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8. SUperGRAuvity

— Local Supersymmetry
— Non-renormalizable Interactions and Kahler Potential
— Gravity-Mediated SUSY Breaking

1. Introduction: Why SUSY?

1. Electromagnetism — Quantum ElectroDynamics:
U(L)em

Force carrier: photon, v, massless, spin = 1A

Coupling to charged matter particles, such as e, u, d quarks.
Strength of the coupling aem(me) = 1/137.

2. Weak interactions — Quantum WeakDynamics:
SU(2)L®U(1)y /U(1)em

Force carriers: W™, W™, Z bosons, massive, spin = 1h
Coupling to particles with weak charges.

Strength of the coupling (M) ~ 1/30.

Observed weakness due to the massiveness of W* and Z:
MW7MZ ~ 100 GeV.

3. Strong interactions — Quantum ChromoDynamics:
SU(3)Color

Force carriers: 8 massless gluons, g“, spin = 1A

Coupling to coloured particles, such as u, d quarks.
Strength of the coupling as(Mz) ~ 1/10.

4. Gravity — Quantum Gravity (7):

No known self-consistent quantum theory: Superstrings, large
groups (Eg, etc.), extra dims. (7).

Force carrier: massless gravitons, with spin = 2h.

~ 10740 weaker than Electromagnetism.
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The Standard Model: SU(3).010:® SU(2),@U(1)y
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Important questions:

(i) What is the mechanism for giving masses to W+, Z bosons
and matter?

(i) What guarantees stability of masses under quantum-
mechanical effects from My to My ~ 1016 GeV?
(The so-called Gauge-Hierarchy problem)

= Quantum excitations of ® = (®) + H( 0 )

(i) The Higgs mechanism
V(®)

(®)

Higgs potential V(®) of a scalar field ¢ (spin = 0):

V() = —m?dTd + \(0TD)?

is symmetric under SU(2),®U(1)y, but not the ground state

which carries a weak charge, but no electric charge and colour.
W=, Z & matter feel the presence of (®), but not v and g

After Spontaneous Symmetry Breaking:

= W=, Z bosons and matter become massive, but not ~ and

9%, e.g. My = g, (P)

1
H is the so-called Higgs boson; spin = 0.



(i) SUperSYmmetry introduces a new quantum dimension Quantum fluctuations of the ground state:
=> doubling of the particle spectrum of the SM: " ; W=+ 7 WE 5

—t~\
O O
Matter particles, spin = 1/2 = SUSY-partners, spin = 0 : + YT :

e uud, . & i d ... 1 @' | | |
T d, Uy (=1) (+1) (+1) (=1)

Anti-Matter, spin = 1/2 = SUSY-partners, spin =0

et,ut o, d ...t e, o, ur, dx, ...t 0, if SUSY is exact: Mgysy =0
— 3 . .
Force carriers, spin = 1 = SUSY-partners, spin = 1/2 (0.1 —1) TeV™, 'f_SUSY is softly broken,
with Mgygy =1 TeV
N WT, W™, Z, g q,wt, W, Z, g
: . . Accurate unification of couplings !
Higgs bosons, spin = 0 = SUSY-partners, spin = 1/2
2 Higgs doublets: ®;, ®, KO, hi, h9, hi | |
60
No SUSY-partners observed yet
— Mass — Mass = Msysy 2 100 GeV. 40
201
0 |_ | |
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— Literature — The Coleman—Mandula Theorem

Recommended Texts: Assumptions:

e J. Wess and J. Bagger, Supersymmetry and Supergravity, ) o oL ) .
(Princeton University Press, Princeton NJ, 1992); Chapters: 1-8. (') S-matrix is based on a local, relativistic, 4-dimensional

e D. Bailin and A. Love, Supersymmetric Gauge Field Theory and Quantum Field Theory.

String Theory, (Institute of Physics Publishing, Bristol UK, 1994);
Chapters: 4-6. (i) There are finite number of particles with mass m less than
a given mass scale A.

Usetul references: (iii) Energy gap between vacuum and 1-particle states

e S.P. Martin, A Supersymmetry Primer, hep-ph/9709356.

e H.J.W. Miiller-Kirsten and A. Wiedemann, Supersymmetry: (iv) Technical assumptions related to representation (rep) of
An Introduction with Conceptual and Calculational Details, operators and IR problems.
(World Scientific, Singapore, 1987).

e H.E. Haber and G.L. Kane, Phys. Rep. 117 (1985) 75; Consequences:
Appendices A-D.

e L.H. Ryder, Quantum Field Theory, (CUP, Cambridge UK, 1996) Then, the most general Lie algebra of symmetries of the
Second Edition. S-matrix contains:

e S. Weinberg, Supersymmetry, (CUP, Cambridge UK, 2000).
o P.C. West, Introduction to Supersymmetry and Supergravity,

(World Scientific, Singapore, 1990) (i) the generators P, and L,,,, of the Poincaré group;

(i) possible scalar operators By, i.e. [B;, P,| = [Bi, L,,] =0,
Prerequisites: which satisfy independently a Lie algebra L:

e H.F. Jones, Groups, Representations and Physics, [Bl Bm] _ Z-flk: By,
)

(IOP, Oxford UK, 1998) Second Edition; Chapters: 2,3,6-11. m

e A. Pilaftsis, Lecture notes PC4702 on Symmetries in Physics,

k
http://pilaftsi.home.cern.ch/pilaftsi/; Chapters: 1-8. where fj;, are the structure constants of the algebra L.
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— Supersymmetric transformations

(Q)|Boson) = |Fermion) , Q|Fermion) = |Boson)

Haag—Lopuszanski—-Sohnius extension of the Coleman—
Mandula theorem includes a graded Lie algebra, namely
includes anti-commutators as well:

{Qas Qs = 2(0")aa Py,
{Qa, Qﬁ} = {Qo'm Qﬁ} = 0,
[Qay Pu] = [Qa, P, =0.

Consequences:

e Equal number of (on-shell or off-shell) fermionic and
bosonic degrees of freedom (dof).

e Scalar supermultiplet ) (¢, &, F), where ¢ is a
complex scalar (2 dof), & is a 2-component complex
spinor (4 dof), and F'is an auxiliary complex scalar (2 dof).

e Vector supermultiplet Ve 5 (A%, A% D?), where Aj
are massless (gauge-fixed) non-Abelian gauge fields (3 dof
each), A\* are the 2-component gauginos (4 dof each), and
D are the auxiliary real fields (1 dof each).
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— Dirac and Majorana fermions

|. Dirac fermions in the chiral representation
ﬁDirac = WD Z"yuaulpD - mDED\IIDa

where

= (5) = (e )

and Up = (n®, &), with o = (15, o) and
" = (12, —0o). Note that o denote the Pauli matrices:

/0 1 (0 —i /1 o0
91=\1 0) 2=\ o) 9= \o —-1)"

Our metric convention is 7, = diag(1, —1, -1, —1).

Chirality projection operators:

80
Prr=-14%7s5), 5= 0 _g¢ )>

N

or equivalently v5 = tv9v17273.

Chirality states:

PL\I’D=<%>, PrVYp = (ﬁ0d>'



Il. Lorentz transformation properties of the Weyl spinors

The Dirac spinor 1)p consists of two Weyl spinors &, and 77¢
that transform under the (1,0) and (0, 3) reps of the Lorentz
group SO(1,3) ~ SL(2,C).

The Lorentz trans properties of the Weyl spinors are:

g, = MSP&, = M0,

o ~lae¢f 6 _ apt-la -8
§ = M/@ &, 7% =M 677 .
with M € SL(2,C).

Duality relations among 2-spinors:

€ =&, ) =4, @) =, M) ="

Lowering and raising spinor indices:

fazgaﬁgﬂ’ fa:&-aﬁéb, ﬁd:é‘dlérflﬁ’ ﬁdzgdﬂﬁﬁ',

1

with £ = joy = (_01 0) = —€qg and £48 = joy = —E4p
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Lorentz—invariant spinor contractions:

N =€ = E%apn’ =—1capt® = n’epal™ = 1’¢s = 1€
Likewise, &7 = (n€)" = £lnT = €47 = 7a&® = 7E.
Exercises:

(i) Show that
Eatn = Ea(") g = — (0" €7 = o€ .

