned above.

(i) Verify the expressions for the auxiliary fields F1,2,3 and
show that all the conditions F1,2,3 = 0 cannot be
simultaneously met.

(ii) Assume that m2 > λµ2, and show that the absolute
minimum of the potential is at φ2 = φ3 = 0, with φ1

being undetermined, i.e. φ1 constitutes a ‘flat direction’
in the scalar potential. Is the R-symmetry broken in this
case?

(iii) Find that for m2 > λµ2, the model predicts at the tree
level 6 real scalars with squared masses:
0 , 0 , m2 , m2 + λµ2 , m2 − λµ2 ,
and 3 Weyl fermions with masses: 0 , m , m.

[Hint: Consider appropriately the ungauged version of the
Lagrangian LSGT given on page 53.]

(iv) What is the physical meaning of the massless Weyl
fermion?

(v)? Calculate the mass spectrum of the model for the case
m2 < λµ2. Does the ground state preserve the R-
symmetry?
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– The Fayet–Iliopoulos Term

The θ2θ̄2-compenent D′(x) of a U(1) vector superfield
V ′(x, θ, θ̄) is both invariant under SUSY and gauge trans.
(Question: Why?)

This allows us to add to the action a term linear in V ′, the
so-called Fayet–Iliopoulos (FI) term:

SFI =

∫
d4x κV ′|θ2θ̄2 =

∫
d4x d4θ κV ′ .

The resulting scalar potential is

VFI = − 1

2
D′2 − κD′ − D′g′

∑

i

yi φ
∗
iφi ,

where yi are the U(1) charges of scalar fields. For instance,
for the SM, these will be the U(1)Y hypercharges.

Using the equation of motions for D′, we find that

D′ = −κ −
∑

i

yi φ
∗
iφi ,

and hence

VFI =
1

2
D′2 =

1

2

(
κ +

∑

i

yi φ
∗
iφi

)2

.
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Remark: The FI term does not break by itself SUSY, since
one can have D′ = 0, for specific values of the scalar fields.
However, the synergy of D′ with other F terms of the theory
can break SUSY spontaneously.

· · ·

Problem:

Consider a SQED model with two chiral superfields of opposite
charge that includes a FI term:

LSQED = (Φ†
1 e

2eV Φ1 + Φ†
2 e

−2eV Φ2 + κV )|θ2θ̄2
+m (Φ1Φ2|θ2 + Φ†

1Φ
†
2|θ̄2 ) .

(i) Calculate the total real potential V and show that SUSY
has to be broken spontaneously.

(ii) Consider the two cases: (a) m2 > eκ and (b) m2 < eκ,
and show that only SUSY is broken in (a), whereas in
case (b) both SUSY and gauge symmetry are broken
spontaneously.

(ii) Calculate the bosonic and fermionic mass spectrum of the
model for the above two cases (a) and (b).

[Hint: For a discussion of the above problem, see the textbook
by Wess and Bagger, pages 52–56.]
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7. Minimal Supersymmetric Standard Model

– Model–Building of the MSSM

The MSSM is based on the SU(3)c⊗SU(2)L⊗U(1)Y gauge
group, with the following field content:

Superfields Bosons Fermions SU(3)c⊗SU(2)L⊗U(1)Y

GAUGE
bG Gaµ

1
2λ
a g̃a (8, 1, 0)

cW Wi
µ

1
2σi

fWi (1, 3, 0)
bB Bµ eB (1, 1, 0)

MATTER
bL eLT = (ν̃l, l̃)L LT = (νl, l)L (1, 2,−1)
bE eE = l̃∗R (eR)C = (eC)L (1, 1, 2)

bQ eQT = (ũ, d̃)L QT = (u, d)L (3, 2, 13)

bU eU = ũ∗R (uR)C = (uC)L (3, 1,−4
3)

bD eD = d̃∗R (dR)C = (dC)L (3, 1, 23)

bH1
eΦT1 = (φ0∗

1 ,−φ−1 ) (ψ̄0
H1

, ψ−
H1

) (1, 2,−1)

bH2 ΦT2 = (φ+
2 , φ

0
2) (ψ+

H2
, ψ0
H2

) (1, 2, 1)

Note that from now on superfields will be denoted by a carret
for notational convenience.

