
Electrodynamics (PHYS30441) Bonus Examples Sheet Terry
Wyatt

1. A wire of radius a carries a constant current I, uniformly distributed over its cross section. A
narrow gap in the wire, of width w, forms a parallel-plate capacitor, as shown in the diagram.
N.B. For the purposes of this example we shall be interested only in the fields within the gap.
We shall assume that w � a and, therefore, that the effects of any “fringe” fields for r > a may
be neglected.
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Solution
This is not a static configuration: Q, E, and J are all functions of time; Ampère
and Biot-Savart do not apply. The displacement current

Jd = ϵ0
∂E
∂t

= 1
4π

Q̇
r2

r̂ = −σ
Q

4πϵ0r2
r̂

exactly cancels the conduction current (in Eq. 7.37), and the magnetic field
(determined by ∇ · B = 0, ∇ × B = 0) is indeed zero.

Problem 7.34 A fat wire, radius a, carries a constant current I , uniformly dis-
tributed over its cross section. A narrow gap in the wire, of width w ≪ a, forms
a parallel-plate capacitor, as shown in Fig. 7.45. Find the magnetic field in the gap,
at a distance s < afrom the axis.
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FIGURE 7.45

Problem 7.35 The preceding problem was an artificial model for the charging ca-
pacitor, designed to avoid complications associated with the current spreading out
over the surface of the plates. For a more realistic model, imagine thinwires that
connect to the centers of the plates (Fig. 7.46a). Again, the current I is constant,
the radius of the capacitor is a, and the separation of the plates is w ≪ a. Assume
that the current flows out over the plates in such a way that the surface charge is
uniform, at any given time, and is zero at t = 0.

(a) Find the electric field between the plates, as a function of t .

(b) Find the displacement current through a circle of radius s in the plane mid-
way between the plates. Using this circle as your “Amperian loop,” and the flat
surface that spans it, find the magnetic field at a distance s from the axis.

(a) Find the electric field E within the gap as a function of time t, assuming that E = 0 at
t = 0.

(b) Find the magnetic field B within the gap, at a distance r < a from the axis. How does B
in the gap compare to that within the current-carrying wire for r < a?

(c) Find a vector potential A that is consistent with the B found above.

(d) Find the energy density u and the Poynting vector S within the gap. Note especially the
direction of S. Using your results verify that the local conservation of electromagnetic
energy is satisfied.

(e) Draw a diagram showing the directions of the vectors I, E, B, A, S.

2. In Lecture 3 we found the average potential over a sphere of radius r, centred on the origin,
produced by a point charge q that is outside the sphere, at postition r′ = zẑ. (That is z > r).

(a) Use an analogous approach to find the average potential over a sphere of radius r produced
by a point charge q that is inside the sphere. That is, the same as in Lecture 3 except
that z < r. In this case, of course, Laplace’s equation does not hold within the sphere.

(b) Show that, in general,

Vave = Vcentre +
Qenc

4πε0r
,

where Vcentre is the potential at the centre due to all charges external to the sphere, and
Qenc is the total charge enclosed by the sphere.

3. A solid sphere of radius K is centered at the origin. The “northern” hemisphere carries a
uniform charge density ρ0, and the “southern” hemisphere a uniform charge density −ρ0. Find
the approximate electric field E(r, θ) for points far from the sphere (r � r′).

4. A solid sphere of radius K is centered at the origin. It carries a uniform charge density ρ0 and
is rotating about the z axis with angular frequency ω.

(a) What is the magnetic dipole moment of the sphere?

(b) Find approximate expressions for the vector potential and the magnetic field at a point
(r, θ) for r � K.
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5. Show that the fractional energy lost per revolution by a highly relativistic charged particle in a
circular orbit can be written as

∆T

T
→ k

T 3

R
,

where T is the relativistic kinetic energy, R is the radius of the orbit and k is a constant.
Evaluate the fractional energy loss per revolution for an electron with T = 2 GeV and R = 5 m.

6. In a classical model of the Hydrogen atom, a (non-relativistic) electron moves in a circular orbit
around the proton. If the radius were initially equal to the Bohr radius a0, estimate the initial
rate of energy loss in eV/sec. Describe the subsequent behaviour of the classical system.