(ii) Use (i) to verify that up to a total derivative < d,,(n5*n),
we get

Lpirac = VYpiy*0,¥p — mp¥p¥p,
= io",& + nic"dun — mp (En+ 7).

(iii) Show that

Mo,M"=A", 0, and M''g,M~'=A"3,,

where A*, € SO(1,3), i.e. x'* = A* z”.

(iv) Use (iii) to show that Lp;ac is invariant under Lorentz

trans.
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Il. Majorana fermions

. . . a 0
Charge conjugation operator: C' = —iy?70 = ( Eoﬁ _ad >

Charge-conjugate of a 4-spinor ¥ = ( Eg

¢_ ot [ €ap O °\ _ ( na
o= 2)(E)-(2)

Definition of Majorana spinor:

Uy = 0§ :(E—‘Qﬁ) or £=n

Kinetic Lagrangian for a Majorana field:

1— -
£Majorana - §\IJM'L’YM8/L\I]M - §mM\IJM\IJM7

= Eiot0u6 — Hmr (€6 + )

15

Glossary:

|. Dirac fermions

U PLUy = mé&, U PRUy = &,
Uiy, PLVs = &6,6, Viv,PrVYs = —ihd,m .

[l. Majorana fermions

@1\112 = $2\I/17 @1’)/5\112 = 62’75\111,
Uiy, Uy = —Uoy, Uy, Uiy,7502 = Uoy, 7.
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2. The simplest SUSY model: the WZ Model

— Non-interacting WZ model

['kin — ['scalar + Efermion

— (061)(0,0) + EicP(0,8); &= —

V2

Consider ¢ — ¢ +3d¢ and ¢f — ¢T + 56T, where

(P14 i2)

0¢ =0¢ and 6" = (06)" =0 = ¢,

and @ is an infinitesimal anticommuting 2-spinor constant.

= ['scalar - Escalar"'éﬁscalara
0Lscalar = 9(5“¢T)(3u€) + 5(8“5)(6,@)

Try &a — &a + 08 and gd - Ed + 55@: with
00 = —i(0"0) 00,0 and &g = i(00") 50,07

= Efermion - Efermion + 5»Cfermion 3

0Lformion = —00"5"(0,£)(0,0") + £6"070(9,0,0)

= 00"5"¢(0,0,9) + £5"070(9,0,0)
— 8, [0075"<(,01)]
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Write o¥6# = 5 {o*c" + o”c" } — 1 [ota” — 0¥5"], and a
similar expression for g*o”.

Since 0,0, = 0,0, only the symmetric term in {---} will
survive.

Using the result of the exercise below, we find

5£fermi0n = 05(8M8M¢T) + gé(aua'u¢)
= —0(9,8)(0"¢") — 0(9,8)(0"9)
+0,, [06(0"9") + £6(0"9)]

= 0L = 5£scalar + 5£fermion = 0!

Exercise: Show that

(0")aa(0) + (0")aa(6")¥? = 2060

o )

(6")*(0") 5y + (6)F (") s = 2975,

18



But, we are not finished yet !

The difference of two successive SUSY trans. must be a
symmetry of the Lagrangian as well, i.e. the SUSY algebra
should close.

(502(5Q1 — (591(592)¢ = —i(010“0_2 — 920'/”L9_1) 8M¢
= 1e'P,¢p (with € =€)
(592591 — 591592)504 = —z'(a“@_l)oﬂgaﬂf —+ i(a“ég)aﬁlauf

Fiérz —i(@la“éz — 020“§1) a,uéa

+01a§2i5“8ﬂf — 02(19_1@'5“8#5

Only for on-shell fermions, :#0,£ = 0, the SUSY algebra
closes.

Exercise: Prove the Fierz identity:

Xo (En) + &alnx) + na(x§) = 0,

where x, £ and n are Weyl spinors.

19

To close the SUSY algebra off-shell, we need an auxiliary
complex scalar F' (without kinetic term) and add

Lp = FIF
to ['scalar + Efermiony with
SF = —if5"(0,8),  6F" =1i(0,£)5"0

06 = —i(0"D)abud + 0aF , 08 = i(00")30,0" + OsF"

Dimensions of the fields: [¢] =1, [(] =2, [F] =2, [§] = —3.

Exercise: Prove (i) that the Lagrangian

Liin = (3“¢T)(6’u¢) + gi&“(@uf) + F'F

is invariant under the off-shell SUSY trans:

op = 6¢, it = 0¢
660 = —i(0"0)00,0 + 0o F , 64 =i(00")50,0" + 05 F1
§F = —if5"(9,€), SF' =i(0,€)5"0

and (i) that the SUSY algebra closes off-shell:
(592591 — 591592)X = —i(910“0_2 — 920"“@1) 0NX,
Wlth X = ¢7 ¢T7 67 g? F7 F-i-

20



— The Interacting WZ model
Lwz = Lxin + Lint
= (9"¢1)(9,9) + Eio"(9,8) + FIF
—%Wwff + W F — %Wg¢€_§_ + F'w]
where

h
W) = 566 + ¢ 600

is the so-called superpotential, and

W¢ = W = mgb + §¢2
52w
W¢¢ = 5600 = m + ho

Exercise: Show that up to total derivatives,

1 1 __
Liw = —Weo€& + Wo I — §W;¢5g + W]t

- _%( + ho)é€ — %(m+h¢T)§£

Hmo+ SE)F + (o' + 267 F

remains invariant under off-shell SUSY transformations.

21

— Feynman rules

Equation of motions for the auxiliary fields F' and F:
F = —W;, FT - _W¢7
Substituting the above into Ly, we get
Lwz = (0"¢1)(0u9) + Eia"(0,6) — WW]

—%(Wwié + W] ,E8)

and the real potential is

2
Vo= W) = mele + 2 (6167 4 6%) + - (610)?

Exercise: If ¥ = <§> is a Majorana 4-spinor, show that

the W-dependent part of the WZ Lagrangian can be written
down as

1 1 —

—ggﬁpﬂz — gqs@PRxp

22



Summary

The complete WZ Lagrangian is
Lywz = (0"¢")(0u¢) — m"PT¢ + 5‘1”’7“3/1‘1’ — §m‘1“1’
mh h?
5 (pT¢* + ¢T¢) — T (¢7¢)?
—gqﬁpﬂf — %qﬂEPRw,

where the F'-field has been integrated out.

23

Feynman rules:

¢, p

O = = P = - =g :

v, p

———e |

’
-—— -
~

—ih?

—ih Py,

—1h PR
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3. Non-renormalization Theorems in SUSY

— Absence of Tadpoles in the WZ Model

¢, k
oLt 'k i
T - ( th) (27‘(’)4 k2_m2
o
_|_
U, k
_ (.11 4k i
= (1) (~ih) (27T)4TI(P )
¢, =%+Zh fd4 zTI“[PL 2 m)]

—m

= (+imh) f(;lﬂl;él kz_imz

The sum of the two tadpole graphs is exactly zero !

If SUSY is exact, the vanishing of tadpoles holds to all orders
of perturbation theory.

25

— Non-renormalization of Self-energy and
Vertex interactions

pp—selfenergy at zero external momentum: Il4,(p? = 0)

¢7 ¢’ \Ij7k
/4\
T -+O+_
S _ e e L —
o, k v, k

B d*k [ (—imh)?:® (—ih?)i
I4(0) = /(2ﬂ)4 {(k:2 — m2)2 T k2 — m?2
L oo Tr[PL(f+m)Pr(f+m)|
—ih)%i 2 = m2)? }

_ g2 / d*k m? N 1
- (2m)% | (k2 — m2)2 k2 — m2

This result holds to all orders of perturbation theory.

