
Course Summary Electrodynamics (PHYS30441) Terry Wyatt

1 Coordinates and Notation

As shown in Figure 1, relative to the origin O:

• Unprimed coordinates are used for the space-time coordinates of the point P at which potentials
and fields are evaluated: (r, t).

• Primed coordinates are used for the space-time coordinates of the source (charge, current): (r′, t′).

• Vector from the source to the position at which potentials and fields are evaluated:

R = r − r′ = (x− x′) x̂+ (y − y′) ŷ + (z − z′) ẑ.

Magnitude: R =
[
(x− x′)2 + (y − y′)2 + (z − z′)2

] 1
2 =

[
r2 + r′ 2 − 2rr′ cosα

] 1
2 ,

where α is the angle between r and r′.

Unit vector: R̂ =
r − r′

|r − r′|
=
R

R
.

Figure 1: Diagram showing the coordinates used for the observer and sources.

The operator ∇ represents differentiation with respect to the unprimed coordinates:

∇ = x̂
∂

∂x
+ ŷ

∂

∂y
+ ẑ

∂

∂z
.

The operator ∇r′ represents differentiation with respect to the primed coordinates:

∇r′ = x̂
∂

∂x′
+ ŷ

∂

∂y′
+ ẑ

∂

∂z′
.
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It is important to note that ∇f(r′) =∇r′f(r) = 0, whereas ∇f(R) = −∇r′f(R).

For example, ∇
(

1

R

)
= − R̂

R2
, ∇r′

(
1

R

)
=
R̂

R2
.

Note also that ∇ ·
(
R̂

R2

)
= ∇2

(
1

R

)
= −4π δ3(R).

Here δ3(R) is the 3-dimensional delta function, which has the property that the volume integral

ˆ
V
f(r) δ3(r − a) dτ ′

{
= f(a) if the volume V contains the point r = a, and
= 0 otherwise..

In the case of moving sources, the retarded time at the source, tret, takes into account the time taken
for a light signal to propagate a distance R:

tret = t− R

c
.

Index notation for 3-vectors

It is useful to practice using cartesian index notation for 3-dimensional vectors. As well as being a
useful technique in its own right, it may also help make the transition to using index notation for
4-vectors less daunting.

We write the “i” cartesian component of the 3-dimensional vector u as

ui = [u]i , where i = 1, 2, 3,

and, in particular, we write xi = [r]i.

Because the three cartesian coordinates are orthogonal we have

∂xi
∂xj

= δij

{
= 1 if i = j,
= 0 if i 6= j.

The summation convention implies that if an index is repeated in an expression that index is summed
over (unless it is explicitly stated to the contrary). Thus, we can write, for example,

∇ · u =
∂ui
∂xi

,

∇× u = x̂i εijk
∂uk
∂xj

,

u× v = x̂i εijk ujvk,

where
ε123 = ε312 = ε231︸ ︷︷ ︸ = −ε132 = −ε213 = −ε321︸ ︷︷ ︸ .

cyclic permutations anti-cyclic permutations

Of course, this implies εijk = 0 if any two indices are equal.

The following relation is useful

εijkεkmn = εijkεmnk = δimδjn − δinδjm.
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2 Electrostatics and Magnetostatics

Potentials from sources:

‘Point’ source V =
q

4πε0

1

R

Volume ( dτ ′) V =
1

4πε0

ˆ
ρ (r′)

R
dτ ′ A =

µ0

4π

ˆ
j (r′)

R
dτ ′

Surface (da′) V =
1

4πε0

ˆ
σ (r′)

R
da′ A =

µ0

4π

ˆ
j (r′)

R
da′

Line ( dl′) V =
1

4πε0

ˆ
λ (r′)

R
dl′ A =

µ0I

4π

ˆ
dl′

R

Fields from potentials E = −∇V B =∇×A

Fields from sources
E =

q

4πε0

R̂

R2

=
q

4πε0

R

R3

B =
µ0

4π

ˆ
j (r′)× R̂ dτ ′

R2

=
µ0I

4π

ˆ
dl′ × R̂
R2

Inhomogeneous field equations:

Differential versions ∇ ·E = −∇2V =
ρ

ε0

∇×B = −∇2A = µ0j

Integral versions
˛
E · da =

1

ε0

qenclosed

˛
B · dl = µ0Ienclosed

Note: the relation ∇×B = −∇2A requires choice of the Coulomb gauge: ∇ ·A = 0

Homogeneous field equations ∇×E = 0 ∇ ·B = 0

In the static case we require
∂ρ

∂t
= 0, ∇ · j = 0,

∂j

∂t
= 0 and

∂I

∂t
= 0

Notes:

1. The potentials and fields obey the principle of superposition. This means, for example, that
many results proven for the special case of a point charge can be taken as valid for a general
charge distribution (which can be built up from a collection of point charges).

2. The equations involving the vector potential, such as,

A =
µ0

4π

ˆ
j (r′)

R
dτ ′, −∇2A = µ0j, ∇2A = 0,

can sometimes usefully be thought as three scalar equations relating the three components of A
and j. Thus,

Ai =
µ0

4π

ˆ
ji (r

′)

R
dτ ′, −∇2Ai = µ0ji, ∇2Ai = 0,
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where i = x, y, z or i = 1, 2, 3.

3. Using Stokes’s theorem and B =∇×A it can be shown that:
ˆ
B · da =

˛
A · dl.

2.1 Solutions to Laplace’s equation

In regions with no sources, Poisson’s equation ∇2V = − ρ

ε0

reduces to Laplace’s equation ∇2V = 0.

Solutions to Laplace’s equation have the following properties:

• The value of V (r) is equal to the average value of V over a spherical surface centred at r.
=⇒ No local maxima or minima can be present1 within a region satisfying ∇2V = 0.
=⇒ Earnshaw’s Theorem: A charged particle cannot be held in a position of stable equilibrium
by electrostatic forces alone.

• The particular solution to Laplace’s equation requires knowledge of the boundary conditions.

• Uniqueness Theorem: There is only one unique solution to Laplace’s equation that satisfies
a given complete set of boundary conditions.

The solutions to Laplace’s equation in many problems employ the separation of variables:

Cartesian coordinates:

V (x, y, z) = X(x)Y (y)Z(z) where the most convenient choice for the general solution can be
either

• X(x) = A sin(kx) +B cos(kx) for coordinates in which the problem is bounded, or

• X(x) = Aekx +Be−kx for coordinates in which the problem is unbounded.

