

Electrodynamics — Relativity Interactive Session

This question is adapted from a past exam paper

An thin, flat sheet of infinite extent carries a uniform surface charge density σ_0 . The sheet lies at rest and extends over the entire x'^1 - x'^3 plane of an inertial frame of reference S' .

1. Use Gauss's law to determine the electric field \mathbf{E} at a distance x'^2 away from the sheet in frame S' .
2. Write down the electromagnetic field tensor $F'^{\mu\nu}$ corresponding to the fields in frame S' .
3. Consider a second frame of reference S in which the sheet moves with velocity β , in units of c , in the positive x^1 direction.
 - (a) State in Lorentz-covariant form the transformation equation that gives the electromagnetic field tensor $F^{\mu\nu}$ in terms of $F'^{\mu\nu}$.
 - (b) Use this equation and your answer to part 2. to determine the electromagnetic field tensor $F^{\mu\nu}$ in frame S .
4. Draw a diagram to indicate the velocity of the sheet and the directions of the electric and magnetic fields above and below the sheet in frame S .
5. Give an argument to justify the direction of the magnetic fields based on the electric current, as observed in frame S .
6. Give a physical explanation for the difference in the electric field between the two frames of reference.

Extensions — if there is time

7. Find a suitable expression for the 4-potential A'^μ in frame S' .
8. Apply a Lorentz Transformation to give the 4-potential A^μ in frame S .
9. Hence, use the definition of the electromagnetic field tensor

$$F^{\mu\nu} = \partial^\mu A^\nu - \partial^\nu A^\mu$$

to find the non-zero components of $F^{\mu\nu}$.