Remark: For p? # 0, I44(p?) is non-zero and ultra-violet
(UV) divergent, due to the wave-function renormalization

of ¢.
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Exercise: The proper one-loop vertex interaction ¢pp¢o

1. Draw all Feynman graphs that contribute to the irreducible
dpp vertex T99%

2. ldentify the proper spin-statistics and combinatorial factors
for the individual contributing graphs.

3. By choosing an appropriate routing for the loop
momentum, show that the one-particle irreducible three-
point correlation function T'??? vanishes identically in the
limit of zero-momentum for the external ¢ particles.

4. Which  other one-particle irreducible higher-point
correlation functions do you expect to vanish in the zero-
momentum limit for the external particles?

27

— Soft-SUSY Breaking

SUSY is not an exact symmetry of nature. For example,
no scalar electron was ever observed or produced at colliders
with a mass equal to that of the ordinary electron.

However, while breaking SUSY, we should not destroy all
good quantum-mechanical properties as described by the
non-renormalization theorems. Therefore, we should break
SUSY softly, namely by adding to the Lagrangian terms of
dimension less than 4, such as

Loote =Mz ' + (Bme b + hTAhqwcﬁ + h.c.>

The remarkable feature of L. is that it does guarantee
the absence of quadratic UV divergences at all orders of
perturbation theory.

How is L. generated?

Several different mechanisms for generating SUSY breaking
within string and supergravity models: [e.g., see textbook by
S. Weinberg]

(i) Gravity-mediated SUSY breaking
(ii) Gauge-mediated SUSY breaking
(iii) Anomaly-mediated SUSY breaking

(iv)

28



Problem:

Consider the WZ model, in which SUSY is softly broken by
the mass operator —m% ¢1¢.

1. What is the squared mass mi) of the ¢-particle in this soft-
SUSY broken WZ model? How much does m g now differ
from the corresponding mass of the Majorana field ¥?

2. Show that the ¢¢ self-energy I1,,(0) in this extended WZ
model not only does not vanish, but it is even infinite.
(Hint: To evaluate the loop integral, you may use the
substitution: [*°7 d*k — n? [°_ K2dk?.)

3. Absence of UV quadratic divergences:
Consider an UV cut-off regulator A2, i.e. replace the
integration limit —oo with —A? in the above loop integral,
to show that I1,4(0) can only diverge as In A% as A? — oo,
while all quadratic UV terms oc A? cancel out.

4. Technical solution to the gauge hierarchy problem:
If A = Mpianck = 1016 TeV represents a natural UV cut-
off scale, calculate approximatively the maximally allowed
value for mg by requiring that |II;4(0)| is smaller than
m?2. For your calculations, you may assume m = myqp

and h = 1.
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4. Superfield Formulation of SUSY

Superfield formulation of SUSY is based on the superspace:
xt ’ 901 ) 9(347
where 0,,, 0, are z-independent 2-component spinors.

— Generators of the Super-Poincaré Group

The generators super-Poincaré algebra are P,, J,, € Lo

and the spinors Q). , Qs € Li. They satisfy the following
Z.o-graded Lie algebra:

(i) [P., P] = 0,

(iD) [Pu, Jpo] = i (MupPo — MuoPp)

(i) [Juws Joo]l = =i (Mupdve — Muodvp + Mvodup — Mupduo) s
(iv) {Qa, Qs} = {Qar Qg} = 0,

V) {Qas Q) = 2(0"),3Pu

(vi) [Qa, Pu] = 0,

(Vi) vy Qal = —i(ow)d Qs
(Viii) [J/w> Qd] = _i(auu)dﬁ an
where (07) P = 1[(0")aa(5")* — (6”)aa(6")*?] and

(@)%, = 7 [(6")%%(07) 55 — (@) (0") 55 ].
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Remarks:

e The commutation relations (i)—(iii) guarantee the Lorentz
invariance (covariance) of the QFT.

e The anti-commutation relations (iv) and (v) have to
do with the structure of the SUSY vacuum and their
consequences will be discussed in Chapter 6.

e The commutation relations (vi)—(viii) imply that all
members of a supermultiplet have the same mass and
the number of fermionic and bosonic dof are equal. The
latter will be made explicit in our construction of chiral
and vector superfields.

Exercises:

(i) Verify that the differential operators:

P, = 0y, Ju = @uPy — 2Py + i60°(0,,) 105 — 104(5,,,)%0" |

Qu = 9a +i(0"),50"8,, = 95 +i0° (0")54 Oy,

satisfy the super-Poincaré algebra, where On = a%’ Dy = %,
o= a(ga —e% 95 and 0% = 89 —50‘58

(ii) Prove the Zo-graded Jacobi identity:
[Juv s {Qas Qs +1{Qa, [Qs, Jwl} +{Qp, [Qa, Juw]} =0.
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— Chiral Superfields

Complex scalar field in superspace (= scalar superfield):

®(2,0,0) = o(x) + 06(x) + Ox(x) + 6%f(x)
+0%g(x) + 0570V, (z) + 0*0\(x)
+0%0n(x) + 6%6%d(x).

Note that ®(z,6,0) contains 4 complex scalars (8 dof),
4 complex Weyl spinors (16 dof) and one Lorentz vector
(4 dof), implying that the bosonic and fermionic dofs are not
equal.

Hence, without further constraints, ®(z,6, ) cannot be an
irreducible representation (irrep) of SUSY.

Exercise: Prove the following identities:

1
(i) Haeg = 55045927
I 1,
(ii) 0a 05 = —§€aﬁ9 :

(i) (607) (0570) = %n/weZé?.
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Guesswork:

To eliminate the many ‘unbalanced’ components in ®(z, 6, ),
we first try to impose the constraint:

The above leaves intact the two scalars, ¢(z) and f(x)
(4 bosonic dof), and the Weyl spinor &(x) (4 fermionic dof).
It looks a perfect guess!

But, this constraint is not maintained by a general super-
Poincaré trans:

D [ Pt T CRECQ B(22,0,0)] # 0.

Demanding that the validity of the constraint 95 ® = 0 holds
for an infinitesimal SUSY trans is equivalent to requiring that

(04, a*P, + W™ Ju + CQ + CQ] o 0ordy, (%)

which is not satisfied, because

[0a, CQI = —i(CoM)a Oy K Oa.

33

A better choice would be to have a sort of “covariant
derivative” Dy, with respect to (w.r.t.) supertranslations:

[Do'éa CQ] = [Dd7 5@] = Oa

and likewise for 0, — D,,.

With little a bit of effort, we find that
Da = 8a — i(a“)aﬁ-éf}&w Dd = 5d—i95(a“)5d 8u

have the desired properties.

Exercises:

(i) Show that

{Da Qs} = {Das @3} = {Da» Qs} = {Da @3} =0.

(i) Show that D, and D, do satisfy the general () condition

on page 33.
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Chiral Superfield. This is a scalar superfield that satisfies
the constraint:

Dy®(x,60,0) = 0 (chiral)
or Do®(x,0,0) = 0 (anti-chiral).

For example, any superfield ®(y, #), with
yt = ot — Hledal’D

but otherwise independent of 0, satisfies D,® = 0.

Field expansion of ®(y, #) for the case D4® = 0:

®(y,0) = o(y) + V20£(y) + 0°F(y),

where the inserted /2 is just a convention.

®(y, 0) contains the (complex) scalar ¢ (2 bosonic dofs), the
(complex) auxiliary scalar F' (2 bosonic dofs) and the complex
Weyl spinor £ (4 dofs):

2 4+ 2 bosonic dofs = 4 fermionic dofs,

as it should be for an off-shell chiral supermultiplet.

Exercise: Verify that Dg ®(y,0) = 0, by proving first that
Ddeg =0 and Ddy“ =0.

35

Field components of the chiral superfield:

o) = 2Y,0)lp9-0-

1

fa(iE) = ED (I)(y79)’9,0_:07
1

F(xz) = ZD2(D(y79)|07§:0'

With the help of the relations:

Qa 0,0=0 — D, + 2@'(0”5)&8” |e,é:o>
Qa ‘9,@:0 = Dg+ 2i(00") 4 Oy |97§:o )

we can now find the SUSY trans of the component fields.