Spherical polar coordinates with azimuthal (φ) symmetry:

V (r, θ) =
∞∑
l=0

(
Alr

l +
Bl

rl+1

)
Pl(cos θ) where the first three Legendre polynomials are given by

P0(cos θ) = 1,

P1(cos θ) = cos θ,

P2(cos θ) =
(
3 cos2 θ − 1

)
/2,

Pl(cos θ) =
1

2ll!

(
d

d(cos θ)

)l (
cos2 θ − 1

)l
.

Notes on boundary conditions:

1. In most problems the complete set of boundary conditions is not stated explicitly and has to
be inferred on physical grounds. It is important that you can use confidently the techniques for
determining boundary conditions that you will have met in 2nd year E&M.

1Turning points in V as a function of one or more coordinates are allowed within the volume. However, maxima (or
minima) in all three coordinates at the same point in space within the volume are not allowed.
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2. For example, in electrostatics:

(a) When considering a charge distribution of finite spatial extent its contribution to V → 0
as R→∞ (far from the charge distribution).

(b) Other boundary conditions relevant to a surface charge density σ are that:

i. the scalar potential V must be continuous as one crosses the boundary,
ii. the component of the E field parallel to the surface must be continuous,
iii. the component of the E field perpendicular to the surface is discontinuous by an

amount ∆E⊥ = Eout
⊥ − Ein

⊥ = σ/ε0. (See Figure 2 [left]).

Similarly, in magnetostatics:

(a) When considering a current distribution of finite spatial extent its contribution to A → 0
as R→∞ (far from the current distribution).

(b) When considering a surface current density j:

i. the vector potential A must be continuous as one crosses the boundary,
ii. the component of the B field perpendicular to the surface must be continuous,
iii. the component of the B field parallel to the surface is discontinuous by an amount

∆B‖ = Babove
‖ −Bbelow

‖ = µ0j. (See Figure 2 [right]).

3. Sometimes a solution is considered that has to be valid only within a particular region of space
(for example, inside or outside of a given closed surface). It is very important to remember that
the physical constraint that V or A remain finite as R→ 0 can be applied only if the region of
space being considered actually contains the point R = 0! A similar consideration applies when
considering the physical constraint that V or A remain finite as R→∞.

Figure 2: Diagrams showing [left] gaussian pill box used to calculate the discontinuity in E⊥ due to
the presence of a surface charge density σ, and [right] amperian loop used to calculate the discontinuity
in B‖ due to the presence of a surface current density j.

2.2 Multipole expansions

It is sometimes useful to evaluate approximate expressions for the potentials and/or fields at distances
from the sources that are much greater than the spatial extent of the sources (r � r′). For example,
sometimes we can have quite complicated-looking distributions of charges (or currents), but the most
important physical features of the resulting potentials and/or fields can be described to a reasonable
approximation by, say, a dipole. Particularly in magnetostatics, where the “monopole” term is always
zero, working out the dipole moment is a particularly convenient way of finding the potentials and/or
fields resulting from most current distributions.
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The following results for V and A derive from the expansion of
1

R
in powers of

r′

r
and Legendre

Polynomials
1

R
=

1

r

∞∑
n=0

(
r′

r

)n
Pn (cosα)

V (r) =
1

4πε0

∞∑
n=0

1

rn+1

ˆ
(r′)

n
Pn (cosα) ρ (r′) dτ ′

=
1

4πε0

1

r

ˆ
ρ (r′) dτ ′︸ ︷︷ ︸+

1

r2

ˆ
r′ cosα ρ (r′) dτ ′︸ ︷︷ ︸+

1

r3

ˆ
(r′)

2

(
3

2
cos2 α− 1

2

)
ρ (r′) dτ ′︸ ︷︷ ︸+ . . .


monopole dipole quadrupole

The electric “monopole” term is essentially just Coulomb’s law, with the approximation that the entire
charge density is collapsed to the origin.

V (r)monopole =
1

4πε0

Q

r
,

where Q is the total charge.
The electric “dipole” term may be written as

V (r)dipole =
1

4πε0

p · r̂
r2

,

where the electric dipole moment, p, is given by:

p =

ˆ
r′ρ (r′) dτ ′.

p depends only on the charge distribution and not on r. If we choose coordinates such that the dipole
is at the origin and points along the z direction, p = pẑ, the electric field is given by

Edipole =
1

4πε0

p

r3

(
2 cos θ r̂ + sin θ θ̂

)
.

We can make a similar multipole expansion for the vector potential far away from a localised current
density distribution.

A (r) =
µ0I

4π

∞∑
n=0

1

rn+1

˛
(r′)

n
Pn (cosα) dl′

=
µ0I

4π

1

r

˛
dl′︸ ︷︷ ︸+

1

r2

˛
r′ cosα dl′︸ ︷︷ ︸+

1

r3

˛
(r′)

2

(
3

2
cos2 α− 1

2

)
dl′︸ ︷︷ ︸+ . . .


zero dipole quadrupole

The vector potential for a magnetic dipole is given by

A (r)dipole =
µ0I

4π

a× r̂
r2

=
µ0

4π

m× r̂
r2

,

where m = Ia is the magnetic dipole moment and a is the vector area of the current loop. If the
loop lies in a plane then |a| is just the area enclosed by the loop. The direction of a is given from the
circulation of I, e.g., by the right-hand rule.
For a magnetic dipole centred at the origin and pointing along the z direction,m = mẑ, the magnetic
field is given by

B (r)dipole =
µ0m

4πr3

[
2 cos θ r̂ + sin θ θ̂

]
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3 Electrodynamics

Inhomogeneous field equations ∇ ·E = ρ/ε0 ∇×B = µ0j + ε0µ0
∂E

∂t

Homogeneous field equations ∇×E = −∂B
∂t

∇ ·B = 0

Integral relations
˛
E · dl = −∂Φm

∂t

˛
B · dl = µ0Ienclosed + ε0µ0

∂ΦE

∂t

where Φm =

ˆ
S

B · da ΦE =

ˆ
S

E · da

and the surface S is enclosed by the line over which the closed line integral is performed

Lorentz force F = q (E + v ×B)

Fields from potentials E = −∇V − ∂A

∂t
B =∇×A

The gauge transformation . . . V =⇒ V − ∂ψ

∂t
A =⇒ A+∇ψ

. . . leaves the fields E and B unchanged

Choosing the Lorenz gauge condition . . .
1

c2

∂V

∂t
+∇ · A = 0, where

1

c2
= ε0µ0

. . . yields the inhomogeneous
wave equations for the potentials,
in the form . . .

