Electrodynamics (PHYS30441) Additional Examples 5

1. In Lecture 15 we worked out expressions for the E field produced by a moving point charge.

Figure 1: \boldsymbol{E} field of a point charge moving with a constant velocity: $\beta = 0.7$ (left) and $\beta = 0.95$ (right).

- (a) We are going to consider the flux integral $\oint \mathbf{E} \cdot d\mathbf{a}$ of the \mathbf{E} field over a sphere centred at the current position of the moving point charge, $(\beta x^0, 0, 0)$. Can you guess the value of this integral?
- (b) Let's see if your guess is correct! Using the result from Lecture 15 that the magnitude of the total \boldsymbol{E} field can be expressed as

$$E = \frac{q}{4\pi\epsilon_0 \gamma^2 R^2} \left(\frac{1}{1-\beta^2 \sin^2 \theta}\right)^{\frac{3}{2}},$$

evaluate the flux integral $\oint \mathbf{E} \cdot d\mathbf{a}$ over a sphere centred at the current position of the point charge $(\beta x^0, 0, 0)$.

How do you interpret your result?

You may find the following integral useful:

$$\int \frac{\mathrm{d}u}{(a^2 + u^2)^{\frac{3}{2}}} = \frac{u}{a^2 (a^2 + u^2)^{\frac{1}{2}}} + C.$$

- 2. An electron is released from rest and falls under the influence of gravity in a vacuum. In falling 0.01 m, what fraction of the potential energy lost is radiated away?
- 3. An uncharged, infinite straight wire carries a current I(t) that is initially zero but rises suddenly to I_0 everywhere in the wire at time t = 0. The current may be described by

$$I(t) = 0, \text{ for } t \le 0$$
$$= I_0 \text{ for } t > 0.$$

(a) Find expressions for the retarded potentials at a point P a distance s from the wire at time t.

You may wish to use the standard integral:

$$\int \left[a^2 + x^2\right]^{-\frac{1}{2}} dx = \ln\left(\left[a^2 + x^2\right]^{\frac{1}{2}} + x\right).$$

(b) Hence, show that

$$\boldsymbol{E}(s,t) = -\frac{\mu_0 I_0 c}{2\pi \sqrt{(ct)^2 - s^2}} \, \boldsymbol{\hat{z}}$$

where \hat{z} is a unit vector in the direction of the current.

- (c) Deduce the magnetic field $\boldsymbol{B}(s,t)$. Comment on the limit of $\boldsymbol{B}(s,t)$ as $t \to \infty$.
- (d) Determine an expression for the Poynting vector at point P and time t, and comment on the behaviour at t = s/c.
- 4. As discussed in Lecture 21, the cross check of the total power emitted as Bremsstrahlung radiation requires the evaluation of the integral

$$\int_{-1}^{1} \frac{(1-x^2)}{(1-\beta x)^5} \mathrm{d}x = \frac{4\gamma^6}{3},$$

where $x = \cos \theta$. Integrating by parts twice, prove this result.

- 5. In Lecture 21 we derived an expression for the intensity, $\frac{dP}{d\Omega}$, of bremsstrahlung radiation from a point charge.
 - (a) Find the angle θ_{max} at which the maximum radiation is emitted, as shown in the

drawing.

- (b) For ultra-relativistic speeds ($\beta = 1 \epsilon$, where $\epsilon \ll 1$), show that $\theta_{\max} \approx \sqrt{\frac{(1-\beta)}{2}}$.
- (c) What is the intensity of the radiation in this maximal direction (in the ultrarelativistic case), in proportion to the maximum intensity for a particle instantaneously at rest? Give your answer in terms of γ .

Note: at the end of term I shall post an additional problem sheet to the course web-page: <u>http://www.hep.man.ac.uk/u/wyatt/electrodynamics.html</u>. This will contain some additional "bonus" problems on various parts of the course to help you with your revision. I shall endeavour to post answers to these bonus problems as soon as possible in the New Year. Bottom-Line Answers:

1) (b)
$$\frac{q}{\epsilon_0}$$
.
2) Fraction $= \frac{\mu_0 ec}{6\pi m} \sqrt{\frac{2g}{h}} \approx 2.8 \times 10^{-22}$, where 'm' here stands for
the rest mass energy of the electron $m = \frac{m_{\rm SI} e}{c^2} = 0.511$ MeV.
3) (a) $A_z = \frac{\mu_0 I_0}{2\pi} \ln K$, where $K = \frac{ct + \left[(ct)^2 - s^2\right]^{1/2}}{s}$;
(c) $B_{\phi} = -\frac{\mu_0 I_0}{2\pi} \frac{\partial \left[\ln K\right]}{\partial s} = \frac{\mu_0 I_0}{2\pi s} \frac{ct}{\left[(ct)^2 - s^2\right]^{1/2}}$;
(d) $\mathbf{S} = \mu_0 \left(\frac{I_0 c}{2\pi}\right)^2 \frac{t}{s\left[(ct)^2 - s^2\right]} \hat{\mathbf{s}}$.
5) (a) $\theta_{\rm max} = \cos^{-1} \left(\frac{\sqrt{1 + 15\beta^2} - 1}{3\beta}\right)$; (c) Ratio = $2.62\gamma^8$.