
Electrodynamics (PHYS30441) Additional Examples 4
1. In Lectures 14 and 15 we obtained the 4-potential Aµ and the E,B fields produced by a

moving point charge by (a) writing down the components of the 4-potential and fields in
the rest frame S ′ of the charge and (b) applying the appropriate Lorentz transformations
into a frame (S) in which the charge is moving with constant velocity along the x1 axis.

In this problem we shall use an analogous approach to find the 4-potential and E,B fields
produced by an infinitely long beam of positrons with radius a that lies along the x1 axis
and moves with constant velocity along the x1 axis.

Let’s first consider the beam of positrons in its rest frame, S ′. In the sheet from week 3
“Additional Revision Problems”, Question 10 we found expressions for the electric field
[in part (a)] and the scalar potential [in part (c)] produced by the beam of positrons, as a
function of s, the radial distance to the axis of the beam. We found separate expressions
for positions inside (s < a) and outside (s > a) the beam. These expressions are valid in
the rest frame of the beam, except that we should write the charge density as ρ0. [If you
did not attempt “Additional Revision Problems”, Question 10 in week 3 then I suggest you
do at least parts (a) and (c) now, before attempting the current problem.]

(a) Use the answers from “Additional Revision Problems”, Question 10 (c) to write down
the components of the 4-potential A′µ in frame S ′, both inside (s < a) and outside
(s > a) the beam.
[Note: the expression for the scalar potential outside the beam includes some constant
terms. Since these terms are independent of s and thus do not affect the fields, let’s
just ignore them.]

(b) By using an appropriate Lorentz Transformation, find expressions for the 4-potential
Aµ in the frame S, in which the beam is moving constant velocity β along the x1
axis. Do this for both inside (s < a) and outside (s > a) the beam. Give a physical
interpretation for the factor of γ that appears in the relationship between the scalar
potentials in the two frames of reference.

(c) Hence, use the definition of the electromagnetic field tensor F µν = ∂µAν − ∂νAµ to
find the E,B fields produced by the moving beam. Do this for both inside (s < a)
and outside (s > a) the beam.

(d) Use the answers from “Additional Revision Problems”, Question 10 (a) to show
that the same results for E,B in S can be obtained by applying the appropriate
transformation equations to the fields E′ and B′ in S ′.

(e) Apply the Lorentz-covariant equation that describes the interaction of a charged
particle with the fields:

dpµ

dτ
= q F µν uν ,

to this system for the region inside the beam (s < a). Do this both for frame S ′ and
for frame S. Give a physical interpretation for the results you obtain. Comment
on the behaviour as β → 1 and compare this with the behaviour discussed in the
solution to “Additional Revision Problems”, Question 10 (f).

Answers:

Inside Outside

a)A′ 0 =
−s2ρ0
4ε0c

A′ 0 =
−a2ρ0 ln s

2ε0c

b)A0 =
−γs2ρ0
4ε0c

, A1 =
−βγs2ρ0

4ε0c
A0 =

−γa2ρ0 ln s
2ε0

, A1 =
−βγa2ρ0 ln s

2ε0c

c)E =
γρ0
2ε0
s E =

γρ0a
2

2ε0s
ŝ

B =
βγρ0s

2ε0c
φ̂ B =

βγρ0a
2

2ε0cs
φ̂

e)
dpµ

dτ
=
qρ0
2ε0

[
0, 0, x2, x3

]


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2. “Optional” extra practice for using index notation.

A useful alternative way of expressing the E and B fields is the so-called “dual field
tensor”, Fµν , which is defined by

Fµν = 1

2
εµναβFαβ.

Here εµναβ is the totally anti-symmetric tensor of rank four. It is defined by ε0123 = 1 and
for any even number of permutations, such as, ε1032 = ε2130 = ε2013 = 1. εµναβ changes
sign for an odd number of permutations of the indices, such as, ε1023 = ε1230 = ε2031 = −1.
Of course, this implies that εµναβ = 0 if any pair of the four indices are equal.

In examples class 3, question 2 (b) (ii), you showed that the elements of Fµν = gµαF
αβgβν

are the same as those of F µν except for the replacement Ei → −Ei. (The signs of the Bi

terms are unchanged.) That is,

Fµν =


0 E1/c E2/c E3/c

−E1/c 0 −B3 B2

−E2/c B3 0 −B1

−E3/c −B2 B1 0

 .

(a) Using the above definitions, show that the dual field tensor may be written in matrix
form as

Fµν =


0 −B1 −B2 −B3

B1 0 E3/c −E2/c
B2 −E3/c 0 E1/c
B3 E2/c −E1/c 0

 .
That is, Fµν is obtained from F µν by making the replacements Ei/c −→ Bi and
Bi −→ −Ei/c.
Note: This is a great example of how using index notation can make what looks
like an absolutely horrendous problem (multiplying a 2-dimensional matrix by a 4-
dimensional matrix) into a relatively simple exercise! Index notation allows us to
exploit the fact that F µν (and Fµν) have only six independent elements and that εµναβ
is a very sparse matrix! Just write down an explicit expression for each of the six
independent elements of Fµν using matrix notation. You’ll find that there are very
few non-zero terms in the sums over the two free indices!

(b) Verify that the two homogeneous field (Maxwell) equations (that is the two that
do not involve the sources) may be written using the dual field tensor in the nice
compact form

∂µFµν = 0.

This problem is “optional” in the sense that I won’t ask you any questions that require
the “dual field tensor” in the exam. However I suggest making use of the opportunity
for extra practice using index notation.
Optional reading: Jackson “Classical Electrodynamics” Section 6.11 has a discussion
of duality transformations in the context of electrodynamics.
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