For example, the scalar component ¢(z) transforms as

ocp = €Q + 5@)‘1)‘9,9‘:0 = (D + @, )@’9,520
=0; D®=0

= V2¢¢.

This is identical to the SUSY trans we found on page 17
using component fields only, after replacing v/2¢ — 6.
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Exercises:

(i) Prove the following identities:

0o 0% = 200,  0a0% = —20,,
(0%0,)0% = 4, (9,0%)0% = 4.

(i) Use the field-component projections on page 36 and the
relations of (i) above to show that

0cba = V20 F — iV2(6"C)adud,
6F = ivV20,(60") = —iv20,(Ca"¢) .
Observe that with v/2¢ — 6, the SUSY trans of the

component fields become identical to those given in the
exercise on page 20.

Remark: The above exercise tells us that the F' component

of a chiral superfield transforms into a total derivative under
a SUSY trans.
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— The WZ Model in terms of Superfields

An action S = [d*z L is invariant under a global (or local)
trans if the Lagrangian £ remains invariant up to a total
derivative, e.g.

OB L= Lo+ 92",

for an arbitrary function Z* that vanishes at z — +oc.

Since the F-component of a chiral superfield ®(y,0)
transforms into a total derivative under SUSY, it can be
used to build up SUSY invariant actions:

1
[t 0w.0)l = § [t D*0(w.0) |5y,

However, this term by itself gives only a linear term in F' that
on-shell vanishes.

We now notice that the product of two or more chiral
superfields is also chiral:

Dg®* = (Dg®)® + & (Ds®) = 0,

because Dy, is a linear differential operator and Dg ® = 0.

Exercise: Show that if ®(y,0) is a chiral superfield obeying

D4 ® = 0, then ®T(yT, ) is anti-chiral: D, ®' = 0.
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A more general form of a SUSY invariant action can be
constructed by means of a chiral polynomial W (®) in &:

1 1
W(®) = tp® + §m2(1>2 + 6hc1>3 4 -

W (®) is also called superpotential and is related to the one
discussed on page 21.

With the help of the chiral superpotential W and its hermitean
conjugate antichiral one W7, we can write down the SUSY-
invariant action

Sw = [d'a (Wl + Wg)
1 _
= /d4:13 (D*W + D*WT) [y,

However, Sy, does not contain kinetic terms.

Exercise: Expand the chiral superfield ®(y, 0) in terms of z*,
0 and 6:

D(y.0) = Olx) — i(00°0) 00(x) — 0% 0,0"6(x)

+V26¢ + \%92 (0, ") + 0> F(x).
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Kinetic terms for chiral superfields:

It can be shown that, up to a total derivative, the 925_2—
component d(x) of an unconstrained superfield ®(z,80,0),
remains invariant under a SUSY trans.

This implies that the §20?~component of the manifestly real
superfield ®T® is SUSY invariant.

Hence, the SUSY-invariant kinetic action is

Skin = /d4$ TP [ypg = 1_16 /d437 D*D* o' l0.0—0>
because D2D?§%62 = 16.
Exercises:

(i) Show that up to a total derivative, the §202—component
d(x) of a general @ is invariant under SUSY trans:

Sed = %au(gaﬂé + CotX),
where ¢ and X are Weyl spinors defined on page 32.

(i) Calculate the #20?-component of ®® to find that up to
total derivatives,

1P |poge = (0"01)(0,40) + €ic"(9,€) + FIF = Liin,

where Ly, is WZ kinetic Lagrangian given on page 20.
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Summary:

The total SUSY-invariant action S, for one chiral superfield
P(y,0) is

Exercises:
(i) Verify that

1
W(@®) |2 = WoF - §W¢¢s§,

6W
where W, = 25000 4 and Wys = S oy,
Convince yourself that the above result is consistent with
the one presented for the WZ model on page 21.

(ii) Write down the renormalizable SUSY-invariant action of
a model with two complex chiral multiplets ®; and P,
and calculate the real potential, after integrating out the
corresponding auxiliary fields.
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— Integration in Superspace

In addition to differentiation (e.g. 930“ = 05; {0a, 9p} = 0),
we may introduce the concept of integration over Grassman
variables.

For one Grassman variable 6, integration over 0 is defined as

/d00:1, /d01:0.

For the Grassman-valued function f(z,0) = fo(z) + f1(x)0,
integrating over 0 yields

[0 500 = fiw) = 2L20

". Integration is equivalent to Differentiation in superspace.

The superspace d-function is defined by

which satisfies the known property:

/ 08 f(2,0)5(6) = f(2,0) = folx).

Remark: The integral [ df is invariant under constant shifts
of 0: [df f(z,0+¢) = [db f(z,0).

42



The above concepts of integration may be extended to the
superspace of N = 1 SUSY (z#, 0%, 0%), by using the defining
properties:

/d2992 _ /d2§§2 _ /d4992§2 -

with d*0 = d26 d26.

Exercises:

(i) Check that the following definitions of the integration
measures are consistent with the defining properties stated
above:

1 N 1 oag o~ -
d’0 = —Zgagde do’ ., d?0 = - 7€ O dfedf ;.

(ii) Show that §(9) = 62 and 6(6) = 62 are the properly
defined J-functions in (0%, 0%)—space.

(iii) Show that the total SUSY-invariant action can be written
down as:

Siot = /d4x d*0 [®T® + W(®)5(0) + W) s§(0)].
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5. Supersymmetric Gauge Theories (SGTs)

— Vector Superfields
These are real superfields: V(z,0,0) = Vi(x,0,0), where
V(z,0,0) = C + 0x + 0x + 05"0A,
1 j
+§92 (M +iN) + 592 (M —iN)
+6%0 (X — %a“@ux) + 620 (X — %a“@ux)
1 - 1
+-020*(D — =0,0"C) .
2 2
8 bosonic dofs: C, D, M, N, V,;
8 fermionic dofs: y, A.

But, not all of them are physical dofs, and some of them can
be ‘gauged away'.

Local superfield redefinition (also called SUSY-guage trans):

V -V =V 4+i(A - AT (Abelian case),

where the gauge parameter A(y,0) ( T(yT,0)) is a chiral
(anti-chiral) superfield: DsA =0 (D, AT = O)

Exercise: Starting from the general expression for V', perform
a SUSY-gauge trans to show that the fields x, C, M, N and
one-component of the gauge field A, can be ‘gauged away’.
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The Wess—Zumino Gauge

The choice of SUSY-gauge fixing that eliminates x, C, M, N
and one-component of the gauge field A, is called the Wess—
Zumino (WZ) gauge. In the WZ gauge, vector superfield V'
reads:

_ _ _ I
Vivz(z,0,0) = 00"0A, + 020X + 020X\ + 592 6> D .
The WZ gauge breaks SUSY explicitly, but still allows the

usual gauge trans (see exercise below).

Off-shell, Viyz consists of the following field components:
the gauge-fixed vector field A, (3 dofs, [4,] = 1),

the auxiliary field D (1 dof, [D] = 2),

and the Weyl spinor A (4 dofs, [A\] = 3/2).

On-shell, A,, and X have 2 dofs each.

Exercises:

(i) Verify that the special SUSY-gauge trans (Abelian case):
Vivz, — Wz = Vavz+2[A(y) — A(y")], reproduces the
usual gauge trans: A, (r) — A (v) = Au(z)+ 9 A(z),
where y# = x# — i(6c#0) and A(x) = A*(z).

(ii) Calculate the higher powers of Viyz to obtain that

1 2} n>3
Vivy = 5020214,“4*‘, Vivg. = 0.
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Non-Abelian SUSY gauge transformations:

In non-Abelian theories, the vector superfield is defined in the
adjoint rep:

V(r,0,0) = V*x,0,0) T*,

where T are the generators of the gauge group, obeying the
commutation relations (or the Lie algebra):

[Ta’ Tb] — ’l:fabCTC,

where £ are the so-called structure constants of the group.

