

EXAM QUESTION JANUARY 2011

PHYS30441

1. Potential and a spherical shell

A conducting sphere of radius a , at a potential V_0 , is surrounded by a thin concentric shell of charge. The radius of the shell is b and the surface charge density is:

$$\sigma(\theta) = k \cos \theta$$

where k is a constant and θ refers to spherical coordinates.

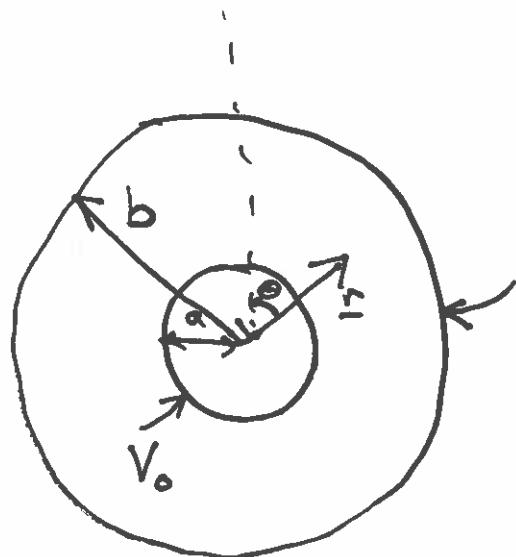
- a) What are the boundary conditions on the scalar potential V and electric field \vec{E} at $r = b$? [3 marks]
- b) What is the electric field within the conductor ($r < a$)? [2 marks]
- c) Find the electric potential inside ($a < r < b$) and outside ($r > b$) the surrounding shell by considering axially symmetric solutions to the Laplace equation, $\nabla^2 V = 0$. You should consider solutions of the form:

$$V(r, \theta) = \sum_{n=0}^{\infty} \left(A_n r^n + \frac{B_n}{r^{n+1}} \right) P_n(\cos \theta)$$

and you may find the following Legendre functions helpful in your analysis:
 $P_0(\cos \theta) = 1$, $P_1(\cos \theta) = \cos \theta$. Ensure that you clearly indicate all boundary conditions that are applied in your answer. [14 marks]

- d) Find the surface charge $\sigma_s(\theta)$ on the conductor ($r = a$). [4 marks]
- e) What is the total charge on the conductor ($r = a$)? [2 marks]

P.T.O.



$$a < r < b : V_1(r, \theta)$$

$$r > b : V_2(r, \theta)$$

$$\sigma(\theta) = k \cos \theta$$

(a) boundary conditions at $r = b$?

$$V \text{ continuous} : V_1(b, \theta) = V_2(b, \theta)$$

$$E_{\text{radial}}^{\text{outside}} - E_{\text{radial}}^{\text{inside}} = -\frac{\partial V_2}{\partial r} \bigg|_{r=b} + \frac{\partial V_1}{\partial r} \bigg|_{r=b} = \frac{\sigma(\theta)}{\epsilon_0}$$

(b) $E = 0$ for $r < a$

Other boundary conditions?

$$V_2 \rightarrow 0 \quad \text{as} \quad r \rightarrow \infty$$

N.B. V_1 as $r \rightarrow \infty$ is irrelevant because
 V_1 doesn't apply in that region!

(c) Consider region $a < r < b$:

$$V_i(r, \theta) = \sum_{n=0}^{\infty} \left(A_n r^n + \frac{B_n}{r^{n+1}} \right) P_n(\cos\theta)$$

Boundary conditions $r = a$

$$V_i(a, \theta) = V_0$$

Explanation added in answer
to question after lecture:

$$B_0 = aV_0 - aA_0$$

$$V_0 = A_0 + \frac{B_0}{a}$$

$$0 = A_n a^{2n+1} + B_n \quad \text{for } n \neq 0$$

This part is
present only for $n=0$
and so is taken out of
the general sum.

$$\therefore V_i(r, \theta) = \frac{aV_0}{r} + \sum_{n=0}^{\infty} A_n \left(r^n - \frac{a^{2n+1}}{r^{n+1}} \right) P_n(\cos\theta) \quad (A)$$

This part is
accounted
for here in
the general
sum.

Cross-check plug $r = a$ into (A)!

Consider the region $r > b$:

$$V_2(r, \theta) = \sum_{n=0}^{\infty} \left(C_n r^n + \frac{D_n}{r^{n+1}} \right) P_n(\cos \theta)$$

Boundary condition: $V_2 \rightarrow 0$ as $r \rightarrow \infty$ $C_n = 0 \quad \forall n$

$V_1(b, \theta) = V_2(b, \theta)$ and equate coefficient of each P_n

$$\frac{aV_0}{b} + A_0 \left(1 - \frac{a}{b} \right) = \frac{D_0}{b}$$

$$A_n \left(b^n - \frac{a^{2n+1}}{b^{n+1}} \right) = \frac{D_n}{b^{n+1}} \quad n = \phi$$

$$V_2(r, \theta) = \frac{aV_0}{r} + \sum_{n=0}^{\infty} A_n \left(\frac{b^{2n+1} - a^{2n+1}}{r^{n+1}} \right) P_n(\cos \theta) \quad (B)$$