Remark: The generation of up- and down-quark masses
from an holomorphic superpotential and the cancellation of
anomalies due to the presence of higgsinos require that at
least two Higgs doublets with opposite hypercharge be added
to the theory.
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The construction of the MSSM Lagrangian

SMSSM =

Z
d4x d4θ

˘
[
1

2
Tr(GαGα) δ(θ̄) +

1

2
Tr(WαWα) δ(θ̄)

+
1

4
BαBα δ(θ̄) + h.c. ]

+ [ bQ†
(e

2gs bG + e
2gwcW + e

yQi
g′ bB

) bQ

+
X

i=1,2

bH†
i (e

2gwcW + e
yHi

g′ bB
) bHi + · · · ]

+ W δ(θ̄) + W † δ(θ) + δ(θ) δ(θ̄)Lsoft

¯

where Gα, Wα and Bα are the SUSY SU(3)c, SU(2)L and
U(1)Y field strengths, respectively.

In addition, W is the MSSM superpotential

W = hl bHT
1 iσ2

bL bE + hd bHT
1 iσ2

bQ bD + hu bQT iσ2
bH2
bU − µ bHT

1 iσ2
bH2 ,

and Lsoft is the soft SUSY-breaking Lagrangian

−Lsoft =
1

2
(mg̃ λ

a
g̃λ

a
g̃ + mfW λ

i
fWλ

i
fW + m eB λ eBλ eB + h.c.)

+ fM2
L
eL†eL + fM2

Q
eQ† eQ + fM2

U
eU∗eU + fM2

D
eD∗ eD

+ fM2
E
eE∗ eE + m2

1
eΦ†

1
eΦ1 + m2

2 Φ†
2Φ2

− (Bµ eΦT
1 iσ2Φ2 + h.c. ) + (hlAl Φ

†
1
eL eE

+ hdAdΦ
†
1
eQ eD − huAuΦ

T
2 iσ2

eQeU + h.c. ) ,

with Φ̃1 = iσ2Φ
∗
1 and ΦT1 = (φ†1, φ

0
1).
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Global Symmetries of the MSSM

The MSSM has two softly broken global symmetries:

(i) The Peccei–Quinn (PQ) symmetry U(1)PQ:

bH1 (1), bH2 (1), bQ (−1), bU (0), bD (0), bL (−1), bE (0) .

The PQ symmetry is broken by the µ and Bµ parameters.

(ii) The R-symmetry U(1)R:

bH1 (0), bH2 (0), bQ (1), bU (1), bD (1), bL (1), bE (1) ,

implying that WMSSM (2). The R-symmetry is broken by
the µ parameter, the trilinear soft SUSY-breaking terms
and the gaugino masses. (Question: Why?)

In addition, the MSSM possesses an exact discrete Z2-matter
parity, better known as R-parity. Under Z2, all ordinary
SM particles have charge +1, while all SUSY partners have
charge −1.

(Question: What are the phenomenological consequences of
R-parity conservation?)

Exercise: Show that the additional SUSY operators:

W 6R = εibLTi iσ2
bH2+λijkbLTi iσ2

bLj bEk+λ′
ijk
bLTi iσ2

bLj bDk+λ
′′
ijk
bUibUj bDk

break R parity. Which operators break the lepton and baryon
numbers idividually?

64



– Gauge-Coupling Unification

The one-loop Renormalization–Group (RG) equations for the
SM gauge couplings are:

dg1,2,3
dt

=
b1,2,3
16π2

g3
1,2,3 ⇒

dα−1
1,2,3

dt
= − b1,2,3

2π
,

where t = ln(Q/MZ) and α1,2,3 =
g2
1,2,3

4π , with g1 =
√

5
3 g

′,

g2 = gw and g3 = gs.

The normalization of g1 is chosen so as to agree with the
covariant derivative when embedding the SM into an SU(5)
or SO(10) unified theory.

The b1,2,3 constants are:

bSM
1,2,3 =

(
41

10
, − 19

6
, −7

)
, bMSSM

1,2,3 =

(
33

5
, 1 , −3

)
,

Problem (Gauge-coupling unification):

Given that αs(MZ) = 0.12, αw(MZ) = 0.033 and
αem(MZ) = 1/128, calculate:

(i) the intersection point MU due to RG evolution of the g2
and g3 couplings in the SM and the MSSM.