7. A particle of mass m and charge q is attached to a spring with force constant k, hanging from
the ceiling (as shown in the figure). Its equilibrium position is a distance h above the floor. It is
pulled down a distance d below equilibrium and released, at time t = 0. Assume non-relativistic
motion (!)

11.2 Point Charges 497
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At what R is the radiation most intense? Neglect the radiative damping of the
oscillator. [Answer: µ0q2d2ω4 R2h/32π 2c(R2 + h2)5/2]

(b) As a check on your formula, assume the floor is of infinite extent, and calculate
the average energy per unit time striking the entire floor. Is it what you’d expect?

(c) Because it is losing energy in the form of radiation, the amplitude of the oscilla-
tion will gradually decrease. After what time τ has the amplitude been reduced
to d/e? (Assume the fraction of the total energy lost in one cycle is very small.)

Problem 11.23 A radio tower rises to height h above flat horizontal ground. At
the top is a magnetic dipole antenna, of radius b, with its axis vertical. FM station
KRUD broadcasts from this antenna at (angular) frequency ω, with a total radiated
power P (that’s averaged, of course, over a full cycle). Neighbors have complained
about problems they attribute to excessive radiation from the tower—interference
with their stereo systems, mechanical garage doors opening and closing mysteri-
ously, and a variety of suspicious medical problems. But the city engineer who
measured the radiation level at the base of the tower found it to be well below the
accepted standard. You have been hired by the Neighborhood Association to assess
the engineer’s report.

(a) In terms of the variables given (not all of which may be relevant), find the
formula for the intensity of the radiation at ground level, a distance R from the
base of the tower. You may assume that b ≪ c/ω ≪ h. [Note: We are interested
only in the magnitude of the radiation, not in its direction—when measurements
are taken, the detector will be aimed directly at the antenna.]

(b) How far from the base of the tower should the engineer have made the measure-
ment? What is the formula for the intensity at this location?

(c) KRUD’s actual power output is 35 kilowatts, its frequency is 90 MHz, the
antenna’s radius is 6 cm, and the height of the tower is 200 m. The city’s radio-
emission limit is 200 microwatts/cm2. Is KRUD in compliance?

Problem 11.24 As a model for electric quadrupole radiation, consider two oppo-!
sitely oriented oscillating electric dipoles, separated by a distance d, as shown in
Fig. 11.19. Use the results of Sect. 11.1.2 for the potentials of each dipole, but note
that they are not located at the origin. Keeping only the terms of first order in d:

(a) Show that the intensity of the radiation hitting the floor, as a function of the distance R
from the point directly below q is given by〈

dP
dA

〉
=

µ0q
2d2ω4R2h

32π2c (R2 + h2)5/2
,

where ω2 =
k

m
.

[Note: The intensity here is the average power P per unit area A of floor.]

(b) At what value of R is the radiation most intense?

(c) As a check on your formula, assume the floor is of infinite extent, and calculate the average
energy per unit time striking the entire floor. Is it what you would expect?

You may make use of the result that
ˆ ∞

0

R3

(R2 + h2)5/2
dR =

2

3h
.

(d) Because it is losing energy in the form of radiation, the amplitude of the oscillation will
gradually decrease. After what time τ has the amplitude been reduced to d/e?

[Note: Assume the fraction of the total energy lost in one cycle is very small.]

8. In an inertial frame S an electromagnetic plane wave of angular frequency ω is traveling in the
x direction through the vacuum. It is polarized such that the electric field is in the y direction.
The amplitude of the electric field is E0.
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(a) Write down an expression for the electric field E(x, y, z, t). [Be sure to define any auxiliary
quantities you introduce, in terms of ω, E0, and the constants of nature.]

(b) Using the relevant Maxwell Equation, or otherwise, write down a (vector) expression for
the associated magnetic field B(x, y, z, t).

(c) This same wave is observed from an inertial system S ′, which is moving in the x direc-
tion with speed (in units of c) β relative to the original frame S. Find the electric and
magnetic fields in S ′, and express them in terms of the S ′ coordinates: E′(x′, y′, z′, t′) and
B′(x′, y′, z′, t′). [Again, be sure to define any auxiliary quantities you introduce.]

(d) What is the angular frequency ω′ of the wave in S ′? Interpret this result. What is the
(angular) wavenumber k′ of the wave in S ′? From ω′ and k′, determine the speed of the
waves in S ′. Is it what you expected?