(
1

c2

∂2

∂t2
−∇2

)
V =

ρ

ε0

(
1

c2

∂2

∂t2
−∇2

)
A = µ0j

or �2V =
ρ

ε0

�2A = µ0j

where �2 =

(
1

c2

∂2

∂t2
−∇2

)

Integral solutions to the inhomogeneous wave equations for the potentials

When the source (charge distribution) is moving we must take into account the time (R
c
) taken for a

signal travelling at the speed of light c to propagate a distance R from the source to the point P (r, t)
at which we evaluate the potential.
This allows us to generalise the potentials we wrote down previously for the static case to:

V (r, t) =
1

4πε0

ˆ
ρ (r′, tret)

R
dτ ′ A (r, t) =

µ0

4π

ˆ
j (r′, tret)

R
dτ ′ =

µ0

4π

ˆ
ρ (r′, tret)v (r′, tret)

R
dτ ′

where we need to evaluate the charge density ρ, the current density j, charge velocity v, and the

distance R, all at the retarded time, tret = t− R

c
, and position, r′, at the source.

These potentials satisfy the Wave Equation and the Lorenz gauge condition.
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Local Conservaton Laws and Symmetries in Electrodynamics

In special relativity all observers agree that two space-time events occur at the same point in time,
i.e., that they are simultaneous, only if they occur also at the same point in space. Therefore we
require the laws of physics to respect local conservation rules, such as the continuity equation (local
conservation of charge) and the local conservation of energy.

Conservation of electric charge
∂ρ

∂t
+∇ · j = 0

Conservation of energy E · vρ = E · j = −∇ · S − ∂u

∂t

where:
E · j is the rate of change of energy density for charge ρ due to work done by E field

S =
1

µ0

E ×B is the energy flux density in the fields (Poynting vector)

u =
ε0

2
E2 +

1

2µ0

B2 is the energy density in the fields

In a similar vein, the local “gauge symmetry” that leaves the fields E and B unchanged under the

gauge transformation V =⇒ V − ∂ψ
∂t

, A =⇒ A+∇ψ, implies that ψ can be chosen independently
at each point in space-time, subject to satisfying the chosen gauge condition (such as the Lorenz gauge
condition).

4 Electrodynamics in Lorentz-Covariant Notation

Special Relativity

In an intertial frame of reference a body with no nett force acting upon it does not accelerate.

Einstein’s Postulates

I The laws of physics (results of experiments) are the same in all inertial frames of reference.

II The speed of light (in a vacuum) is the same in all inertial frames — this represents the maximum
possible speed for any physical entity.
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The Space-Time 4-Vector

Contravariant (upper index) xµ = [x0, x1, x2, x3] = [ct, x, y, z] = [ct, r]

Covariant (lower index) xµ = [x0, x1, x2, x3] = [x0,−x1,−x2,−x3] = [ct,−x,−y,−z] = [ct,−r]

Frame S ′ (primed coordinates) moves relative to frame S (unprimed coordinates) in the x1 direction
with constant speed β (in units of c).

At x′ 0 = x0 = 0 we have x′ 1 = x1 = 0.

Lorentz Transformations

x′ 0 = γ (x0 − βx1)
x′ 1 = γ (−βx0 + x1)
x′ 2 = x2

x′ 3 = x3

x0 = γ (x′0 − βx′1)
x1 = γ (−βx′0 + x′1)
x2 = x′2
x3 = x′3

x′0 = γ (x0 + βx1)
x′1 = γ (βx0 + x1)
x′2 = x2

x′3 = x3

x0 = γ (x′ 0 + βx′ 1)
x1 = γ (βx′ 0 + x′ 1)
x2 = x′ 2

x3 = x′ 3

and where γ =
1(

1− (v/c)2) 1
2

=
1

(1− β2)
1
2

=
(
1− β2

)− 1
2

Matrix form x′µ = Λµ
ν x

ν xµ = (Λ−1)
µ
ν x
′ ν

xµ = Λν
µ x
′
ν x′µ = (Λ−1)

ν
µ xν

where Λµ
ν =


γ −γβ 0 0
−γβ γ 0 0

0 0 1 0
0 0 0 1

 (Λ−1)
ν
µ =


γ γβ 0 0
γβ γ 0 0
0 0 1 0
0 0 0 1


and also Λµ

ν =
dx′µ

dxν
=

dxν
dx′µ

(
Λ−1

)ν
µ

=
dxν

dx′µ
=

dx′µ
dxν

where Λµ
γ

(
Λ−1

)γ
ν

=
(
Λ−1

)µ
γ

Λγ
ν = δµν δµν =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1



Metric tensor gµν = gµν =


1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1

 xµ = gµνxν

xµ = gµνx
ν

and gµγgγν = gµγg
γν = δµν

Scalar product aµb
µ = aµbµ = aµ g

µνbν = aµgµν b
ν = a0b

0 + a1b
1 + a2b

2 + a3b
3

(Lorentz invariant) = a0b0 − a1b1 − a2b2 − a3b3 = a0b0 − a1b1 − a2b2 − a3b3

Magnitude xµx
µ = xµxµ = xµ g

µνxν = xµgµν x
ν = (ct)2 − x2 − y2 − z2 = (ct)2 − r2

(Lorentz invariant) 9



Space-Time Intervals and Proper Time

Note: if we can show that the four components of any object obey the Lorentz Transformations when
moving from one inertial frame to another this proves the object is a 4-vector. The converse is also
true: if we know that an object is a 4-vector this guarantees that its components obey the Lorentz
Transformations when moving from one inertial frame to another, and guarantees all of the other
general properties of 4-vectors (such as that the object has a Lorentz-invariant magnitude).

The space-time interval between two events (1) and (2) is a 4-vector: ∆xµ = xµ(1) − x
µ
(2) = (c∆t,∆r)

with magnitude given by ∆xµ∆xµ = (c∆t)2 − (∆r)2

Space-time intervals are classified according to the sign of ∆xµ∆xµ:
Time-like ∆xµ∆xµ > 0 The two events can be connected by a signal travelling at v < c.
Light-like ∆xµ∆xµ = 0 The two events can be connected by a signal travelling at v = c.
Space-like ∆xµ∆xµ < 0 The two events cannot be connected by a signal travelling at v ≤ c.

For time-like intervals we can write
∆xµ∆xµ = (c∆τ)2,

where ∆τ is the (Lorentz-invariant) proper time interval, as measured by a clock in the frame in which
the two events happen at the same point in space. In all other frames the time interval between the
two events is given by ∆t = γ∆τ . (That is, considering all possible inertial frames of reference, the
proper time gives the smallest possible time interval between two space-time events).

