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VECTOR IDENTITIES

Triple Products
(1) A-BxC)=B-(CxA)=C-(AxB)
(2) Ax{(BxC)=B(A-C)-C(A-B)
Product Rules
(3 V(fe)=f(Ve) + 2V
4 VA B)=Ax(VxB)+Bx(VxA)I+(A-V)B+(B-V)A
(5) V- (fA = f(V-A)+A (V)
(6) V. (AxB)=B - (VxA)~A-(VxB)
(7) VX (fA)y= f(VXA —A x(V))
(8) Vx(AxB)=(B -V)A—-(A -V)B+A(V.B)—B(V-A)
Second Derivatives
(9) V (VxA)=0
(1) Vx(Vf)=0

(1) Vx(VxA)=V(V.A)- VA

FUNDAMENTAL THEOREMS

Gradient Theorem:  [*(V £).dl = f(b) — f(a)
Divergence Theorem: [(V-A)dr = fA . da

Curl Theorem J(VxA)y-da=[A-dl
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VECTOR IDENTITIES

Triple Products

(N
2

A-BxC)=B.(CxA)=C-(AxB)

Ax(BxC)=BA -C)-CA-B)

Product Rules
) Vifa)=r(Vg)+g(VH
(4) VA-B)y=Ax(VxB)+Bx(VxA)+(A-V)B+(B-V)A
() V- (fA)=f(V-A)+A-(V])
(6) V- (AxB)=B-(VxA)—-A - (VxB)
(M Vx(fA)=f(VXA)-Ax(VSf)
@B VX(AxB)=B-V)JA-(A-V)B+A(V-B)—B(V: A)

Second Derivatives

&)

V. (VxA)=0

(10) Vx(Vf)y=0

(1)

Vx(VxA)=V(V.-A)— VA

FUNDAMENTAL THEOREMS

Gradient Theorem : j;:’(V f)-dl= f(b) - f(a)

Divergence Theorem: f(V-A)dr =¢A-da

Curl Theorem : f(VxA)-da=¢A dl
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