(ii) the coupling g1(MZ), assuming that g1(MU) = g2(MU) =
g3(MU). Compare then your prediction for αem(MZ) in
the SM and the MSSM, with its experimental value.
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– The MSSM Higgs Potential

I. Tree-Level Potential

The MSSM Higgs potential can be computed by

VMSSM = WeΦ1
W †
eΦ1

+ WΦ2W
†
Φ2

+
1

2

[
3∑

i=1

(Di)2 + D′2
]

−LHiggs
soft ,

where

WeΦ1
= µΦT2 iσ2 + · · · ,

WΦ2 = −µ Φ̃T1 iσ2 + · · · ,

Di =
gw
2

(
Φ̃†

1 σi Φ̃1 + Φ†
2 σiΦ2 + · · ·

)
,

D′ =
g′

2

(
− Φ̃†

1 Φ̃1 + Φ†
2 Φ2 + · · ·

)
,

−LHiggs
soft = m2

1 Φ̃†
1Φ̃1 +m2

2 Φ†
2Φ2 −

(
Bµ Φ̃T1 iσ2Φ2 + h.c.

)
,

and the dots stand for non-Higgs terms.

Notice that the quartic couplings of the Higgs potential are
fully determined by the SU(2)L and U(1)Y gauge couplings
gw and g′.
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Problem (The Tree-Level Higgs Potential):

(i) Use the identity

3X

i=1

(σi)ab (σi)cd = 2 δad δcb − δab δcd

to cast the Largangian L0
V containing the tree-level Higgs

potential (L0
V = −VMSSM) into the form:

L0
V = µ

2
1(Φ

†
1Φ1) + µ

2
2(Φ

†
2Φ2) + m

2
12(Φ

†
1Φ2) + m

∗2
12(Φ

†
2Φ1)

+λ1(Φ
†
1Φ1)

2
+ λ2(Φ

†
2Φ2)

2
+ λ3(Φ

†
1Φ1)(Φ

†
2Φ2)

+λ4(Φ
†
1Φ2)(Φ

†
2Φ1) ,

with

µ2
1 = −m2

1 − |µ|2 , µ2
2 = −m2

2 − |µ|2 , m2
12 = Bµ ,

λ1 = λ2 = − 1

8
(g

2
w + g

′2
) , λ3 = −1

4
(g

2
w − g

′2
) ,

λ4 =
1

2
g2
w .

(ii) Use the linear expansions of the Higgs doublets about the
ground state:

Φ1 =

 
φ+

1
1√
2
(v1 + φ1 + ia1)

!
,

Φ2 = e
iξ

 
φ+

2
1√
2
(v2 + φ2 + ia2)

!
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to calculate the so-called tadpole parameters:

Tφ1(φ2) ≡
*
∂LV

∂φ1(2)

+
= v1(2)

"
µ2

1(2) +
v1v2

v2
1(2)

Re(m2
12e

iξ)

+λ1(2)v
2
1(2) +

1

2
(λ3 + λ4)v

2
2(1)

–
,

Ta1(a2) ≡
*
∂LV

∂a1(2)

+
= +(−) v2(1) Im(m2

12e
iξ) .

(iii) The tree-level MSSM mass spectrum consists of a
degenerate pair of charged Higgs bosons H±, two CP-
even Higgs bosons h and H, and one CP-odd scalar A.

Require the vanishing of the tadpole parameters to obtain:

M
2
A =

Re(m2
12e

iξ)

sβ cβ
, M

2
H± = M

2
A +M

2
W

M2
h(H) =

1

2

“
M2

A +M2
Z

−(+)
q

(M2
Z +M2

A)2 − 4M2
ZM

2
Ac2β

«
,

where tanβ =
sβ
cβ

= v2
v1

, v =
√
v2
1 + v2

2 = 2MW/gw and

MZ = 1
2

√
g2
w + g′2 v.