(e) What is the ratio of the intensity in S ′ to the intensity in S? What happens to the amplitude,
frequency, and intensity of the wave in S ′, as β → 1?

9. Consider the invariant mass, m1,2,3, of a system of three particles, i = 1, 2, 3. If all three particles
are ultra-relativistic, show that m1,2,3 may be expressed as

m2
1,2,3 = m2

1,2 +m2
1,3 +m2

2,3,

where mi,j is the invariant mass of the system of two particles, i, j.

[Note: If you work directly in terms of the 4-vectors p
˜
i the proof is very short. It is possible

to write out the invariant mass quite straightforwardly in terms of the separate energies and
momenta of the three particles, but this involves rather more algebra.]
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10. In the Lecture 14 we used the Lorentz transformations to work out the scalar potential produced
by a point charge in a frame of reference, S, in which it is moving with constant velocity (in
units of c) β in the x1 direction:

A0 =
V

c
= γA′0 =

q

4πε0c
γ

1

R′

=
q

4πε0c
γ

1[
(γ [x1 − βx0])2 + (x2)2 + (x3)2

] 1
2

From this we derived, in Lecture 19a, the alternative “Liénard-Wiechert” formulation of the
scalar potential for a point particle of charge q moving with velocity β:

A0 =
V

c
=

1

4πε0c

q[
R
(

1− β · R̂
)]

ret

=
1

4πε0c

q

[R− β ·R]ret

In this problem we shall work in the other direction: starting with the Liénard-Wiechert poten-
tials and “deriving” the expressions from Lecture 14.

Let’s start by examinig the diagram, which indicates the “current” position of the charge at time
x0, the position of the charge at the “retarded” time x0ret, and the vector Rret from the retarded
position to the point P (xµ) at which the potentials and fields are to be evaluated.

(a) Find an expression that relates Rret to the distance travelled by the charge between the
retarded time x0ret and the “current” time x0.

(b) Thus find expressions for Rret and cosα in terms of β and the components of xµ.

(c) Substitute these expressions into that given above for the Liénard-Wiechert scalar potential
and compare the result with that obtained in Lecture 14 (also given above).

Looking this way around at the potentials at P (xµ) emphasizes the fact that physically they orig-
inate from the retarded time and position xµret. Perhaps this helps to emphasize how surprising
it is that the potentials are centred on the “current” space-time point x0?

11. The accelerating RF cavities in the LHC deliver a maximum electric field of 2 MV/m. At the
maximum beam energy of 7 TeV what is the radiated power for a proton being accelerated in
this field?
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12. In Lecture 14 we showed that at most one point on the trajectory of a particle moving with v < c
communicates with the potential/field measurement point P (x, y, z) at any given observation
time t. In some cases there may be no such point. (That is, an observer at P (x, y, z) would not
see the particle at time t). As an example, consider a particle in so-called “hyperbolic” motion
along the x axis, whose position is given by:

w(t) =
√
b2 + (ct)2 x̂.

Sketch the path of the particle in the x, ct plane. (Pick, say, the negative value for the square
root.) At a few representative points along the path, draw the trajectory of a light signal emitted
by the particle at that point. What region on your graph corresponds to positions and times
(x, ct) from which the particle cannot be seen? At what time does someone at the point +x first
see the particle? (Prior to this the potential at x is zero.) Is it possible for a particle, once seen,
to disappear from view?

13. A particle of mass m and charge q is attached to a spring with force constant k. It is pulled a
distance d below equilibrium and released from rest.

(a) Find an expression for the total energy radiated by the particle as a function of the dis-
placement x from the equilibrium position.

(b) Integrating with respect to x find the total energy radiated over one complete cycle of the
oscillation of the particle.

You may find the following integral useful:
ˆ d

0

x2 dx

(d2 − x2)
1
2

=
πd2

4
.

(c) Thinking back to Question 7, can you think of a way to cross-check your answer?
Hint: Starting (i) from your answer to part (b) of this question, and (ii) from your answer
to part (a) of Question 7, can you show that the time-averaged radiated power is given by

〈P 〉 =
µ0q

2k2d2

12πm2c
.