The generators in the fundamental rep are normalized, such
that Tr (T°7T") = 150,

Examples: T§y(e) = %aa (a = 1,2,3) and TSy = %/\a
(a=1,...,8), where 0% and A\* are the Pauli and Gell-Mann

matrices, respectively. (Question: How many generators does
an SU(N) group have?).

The important object for constructing actions is e29", where
g is the gauge coupling of the gauge group, e.g. SU(N).

A general non-Abelian SUSY gauge-trans is defined by

2gV

/ oAt .
e 29V _ e 2igA 629V eZng,

_)e

where A(y,0) = A%(y,0) T is a chiral superfield, DsA® = 0.
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— Gauge sector of SGTs

The proper supersymmetric field strengths are

W, = WeT* = ——D?*(e 29V D,e*9"),

W = WiT* = —D
These objects are chiral, i.e. Dy Wo = Do W4 = 0, because
D3 =D3=0.

Most importantly, W, and W transform gauge-covariantly:

—2i - —2ight 5, 2igat
Wo — e 290 W, e?h Wy — e 290 W, et

Proof:

Using the chiral properties of A and A, DsA = 0 and
D AT =0, we have

1 - ; oAt oAt ;
W. — — — D2 e—ZZgA e—2gV €2Z9AD 6—2291\ eZgV eZng
2=~ Dl &M Dy ( )]
:e—2igA[D2 =D, e2ight

1 . _ .
— - €—2ng D2 [e—ZgV Da(e2gV e2ng )]

8g

. ) 1 . _ .
__ _—2igA 2igA —2igA 2 2igA
= e Weae — —e DD, e .

“ 8g =
D, {D%,Dy}
47

We now use the fact that {D4, Do} = —2(0*)ag Py and
[Dc'wpu] =0:
W. — e—QiQAW e2z’gA o ie—QigAD. {Dd D }eQigA

(8 (8 89 (67 ) [0

__—2igA 2igA —2igA & 21gA
= e W, eI @e IR (") > Py Dd_eog :

g.e.d.

Exercises:

(i) Verify that {Ds, Do} = —2(0")aa Py

(i) Calculate in the WZ gauge the spinor chiral superfield W,
and W to obtain that

Wa(y) = Aa(y) + 0.D(y) — i(0"0)a Flun(y)
+ 162 (o" D,}\(y))a ,

Wyh) = M@ + 6°D(y") + i (5"0)* Fuu(y")
+i6% (3" DAy,

DA = 0\ + iglAu, A, DuA =9\ + igld,, N,
Fo = 0,A, — 0,A, +ig[A,, A].
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Supersymmetric gauge kinetic action: (i) Show that Lgayge is invariant under the gauge trans:

The chiral and anti-chiral nature of the Field strengths: W, OpAAY, = O, A" + gfabCAZAb,
and W, their spinor character and renormalizability leads to @ rabevbpc @ pabe b c
the following gauge-invariant action: AN = gfTNAT, OAD" = g™ D7AT,

4 1 N S where A*(x) are infinitesimal gauge parameters.
Spange = /d o [T (WoWa o+ T (WalT)] ]

1 - o (iii) Show that Lgauge is invariant under the SUSY trans:
_ / dwdh S [ Te (W) 5(0) + Tr (WalV™) 5(6)]

6cAS = — (o, A" — Mau(,
For the U(1) case, replace: 1Tr (WeW,) — 1 WoW,, . SAL = —i (0" () F2, + ¢uD?,
6cAy = —i(Co™)a FS, + CaD?,
Exercises: 6cD* = —i (E(,upzb)\b _ Dzbj\%ug) :
(i) Calculate Sgauge to find that where (, and (s are infinitesimal z-independent
. . Grassmann parameters.
a mapv Ya; = abyb ana
Seauge = _ZF“”F MY\ w“DM A+ §D D,
where

F, = 9,45 — 0,A% — gf**Ab A
is the SU(V) strength field tensor, and

Dzb — auéab + gfabcAZ

is the covariant derivative in the adjoint rep. of SU(V).
In the U(1) case, f%¢ =0 and a,b = 1.
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— Gauge Interactions to Matter in SGTs

SUSY gauge trans of chiral and antichiral superfields:

O(y,0) — P'(y,0) = e 2D D(y,0),
oy, 0) — @1y a) = af(yf,a)e2ion' o)
with DgA(y,0) = 0.
Hence, the ®-kinetic term is not gauge invariant:
Tr (@T3) — Tr(dfe2h =290 g) £ Tr(0d),

where the trace is taken over the group space in the
fundamental rep of &: & = (&1, Po,..., Py ) for SU(N).

29V

Including the SUSY gauge connection, e*9", we can write

the following gauge invariant term:

Tr(®Te9V ®) — Tr (q)Te%gAT o—2igAT 29V 2igA ,—2igA )

= Tr(®Te?9V @).

The corresponding SUSY gauge invariant action is

Sk = / d*z Tr (@7 €29V @) 4050 = / d*z d*0 Tr (BT 29V @) .
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The ®-kinetic term in the WZ gauge:

Straightforward calculation of LE = Tr(®Te29V @) 05
in the WZ gauge leads to a result that is equivalent to
performing the following two additions in the ungauged WZ
Lagrangian Ly, presented on page 40.

The two additions:

(i) Couple Ve o (A%, A%, D?) to ) (¢, &, F) in a
gauge- and SUSY- invariant way:

LY® = g(¢1T%¢) D* — V2g[($IT €)X + A*(€T"¢)].

(ii) Change ordinary derivatives J,, to covariant derivatives:
Oy — D, =0, + igA;T*,

in the Lagrangian with the scalar multiplets, i.e. make the
substitutions in the WZ Lagrangian:

& — Dut = 9,§ + igALT¢
Oup — Dup = 0,0 + igAiT¢
ot — (Duo)' = 9,07 — igAlte'Te
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The general SGT Lagrangian with matter fields:

Ssar = / d%d‘*@[%Tr(WaWa)&(e‘) + %Tr (WaW ) 5(0)

+Tr (7Y @) + W(D)d(0) + Wi(@h)s()],

where W (®) is the superpotential allowed by the gauge
symmetries of the theory.

In summary, after integrating over the f-space, we get

1 . 1
Lsor = =3 FR,F*" 4+ NighDiPA + oD D"

+ (D"¢)'(Duo) + €ic"(D,E) + FIF
+ g(@'T*¢) D* — V2g[(¢TT*) A" + A(ET°9)]

1 -
— GWos§6 + Wy I — W6 + FIW .

The auxiliary fields F' and D% in LggT can be eliminated by
using the equations of motion:

F =-W, D= —g(¢'T").
The complete real potential V' of a SGT then becomes

T 1 ama T 1 2( 1 Tra 1\2
V:FF+§DD:W¢W¢+§g(¢T¢)20

Note that the potential V' is determined by other interactions
in the theory! (More discussion on V' in Chapter 6).
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Exercises:

(i) Show that Lggr is invariant under the gauge covariant
SUSY trans:

0cAS = — (oA — N6u(,

S AL = —i (0" Q)aFl, + (D",

6€5\g¢ = _Z.(EO-MV)@FSV + Eo'éDaa

6¢D* = —i ((a"DIN — DW®XGH()
Scp = V2(E,

0cba = —i(0"C) oDy + V2(,F,
6cka = 1(Co")a (Duo)t + V2(uFT,
6cF = —iv2(a"(D,€) + 29 (T¢)CA".