(iv) Use the above results to show that Mh ≤ MZ and
Mh ≤ MA. From LEP2, we know that Mh > 114 GeV,
so the MSSM is already ruled out at the tree level!
But, radiative effects are large and may rescue us!
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II. Quantum Corrections to the Higgs Potential

Radiative effects on the MSSM Higgs potential are large:

Φi

Φj

Φ†
k

Φ†
l

t̃

t̃

t̃

•

•

htµ

htAt

h2
t • +

t̃

t̃

t̃ t̃

htµ

htAt

htµ

htAt

•

•

•

•

· · ·

⊂ LV (Φ1,Φ2)

The radiatively-corrected upper bound on Mh becomes:

M2
h ≤ M2

Zc
2
2β

`
1 − 3h2

t

8π2
t
´

+
3h4

tv
2s4
β

8π2

˘`
1 +

4αs

3π

Xt

MS

´ ˆ
t +

X2
t

M2
S

`
1 − X2

t

12M2
S

´ ˜

+
1

16π2
(3
2h

2
t − 32παs)

ˆ 2X2
t

M2
S

`
1 − X2

t

12M2
S

´
t + t

2 ˜ ¯
,

where t = ln(M2
S/m

2
t ), Xt = At − µ/tβ is the stop-mixing

parameter and MS is the soft SUSY-breaking scale.

For MS ≈ 1 TeV, Xt ≈ 2.45 TeV and mt = 1√
2
htv2 ≈

175 GeV, we have

Mh
<∼ 115 (135) GeV ,

for tanβ = 3 (20).
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– Radiative Breaking of Gauge Symmetry

Radiative effects may also break the electroweak gauge
symmetry by flipping the sign of the operator µ2

2Φ
†
2Φ2 from

positive to negative.

The leading effects of the radiative corrections can be
calculated by means of RG equations.

For illustration, let us consider the dominant t-Yukawa RG
effects on the soft SUSY-breaking mass m2

2 ≈ µ2
2 (with

|µ|2 � m2
2) and on the left-handed and right-handed soft

stop masses M̃2
Q3

≡ m2
L and M̃2

U3
≡ m2

R:

d

dt



m2

2

m2
R

m2
L


 =

h2
t

8π2




3 3 3
2 2 2
1 1 1





m2

2

m2
R

m2
L


 +

h2
t |A2

t |
8π2




3
2
1


 ,

where t = ln(Q/MU).

Exercise: Assume that At = 0 and a common mass scale
m2

2 = m2
R = m2

L = m2
0 at MU ≈ 1016 GeV to solve the

above RG equation. Evaluate the solution at Q = 1 TeV to
approximately find that



m2

2

m2
R

m2
L


 ≈ 1

2
m2

0




−1
0
1


 ,

i.e. m2
2 flips sign and so triggers radiative electroweak

symmetry breaking.
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– Soft Radiative Breaking of CP Symmetry

[A.P. ’98; A.P., C. Wagner ’99 . . . ]

Radiative effects from CP-violating soft SUSY-breaking terms
may break the CP symmetry of the tree-level Higgs potential.

There are two kinds of radiative CP-violating effects:
I. CP-violating self-energy effects,
II. CP-violating vertex effects.

· · ·

I. CP-violating self-energy effects

a φ1, φ2

t̃1, t̃2, t̃1, t̃
∗
1

t̃1, t̃2, t̃2, t̃
∗
2

a φ1, φ2
×
Ta

t̃1, t̃2

a

M2
SP ∼ mt

4

v2

Im (µAt)

32π2Q2
t

×
(

1,
|At|2
Q2
t

,
|µ|2

tanβ Q2
t

,
2Re (µAt)

Q2
t

)

<∼ (100 GeV)2

Exercise: Use the CP-odd tadpole minimization conditions
Ta1,2 = 0 to show that the tree-level MSSM Higgs potential
is CP-invariant.
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The mixing of the three neutral Higgs bosons




φ1

φ2

a


 = O




H1

H2

H3




O is a 3×3 orthogonal matrix which also describes the mixing
of the Higgs bosons with different CP parities.