(d) If the time-averaged radiated power in the approximate rest frame of the oscillating charge
is 〈P 〉, what is the radiated power in a frame in which the oscillating charge is moving with
speed (in units of c) β

i. along the x axis;
ii. in a direction perpendicular to the x axis.

(e) Optional: Integrating by parts and looking up some “standard” integrals can you prove the
result ˆ d

0

x2 dx

(d2 − x2)
1
2

=
πd2

4
?

5



14. Consider the figure below in which electrons leave the cathode at x = 0 at potential V = 0 and
reach the anode at x = d, held at a potential V = V0.

The cloud of moving electrons within the gap is referred to as ‘space charge’ and this builds up
rapidly to the point where it reduces the field at the surface of the cathode to zero. Thereafter,
a steady current per unit area, j, flows. Assuming that the plates are much larger than their
relative separation (in order that edge fringe-field effects can be safely ignored) then V , ρ (the
charge density) and v (the speed of the electrons) are all functions of x only.

(a) Write down Poisson’s equation for the region between the plates.

(b) Assuming the electrons start from rest at the cathode, what is their speed at point x, where
the potential is V (x)?

(c) In the steady state the current per unit area, j, is independent of x. In this case what is
the relation between ρ and v?

(d) Use these results to obtain a differential equation for V by elmininating ρ and v.

(e) Solve this equation to obtain V as a function of x, V0 and d. Plot V (x) and compare it to
that expected without the effect of space charge. Also, find ρ and v as functions of x.
[Hint: One way to do this is to just make a guess for the general functional dependence of
V on x and to check whether or not your guess works out by evaluating d2V/dx2 for your
guess.]

(f) Show that
j = KV

3/2
0

and find the constant K.

[Note: This equation describes the important Child-Langmuir law for emission of electrons from
an electrode. It is valid for other geometries as well as the plane plates pictured. Notice the
current and voltage are non-linearly related. That is, this is not an Ohm’s law relation.]
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15. As shown in the diagram, a cubical box (sides of length a) consists of five metal plates, which
are welded together and grounded (as shown in the figure). The top, which lies in the plane
z = a, is made of a separate sheet of metal, insulated from the others, and held at a constant
potential V0. (That, is V0 is independent of x and y.)

3.3 Separation of Variables 141

Problem 3.16 A cubical box (sides of length a) consists of five metal plates, which
are welded together and grounded (Fig. 3.23). The top is made of a separate sheet
of metal, insulated from the others, and held at a constant potential V0. Find the
potential inside the box. [What should the potential at the center (a/2, a/2, a/2)

be? Check numerically that your formula is consistent with this value.]11
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a

FIGURE 3.23

3.3.2 Spherical Coordinates

In the examples considered so far, Cartesian coordinates were clearly appropriate,
since the boundaries were planes. For round objects, spherical coordinates are
more natural. In the spherical system, Laplace’s equation reads:

1
r2

∂

∂r

(
r2 ∂V

∂r

)
+ 1

r2 sin θ

∂

∂θ

(
sin θ

∂V
∂θ

)
+ 1

r2 sin2 θ

∂2V
∂φ2

= 0. (3.53)

I shall assume the problem has azimuthal symmetry, so that V is independent of
φ;12 in that case, Eq. 3.53 reduces to

∂

∂r

(
r2 ∂V

∂r

)
+ 1

sin θ

∂

∂θ

(
sin θ

∂V
∂θ

)
= 0. (3.54)

As before, we look for solutions that are products:

V (r, θ) = R(r)$(θ). (3.55)

Putting this into Eq. 3.54, and dividing by V ,

1
R

d
dr

(
r2 d R

dr

)
+ 1

$ sin θ

d
dθ

(
sin θ

d$

dθ

)
= 0. (3.56)

11This cute test was suggested by J. Castro.
12The general case, for φ-dependent potentials, is treated in all the graduate texts. See, for instance,
J. D. Jackson’s Classical Electrodynamics, 3rd ed. (New York: John Wiley, 1999), Chapter 3.

(a) Find the potential inside the box.

(b) By inspection, can you work out what the potential at the centre of the cube (a/2, a/2, a/2)
should be?

(c) Consider the line x = a/2, y = a/2. Sketch the behaviour of V (a/2, a/2, z) andE(a/2, a/2, z)
as a function of z along this line, indicating key features on your sketch.
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