(i) Show that the above SUSY algebra closes off-shell for
gauge covariant objects:

[5C1’ 5C2] X = -2 (610“52 - C‘20N§1) Du - X,

where X = ¢, F, Fj,,\*, D and arbitrary covariant

derivatives of X. The action of D, on X, D, - X,
depends on the rep of X.
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— Feynman rules

6. Spontaneous Breaking Mechanisms of SUSY

All Feynman rules for SGT can directly be read off from _ Spontaneous SUSY Breaking

Lsar.
If the vacuum |0) respects SUSY, it fullfils the conditions:
A P 5 0) = Qal0) = 0.
CAAAAAS p;i - —Np + (1 = §) p—gglj Qal0) @al0)
\@ In global SUSY, the Hamiltonian is related to the generators
y D Z-(Sab =
— ¥tz Qo and Qq:
b
As A o 1, - _
: —gfaey, H = P = 1 (QiQ1 + Q1Qi + Q3Q2 + Q2Q3) .
AC
gb\\ . - ¢ The vacuum energy can be formally computed as
:":* : iQZTiC}Tlgz + o 1 2 _ 2 2 - 2
o7 Mg (01H10) = 2 (I1Q110)11” + [1Q1]0)[* + [1Q:I0)I* + 11Qs[0)]F°) -
e :
«,’(N\< : ig T, Py From this, we deduce that (0|H|0) > 0.
3 If SUSY is exact, then (0|H|0) = 0, implying a vanishing
A? cosmological constant!
R : _ i\/igTa
¢ But, nature is not fully supersymmetric, and SUSY must

be broken either spontaneously or explicitly.
o If (O|H|0) > 0, then SUSY breaks spontaneously.

Exercise: Starting from the anti-commutation relation (v) on
page 30, prove the above relation between H and the SUSY
generators (0, and Q.
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— O’Raifeartaigh Models

In Section 4, we have seen that the real scalar potential is
T 1 ana T 1 2 ta 2

Since (0|H|0) = (0|V'|0) in the absence of non-perturbative
effects, then (0|V']0) > 0 will signify spontaneous breaking of

SUSY.
 V |4

o ¢ o ¢
(a) (b)

The vacuum preserves SUSY The vacuum breaks SUSY spontaneously

If there is no solution F; = 0 and D* = 0 for any values of
the scalar fields ¢;, then SUSY is broken spontaneously.

Models that break SUSY through F; # 0 are called
O'Raifeartaigh models.

D-breaking of SUSY can be achieved only if the theory
contains U(1) factors by means of the Fayet-lliopoulos term.
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Minimal O’Raifeartaigh Model

Such a model requires at least 3 chiral superfields, ®;, &9
and ®3, and a superpotential of the form:

1
W(Dy, Dy, ®3) = — 2P + mDydy + §A<I>1c1>§.

This model has a new type of U(1)z symmetry:

B, — Dy, Py — Dy, Dy Dy W — W,

The overall phase of W can be absorbed into §(f) that
always multiplies W' in the action (see page 53). This can be
achieved by redefining 6, — €2 6, and 64 — e~ 2 .

A symmetry under which the superpotential remains invariant
up to an overall phase is called R-symmetry.

Furthermore, the model has the following discrete symmetry:

P — Dy, by — — Py, b3 — —Pg.

The real scalar potential V' of the model is given by
Vo= |A]? + |FR? + |F)?

where

1 * * * * *
F1:u2—§>\¢32, Fo=—mao;, Fz3=—ma¢op, — AP, ¢3.
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Problem:

Consider the minimal O'Raifeartaigh model with 3 chiral
superfields mentioned above.

(i) Verify the expressions for the auxiliary fields F} 23 and
show that all the conditions Fj33 = 0 cannot be
simultaneously met.

(i) Assume that m? > Au?, and show that the absolute
minimum of the potential is at ¢2 = ¢3 = 0, with ¢,
being undetermined, i.e. ¢; constitutes a ‘flat direction’
in the scalar potential. Is the R-symmetry broken in this
case?

(iii) Find that for m? > Apu?, the model predicts at the tree
level 6 real scalars with squared masses:
0, 0, m?2, m?+u?, m?>—-\?,
and 3 Weyl fermions with masses: 0, m, m.

[Hint: Consider appropriately the ungauged version of the
Lagrangian Lgsgr given on page 53.]

(iv) What is the physical meaning of the massless Weyl
fermion?

(v)* Calculate the mass spectrum of the model for the case
m? < Au?. Does the ground state preserve the R-
symmetry?
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— The Fayet-lliopoulos Term

The 620*-compenent D’(z) of a U(1) vector superfield
V'(x,0,0) is both invariant under SUSY and gauge trans.
(Question: Why?)

This allows us to add to the action a term linear in V/, the
so-called Fayet-lliopoulos (FI) term:

Spr = / Az KV | 250 = / d'zd*0 kV' .

The resulting scalar potential is

1
VFI = —§D/2 — IQD/ — D/glzyz¢j¢l,

where y; are the U(1) charges of scalar fields. For instance,

for the SM, these will be the U(1)y hypercharges.

Using the equation of motions for D’, we find that
D' = —k = > yididi,
i

and hence
2
FI 2 9 i 1 P P .
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Remark: The FI term does not break by itself SUSY, since
one can have D’ = 0, for specific values of the scalar fields.
However, the synergy of D’ with other F' terms of the theory
can break SUSY spontaneously.

Problem:

Consider a SQED model with two chiral superfields of opposite
charge that includes a FI term:

ESQED = ((I)];[ 626‘/ (I)l + (I)E 6_26‘/ (1)2 + KJV)|92§2
+m (1P + D] DYg2 ).

(i) Calculate the total real potential V' and show that SUSY
has to be broken spontaneously.

(i) Consider the two cases: (a) m? > ek and (b) m? < ex,
and show that only SUSY is broken in (a), whereas in
case (b) both SUSY and gauge symmetry are broken
spontaneously.

(ii) Calculate the bosonic and fermionic mass spectrum of the
model for the above two cases (a) and (b).

[Hint: For a discussion of the above problem, see the textbook
by Wess and Bagger, pages 52-56.]

61

7. Minimal Supersymmetric Standard Model

— Model-Building of the MSSM

The MSSM is based on the SU(3).®SU(2),®U(1)y gauge
group, with the following field content:

Superfields Bosons Fermions SU(3)c®SU(2) 1, @U(1)y
GAUGE
G G2 Laa 5 (8,1,0)
/vf W} 3o, 'VV:’ (1,3,0)
B By B (1,1,0)
MATTER
L 2T =, LT =g (1,2,-1)
E E=1% (er)® = (9 (1,1,2)
Q Q" =@ay QT = (u,a) (3.2, 1)
0 U=y (up)® = %) (3,1,-%)
D _ D=dy (dp)® = @9 (3.1, %)
Hy e = o) | @) (1,2,-1)
Hy ol = (¢F.49) Wy ¥01,) (1,2,1)

Note that from now on superfields will be denoted by a carret
for notational convenience.

Remark: The generation of up- and down-quark masses
from an holomorphic superpotential and the cancellation of
anomalies due to the presence of higgsinos require that at
least two Higgs doublets with opposite hypercharge be added
to the theory.
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The construction of the MSSM Lagrangian
Shssy = /d4a: d'o {| %Tr(G“Ga)é(é) +%Tr(W"‘Wa)6(§)
+iB”‘Ba §5(0) + h.c.]

+ QN (0 2V 4 i) G

+ S0 A (W g By g

i=1,2

+ W8(0) + W'5(0) + 6(0)8(0) Lore }
where G, W, and B, are the SUSY SU(3)., SU(2) and
U(1)y field strengths, respectively.
In addition, W is the MSSM superpotential
W = hl ﬁlT'LO'Q./[/\E\ —|— hd ﬁlTZO'QQ\B + hu @\Tidgﬁgfj — uﬁlT’I:O'QﬁQ ,
and Ly is the soft SUSY-breaking Lagrangian
1 aya i 3
_Esoft = E(mg >\§>\§ + ’I’I’LW )\W}\W + mﬁ >‘§>‘§ + hC)
+M;L'L + M4Q'Q + M, UU + M; DD
+ MLE'E + m>®i®d, + m’olo,
— (Bp EIVDITZ'UQQDQ + h.c.) + (hjA; @IEE’
+ hgAq®IQD — h,A, ®)i0,QU + h.c.),

with &, = io,® and ®7 = (¢!, ¢9).
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Global Symmetries of the MSSM

The MSSM has two softly broken global symmetries:

(i) The Peccei-Quinn (PQ) symmetry U(1)pq:
Hy (1), Ha(1), Q(-1), U(0), D(0), L(-1), E(0).