Lorentz Transformations of Velocities and Accelerations

Velocity is a 3-dimensional vector, but does not directly constitute the 3-vector part of a 4-vector.
Therefore velocity does not transform directly according to the Lorentz transformation. However, we
can use the Lorentz transformation to work out how the components of velocity do transform from
one frame to another.

Let us consider a particle that is travelling with velocity (in units of c) β′ in an inertial frame of
reference S ′. Let frame S ′ be moving with velocity2 βLT relative to a second frame S.

What is the velocity, β, of the particle, as measured in frame S? We shall consider two special cases:

β′ ⊥ βLT: for which we find the result β =

(
βLT,

β′

γLT

)
, where the first component is along the

direction of relative motion of the two frames and the second component is in the direction of
β′, and

β′ ‖ βLT: for which we find the result β =
β′ + βLT

1 + β′βLT

.

These not so simple transformations motivate us to define the 4-velocity, which does transform as a
4-vector (see next section).

Similarly, acceleration does not directly constitute the 3-vector part of a 4-vector. Let now us consider
a particle that has an acceleration (in units of c) β̇′ in our inertial frame S ′. What is the magnitude
of the acceleration, β̇, of the particle, as measured in frame S? Again, we shall consider two special
cases:

2We use the symbol βLT here just to avoid any possible confusion between the speed of relative motion between the
two frames and the speed of a particle within any particular frame. Similarly we shall write γLT for the γ-factor that
arises from the relative motion between the two frames of reference, which would be expressed in terms of βLT.
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β̇′ ⊥ βLT: for which we find the result β̇ =
β̇′

γ2
LT

, and

β̇′ ‖ βLT: for which we find the result β̇ =
β̇′

γ3
LT (1 + β′βLT)3 .

When we discuss radiation from accelerating charged particles, we shall consider the case that the
particle is approximately at rest in frame S ′, in which case β′ � 1 and the latter result simplifies to:

β̇′ ‖ βLT: β̇ =
β̇′

γ3
LT

for the case β′ � 1.

Other 4-Vectors

name definition magnitude

4-differentials


∂µ =

∂

∂xµ
=

[
1

c

∂

∂t
,∇
]

∂µ =
∂

∂xµ
=

[
1

c

∂

∂t
,−∇

] ∂µ∂µ = �2 =

(
1

c2

∂2

∂t2
−∇2

)

4-velocity uµ =
dxµ

dτ
= [γc, γv] = γc [1,β] uµuµ = c2

which transforms as a 4-vector because dxµ is a 4-vector and dτ is a Lorentz invariant.

4-momentum pµ = muµ = m
dxµ

dτ
= [γmc, γmv] =

[
E
c
,p

]
pµpµ =

(
E
c

)2

− p2 = (mc)2

where m is the rest mass or invariant mass of a particle and E is its total energy.

4-current density jµ = ρ0u
µ = [γρ0c, γρ0v] = [ρc, ρv] jµjµ = (ρ0c)

2

where ρ0 is the (invariant) charge density in the rest frame of the charge and ρ = γρ0 is the charge
density in a frame in which the charge is moving.

4-potential Aµ =

[
V

c
,A

]
AµAµ =

(
V

c

)2

−A2

It should be noted that:

• differentiation with respect to the covariant space-time coordinate xµ transforms as a contravari-
ant ∂µ

∂

∂x′µ
= ∂ ′µ = Λµ

ν ∂
ν and

∂

∂xµ
= ∂ µ =

(
Λ−1

)µ
ν
∂ ′ν .

• differentiation with respect to the contravariant space-time coordinate xµ transforms as a co-
variant ∂µ

∂

∂xµ
= ∂µ = Λν

µ ∂
′
ν and

∂

∂x′µ
= ∂ ′µ =

(
Λ−1

)ν
µ
∂ν .
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A note on ultra-relativistic particles

As v → c, β → 1, the contribution of the rest mass of a particle to its energy can be neglected and
we can write E ≈ pc.

In particular, for a photon we can write

pµ = [p,p] and pµpµ = 0.

The Laws of Electrodynamics Translated into Lorentz-Covariant Notation

Continuity equation ∂µj
µ = 0

∂ρ

∂t
+∇ · j = 0

Gauge transformation Aµ =⇒ Aµ − ∂µψ


V =⇒ V − ∂ψ

∂t

A =⇒ A+∇ψ

Lorenz gauge condition ∂µA
µ = 0

1

c2

∂V

∂t
+∇ · A = 0

Inhomogeneous wave equations
(in the Lorenz gauge) ∂ν∂νA

µ = �2Aµ = µ0j
µ



(
1

c2

∂2

∂t2
−∇2

)
V =

ρ

ε0(
1

c2

∂2

∂t2
−∇2

)
A = µ0j

Integral solutions to the
inhomogeneous wave equations
for the potentials

Aµ =
µ0

4π

ˆ
jµ (r′, tret)

R
dτ ′


V (r, t) =

1

4πε0

ˆ
ρ (r′, tret)

R
dτ ′

A (r, t) =
µ0

4π

ˆ
j (r′, tret)

R
dτ ′

Fields from potentials F µν = ∂ µAν − ∂νAµ
{
E = −∇V − ∂A

∂t
B =∇×A

Inhomogeneous field equations ∂µF
µν = µ0j

ν

{ ∇ ·E = ρ/ε0

∇×B = µ0j + ε0µ0
∂E

∂t

Homogeneous field equations ∂µF νλ + ∂λF µν + ∂νF λµ = 0

{
∇×E = −∂B

∂t
∇ ·B = 0

Interaction of a charged
particle q with the fields

dpµ

dτ
= q F µν uν


dE
dt

= qu ·E

dp
dt

= q (E + v ×B)

The electromagnetic field tensor may be written in matrix form as
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F µν =


0 −E1/c −E2/c −E3/c

E1/c 0 −B3 B2

E2/c B3 0 −B1

E3/c −B2 B1 0


F µν transforms as a 2nd rank tensor:

F ′µν = Λµ
αΛν

βF
αβ F µν =

(
Λ−1

)µ
α

(
Λ−1

)ν
β
F ′αβ

or, alternatively,

F ′ = ΛFΛT F = (Λ−1)F ′ (Λ−1)
T ,

from which it can be shown that:

E ′1
c

=
E1

c
B′1 = B1

E ′2
c

= γ

(
E2

c
− βB3

)
B′2 = γ

(
B2 + β

E3

c

)
E ′3
c

= γ

(
E3

c
+ βB2

)
B′3 = γ

(
B3 − β

E2

c

)

E1

c
=
E ′1
c

B1 = B′1

E2

c
= γ

(
E ′2
c

+ βB′3

)
B2 = γ

(
B′2 − β

E ′3
c

)
E3

c
= γ

(
E ′3
c
− βB′2

)
B3 = γ

(
B′3 + β

E ′2
c

)

Notes:

1. Starting from the transformation equations (from S to S ′) the inverse transformation for the
fields (from S ′ to S) may be obtained by setting β −→ −β.