In analogy to the case of neutrinos and quarks, Higgs bosons
with mixed CP parities are ordered according to their weights:

MH1
≤ MH2

≤ MH3

At the one-loop level, MHi (with i = 1, 2, 3) and O are
analytically determined by the input parameters:

MH+(mt) , tanβ(mt) ,

µ(Qtb) , At(Qtb) , Ab(Qtb) ,

M̃2
Q(Qtb) , M̃2

t (Qtb) , M̃2
b (Qtb) .
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II. CP-violating vertex effects

Effective H1bb-coupling:

×
bL bRg̃

φ0∗
1,2

b̃∗L b̃∗R
×

bL bRh̃−2 h̃−1

φ0∗
1,2

t̃∗R t̃∗L

−Leff
φ0b̄b = (hb + δhb)φ

0∗
1 b̄RbL + ∆hb φ

0∗
2 b̄RbL + h.c.

with

δhb
hb

∼ −2αs
3π

m∗
g̃Ab

max (Q2
b, |mg̃|2)

− |ht|2
16π2

|µ|2
max (Q2

t , |µ|2)
∆hb
hb

∼ 2αs
3π

m∗
g̃µ

∗

max (Q2
b, |mg̃|2)

+
|ht|2
16π2

A∗
tµ

∗

max (Q2
t , |µ|2)

Exercise: Consider the condition:

Leff
φ0b̄b |φ0

1,2=
1√
2
v1,2

= −mb b̄ b

to obtain the effective b-quark Yukawa coupling:

hb =
gwmb√

2MW cosβ [ 1 + δhb/hb + (∆hb/hb) tanβ ]
.
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Effective H1tt-coupling:

×
tL tRg̃

φ0
1,2

t̃∗L t̃∗R
×

tL tRh̃+
1 h̃+

2

φ0
1,2

b̃∗R b̃∗L

−Leff
φ0t̄t = ∆ht φ

0
1 t̄RtL + (ht + δht)φ

0
2 t̄RtL + h.c.

with

∆ht
ht

∼ 2αs
3π

m∗
g̃µ

∗

max (Q2
t , |mg̃|2)

+
|hb|2
16π2

A∗
bµ

∗

max (Q2
b, |µ|2)

δht
ht

∼ −2αs
3π

m∗
g̃At

max (Q2
t , |mg̃|2)

− |hb|2
16π2

|µ|2
max (Q2

b, |µ|2)

Exercise: As in the previous exercise, consider an analogous
condition to derive the effective t-quark Yukawa coupling:

ht =
gwmt√

2MW sinβ [ 1 + δht/ht + (∆ht/ht) cotβ ]
.
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– Phenomenological Implications:

• Contributions to Electric Dipole Moments

• FCNC observables:
∆MK,B, εK, ε′/ε, B(Bd,s → `+`−),
ACP(Bd,s → `+L(R)`

−
L(R)), with ` = µ , τ ,

B(B → Xsγ), . . .

• Higgs phenomenology at LEP2, Tevatron, LHC and e+e−

Linear Colliders.

CPsuperH: a Super–Code for Higgs Phenomenology in the
MSSM with Explicit CP Violation [hep-ph/0307377]
J.S. Lee, A.P., M. Carena, S.Y. Choi, M. Drees, J. Ellis and C.E.M. Wagner

...
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Higgs Phenomenology at High-Energy Colliders

Effective Higgs couplings to gauge bosons and fermions:

[M. Carena, J. Ellis, A.P., C. Wagner ’00]

Hi
W+
µ

W−
ν

: igwMW (cβO1i + sβO2i) gµν

Hi
Zµ

Zν

: igw
M2
W

MZ
(cβO1i + sβO2i) gµν

Hi(k)
W±
µ

H∓(p)

: ± i
2gw (cβO2i − sβO1i + iO3i)(p− k)µ

Hi(k)
Zµ

Hj(p)

:
−igwMZ

2MW
[O3i (cβO2j − sβO1j)

− (i↔ j) ] (p− k)µ

Hi
d

d

: − igwmd
2MW cβ

(O1i − isβ O3i γ5) + · · ·

Hi
u

u

: − igwmu
2MW sβ

(O2i − icβ O3i γ5) + · · ·
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Generated with CPsuperH

 arg (At) = arg (Ab)  [ deg ]

 H
1,

  H
2 

  m
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s 

 [ 
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 ]
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8. SUperGRAvity

– Local Supersymmetry

So far, we have considered Lagrangians that are symmetric
under a global trans of SUSY, namely the group parameter ζ
was constant.

Local SUSY emerges by allowing the Grassman-valued group
parameter ζ to become x-dependent. For example, neglecting
gravity, the local SUSY trans have the usual form

δζφ(x) =
√

2 ζ(x) ξ(x)

δζξα(x) = −i (σµ ζ̄(x))αDµφ +
√

2 ζα(x)F (x) etc.