The PQ symmetry is broken by the 1 and By parameters.

(i) The R-symmetry U(1)g:
H1(0), H(0), @(1), U(1), D(1), L(1), E(1),

implying that Wyssm (2). The R-symmetry is broken by
the 1 parameter, the trilinear soft SUSY-breaking terms
and the gaugino masses. (Question: Why?)

In addition, the MSSM possesses an exact discrete Zo-matter
parity, better known as R-parity. Under Z,, all ordinary
SM particles have charge +1, while all SUSY partners have
charge —1.

(Question: What are the phenomenological consequences of
R-parity conservation?)

Exercise: Show that the additional SUSY operators:

WR = 8Z'E?i02ﬁ2-|—>\ijkz?i0'2ij§k+A;jkffidgzj5k+A;;kﬁiﬁjBk

break R parity. Which operators break the lepton and baryon
numbers idividually?
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— Gauge-Coupling Unification

The one-loop Renormalization—Group (RG) equations for the
SM gauge couplings are:

-1
dgi 2.3 _ bi23 3 N da1,2,3 _ bi23
di 1672 123 dt o

2
where t = In(Q/Mz) and aj23 = gﬁv?’, with g1 = \/gg/,
92 = gw and g3 = gs.

The normalization of g is chosen so as to agree with the
covariant derivative when embedding the SM into an SU(5)
or SO(10) unified theory.

The by 2 3 constants are:
41 19 33
SM MSSM
= (=, ==, — = (= 1. —
b1,2,3 (10’ 6 ) 7) ’ b1,2,3 ( 5 ’ ) 3> )

Problem (Gauge-coupling unification):
Given that a4(Mz) = 0.12, «a,(Mz) = 0.033 and
em(Mz) = 1/128, calculate:

(i) the intersection point My due to RG evolution of the g
and g3 couplings in the SM and the MSSM.

(ii) the coupling g1(Mz), assuming that g1(My) = g2(My) =
g3(My). Compare then your prediction for aep,(Mz) in
the SM and the MSSM, with its experimental value.
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— The MSSM Higgs Potential
|. Tree-Level Potential

The MSSM Higgs potential can be computed by

3
VMssm = W51W£1 + W<I>2W(IT>2 _|_% Z;(Di)Q L D*
i
_[’iifgtgs,
where
Wg, = p®ioy + -,
We, = —p®lioy + -,

Di = 971” (&)11-0'1&/)1 —|— (1)50'7;(1)2 —|— ) y

/ ~ ~
D = %(—@1@1 LDy + )

soft

—ctises — 2510, 4 m2dld, — (B,ug[ilTiagéz + h.c.);

and the dots stand for non-Higgs terms.

Notice that the quartic couplings of the Higgs potential are
fully determined by the SU(2); and U(1)y gauge couplings
gw and ¢’.
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Problem (The Tree-Level Higgs Potential): to calculate the so-called tadpole parameters:

. . . 0Ly V1V i
(i) Use the identity Toi9) = <8¢ > = Vi(2) N?(z) + %Re(m%e D)
1(2) Y12)
3
_ 1
;(m)ab ()t = 2 0ad et = Our Oca +>‘1(2)"Uf(2) T 2 (As + >\4)”§(1)} ’
to cast the Largangian LY, containing the tree-level Higgs ocy '
potential (LY, = —Vissm) into the form: Toy(ay) = <6a1(2)> = +(=) v Im(m7ye’) .

(i

L) = p(@1@)) + pi(®1ds) + miy(@1®s) + miz(@]P:)

FAUP]1)” + Ao(B1B2)” + Ag(B]P1) (P} D2) . .
X ’ ' ’ (iii) The tree-level MSSM mass spectrum consists of a

T T
+ A4(21P2)(2221) degenerate pair of charged Higgs bosons H*, two CP-
with even Higgs bosons h and H, and one CP-odd scalar A.
o= —m?— |, o= —m?— |u?, m?, = Bpu, Require the vanishing of the tadpole parameters to obtain:
1 5 12 1 o 2 R 2 o1
A = do = —— Ao = —=— _ e(miye™)
1 2 g9 t97), 3 7 G0 —97), Mj:#, M?. = M2 + M2,
Moo= 1g? 1
LT g My = 5 (M3 + M}
~() I+ M)~ MM )
: : . s
Use ttle Imea.r expansions of the Higgs doublets about the where tan 8 = £ = 5_? v = \/v?+v: = 2Mw /g, and
ground state: 1 5 >
Mz =35+/95+9"*v.
(I)l - 1 ¢1~_ .
(v + ¢+ dar) )7 (iv) Use the above results to show that M, < My and
ot M;, < My, From LEP2, we know that M, > 114 GeV,
— 23 2 . |
by, = e ( % (02 + s + iaz) ) so the MSSM is already ruled out at the tree level!

But, radiative effects are large and may rescue us!
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Il. Quantum Corrections to the Higgs Potential

Radiative effects on the MSSM Higgs potential are large:

d, bt qﬁk hept 7 hep
N ~ @®@----- —-=-- ®--------- ®-----
oot ! !
hiel i+ 7
T e LSS S
q)J htAt (I)T htAt t htAt
C *CV(q)la(I)Z)

The radiatively-corrected upper bound on M, becomes:

3h?

M? < M3 2, (1 — 2ty
> ZC2B( Q72 )
3hiv?s} 4oy X X? X?
3 s At At
872 {( 31 Ms [ + M2( 12M2)}
2X?2 X?
3p2 _ t
+ T 2( 32ma) | 2 12M2)t + ]},

where t = ln(MSQ/mt), X = Ay — pftg is the stop-mixing
parameter and Msg is the soft SUSY-breaking scale.

For Mg ~ 1 TeV, X; ~ 2.45 TeV and m; = %htm ~
175 GeV, we have

My, < 115 (135) GeV,
for tan 3 = 3 (20).
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— Radiative Breaking of Gauge Symmetry

Radiative effects may also break the electroweak gauge
symmetry by flipping the sign of the operator ,u2(I>T<I>2 from
positive to negative.

The leading effects of the radiative corrections can be
calculated by means of RG equations.

For illustration, let us consider the dominant t—Yukawa RG

effects on the soft SUSY-breaking mass m3 ~ p3 (with

[u]?> < m3) and on the left-handed and right-handed soft

stop masses MQ = m? and M[% = mb:

m3 3 3 3 m3 3
L N L o T (e g I i B
dt g 872 B Q2 )

mi 1 11 mj 1

where t = In(Q/My).

Exercise: Assume that A; = 0 and a common mass scale
m3 = m% = m3 = m3 at My ~ 10'° GeV to solve the
above RG equation. Evaluate the solution at Q = 1 TeV to

approximately find that

2
m22 1, —1
mp | 5 mg 01,
m? 1

L

i.e. m3 flips sign and so triggers radiative electroweak
symmetry breaking.
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— Soft Radiative Breaking of CP Symmetry
[A.P.'98; A.P., C. Wagner '99 . . . ]

Radiative effects from CP-violating soft SUSY-breaking terms
may break the CP symmetry of the tree-level Higgs potential.

There are two kinds of radiative CP-violating effects:
I. CP-violating self-energy effects,
Il. CP-violating vertex effects.

I. CP-violating self-energy effects

o 51)52
tl,tQJtl,tT TN
a II’ \\\ ¢17¢2 a Ta 17¢2 Y\ ,l
-» F»- EEl b T St
~\ ez I~ i
t17t27t27t§ @
SP
v? 32m2Q7
y (1 [Ad® Jul*> 2Re (MAt)>
’ 2 7 tanf3 Q?’ Q?

S (100 GeV)?

