Prof. T. Wyatt.

Physics with Theoretical Physics Core Unit
Physics Option Unit

Credit Rating: 10

PHYS30441 Electrodynamics (M) (C/O) SEM1

Prerequisites PHYS20141, PHYS20342

Very useful but not prerequisite PHYS20401

Follow-up units PHYS40481, PHYS40682, PHYS40771, PHYS40772

Classes 22 lectures in S6

Assessment 1 hour 30 minutes examination in January

Recommended texts

Griffiths, D.J., Introduction to Electrodynamics (Benjamin Cummings; 4th edition (2013)

Jackson, J.D., Classical Electrodynamics (John Wiley & Sons, 3rd edition 1999)

Supplementary reading

Feynman, R.P., The Feynman Lectures on Physics, Vol II (Addison Wesley, 1964)

Heald, M.A. & Marion, J.B. Classical Electromagnetic Radiation, (Academic Press, 1995)

Schwartz, M., Principles of Electrodynamics (Dover Publications, 1972)

Zangwill, A., Modern Electrodynamics (Cambridge University Press, 2013)

Rybicki, G.B. and Lightman, A.P., Radiative Processes in Astrophysics" (WILEY-VCH, 2004)

Feedback

Feedback will be offered by examples class tutors based on examples sheets, and model answers will be issued. Some lecture sessions will provide extra problem-solving opportunities and cover a few interesting "extra-curricular" topics.

Aims

To cover theoretical aspects of electromagnetic fields and radiation, and their connection to special relativity.

Learning outcomes

On completion successful students will be able to:

- use and explain: scalar and vector potentials; gauge invariance; compatibility of special relativity and electrodynamics; solutions to Poisson's equation and inhomogeneous wave equation;
- 2. use Lorentz covariant formalism (scalars, 4-vectors and tensors) in the context of electrodynamics and special relativity;.

3. distinguish between radiation fields and other electromagnetic fields; calculate the radiated power produced by accelerating charges.

Syllabus

1. Revision and Preparation for More Advanced Material (6 lectures and optional pre-recorded revision videos)

Definition of the scalar and vector potentials. Electrostatics and magnetostatics: Poisson's equation; multipole expansions. Maxwell's field equations. The inhomogeneous wave equations for the potentials and their solutions: the Lorenz gauge and retarded time. Index notation for vector calculus in 3-dimensions. Visualising retarded time: the appearance of objects moving at close to the speed of light. Revision of 1st year special relativity. Consistency of Maxwell's equations and special relativity.

2. Special Relativity and Electrodynamics in Covariant Notation

(8 lectures)

Scalars, four vectors and tensors. Covariant and contravariant formalism of Lorentz transformations. Electrodynamics in covariant form: the 4-potential, 4-current and electromagnetic field tensor. 4-momentum and relativistic kinematics/dynamics. The stress-energy-momentum tensor: local conservation of 4-momentum.

3. Radiation from Accelerating Charges

(6 lectures)

Lienard-Wiechert potentials. Informal and vector calculus derivations of the fields produced by an accelerating charged particle. Power radiated in the quasi-rest frame: Larmor radiation. Lorentz transformation of the angular distribution of radiated power: bremsstrahlung and synchrotron radiation.

4. Harmonically Varying Sources

(2 lectures)

Multipole radiation: electric (Hertzian) and magnetic dipole radiation; slow-down of pulsars. Rayleigh and Thomson scattering.