2. The E and B fields are 3-D vectors that are not components of a 4-vector. For the purposes of
this course, I make no distinction between “upper” and “lower” indices for such 3-D vectors.

The elements of Fµν = gµαF
αβgβν are the same as those of F µν except for the replacement Ei → −Ei.

(The signs of the Bi terms are unchanged.) That is,

Fµν =


0 E1/c E2/c E3/c

−E1/c 0 −B3 B2

−E2/c B3 0 −B1

−E3/c −B2 B1 0

 .

An Example of Applying the Lorentz Transformations: Potentials and
Fields for a Point Charge Moving with Constant Velocity

We consider a point charge at rest at the origin in the inertial frame S ′, which is moving with a
constant velocity along the x1 axis with speed β (in units of c) relative to the inertial frame S. (See
Figure 3.)

The 4-potential A′µ in S ′ is given by

A′ 0 =
V ′

c
=

q

4πε0c

1

R′
A′1 = A′2 = A′3 = 0,

13



Figure 3: Sketch of the frames of reference for a point charge moving with a constant velocity.

where
(R′)

2
=
(
x′ 1
)2

+
(
x′ 2
)2

+
(
x′ 3
)2

=
(
γ
[
x1 − βx0

])2
+
(
x2
)2

+
(
x3
)2

N.B. In terms of (ct, x, y, z) we could write, (R′)2 = (x′)2 + (y′)2 + (z′)2 = (γ [x− βct])2 + y2 + z2, but
in this treatment I’ll be sticking to (x0, x1, x2, x3).

The (inverse) Lorentz transformation applied to the 4-potential A′µ in S ′ gives the following 4-potential
Aµ in frame S:

A0 =
V

c
= γA′0 =

q

4πε0c
γ

1

R′

=
q

4πε0c
γ

1[
(γ [x1 − βx0])2 + (x2)2 + (x3)2] 1

2

A1 = γβA′0 = βA0 = β
V

c

=
q

4πε0c
γβ

1[
(γ [x1 − βx0])2 + (x2)2 + (x3)2] 1

2

A2 = A3 = 0

Physically, we can think of these as the potentials measured as a function of time x0 by an observer
at rest in frame S at the point x1, x2, x3 (i.e., x1, x2, x3 are independent of x0).

The potentials may be expressed also as

A0 =
q

4πε0cR

(
1

1− β2 sin2 θ

) 1
2

, A1 =
βq

4πε0cR

(
1

1− β2 sin2 θ

) 1
2

,

where R is the vector from the current position x1 = βx0, x2 = 0, x3 = 0 of the point charge to the
point at which the potential is evaluated. The magnitude of R is given by

R2 =
[
x1 − βx0

]2
+
(
x2
)2

+
(
x3
)2
.

θ is the angle between R and the direction of motion.

Sketches of equipotentials in A0 are given in Figure 4.

Developing our intuition:
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Figure 4: Sketches of equipotentials in A0 for a point charge: [left] in the rest frame, and [right] in a
frame in which the charge is moving with γ ≈ 2.

1) It is perhaps surprising that the equipotentials at time x0 are centred at the “current position” of
the charge, x1 = βx0, rather than at the “retarded position” appropriate for a particular observation
point?
2) At a fixed distance R′ (as measured in the rest frame) from the charge, the scalar potential is
multiplied by a factor of γ when we transform to a frame in which the charge is moving. However,
most of the time we are interested in seeing how the potential varies as a function of R (distance from
the charge as measured in the frame in which it is moving):

• Let’s consider first displacements along the direction of motion: because distances along the
direction of motion are Lorentz contracted we get a factor of γ in the denominator, which cancels
the factor of γ in the numerator. Therefore, in this direction the contours in the potential fall
off with R in Figure 4 in exactly the same way as they would for a stationary charge at the
current position.

• Distances transverse to the direction of motion are not Lorentz contracted and therefore the
contours in the potential fall off with R in Figure 4 a factor of γ more slowly than they would
for a stationary charge at the current position.

In the rest frame S ′ of the charge, B′ = 0 and the field E′ is given by
E′

c
=

q

4πε0c

R′

(R′)3

or, alternatively

E ′1
c

=
q

4πε0c

x′ 1

(R′)3 =
q

4πε0c

γ [x1 − βx0]

(R′)3

E ′2
c

=
q

4πε0c

x′ 2

(R′)3

E ′3
c

=
q

4πε0c

x′ 3

(R′)3 .
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The E andB fields for a point charge moving with a constant velocity along the x axis can be found in
two ways: (i) from the 4-potential in the frame S in which the charge is moving, and (ii) by applying
the (inverse) transformation to the fields in the rest frame S ′.

Both methods give the E field as
E1

c
=

q

4πε0c

γ [x1 − βx0]

(R′)3 =
q

4πε0c
γ

[x1 − βx0][
(γ [x1 − βx0])2 + (x2)2 + (x3)2] 3

2

=
E ′1
c

E2

c
=

q

4πε0c
γ
x2

(R′)3 =
q

4πε0c
γ

x2[
(γ [x1 − βx0])2 + (x2)2 + (x3)2] 3

2

= γ
E ′2
c

E3

c
=

q

4πε0c
γ
x3

(R′)3 =
q

4πε0c
γ

x3[
(γ [x1 − βx0])2 + (x2)2 + (x3)2] 3

2

= γ
E ′3
c

or, alternatively

E

c
=

q

4πε0c
γ
R

(R′)3 ,

where, as defined above, R is the vector from the current position x1 = βx0, x2 = 0, x3 = 0 of the
point charge to the point at which the field is evaluated.

The direction of E is illustrated in Figure 5. It can be noted that the E field is centred at the
current position x1 = βx0, x2 = 0, x3 = 0 of the point charge, rather than the retarded position. The
magnitude of E can be expressed as

E =
q

4πε0R2

1

γ2

(
1

1− β2 sin2 θ

) 3
2

,

where θ is the angle between R and the direction of motion. The magnitude of E illustrated in
Figure 6.