Exercise: Use the CP-odd tadpole minimization conditions
Tay, = 0 to show that the tree-level MSSM Higgs potential
is CP-invariant.
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The mixing of the three neutral Higgs bosons

@1 H,
Lo = O| H
a H3

O is a 3 x 3 orthogonal matrix which also describes the mixing
of the Higgs bosons with different CP parities.

In analogy to the case of neutrinos and quarks, Higgs bosons
with mixed CP parities are ordered according to their weights:

Mgy, < My, < Mg,

1

At the one-loop level, My, (with i=1,2,3) and O are
analytically determined by the input parameters:

Mp+(my), tanf(my),
M(th) ) At(@tb) ) Ab(th) )
M3(Qu), MAQu), MAQu).
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Il. CP-violating vertex effects

Effective Hbb-coupling:

(0F3 (0F3

. P1,2 P12

- v 5 v

* o * * __j__ *

bLIA'— "»\bR tRI»' “»\tL
b g b br, - p— b
L g R L hy hy OR

— L0, = (hy + 6hy) ¢ brbr, + Ahy 65" brbr, + h.c.

with

dhy 200 mZzAp |he|? ]2

hy 3 max (Qf, [mgl?) 1672 max (Q7F, |u[?)
Ahy 200, mezf* |he|? Afp*

hy 3w max (QZ, [mgl?) | 1672 max (Q, [u[?)

Exercise: Consider the condition:

eff - 7
£¢05b|¢?’2:%01’2 = —mpbd

to obtain the effective b-quark Yukawa coupling:

Guwp

hy
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T V2Myy cos B[ 1+ 0hy/hy + (Ahy/hy) tan 3]

Effective H,tt-coupling:

0 0
71,2 71,2
N - v
* o * * e *
tLl»'— "»\tR le»’ “»\bL
tr 5t tr + 5+t
L g R L hl h2 R

— L5 = Ay ¢V Ertr + (he + 6hy) ¢ ERtL + hc.

with

Ahy 200, mzp* | hp|? A
hy 3m max (Q7,|mg[*) 1672 max (Q3, [ul?)
dhy 20 mz A | hp|? | |2

hy 3w max(Q%|mgl?) 1672 max (QZ, |u[?)
Exercise: As in the previous exercise, consider an analogous
condition to derive the effective t-quark Yukawa coupling:

Guwg

VM sin B[1+ 0hy/hy + (Ahyfhy) cot 5]

hy
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— Phenomenological Implications:

e Contributions to Electric Dipole Moments

e FCNC observables:
AMK,B, €K, 6//6, B(Bd,s — E-l_f_),
Acp(Ba,s — Ez(R)KZ(R)), with £ = p, T,
B(B — Xsy), ...

e Higgs phenomenology at LEP2, Tevatron, LHC and ete™
Linear Colliders.

CPsuperH: a Super—Code for Higgs Phenomenology in the
MSSM with Explicit CP Violation [hep-ph/0307377]
J.S. Lee, A.P., M. Carena, S.Y. Choi, M. Drees, J. Ellis and C.E.M. Wagner
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Higgs Phenomenology at High-Energy Colliders

Effective Higgs couplings to gauge bosons and fermions:

+
H;(k Wi
el
HT(p)
A
H;(k r‘j 2
_—— - \\\ .
H;(p)
H, <d
d

[M. Carena, J. Ellis, A.P., C. Wagner '00]

1Gw My (CﬁOli + 85021) Guv

2

’ng My (06011 + 86021) 9uv

+29w (€302 — 5501, + i03;)(p — k),

zgw AL [031 (cpO2j — 8501;)

o 7/gwmd
2MW Cﬂ

_ LgwMy
2 My sg

— (= NP—k)

(O1; — is303;v5) + - -+

(O2; — icg O3i7vs) + -

76



Generated with CPsuperH
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100 - =
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% - =
8 | A\ 3
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arg (A) = arg (A,) [deg]

(b)

7

8. SUperGRAVvity

— Local Supersymmetry

So far, we have considered Lagrangians that are symmetric
under a global trans of SUSY, namely the group parameter ¢
was constant.

Local SUSY emerges by allowing the Grassman-valued group
parameter ( to become z-dependent. For example, neglecting
gravity, the local SUSY trans have the usual form

ded(z) = V2((x)&(x)
Scbalz) = —i(0"C(2))aDud + V2Calz) F(z)  ete.

Hence, ( has been promoted to a Weyl spinor, the Goldstino
of spin 1/2.

The gravity multiplet associated with local SUSY contains
the massless graviton g,,,, of spin 2 and the massless gravitino
1, of spin 3/2 (¢, is a 4-vector Weyl spinor, where the spinor
index is suppressed).

The gravitino 1, (z) acquires its mass by ‘eating’ the two
dofs of Goldstino ((z). This is the famous Super—Higgs
Mechanism.

A massive gravitino ¢, (z) has 2s +1 = 22 + 1 = 4 dofs:
2 dofs from the initially massless gravitino and 2 from the
massless Goldstino.
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— Non-renormalizable Interactions and Kahler Potential

The gravity sector of the simplest (on-shell) SUGRA model
may be described by the Lagrangian:

1 1 ., - _
£SUGRA - = 9242 vV—gR— 55/‘ AP (quVDA¢p_¢uUVDAwP)7

where % = 877Gy = 87 /M3, 9 = det[gu(z)] and R is
the Ricci curvuture scalar.

In addition, Dy = 0\ + wi"gaag is the covariant derivative
w.r.t. local Lorentz trans and w/o\"B
connection or spin connection.

is the corresponding affine

The local Minkowski metric g,,,,(x) can be written in terms
of the vielbeins el‘f as gy = efj egnaﬁ, where 1,3 is the
flat-space metric.

Without proof, we state that Lsyara is invariant under the
local SUSY trans (suppressing all spinor indices):

5(;6/0; = —m(§_5“zpﬂ+ga%u),
2
ochp = —=Duq,

K
(5@0;'8 = O,

with ¢ = ¢().
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Matter Sector of SUGRA:

Here, we summarize the main results:

(i) The superpotential W (®) is generalized to an arbitrary
non-renormalizable hermitian function G(Cbi,fb;[) allowed
by the symmetries of the theory.

(ii) The kinetic terms in Mpjanck = 1 units are given by

; ; 0*G
Can = GLOE0,8;5 Gl = s
7 J

(iii) The effective potential V' in units of Mpjanck is

o : oG
= G . -1 ’L. J N ; v -
Vo= e [Gi(GT)GT — 3] Gi(GY) 55, (07)

(iv) SUSY can be broken spontaneously by G; # 0, while
(V) = 0. This can solve the so-called cosmological
constant problem, although fine-tuning the tree-level
potential is still required.

(v) The potential V is not always positive definite V' > 0, and
could have lower ‘false’ vacua. Hopefully, the tunneling
time to those ‘false’ vacua is sufficient large, i.e. much
larger than the age of our universe ~ 10'° years.
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— Gravity-Mediated SUSY Breaking

In this scenario, the breaking of SUSY occurs in the so-called
hidden sector of the theory. This breaking gets communicated
to the visible sector through non-renormalizable interactions
of hidden sector fields, e.g. X, with the visible SM gauge
fields. The strength of these interactions is gravitationally
suppressed by powers of 1/Mpjanck.

The generic form of these gravity-mediated interactions is

_Esoft = /d49 {(%fwa Wa (S(é) + hC)

XtX
Mg

+ Gidl®;
X

+ [5(9_)E

1 1
(5 bijq)iq)j + Eaijk@fbj@k) + hC]} .

The spontaneous breaking of SUSY in the hidden sector is
manifested by a non-vanishing VEV of the auxiliary field F'x
of X, ie. (Fx) = M2 4. 7 0.

Exercises:

(i) Show that L. given above is fully equivalent to the soft
SUSY-breaking Lagrangian on page 63.

(ii) If the scale of SUSY breaking in the visible sector is
mg,2 ~ 1 TeV to solve the gauge hierarchy problem, estimate
the scale of SUSY breaking My;iqden in the hidden sector.
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