Hence, ζ has been promoted to a Weyl spinor, the Goldstino
of spin 1/2.

The gravity multiplet associated with local SUSY contains
the massless graviton gµν of spin 2 and the massless gravitino
ψµ of spin 3/2 (ψµ is a 4-vector Weyl spinor, where the spinor
index is suppressed).

The gravitino ψµ(x) acquires its mass by ‘eating’ the two
dofs of Goldstino ζ(x). This is the famous Super–Higgs
Mechanism.

A massive gravitino ψµ(x) has 2s + 1 = 2 3
2 + 1 = 4 dofs:

2 dofs from the initially massless gravitino and 2 from the
massless Goldstino.

78



– Non-renormalizable Interactions and Kähler Potential

The gravity sector of the simplest (on-shell) SUGRA model
may be described by the Lagrangian:

L
SUGRA

= − 1

2κ2

√−g R− 1

2
εµνλρ (ψ̄µσ̄νDλψρ−ψµσνD̄λψ̄ρ),

where κ2 = 8πGN = 8π/M2
Planck, g = det[gµν(x)] and R is

the Ricci curvuture scalar.

In addition, Dλ ≡ ∂λ + ωαβλ σαβ is the covariant derivative

w.r.t. local Lorentz trans and ωαβλ is the corresponding affine
connection or spin connection.

The local Minkowski metric gµν(x) can be written in terms
of the vielbeins eαµ as gµν = eαµ e

β
νηαβ, where ηαβ is the

flat-space metric.

Without proof, we state that LSUGRA is invariant under the
local SUSY trans (suppressing all spinor indices):

δζe
α
µ = −i κ ( ζ̄σ̄αψµ + ζσαψ̄µ ) ,

δζψµ =
2

κ
Dµ ζ ,

δζω
αβ
λ = 0 ,

with ζ = ζ(x).
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Matter Sector of SUGRA:

Here, we summarize the main results:

(i) The superpotential W (Φ) is generalized to an arbitrary

non-renormalizable hermitian function G(Φi,Φ
†
j) allowed

by the symmetries of the theory.

(ii) The kinetic terms in MPlanck = 1 units are given by

Lkin = Gij ∂
µΦ∗

i ∂µΦj ; Gij =
∂2G

∂Φ∗
i∂Φj

.

(iii) The effective potential V in units of MPlanck is

V = eG
[
Gi (G

−1)ijG
j − 3

]
; Gi(G

i) =
∂G

∂Φi(Φ∗
i )
.

(iv) SUSY can be broken spontaneously by Gi 6= 0, while
〈V 〉 = 0. This can solve the so-called cosmological
constant problem, although fine-tuning the tree-level
potential is still required.

(v) The potential V is not always positive definite V ≥ 0, and
could have lower ‘false’ vacua. Hopefully, the tunneling
time to those ‘false’ vacua is sufficient large, i.e. much
larger than the age of our universe ∼ 1010 years.
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– Gravity-Mediated SUSY Breaking

In this scenario, the breaking of SUSY occurs in the so-called
hidden sector of the theory. This breaking gets communicated
to the visible sector through non-renormalizable interactions
of hidden sector fields, e.g. X, with the visible SM gauge
fields. The strength of these interactions is gravitationally
suppressed by powers of 1/MPlanck.

The generic form of these gravity-mediated interactions is

−Lsoft =

∫
d4θ

{
(
X

MP
f WαWα δ(θ̄) + h.c.)

+
X†X

M2
P

GijΦ
†
iΦj

+ [ δ(θ̄)
X

MP
(
1

2
bijΦiΦj +

1

6
aijkΦiΦjΦk) + h.c. ]

}
.

The spontaneous breaking of SUSY in the hidden sector is
manifested by a non-vanishing VEV of the auxiliary field FX
of X, i.e. 〈FX〉 = M2

hidden 6= 0.

Exercises:

(i) Show that Lsoft given above is fully equivalent to the soft
SUSY-breaking Lagrangian on page 63.

(ii) If the scale of SUSY breaking in the visible sector is
m3/2 ∼ 1 TeV to solve the gauge hierarchy problem, estimate
the scale of SUSY breaking Mhidden in the hidden sector.
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