

EXAM QUESTION JANUARY 2011

PHYS30441

1. Potential and a spherical shell

A conducting sphere of radius a , at a potential V_0 , is surrounded by a thin concentric shell of charge. The radius of the shell is b and the surface charge density is:

$$\sigma(\theta) = k \cos \theta$$

where k is a constant and θ refers to spherical coordinates.

- What are the boundary conditions on the scalar potential V and electric field \vec{E} at $r = b$? [3 marks]
- What is the electric field within the conductor ($r < a$)? [2 marks]
- Find the electric potential inside ($a < r < b$) and outside ($r > b$) the surrounding shell by considering axially symmetric solutions to the Laplace equation, $\nabla^2 V = 0$. You should consider solutions of the form:

$$V(r, \theta) = \sum_{n=0}^{\infty} \left(A_n r^n + \frac{B_n}{r^{n+1}} \right) P_n(\cos \theta)$$

and you may find the following Legendre functions helpful in your analysis:
 $P_0(\cos \theta) = 1$, $P_1(\cos \theta) = \cos \theta$. Ensure that you clearly indicate all boundary conditions that are applied in your answer. [14 marks]

- Find the surface charge $\sigma_s(\theta)$ on the conductor ($r = a$). [4 marks]
- What is the total charge on the conductor ($r = a$)? [2 marks]

P.T.O.