Figure 5: Electric field lines produced by a point charge moving with constant velocity for: β = 0.7
(left) and β = 0.95 (right) [1].

Developing our intuition:
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Figure 6: |E| at constant distance, R, from a moving point charge, shown as function of angle to
direction of motion, θ, for different values of β [1].

1) It is again perhaps surprising that the field E at time x0 is centred at the “current position” of
the charge, x1 = βx0, rather than at the “retarded position” appropriate for a particular observation
point? However, it is perhaps not surprising that this feature is common to both potentials and fields.

2) As a function of R (distance from the charge as measured in the frame in which it is moving) the
magnitude |E| can be expressed as

E1 =
E1,0

γ2

E⊥ = γE⊥,0

where, in the directions parallel and perpendicular to the velocity, respectively, E1,0 and E⊥,0 are the
E fields for a stationary particle at the current position x1 = βx0, x2 = 0, x3 = 0.

• The behaviour along the direction of motion relates to the Lorentz contraction of distances in
that direction. The field gains a factor of 1

γ2
from its dependence on 1

R2 , whereas at constant R′
we would expect E = E ′ for the component along the direction of motion.

• Distances transverse to the direction of motion are not Lorentz contracted and therefore |E|
falls off with R in Figure 6 a factor of γ more slowly than it would for a stationary charge at
the current position.

The corresponding B field is given by
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B1 = 0

B2 = −βE3

c
= − q

4πε0c
γβ

x3

(R′)3

B3 = β
E2

c
=

q

4πε0c
γ
x2

(R′)3

or, alternatively

B =
1

c
β ×E,

and is illustrated in Figure 7.

462 Chapter 10 Potentials and Fields

and therefore

B = 1
c
(r̂× E) = 1

c2
(v × E). (10.76)

Lines of B circle around the charge, as shown in Fig. 10.11.

B

v

FIGURE 10.11

The fields of a point charge moving at constant velocity (Eqs. 10.75 and 10.76)
were first obtained by Oliver Heaviside in 1888.20 When v2 ≪ c2 they reduce to

E(r, t) ≈ 1
4πϵ0

q
R2

R̂; B(r, t) ≈ µ0

4π

q
R2

(v × R̂). (10.77)

The first is essentially Coulomb’s law, and the second is the “Biot-Savart law for
a point charge” I warned you about in Chapter 5 (Eq. 5.43).

Problem 10.19 Derive Eq. 10.70. First show that
∂tr
∂t

= rc
r · u

. (10.78)

Problem 10.20 Suppose a point charge q is constrained to move along the x axis.
Show that the fields at points on the axis to the right of the charge are given by

E = q
4πϵ0

1
r2

(
c + v

c −v

)
x̂, B = 0.

(Do not assume v is constant!) What are the fields on the axis to the left of the
charge?

Problem 10.21 For a point charge moving at constant velocity, calculate the flux
integral

∮
E · da (using Eq. 10.75), over the surface of a sphere centered at the

present location of the charge.21

20For history and references, see O. J. Jefimenko, Am. J. Phys. 62, 79 (1994).
21Feynman was fond of saying you should never begin a calculation before you know the answer. It
doesn’t always work, but this is a good problem to try it on.

Figure 7: Lines of B relative to direction of motion [2].

5 Accelerating Charges: Potentials, Fields, and Radiation

The Liénard–Wiechert Potentials for a Moving Point Charge

It is important to note that only one space-time point on the world line of a point charge moving with
speed v < c can be connected to P (r, t) by a signal travelling at speed c.

The motion of the charge relative to the evaluation point modifies the potentials by a factor
1[

1− β · R̂
]

ret
and gives the Liénard–Wiechert potentials

V (r, t) =
1

4πε0

q[
R
(

1− β · R̂
)]

ret

=
1

4πε0

q

[R− β ·R]ret

A (r, t) =
µ0

4π

qc [β]ret

[R− β ·R]ret

=
[β]ret

c
V (r, t)

The subscript “ret” reminds us that that R and β are to be evaluated at the retarded time tret. (See
Figure 8.)
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Figure 8: Sketch showing the relationship between Rret and R for a moving point charge.

The Liénard-Wiechert Fields for the Case that β → 0

The fields produced by a point charge q as its velocity cβ → 0 are given by a simplified version of the
Liénard-Wiechert fields

E(r, t) =
q

4πε0

[
R̂

R2
+
R̂× (R̂× β̇)

cR

]
ret

B(r, t) =
1

c

[
R̂
]

ret
×E(r, t),

where β̇ ≡ ∂β

∂t ret
is the time derivative of β (i.e., the acceleration divided by c).

The first term corresponds to the electrostatic potential for the point charge, but we are more interested
here in the term proportional to β̇, which corresponds to radiation. A remarkable feature of this latter

term is that the field strength depends on
1

R
rather than

1

R2
.

Note: The restriction β � 1 has an effect in various places in the derivations of the transverse
components of the fields for an accelerating particle. For example,

• In Lecture 18 we assumed that the E field of the moving charged particle is spherically symmetric
about the current position (no γ factors).

• In Lecture 19 we ignored the terms proportional to β when deriving the E field from the 4-
potential.

The above has the effect that the expressions for the Liénard-Wiechert fields we obtained have no
terms proportional to β.

(Not part of the core course) The full expressions for the Liénard-Wiechert fields and a sketch of their
derivations are given in https://users.hep.manchester.ac.uk/test/twyatt/electrodynamics/LW-fields-
handout.pdf.
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Radiation from an Accelerating Point Charge

As found in two ways in the lectures, the transverse component of the electric field, E⊥, produced by
an accelerating point charge is given by:

E⊥ =
q

4πε0c

[
sin θ β̇

R

]
ret

.

The Poynting vector may be written as

S =
1

µ0c

[
E2R̂− (R̂ ·E)E

]
ret

=
1

µ0c
E2
[
R̂
]

ret
,

since R̂ ⊥ E.

The Poynting vector gives the radiated power per unit area. Since |S| ∝ |E × B| ∝ 1

R2
. This

naturally corresponds to radiation from the charge since the flux through a closed surface˛
S · da ∝

˛
1

R

1

R
R2 dΩ→ a constant as R→∞.

