
Electrodynamics (PHYS30441) Additional Examples 2
1. In an inertial frame of reference S ′ a (massless) photon has a momentum p′ that makes an

angle θ′ with the x1 axis. Frame S ′ is moving with respect to frame S in the x1 direction
with speed β (in units of c).

(a) Using a Lorentz transformation, find the 4-momentum components (p,p) of the
photon in the frame S. The momentum p should be given in terms of the components
parallel and perpendicular to the x1 direction.

(b) Hence, find the angle θ between the x1 axis and the momentum p of the photon in
the frame S.

(c) What relation does this expression have to the formula for adding velocities in special
relativity?

(d) Cross check your answer by verifying that the photon has zero mass in frame S, i.e.,
that magnitude of the 4-momentum in S is zero.

2. A particle is at rest in frame S ′ and decays to two photons. In S ′ the two photons travel
with opposite momenta that make an angle θ′ with the x1 axis and have magnitude p′.
Let’s assume the photon momenta lie in the x1-x2 plane. Frame S ′ is moving with respect
to frame S in the x1 direction with speed β (in units of c).

(a) Draw diagrams showing qualitatively the 3-momenta of the two photons in frames
S ′ and S.

(b) Write down the components of the 4-momenta of the two photons in frame S ′. I
suggest labelling these 4-momenta and their components with a sub-script “+” for the
photon whose momentum component along the x1 direction in frame S ′ is positive
(p′+) and with a sub-script “−” for the photon whose momentum component along
the x1 direction in frame S ′ is negative (p′−).

(c) Using a Lorentz transformation, find the 4-momentum components of the two pho-
tons (p+,p+) and (p−,p−) in the frame S.

(d) Hence, find an expression for the angle between the two photons in the frame S.

3. Show that the flux of B through a surface is given by the integral of A around the line
that encloses the surface. That is:ˆ

B · da =

˛
A · dl.

4. The potential V0(θ) = k sin2(θ/2) is specified on the surface of a hollow sphere of radius a.
Find the potential V0(r, θ) inside the hollow sphere. The space inside the sphere is free
of charges.

[Hint: Express V0(θ) as a function of cos θ and use the expression for the general solution
to Laplace’s equation in spherical polar coordinates under symmetry in φ, as obtained in
Lecture 4.]

5. Find the magnetic dipole moment m of the following objects and thus find the dipole
component of the vector potential Adipole.

[N.B. Remember to specify the directions of m and Adipole as well as the magnitudes.]

In both cases the object carries a uniform charge density, the centre of the object lies at
the origin, and the object is rotating about the z axis with angular frequency ω.
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(a) A spherical shell of radius K with uniform surface charge density σ.

(b) A sphere of radius K with uniform volume charge density ρ.
N.B. The “from first principles” way to solve this latter problem is to define an
infinitesimal element of volume within the sphere, work out the contribution dm
from this volume element and then integrate over the whole volume of the sphere
to find m. However, in addition, you might like to try the following alternative
approaches to get the same answer:

i. Make use of the result for a spherical shell of charge [from part (a) of this
question].

ii. Make use of the result for a flat disk of charge [from Q2 of the Revision Examples
Class from Week 3].

6. Verify by explicit differentiation that

∇r′
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R

)
= −∇

(
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R

)
,

where ∇r′ represents differentiation with respect to the primed coordinates and ∇ repre-
sents (as usual) differentiation with respect to the unprimed coordinates.

7. An infinitely long, solid, conducting cylinder of radius a is coaxial with the ẑ axis and
rotates with constant angular velocity ω about this axis. A constant, uniform, external
magnetic field B = Bẑ is applied. The total charge on the cylinder is zero. You should
assume that (i) the vacuum permittivity, ε0 can be used throughout, including inside the
cylinder, (ii) any magnetic field due to the rotating cylinder can be neglected, (iii) that
the system has reached a steady state.

(a) Working in cylindrical coordinates (s, φ, z) find the electric field vector E within the
cylinder.

(b) Determine the electrostatic potential V (r, φ) within the cylinder (s < a).

(c) Determine the volume charge density, ρ, within the cylinder and hence show that it
is a constant, independent of s and φ.

(d) Determine the surface charge density σ, at the surface of the cylinder (s = a).

(e) Determine the electric field and potential outside the cylinder (s > a).

(f) Carry out any possible cross checks/consistency checks you can devise of the results
you have obtained.
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