
PHYS30441 Electrodynamics: Additional Revision Prob-

lems - Solutions

1. (a) Start with Gauss’ Law r · E = ⇢/✏0. Take the time derivative

) r · @E
@t

=
1

✏0

@⇢

@t

Substituting from charge conservation

) r · @E
@t

= � 1

✏0
r · j.

But Ampere’s Law gives

r · j = 1

µ0
r ·r⇥B = 0.

This leads to a contradiction since r · @E
@t is not always zero.

(b) Taking the divergence of the generalized Ampere’s Law:

r · (r⇥B) = µ0r ·
✓
j+ ✏0

@E

@t

◆
.

The identity r · (r⇥B) = 0 and Gauss’ Law r ·E = ⇢/✏0 allows the above to be written
as

0 = r · j+ @⇢

@t
.

This is the continuity of charge.

2. Energy density
1

2
✏0E

2 ' 440 Jm�3.

3. Field

B ' µ0NI

L
' 4⇡ ⇥ 10�7 ⇥ 1100⇥ 7700

5.3
' 2.0 T.

Stored energy

Um =
1

2µ0

Z

V

B2dV ' 1

2µ0
B2⇥⇡r2L ' 1

2⇥ 4⇡ ⇥ 10�7
⇥22⇥⇡⇥(1.25)2⇥5.3 ' 4.1⇥107 J.

4. Consider the vector identity r ⇥ (rV ) = 0. The converse also holds: if r ⇥ v = 0, we
can find V such that v = rV . Similarly, considering the vector identity r · (r⇥A) = 0,
the converse also holds: if r · B = 0, we can find A such that B = r ⇥A. (Note that
the latter works for static and for time-varying fields B.)

From Faraday’s Law

r⇥ E = � @

@t
(r⇥A) =) r⇥

✓
E+

@A

@t

◆
= 0.

Hence we can write

E+
@A

@t
= �rV.

Thus we can represent the EM fields as

E = �rV � @A

@t
, B = r⇥A.

1



5. Starting with r⇥r⇥ E = � @
@tr⇥B and using

r⇥B = µ0j+ ✏0µ0
@E

@t
with j = 0 and ✏0µ0 =

1

c2

) r⇥r⇥ E = � @

@t

✓
1

c2
@E

@t

◆
.

The standard vector identity allows the left-hand side to be expanded:

r⇥r⇥ E = r(r · E)�r2(E) = �r2(E)

where Gauss’ Law for a region free of sources has been applied, hence r · E = 0.

Thus we have:

r2
E� 1

c2
@2
E

@t2
= 0.

A similar approach taking the curl of the generalised Ampere’s equation should be followed
to also obtain

r2
B� 1

c2
@2
B

@t2
= 0.

6. If A is a vector potential for B, then r⇥A = B. Hence

r⇥ (A+rg) = r⇥A+r⇥rg = r⇥A = B.

(since r⇥rg = 0; a vector identity). Thus A+rg is also a vector potential for B.

Similarly, using

E = �rV � @A

@t
,

we obtain

�r
✓
V � @g

@t

◆
� @

@t
(A+rg) = �rV +r@g

@t
� @

@t
rg � @A

@t

= �rV � @A

@t
= E.

So,

A ! A+rg, V ! V � @g

@t
are also valid potentials for E.

7. The Lorenz gauge condition is

1

c2
@V

@t
+r ·A = 0,

where
1

c2
= µo✏0.

Hence

@V

@t
= �c2B0r ·


yz

a
sin!tŷ +

✓
x3

a2
+ 2z

◆
cos!tẑ

�
= �c2B0

⇣z
a
sin!t+ 2 cos!t

⌘
.

Integrating w.r.t. t ) V = c2
B0

!

⇣z
a
cos!t� 2 sin!t

⌘
+ V0(x, y, z).
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Note that the ‘constant of integration’ is an arbitrary function of space (x, y, z) so the
scalar potential V is NOT unique. We can add any spatial function, but the obvious (and
simplest) choice is V0 = 0. Proceeding with this,

B = r⇥A

= B0

�������

x̂ ŷ ẑ

@/@x @/@y @/@z

0 yz
a sin!t

⇣
x3

a2 + 2z
⌘
cos!t

�������

= B0

✓
�x̂

y

a
sin!t� ŷ

3x2

a2
cos!t

◆
.

(This is unique, for the given vector potential). Also,

E = �rV � @A

@t

= �c2B0

a!
cos!tẑ� B0

yz

a
! cos!tŷ +B0

✓
x3

a2
+ 2z

◆
! sin!tẑ

= B0


� c2

a!
cos!tẑ� !

a
yz cos!tŷ +

✓
x3

a2
+ 2z

◆
! sin!tẑ

�

(You may obtain a di↵erent answer if you chose a di↵erent V — di↵ering by rV0).

3
















