This may be contrasted with the case of constant velocity (β̇ = 0). Since in this case |E| ∝ 1

R2
and

|B| ∝ 1

R2
, the Poynting vector S =

1

µ0

E ×B ∝ 1

R4
. This cannot correspond to radiation, since the

flux through a closed surface˛
S · da ∝

˛
1

R2

1

R2
R2 dΩ → 0 as R→∞.

For non-zero acceleration (β̇ 6= 0) the following results hold

• For β̇ 6= 0 the radiation term dominates as R→∞.

• The radiated power per unit solid angle is given by
dP
dΩ

= R2S.

• The radiation is centred at the retarded position r′ (i.e., the position of the point charge at the
retarded time tret).

We consider radiation in three special cases

1) Non-relativistic, β � 1:

The radiated power per unit solid angle is given by

dP
dΩ

=
µ0cq

2

16π2
sin2 θ β̇2,

where θ is the angle between β̇ and R, as illustrated in Figure 9.

Integrating over all solid angles gives the total radiated power as

P =
µ0cq

2β̇2

6π
,

which is the Larmor Formula.
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Figure 9: Angular dependence of (Larmor) radiation from a slowly moving accelerating charge
β � 1 [1].

2) β > 0, β̇ ‖ β: “Bremsstrahlung Radiation”

For β̇ ‖ β, the acceleration in the rest frame, β̇′, and the acceleration in the frame in which the
point charge is moving, β̇, are related by β̇′ = γ3β̇.
Transforming the total radiated power from the rest frame to the frame in which the point
charge is moving gives

P‖ =
µ0cq

2β̇2γ6

6π
.

As derived in the lectures, the angular distribution of the radiated power in the rest frame, dP ′

dΩ′ ,

and in the frame in which the point charge is moving, dP
dΩ

, are related by:

dP ′

dΩ′
= γ4 (1− β cos θ)3 dP

dΩ
.

The radiated bremsstrahlung power per unit solid angle is then given by

dP‖
dΩ

=
µ0cq

2

16π2

sin2 θ β̇2

(1− β cos θ)5 ,

where θ is the angle between β and R, as illustrated in Figure 10.

3) β > 0, β̇ ⊥ β: “Synchrotron Radiation”

For β̇ ⊥ β, the acceleration in the rest frame, β̇′, and the acceleration in the frame in which the
point charge is moving, β̇, are related by β̇′ = γ2β̇.
Transforming the total radiated power from the rest frame to the frame in which the point
charge is moving gives

P⊥ =
µ0cq

2β̇2γ4

6π
.

As illustrated in Figure 11, the radiated power per unit solid angle is given by

dP⊥
dΩ

=
µ0cq

2β̇2

16π2

1

(1− β cos θ)3

(
1− sin2 θ cos2 φ

γ2 (1− β cos θ)2

)
.

where θ and φ are the polar and azimuthal angles, respectively, between β and R.
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Figure 10: Angular dependence of bremsstrahlung radiation — the acceleration a = cβ̇ is parallel to
the velocity u = cβ [1].

Multipole Radiation

Consider a pair of point charges of equal magnitude and opposite sign ±q centred at the origin and
oscillating in position in anti-phase along the x-axis:

x± = ±xo cosωt, ẍ± = ∓ω2xo cosωt.

This produces an oscillating electric dipole moment

p = p0 cos(ωt)x̂, where p0 = 2qx0.

We consider the following approximations:

x0 � λ ∼ c

ω
� r︷ ︸︸ ︷

size of source
︷ ︸︸ ︷
wavelength of radiation

︷ ︸︸ ︷
distance to source

The transverse components of the electric and magnetic fields produced by the two accelerating charges
add coherently to give

Edipole
T = 2E singlecharge

T andthus Pdipole = 4Psinglecharge.

Taking an average over time gives the total average radiated power for an electric dipole as

〈P 〉 =
µ0p

2
0ω

4

12πc
.

Similarly, the radiated power per unit solid angle for an electric dipole is given by〈
dP
dΩ

〉
= r2 〈S〉 =

µ0p
2
0ω

4

32π2c
sin2 θ.

That is, the energy flow from radiation is radialy outwards and has the same “donut” angular distri-
bution as for Larmor radiation, as given above.

22



Figure 11: Angular dependence of synchrotron radiation in the plane of the orbit — the acceleration
a = cβ̇ (vertical) is perpendicular to the velocity u = cβ (to the right) [1].
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Scattering and the scattering cross section

The concept of a scattering cross section can be a bit difficult to get your head around the first time
you meet it.

Let’s start with the total cross section.

Let’s imagine that an electron could be represented by a solid sphere that presents a certain cross
sectional area to an incoming photon. If the photon passes within this cross sectional area, σT , the
photon is scattered and otherwise the photon is not scattered.

For a single electron doing the scattering this would mean that for N incoming photons per unit area
transverse to the direction of a beam, a number N × σT photons is scattered.

The same logic is used in Lecture 20 to calculate the fraction of the incoming power per unit area
that is scattered.

Of course, in reality photons and electrons obey the laws of quantum mechanics and probability, but
the classical description above is probably simpler to absorb at first.

The concept of a differential cross section, dσ/dΩ, is even more abstract. It represents the part of
the total cross section for which the photon would be scattered into a particular solid angle dΩ.

(And if you think cross sections are hard to get your head around, wait until you come across the
concept of "luminosity" in particle physics, which has units of inverse area ;-)
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6 Some Brief Notes on the Exam

Exam Contents

The overall format and general style of this year’s exam will be similar to that of previous years (except
for that of 2020–2021, which was affected by Covid-19). However, my precise choice of subjects to be
covered is not identical to that of previous lecturers.

As you will have noticed already, the Electrodynamics course itself does involve quite a lot of “book-
work”. My aim in the course has been to derive most of the important results from first principles.
I hope that in your revision you will be able to focus on understanding deeply the material, as well
as practising solving problems. The derivations I elected to work through in the lectures were chosen
to provide important physical insights into the workings of Electrodynamics, rather than being mere
exercises in algebra. If you can sit down with a blank piece of paper and work through for yourself
the main derivations, that would be a good test of your understanding of the physics.

You should consider working conscientiously3 through all the Example Sheets I have provided as
an absolute bare minimum of practice in problem solving that you need to prepare yourself for the
exam in Electrodynamics. I also strongly recommend that you work through the past few years’
Electrodynamics exams, which are linked from the course web page. A number of our Wednesday
sessions were also devoted to working through illustrative past exam questions. Large numbers of
additional problems are available in text books such as those by Heald and Marion [1], Griffiths [2],
and Jackson [3], and more generally on the web. I have provided some useful links to additional
material on the course web page.