From above

Boundary condition on E_{radial} at $r=b$ using (A) & (B)

$$\frac{\sigma(\theta)}{\epsilon_0} = \frac{k \cos \theta}{\epsilon_0} = \frac{k P_1(\cos \theta)}{\epsilon_0} = -\frac{\partial V_2}{\partial r} + \frac{\partial V_1}{\partial r}$$

Exercise to go

$$= \sum_{n=0}^{\infty} A_n (2n+1) b^{n-1} P_n(\cos \theta)$$

$$\therefore 3A_1 = \frac{k}{\epsilon_0} \quad \& \quad A_n = 0 \quad \text{for } n \neq 1.$$

Boundary condition on E_r at $r=b$ (using eqns. A & B) :

$$\frac{\sigma(\theta)}{\epsilon_0} = \frac{k \cos \theta}{\epsilon_0} = \frac{k P_1}{\epsilon_0} = -\left. \frac{\partial V_2}{\partial r} \right|_{r=b} + \left. \frac{\partial V_1}{\partial r} \right|_{r=b}$$

$$= - \left[-\frac{a V_0}{b^2} + \sum_{n=0}^{\infty} - (n+1) A_n \frac{(b^{2n+1} - a^{2n+1})}{b^{n+2}} \right] P_n(\cos \theta)$$

$$+ \left[-\frac{a V_0}{b^2} + \sum_{n=0}^{\infty} A_n \left(n b^{n-1} - a^{2n+1} \cdot \frac{(-[n+1])}{b^{n+2}} \right) \right] P_n(\cos \theta)$$

$$= \sum_{n=0}^{\infty} A_n (2n+1) (b^{n-1}) P_n(\cos \theta)$$

Equating coefficients for each P_n

$$3A_1 = \frac{k}{\epsilon_0}$$

$$A_n = 0 \quad \text{for } n \neq 1$$

$$\text{From (A)} : V_1(r, \theta) = \frac{aV_0}{r} + \frac{k}{3\epsilon_0} \left(r - \frac{a^3}{r^2} \right) \cos\theta$$

$$\text{" (B) : } V_2(r, \theta) = \frac{aV_0}{r} + \frac{k}{3\epsilon_0} \left(\frac{b^3 - a^3}{r^2} \right) \cos\theta$$

Cross - check : Do these expressions satisfy the boundary conditions

Exercise for you Do parts (d) and (e) of the question!

$$V_1(r, \theta) = \frac{aV_0}{r} + \frac{k}{3\epsilon_0} \left(r - \frac{a^3}{r^2} \right) \cos \theta$$

$$V_2(r, \theta) = \frac{aV_0}{r} + \frac{k}{3\epsilon_0} \left(\frac{b^3 - a^3}{r^2} \right) \cos \theta$$

(d) Boundary condition at $r=a$

$$\frac{\sigma_1(\theta)}{\epsilon_0} = -\left. \frac{\partial V_1}{\partial r} \right|_{r=a} = -\left[-\frac{aV_0}{a^2} + \frac{k}{3\epsilon_0} \left(1 - (-2) \frac{a^3}{a^3} \right) \cos \theta \right]$$

$$= -\frac{V_0}{a} - \frac{k}{\epsilon_0} \cos \theta$$

$$\therefore \sigma_1(\theta) = -\frac{\epsilon_0 V_0}{a} - k \cos \theta$$

Note -ve sign for $k \cos \theta$ term as we guessed at the start!

(e) Total charge on conductor

$$Q_{\text{total}} = \int_0^{2\pi} d\theta \int_0^{\pi} a^2 \sin \theta \sigma_1(\theta) d\theta = \underbrace{4\pi a^2}_{\text{area of sphere}} \frac{\epsilon_0 V_0}{a} = 4\pi \epsilon_0 a V_0 ,$$

but do we need to?

since $-k \cos \theta$ integrates to zero over interval $0 < \theta < \pi$.

Can anyone see a clever way of just writing down this answer from $V_i(r, \theta)$ without going through the intermediate stage of calculating $\sigma_i(\cos \theta)$!?

Monopole term in potential $V_{\text{monopole}} = \frac{1}{4\pi\epsilon_0} \frac{Q_{\text{total}}}{r}$

$$\therefore \frac{aV_0}{r} = \frac{1}{4\pi\epsilon_0} \frac{Q_{\text{total}}}{r} \quad \text{gives the same result!}$$

Let's review what we did

- 1) Drew diagram and thought about the physics
- 2) Worked out the boundary conditions
- 3) Wrote general solutions and applied boundary conditions
- 4) Used some physics insight to save us the trouble of doing a boring integration.

Note added in response to a question after the lecture

When considering boundary conditions we can apply only those relevant to the region of validity for a given potential V .

- o E.g. in this problem the b.c. that $V \rightarrow 0$ as $r \rightarrow \infty$ can be applied only to V_2 , but not V_1 , because V_1 is valid only for the region $a < r < b$.
- o In problems where $V(r, \cos\theta)$ has to be found in the region that includes the origin ($r=0$) the requirement that V is finite $\forall r$ allows us to set to zero the coefficients of all terms in $\frac{1}{r^{n+1}}$.

However, in this problem neither V_1 nor V_2 are valid for $r < a$, and so their behaviour as $r \rightarrow 0$ is not relevant.