A page of potentially useful formulae will be provided at the beginning of the exam. This page is
given as an Appendix to this course summary.

Here are a few specific technical recommendations regarding using the index notation in special rela-
tivity. In the lectures and notes I have tried to be very careful to distinguish between, e.g.,

• x2 (the magnitude of the 2nd spatial component of the 4-vector xµ),

• (x)2 (= xµxµ, the square of the 4-vector), and

• (x2)2 (the square of the magnitude of the 2nd spatial component of the 4-vector xµ).

I strongly recommend you follow the same conventions when writing answers to questions in order to
avoid any ambiguity.

The approximate balance between bookwork and solving problems in January’s exam will be fairly
similar to that of recent years’ exams (excepting 2020–2021). Here is a list of some specific deriva-
tions/proofs I shall not expect you to reproduce in the exam.

• Derivation of the expansion of
1

R
in powers of

r′

r
and Legendre Polynomials (in Lecture 5).

• Formal proof that A =
µ0

4π

ˆ
j (r′)

R
dτ ′ is consistent with ∇ ·A = 0 (in Lecture 7).

• Formal proof that V (r, t) =
1

4πε0

ˆ
ρ (r′, t′)

R
dτ ′ is a solution to the wave equation (in Lec-

ture 9).
3“Working conscientiously” obviously means trying very hard to solve the problems yourself. Just looking at my

answers without trying hard yourself will bring few benefits.

25



I shall not expect you to remember the equations that define the Liénard-Wiechert fields in the
rest frame, or to derive them from the Liénard-Wiechert potentials (as discussed in Lecture 19).
However, you may be given them in the exam script and be expected to use them to prove any of
the results for accelerating point particles given in the remainder of section 5 above. I would consider
it legitimate to set a question that involved the translation between the various formulations of the
potentials produced by a point particle (e.g., the rest and moving frame formulations in Lecture 14
and the alternative Liénard-Wiechert potentials, as discussed in Lecture 19).

Past Exams

Past exam papers can be a useful source of questions to help you test your understanding of the course
material and practice your problem solving skills. However, you may need to take into account that
some topics included by previous lecturers may not have been covered this year and vice versa.

One important change in the way I teach radiation from accelerating charged particles compared to the
approach used by previous lecturers in Manchester is that I neither state the full the Liénard-Wiechert
fields, nor use them to derive the expressions for radiation from accelerating charges. The approach
I have taken instead is to derive the Liénard-Wiechert fields for the special case that β � 1, to use
these to derive the radiation in the rest frame, and then to use the Lorentz transformations to derive
the expressions for Bremsstrahlung and Synchrotron radiation. Personally, I think this new approach
provides a much better insight into the underlying physics, and it introduces general techniques that
are very useful for particle physics and high energy astrophysics. This change to the course does mean
that some of the “bookwork” items at the beginning of some past exam questions on radiation set by
previous lecturers might look a little obscure. However, this year’s lectures should still have given you
enough understanding to work out the answers with a little thought, if you are interested.

When looking at past exam papers from January 2013 to January 2018, inclusive, you need to be
aware of one very important technical difference between my lectures and those given by the previous
lecturer. I have used the metric tensor

gµν


1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1

,
which is that used, e.g., in the text book by Jackson [3] and in the 1st year Advanced Dynamics
course.

The previous lecturer used the metric tensor

gµν


−1 0 0 0

0 1 0 0
0 0 1 0
0 0 0 1

,
which is that used, e.g., in the text book by Griffiths [2].

This has many knock on effects if you look at past exam papers. These are all “trivial”, but can
cause confusion if you are not careful. For example, the sign of all 4-vector products is inverted.
The d’Alembertian changes sign, and so the wave equation becomes ∂µ∂µAµ = �2Aµ = −µ0j

µ. All
elements of the field tensor are multiplied by −1, etc.
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Appendix: Formula Page to be Provided on the Exam Paper

The first three Legendre Polynomials are given by

P0(cos θ) = 1, P1(cos θ) = cos θ, P2(cos θ) = (3 cos2 θ − 1)/2.

Vector Calculus
∇(φψ) = φ∇ψ + ψ∇φ,
∇(u · v) = u× (∇× v) + v × (∇× u) + (u ·∇)v + (v ·∇)u,

∇ · (φu) = φ(∇ · u) + u · (∇φ),

∇ · (u× v) = v · (∇× u)− u · (∇× v),

∇× (φu) = φ(∇× u)− u× (∇φ),

∇× (u× v) = (v ·∇)u− (u ·∇)v + u(∇ · v)− v(∇ · u)),

∇× (∇× u) = ∇(∇ · u)−∇2u.

Spherical Polar Coordinates

∇f =
∂f

∂r
r̂ +

1

r

∂f

∂θ
θ̂ +

1

r sin θ

∂f

∂φ
φ̂,

∇ · F =
1

r2

∂

∂r

(
r2Fr

)
+

1

r sin θ

∂

∂θ
(sin θ Fθ) +

1

r sin θ

∂Fφ
∂φ

∇× F =
1

r sin θ

[
∂

∂θ
(sin θ Fφ)− ∂Fθ

∂φ

]
r̂ +

1

r

[
1

sin θ

∂Fr
∂φ
− ∂

∂r
(rFφ)

]
θ̂

+
1

r

[
∂

∂r
(rFθ)−

∂Fr
∂θ

]
φ̂.

Cylindrical Coordinates

∇f =
∂f

∂s
ŝ+

1

s

∂f

∂φ
φ̂+

∂f

∂z
ẑ,

∇ · F =
1

s

∂

∂s
(sFs) +

1

s

∂Fφ
∂φ

+
∂Fz
∂z

∇× F =

[
1

s

∂Fz
∂φ
− ∂Fφ

∂z

]
ŝ+

[
∂Fs
∂z
− ∂Fz

∂s

]
φ̂+

1

s

[
∂

∂s
(sFφ)− ∂Fs

∂φ

]
ẑ.

Matrix Representations for Relativity

Metric tensor Lorentz boost along x1 axis Electromagnetic field tensor

gµν =


1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1

 Λµ
ν =


γ −γβ 0 0
−γβ γ 0 0

0 0 1 0
0 0 0 1

 F µν =



0 −E1

c
−E2

c
−E3

c
E1

c
0 −B3 B2

E2

c
B3 0 −B1

E3

c
−B2 B1 0


Radiation from a non-relativistic particle

dP
dΩ

=
µ0cq

2

16π2
sin2 θ β̇2, P =

µ0cq
2β̇2

6π
.
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